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Key points
� It is theorized that the nervous system controls groups of muscles together as functional units,
or ‘synergies’, resulting in correlated electromyographic (EMG) signals among muscles. However,
such correlation does not necessarily imply group-level neural control.

� Oscillatory synchronization (coherence) among EMG signals implies neural coupling, but it is not
clear how this relates to control of muscle synergies.

� EMG was recorded from seven arm muscles of 10 adult participants rotating an upper limb
ergometer, and EMG–EMG coherence, EMG amplitude correlations and their relationship with
each otherwere characterized.Anovelmethod to derivemulti-muscle synergies fromEMG–EMG
coherence is presented and these are compared with classically defined synergies.

� Coherent alpha-band (8–16 Hz) drive was strongest among muscles whose gross activity levels
are well correlated within a given task.

� The cross-muscle distribution and temporal modulation of coherent alpha-band drive suggests a
possible role in the neural coordination/monitoring of synergies.

Abstract During movement, groups of muscles may be controlled together by the nervous system
as an adaptable functional entity, or ‘synergy’. The rules governing when (or if) this occurs during
voluntary behaviour in humans are not well understood, at least in part because synergies are usually
defined by correlated patterns of muscle activity without regard for the underlying structure of their
neural control. In this study, we investigated the extent to which comodulation of muscle output
(i.e. correlation of electromyographic (EMG) amplitudes) implies that muscles share intermuscular
neural input (assessed via EMG–EMG coherence analysis). We first examined this relationship
among pairs of upper limb muscles engaged in an arm cycling task. We then applied a novel
multidimensional EMG–EMGcoherence analysis allowing synergies to be characterized on the basis
of shared neural drive. We found that alpha-band coherence (8–16 Hz) is related to the degree to
which overall muscle activity levels correlate over time. The extension of this coherence analysis to
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describe the cross-muscle distribution and temporalmodulation of alpha-band drive revealed a close
match to the temporal and structural features of traditionally definedmuscle synergies. Interestingly,
the coherence-derived neural drive was inversely associated with, and preceded, changes in EMG
amplitudes by ∼200 ms. Our novel characterization of how alpha-band neural drive is dynamically
distributed among muscles is a fundamental step forward in understanding the neural origins and
correlates of muscle synergies.
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Introduction

The ‘central problem of motor control’, as attributed
to Bernstein, is the seemingly impossible task of
coordinating the many, often redundant, muscles
activities that produce movement (Bernstein, 1967).
A popular theory is that the nervous system simplifies this
task by controlling groups of muscles (‘synergies’) rather
than all muscles individually (Singh et al. 2018). While
debates persist regarding the neural origins, function,
task-specificity and flexibility of muscle synergies
(Tresch & Jarc, 2009; Kutch and Valero-Cuevas, 2012;
Bizzi and Cheung, 2013; Valero-Cuevas, 2015), their
characterization using human electromyographic (EMG)
recordings has become an important tool for investigating
their relationship to deficits due to injury/disease (Cheung
et al. 2009, 2012; Gizzi et al. 2011;Mileti et al. 2020),motor
learning (De Marchis et al. 2018; Torricelli et al. 2020),
sports performance (Kristiansen et al. 2016; Matsunaga
et al. 2017) and control of robotic limbs (Alessandro et al.
2013; Santello et al. 2016).
Common approaches to characterizing synergies

identify covariation of gross activity across multiple
muscles. However, such covariation may reflect
mechanical constraints of a task (Kutch & Valero-Cuevas,
2012), rather than a neural strategy. Intentional synergistic
control by the nervous system would imply that
coordinated muscles share in common a portion of their
neural input. An established technique for identifying
shared neural drive is coherence analysis, which quantifies
the frequency spectrum of synchronous activity between
EMG signals of different muscles. The relevant portion
of the surface EMG signal utilized in this method is the
timing and density of motor unit action potentials, and
thus coherence characterizes the simultaneous reaction
of motor neuron pools to simultaneously delivered neural
input. It is possible to then probe the origins of that
input on a per-frequency basis. Intermuscular coherence
>∼6 Hz could not be imposed by simple task mechanics,
and distinct frequency bands up to ∼50 Hz have been
traced to specific neural origins (Farmer, 1998; Marsden
et al. 2000; Grosse et al. 2002; Grosse and Brown, 2003;
Boonstra and Breakspear, 2012; Boonstra, 2013). Under-

standing the neural control of synergies likely requires a
combination of both approaches, and would be of benefit
for understanding dysfunctional neuromuscular control,
e.g. after stroke.
While task requirements (Laine & Valero-Cuevas,

2017) or joint mechanics (Alessandro et al. 2020) that
impose a high degree of coordination among muscles
may favour synergistic control, the relationship between
muscle coordination and shared neural drive has not been
systematically investigated. Further, ordinary coherence
analysis operates on pairs rather than groups of muscles.
Accordingly, there is a need to extend current methods
that identify shared neural input in a way that allows
synergies to be characterized as they are when derived
from EMG amplitude covariation.
In this study, we address both of the above limitations.

We recorded EMGactivity from seven upper limbmuscles
while participants rotated a crank in the horizontal plane.
Because shoulder abduction exacerbates pathological
synergies and associated intermuscular coherence after
stroke (Ellis et al. 2017; Lan et al. 2017), participants
repeated the task with two levels of shoulder abduction,
allowing this interaction, and posture dependence in
general, to be explored in non-disabled adults. We first
compared pairwise EMG amplitude correlations and
coherencewithin and between shoulder postures.We then
used a novel combination of inter-trial coherence and
principal component analysis to compare the primary
muscle synergy derived from muscle output (EMG
amplitudes) with the primary synergy derived entirely
from shared neural input (coherence).
We hypothesized a direct relationship between EMG

amplitude correlation and intermuscular coherence across
pairs of muscles, especially within the alpha (8–16 Hz)
band. Coherence in this frequency band is highest in
tasks requiring precisemuscle coordination (deVries et al.
2016; Laine & Valero-Cuevas, 2017), and is amplified
among muscles pathologically coupled after stroke (Lan
et al. 2017; Chen et al. 2018a). Extending this logic, we
expected that a multi-muscle synergy derived from EMG
amplitudeswould closelymirror one derived entirely from
multi-muscle alpha-band coherence, since this would
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occur if these measures characterize different features of
the same common neural drive controlling a synergy.

Our results generally support these hypotheses, but also
provide evidence that alpha-band coherence may be more
related to themonitoring or fine-tuning of synergies as per
control requirements of a task, rather than direct muscle
activation.

Methods

Ethical approval

All procedures were approved by the University of
Southern California internal review board (USC IRB:
HS-17-00304) and written consent was obtained from all
participants prior to participation. The study conformed
to all standards set by the Declaration of Helsinki, except
for registration in a database.

Study participants

Ten right-handed adults participated in the study (6males,
4 females, 25–36 years of age), all free from any conditions
affecting movement or control of the upper limb.

Task

Participants were seated in front of an unpowered hand
ergometer mounted to rotate in the horizontal plane
(Fig. 1A). The vertical axis of rotation was in line with
the right shoulder, the handle set to shoulder height, and
distanced such that when the handle was most distant
from the participant, the outstretched arm would not
hyperextend the elbow or require the participants to
lean/rotate their torso. Participants wore a wrist splint
and were asked to grip the handle comfortably and
rotate the crank without pulling it down. As the crank
provided negligible resistance to rotation, activity of the
grip and wrist muscles was minimized. This reduced
potential variability of shoulder/elbow postures at each
phase of rotation, and minimized the potential for widely
distributed neural drives, such as are associated with
power grips (Baker & Perez, 2017), to influence the upper
limb muscles being analysed with respect to their role in
crank rotation. Visual feedback of the crank position and a
target to followwere provided on a computer screen∼2m
from the participant, to encourage an even rotation speed
(Fig. 1B). The crank rotation tasks required a rotation rate
of 2 s per full rotation. The participants were then asked
to complete 30 clockwise cycles of the crank using each of
two shoulder postures throughout the crank rotation (1)
with the shoulder abducted (elbow-up) such that the hand,
elbow and shoulder moved within one horizontal plane,
and (2) with the shoulder adducted (elbow-down) such

that the hand rotated in a plane above the elbow’s rotation
(Fig. 1C and D). Practice time was provided prior to each
task, with∼5 min rest periods between tasks. Participants
were instructed to use only the arm and to avoid leaning
or rotating the torso. We did not physically constrain the
torso, both to promote naturalistic upper limb control
and because participants had no difficulty restricting torso
movement in this task.

Data acquisition

Crank position. The crank angle was sent wirelessly to a
PC at 90 Hz using a Vive Tracker (HTC, Taoyuan City,
Taiwan). A custom game was designed in C# to collect,
record and save the angle data and provide live real time
feedback to the user (Unity3D, San Francisco, CA, USA).
Custom hardware provided a TTL pulse via an Arduino
MEGA (Arduino, Somerville, MA, USA) to synchronize
EMG and angle measurements.

EMG recording. We collected EMG signals at 1 kHz
from seven muscles of the right upper extremity using
a DataLINK system and associated software (Biometrics
Ltd, Newport, UK). Surface EMG sensors (Biometrics Ltd
SX230: bipolar, gain: 1000, bandwidth: 20–460 Hz) were
placed over the short head of the biceps (sbi), the long
head of the biceps (lbi), the lateral head of the triceps
(tri), the anterior, middle and posterior deltoid (adelt,
mdelt and pdelt, respectively), and the upper trapezius
(utrap) following standard recommendations (Hermens
et al. 2000). Electrode placement and signal quality were
confirmed using palpation of eachmuscle and observation
of the EMG during voluntary activation. This set of
muscles is sufficient for a general analysis of coupling
among the shoulder/elbow muscles relevant for our task.
We do not attempt to characterize the full dimensionality
of themechanical task faced by the nervous system, as this
would require accounting for all muscles and their actions
at each joint (Cohn et al. 2018).

Signal conditioning and processing

All signals were processed offline using customMATLAB
software (The Math Works, Natick, MA, USA). EMG
signals were first high-pass filtered between 250 and
450 Hz using a second order, zero-phase Butterworth
filter, then rectified. This high pass filtering procedure has
been used both for calculating coherence and predicting
muscle force, as it removes motion artifacts, emphasizes
the timing and density of motor unit action potentials,
and reduces spectral contamination from their shapes
(Potvin & Brown, 2004; Boonstra & Breakspear, 2012;
Laine and Valero-Cuevas, 2017, 2020). The procedure has
been applied here as a precaution to accentuate motor
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unit activity rather than as a necessity, and to facilitate
comparison with our previous related work (Laine &
Valero-Cuevas, 2017, 2020). To obtain a smoothed EMG
amplitude time series (gross muscle activity), the filtered,
rectified EMG signals were smoothed using a band-pass
filter with cutoffs at 0.2 and 5 Hz. The low-pass cutoff
smooths the signal while the high-pass cutoff removes

drifts in signal means that are irrelevant to the task.
Smoothing of rectified EMG is a standard practice due to
the low-pass filtering effects of muscle (Zajac, 1989) and
the fact that during a slow movement, small fluctuations
in muscle output beyond about 5 Hz mainly reflect
task-irrelevant phenomena such as physiological tremor
or unfused motor unit twitches (Allum et al. 1978).

Figure 1. Experimental set-up
A, 10 participants rotated a horizontally mounted upper limb cycle with their right arm in the clockwise direction
at a pace of two sec per full rotation. B, visual feedback of rotation angle and a target to follow were provided via
a computer screen placed in front of the participants. C and D, surface EMG was collected from 7 muscles of the
upper arm as participants completed 30 rotations in each of two shoulder postures: elbow-up, with the shoulder
abducted (C, time series) and elbow-down (D, time series). These time series traces show the mean and standard
deviation (shading) for smoothed EMG amplitudes recorded from 10 participants. Units have been normalized to
max (1) and min (0) EMG amplitude per cycle prior to averaging. The coherence histograms (C and D, top) depict
the across-participant mean and standard deviation (shading) in the number of muscle pairs showing significant
coherence at each frequency. Below each histogram is the mean and standard deviation of coherence magnitudes
(Z-score), again averaged across the 21muscle pairs per participant prior to constructing the grand average. [Colour
figure can be viewed at wileyonlinelibrary.com]

© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society
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Statistical procedures

EMG correlations. Per participant, the smoothed EMG
amplitudes for each pair of muscles were tested for
temporal covariation using Pearson’s correlation. Each
resulting rho value was then normalized using Fisher’s
Z transform (Fz corr = atanh(rho)) prior to statistical
comparisons.

Coherence analysis. Todetermine if EMG signals showed
synchronous oscillatory activity indicative of common
neural input, we normalized each rectified EMG signal
to unit variance and then calculated the magnitude
squared coherence between each pair of muscles using
the mscohere function in MATLAB, specifying 1 s
segments, a Hann window taper and overlap of 50%.
To confirm that our focus on the alpha-band was
appropriate for our muscles and tasks, we conducted
two preliminary analyses. Specifically, we converted raw
coherence profiles to standard Z-scores (Baker et al. 2003;
Laine & Valero-Cuevas, 2017) and then calculated, per
participant, (1) the number of muscle pairs showing
significant coherence (Z-score >1.65) at each frequency,
and (2) the average coherence Z-score for each frequency
across all 21 pairs. Grand averageswere constructed across
these significance histograms andmean coherence profiles
(Fig. 1C and D). Group-level significance thresholds have
been added to these plots as a visual aid. Histogram
values ≥3 indicate that on average, more pairs showed
significant coherence than expected by chance (3 of 21
pairs is more than the 5% chance level, derived from a
binomial test). Similarly, an average Z-score above 0.52
is unlikely to have occurred by chance, as derived from
Stouffer’s composite Z-score method. An individual raw
coherence profile can be seen in Fig. 2Ab. The 95%
confidence level depicted in the figure was derived as pre-
viously described (Kattla & Lowery, 2010).

For our statistical comparisons, for each participant,
we determined the maximal coherence in the
alpha-band (8–16 Hz) for each pair of muscles, and
converted this value to Fisher’s Z using the formula Fz
coh = atanh(�coh). Fisher’s Z is the minimal common
transform that can be applied to both correlation and
coherence data when data lengths are equal, thus mini-
mizing the potential impact of statistical assumptions
on assessments of their relationship. While coherence
is an extension of Pearson’s correlation (Gardner, 1992;
Myers et al. 2004), there is no mathematical reason to
assume that 8–16 Hz coherence should directly scale with
time-domain amplitude correlations among different
muscle pairs.

Comparison of amplitude correlation and coherence.
The above procedure for determining pairwise amplitude
correlation and coherence was repeated for the elbow-up

and elbow-down postures, as well as their difference,
for each participant. For each participant, we then
determined if amplitude correlations for the 21
unique pairs of muscles were linearly related to the
21 corresponding coherence values (Fig. 2B and C). This
was accomplished by calculating Pearson’s correlation
coefficient for muscle pairs within each shoulder posture,
as well as for the difference between them. Correlations
were considered significant at the two-sided 95%
confidence level if the correlation coefficient was ≥0.43,
derived from the conversion of correlation (rho) to
standard Z-scores (i.e. atanh(rho)/�[1/(N − 3)] = Z,
where N = 21 pairs, and the significance threshold
is Z = 1.96). To consider any effects consistent at the
group level we required at least three individuals to show
significant correlation. The binomial probability of three
participants out of 10 showing spuriously significant
correlation at the 95% confidence level is 0.012, and thus
unlikely.

Time–frequency coherence. To determine how
coherence changed across the rotation cycle we converted
each rectified EMG signal into a time–frequency
representation (i.e. spectrogram) using standard
convolution with complex Morlet wavelets. For a given
frequency, this wavelet is defined as a Gaussian windowed
complex sinusoid with a time duration spanning
nine cycles of the given frequency. For each rotation of the
crank, the complex time series for each frequency of EMG
was divided into 36 10-degree rotation phase bins using
the continuous crank angle measurements. Accordingly,
for each muscle pair, magnitude-squared coherence
could be calculated across the 30 rotations using the
time–frequency data associated with each 10-degree
phase bin. This is very similar to the event-triggered
analyses common in EEG studies (Tallon-Baudry et al.
1996; Lachaux et al. 1999; Roach and Mathalon, 2008),
but rather than calculating coherence over ‘trials’ at
time points relative to a stimulus onset, we calculated
coherence over 30 rotations, at each of 36 10-degree
rotation phases. In summary, for each participant, we
quantified coherence across rotation cycles at each
frequency and phase of rotation. This analysis was applied
to each muscle pair and shoulder posture.

Projection of coherent neural drive onto individual
muscles. To understand the relative distribution of
coherent drive to each individual muscle, it was necessary
to develop a novel method to project pairwise coherence
data back onto each muscle, and thus produce a
per-muscle time series for a given frequency band of
interest. This procedure is not analogous to a measure of
spectral power per muscle, as that would not exclusively
reflect the magnitude of shared (phase-locked) neural

© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society
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Figure 2. EMG amplitude correlations relate to alpha-band intermuscular coherence
Aa, smoothed, rectified EMG signals for each unique pair of 7 recorded muscles were assessed for temporal
correlation by a calculated Pearson’s correlation. B, average correlations across participants (transformed to Fisher’s
Z-values) per muscle pair for the elbow-up posture, the elbow-down posture and the difference between the two.
The rectified EMG signals were also assessed for coherence (Ab) and the largest value between 8 and 16 Hz was
recorded for each muscle pair. C, average coherence across participants (again transformed to Fisher’s Z-values)
per muscle pair for each shoulder posture, and the difference between them. Muscle pairs showing high EMG
amplitude correlation tended to also show high coherence values. D, to determine if a systematic relationship
existed between EMG amplitude correlation and alpha-band coherence, Pearson’s correlation was calculated across
the 21 pairings of 7 muscles, per participant, on EMG amplitude correlation vs. the corresponding coherence
values. E, results of this analysis per participant, and shoulder posture, and for the change in amplitude correlation
vs. the change in coherence across the two shoulder postures. The horizontal line indicates the 95% confidence
level for a correlation (n = 21). There was a consistent relationship between EMG amplitudes and coherence
across participants for both shoulder postures, as well as for their difference, indicating that while coherence and
amplitude correlations were to some extent posture-specific, the relationship between them was relatively stable.
F, scatterplots showing the relationship between amplitude correlation and coherence for all 21 pairings of the
7 muscles for an example participant. [Colour figure can be viewed at wileyonlinelibrary.com]
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drive. In this study, we focus on the alpha-band (8–16 Hz)
as it is the strongest and most consistent band of
coherence in this task (Fig. 1C and D), and because
previous literature associates this band with task-related
muscle coordination requirements (de Vries et al. 2016;
Laine & Valero-Cuevas, 2017; Reyes et al. 2017; Vecchio
et al. 2019), as well as several clinical conditions
which influence muscle coordination and pathological
synergies, such as stroke (Dai et al. 2017; Lan et al.
2017; Chen et al. 2018b) or Parkinson’s disease (Flood
et al. 2019; Laine & Valero-Cuevas, 2020). For each
10-degree rotation phase bin, we extracted the maximal
coherence value in the alpha-band, for each muscle pair
(Fig. 3A). This allowed us to create, for each 10-degree
phase bin, a matrix where each entry corresponds to
the max alpha-band coherence for a different muscle
pair (Fig. 3B). Because magnitude-squared coherence is
the frequency-domain expression of a squared Pearson’s
correlation, taking the square root of each entry in
a 7 muscle × 7 muscle coherence matrix produces a

7 × 7 correlation matrix. Principal component analysis
operates on correlation matrices (pcacov in MATLAB)
by performing singular value decomposition. Thus,
performing principal component analysis on our square
rooted coherence matrix also allows us to identify its
first principal component vector (PC1) of seven ‘loadings’
that, when squared and multiplied by the total variance
explained by PC1, provide an indication of how coherent
drive in the 8–16 Hz frequency band was distributed
across individual muscles. We repeated this process for
each 10-degree phase bin of the rotation cycle to produce
a time series of coherent alpha-band drive delivered to
each individual muscle (Fig. 3C and D). It is important
to note that this method allows for flexibility with
regards to the type of neural drive that is mathematically
projected back onto individual muscles. Coherence as
derived here represents the strength of phase locking
between signals, regardless of any delays between them.
But phase information can also be easily obtained from
the coherence function itself. For our purposes, we did

Figure 3. Time–frequency coherence projected onto individual muscles
To evaluate the distribution of coherent neural drive across muscles, and characterize its temporal modulation
during the task, we first calculated the cross-rotation coherence between EMG signals in every 10 degree phase
of the rotation cycle, forming a time–frequency coherence matrix, as shown for a single participant in A. Then,
at each phase of the rotation cycle, the maximal coherence value in the 8–16 Hz alpha-band was recorded for
each muscle pair. For a given phase of rotation, this resulted in a matrix of maximal coherence values (B), which
was then subjected to a principal component analysis. This operation produced loadings/weights for each muscle
which were used as an index of the strength of intermuscular alpha-band drive to each individual muscle. This
was repeated for every phase of the rotation cycle to produce a time series of alpha-band drive for each muscle
as shown in C. D, the average and SD (shading) of the alpha-band drive strength for each muscle across the 10
participants. This time series data was then cast in a form comparable with average EMG amplitudes for each phase
of the rotation cycle, as shown in Fig. 1. Accordingly, EMG amplitude modulation could be compared directly with
the modulation of intermuscular neural drive (Figs 4 and 5) [Colour figure can be viewed at wileyonlinelibrary.com]
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not impose a phase constraint on our coherence matrices
prior to PCAanalysis since it is possible that synergiesmay
be constructed or controlled by a mixture of descending
drive and afferent connectivity among muscles. Thus, we
chose to examine phase relationships after determining if
the strength and intermuscular distribution of coherent
8–16 Hz drive is modulated in a way that indicates
synergistic control (see ‘Comparison of EMG amplitude
and alpha-drive synergies’, below). Finally, our method
allows for different muscle pairs to be maximally coherent
at slightly different frequencies within the alpha-band, and
for this possibility to be quantitatively assessed. The choice
to use peak frequency adds flexibility and specificity to
our analysis, ensures an accurate calculation of phase
delays, and is appropriate because coherence profiles have
a relatively broad, single peak within the alpha band (e.g.
Fig. 1C and D).

Comparison of EMG amplitude and alpha-drive
modulation per muscle. For analysis of EMG amplitude
modulation over the course of a rotation cycle, we
calculated, per rotation, the average amplitude in every
10-degree phase bin, and then normalized to unit
variance. The alpha-band time series data described above
were also normalized in the same way prior to further
analysis. This allowed us to compare the relative changes
in EMG amplitudes along the crank rotation with the
relative changes in coherent alpha-band drive delivered
to each individual muscle. To determine if temporal
modulation of EMG amplitudes was associated with the
temporal changes in alpha-band drive (per muscle), we
conducted a cross-correlation in which Pearson’s rho
was calculated after shifting the binned EMG amplitude
time series ±10 bins, in 1 bin increments, with respect
to the alpha-band time series. Lags were converted to
milliseconds (55.5 ms per phase bin) for plotting and
interpretation. This was repeated for each muscle and for
each individual.

Comparison of EMG amplitude and alpha-drive synergies.
To calculate synergies in the traditional way for each
individual, the normalized EMG amplitude time series
data for all seven muscles was subjected to a principal
component analysis. Then, the same normalization and
principal component analysis procedure was conducted
on the novel per-muscle alpha-band drive time series data.
For each individual, we determined the proportion of total
variance explained by each principal component for each
synergy derivation (EMG amplitude and alpha-band
drive), and extracted the squared loadings for PC1.
PC1 is the strongest and most unambiguous synergy,
which describes a group of temporally co-modulated
muscle signals. We then calculated the average of
these loadings across participants. To determine if the

average seven-dimensional PC1 loading vector was
representative of individual participants, we calculated
the cosine similarity between each participant’s PC1
loadings and the group average. The mean cosine
similarity across participants was tested for statistical
significance via comparison to a set of 10,000 surrogate
similarities, each calculated after shuffling the PC1
loadings of each participant across muscles. Similar
permutation procedures have proven effective in
evaluating multi-dimensional relationships across
individuals and conditions (Valero-Cuevas et al. 2016). To
determine if the synergy extracted from EMG amplitudes
differed across shoulder postures, we calculated the
average cosine similarity between the PC1 loadings
derived from each posture, and tested for significance
using a permutation test. The same analysis was carried
out to examine the effect of shoulder posture on the PC1
loadings derived from alpha-band drive. Finally, we used
the samemethod to determine if the PC1 loadings derived
from EMG amplitudes differed from those derived from
alpha-band drive within each shoulder posture.

Comparison of EMG amplitude and alpha-drive synergy
activation. In addition to determining if the loadings
of PC1 were similar across the two synergy derivations
(EMG amplitude vs. alpha-band drive), we also projected
the EMG amplitude and alpha-band drive time series
data onto their respective PC1s to derive a ‘synergy
activation signal’, representing modulation of the strength
of a given synergy over time. We then cross-correlated the
synergy activation signals derived from each method as
we had done for individual muscles previously. Finally, to
determine the overall time-shift between these activation
signals at the group level, we determined the lag at which
the correlation between signals was highest in absolute
magnitude, and generated a weighted average across the
10 participants. The weights were the absolute correlation
coefficients, since a lag has little meaning if signals are
not correlated. The entire analysis was repeated for each
shoulder posture separately.

Results

EMG amplitude correlation vs. coherence

The muscles which showed the largest EMG amplitude
correlations among each other were, in general, marked
by higher coherence in the 8–16 Hz alpha-band (Fig. 2E
and F). This correlation, calculated across all 21 unique
pairs of muscles, was above the 95% confidence level
of 0.43 in 8/10 participants for the elbow-up post-
ure, and all participants in the elbow-down posture. As
a further confirmation, we also calculated the partial
correlation between measures after accounting for the
mean coherence between 100 and 300 Hz as a covariate.

© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society
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Coherence in this range would be elevated by shared noise
or shared cross-talk, yet its removal did not eliminate
the consistent significant correlation between measures.
This procedure would not necessarily remove effects of
cross-talk as a source of noise/contamination, but would
have eliminated an effect driven by cross-talk.

To further understand the task-specificity of
alpha-band coherence and EMG amplitude correlation,
we examined the change in each measure between two
postures. The change of shoulder posture had different
effects across muscle pairs. Many of the largest changes
in coherence/correlation involved the anterior and post-
erior deltoid muscles, as might be expected considering
their respective contributions to pushing or pulling
mechanically depend on the position of the shoulder.
Overall, the posture-induced changes in pairwise EMG
amplitude correlations were themselves correlated with
the posture-induced changes in coherence across the
same muscle pairs (Fig. 2B, C and E, right column). The
latter was somewhat variable though, with significant
correlation in only 7/10 participants.

Comodulation of EMG amplitude and alpha-drive per
muscle

After statistically distributing pairwise coherence back
onto individual muscles (Fig. 3), we cross-correlated the
resulting time series for each muscle with the associated
EMG amplitude time series for the same muscle (Fig. 4).
Some muscles displayed strong correlations between
EMG amplitude and alpha-band drive, while others
showed no correlation at all for one or both shoulder
postures. Interestingly, the strongest correlations were
negative, suggesting a delay between modulation of inter-
muscular alpha-band neural drive and EMG amplitudes.
In these cases, intermuscular neural drive preceded EMG
amplitudemodulations by∼200ms (negative peaks to the
right of 0 lag in Fig. 4).

Synergy identification from EMG amplitudes and
coherence

Synergieswere identified via principal component analysis
of each participant’s EMG amplitude data, and their
intermuscular alpha-band drive data (Fig. 5A). For the
elbow-up posture, PC1 derived from EMG amplitudes
explained about 60% of the total variance, with the
triceps, middle deltoid and posterior deltoid having the
highest loadings on average across participants (Fig. 5B),
with individual participants showing loading profiles very
similar to the average across participants (Fig. 5C). The
same analysis conducted on the coherent alpha-band
drive showed again that PC1 explained about half of the
total variance, and the associated loadings were consistent

across participants and similar to those derived from
EMG amplitudes (Fig. 5D). The primary members of
this synergy showed the largest alpha-band coherence at
∼12 Hz (median (MAD) freq. in Hz: mdelt–pdelt = 12.2
(1.5),mdelt–tri= 11.7 (0.97), tri–pdelt= 12.7 (1.95)). The
associated absolute delays at the maximal frequency were,
in ms, mdelt–pdelt = 2.9 (1.4), mdelt–tri = 3.3 (1.4) and
tri–pdelt = 1.1 (0.21), indicating that these muscles are
likely responding to a common ∼12 Hz oscillatory drive.
The elbow-down posture also showed high proportions

of variance explained by the PC1s of each derivation
method, and consistent loadings across individuals;
however, the EMG amplitude derived PC1 was similar to
that of the elbow-up posture, whereas the PC1 derived
from alpha-drive differed from the pattern present in all
other conditions. Specifically, the PC1 loadings derived
from alpha-band drive in the elbow-down posture did
not include the posterior deltoid as a major contributor.
The triceps and middle deltoid again showed ∼12 Hz
maximal alpha-band coherence (11.7 (0.97) Hz) with no
appreciable delay (1.8 (0.36) ms), suggesting that the
source of alpha-band drive to these muscles is consistent
across postures.

Figure 4. Temporal modulation of EMG amplitudes vs.
alpha-band drive
Average and SD (shading) cross-correlation between EMG amplitude
modulation and alpha-band drive strength across phases of the
rotation cycle, for each shoulder posture. For most muscles, maximal
correlations were negative, and were found at positive lags; changes
in alpha-band drive preceded changes in EMG amplitudes for a
given muscle. The delay varied across muscles (e.g. adelt), and across
postures (e.g. lbi). These results show that intermuscular alpha-band
drive is not only temporally modulated across phases of the rotation
cycle (Fig. 3), but also that this modulation is time-locked with
changes in EMG amplitudes. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Temporal modulation of synergies derived from EMG
amplitudes and coherence

We plotted the projection of EMG amplitude or coherent
alpha-band drive onto their respective PC1 axes, yielding

a ‘synergy activation signal’. The mean and standard
deviation of EMG amplitude or alpha-band signals
are plotted for each posture in Fig. 6, where it is
clear that these signals are largely out of phase, but
similar in overall shape. To confirm this, we again

Figure 5. Structure of synergies derived from EMG amplitudes vs. alpha-band drive
A principal component analysis was carried out for each participant using (1) the average EMG amplitude time
series data for each muscle, and (2) the alpha-band drive time series calculated for each muscle. A, scree plots
showing the average proportion (across participants) of total variance explained by each principal component
for each shoulder posture (elbow-up and elbow-down) and source of synergy derivation (EMG amplitude and
alpha-drive). The first component (PC1) explains the majority of the variance in all cases. B, relative loadings of PC1
across muscles, averaged across participants. The bar heights represent the fraction of a givenmuscle’s variance that
is explained by PC1. The triceps, middle deltoid and posterior deltoid were the most important members of PC1 in
nearly all cases. The exception is the loadings of PC1 derived from alpha-drive in the elbow-down posture (bottom
right panel), where the posterior deltoid no longer contributes to PC1. C, average cosine similarity between each
participant’s PC1 loadings and the average pattern of loadings displayed in B. A high number indicates that the
average shown is a faithful representation of individual participant data. The similarity of each participant to the
mean is marked with a ‘+’. The P-values signify the statistical probability that the mean cosine similarity could have
been observed by chance. In all cases, a consistent pattern of PC1 loadings was observed across participants. D,
cross-subject average cosine similarity of the PC1 loadings between shoulder postures (elbow-up vs. elbow-down),
or derivation methods (EMG amplitude vs. alpha-drive). For the elbow-up posture, PC1 loadings derived from
alpha-drive were similar to those derived from EMG amplitudes, and this was consistent across participants (each
marked with a ‘+’). The same was not true for the elbow-down posture, where PC1 loadings differed between
derivation methods. [Colour figure can be viewed at wileyonlinelibrary.com]
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conducted a cross correlation after shifting the EMG
amplitude-derived activation signal −500 to 500 ms
with respect to the intermuscular alpha-drive signal.
Once again, their cross-correlations show these signals
to be both negatively correlated in magnitude and
shifted in time, with changes in alpha-band drive leading
changes in EMG amplitudes by ∼200 ms. To the right
of Fig. 6, we plot the minimum (largest negative)
correlation coefficient for each participant. The vertical
line represents the correlation-weighted average lag,
which was 174 ms for the elbow-up posture and 204 ms

for the elbow-down posture. Note that because these
correlations were conducted over 36 10-degree phase bins,
the threshold for statistical significance is 0.33, indicating
that nearly all participants, in both conditions, showed a
significant relationship between modulation of an EMG
amplitude synergy and modulation of a synergy derived
from intermuscular alpha-band drive. Although the lags
were often very similar across participants (especially for
the elbow-up posture), it is worth noting that they do
vary across participants and across postures, and thus the
relationship appears not to be obligatory.

Figure 6. Comparison of synergy activation over time: EMG amplitude vs. alpha-band drive
For each individual, the original time series data for EMG amplitudes and alpha-band drive were projected onto
their respective first principal components, as characterized in Fig. 5. The average and SD (shading) are shown for
each shoulder posture in A. The average and SD (shading) cross correlation between the two resulting time series
are shown in the lower panel in B, again indicating that an inverse relationship exists between modulation of EMG
amplitudes and alpha-band drive. The largest correlations were found at positive lags, again indicating that changes
in alpha-band drive preceded changes in EMG amplitudes. C, the strongest correlation and its associated lag per
participant (numbered). The vertical line shows the correlation-weighted average lag and the horizontal line shows
the 95% confidence level, indicating statistically non-zero correlation for participants showing larger (in this case
more negative) values. The results indicate that the intermuscular alpha-band drive targeting a synergy as a whole
is temporally paced according to the overall activity level of the same synergy (as defined by EMG amplitudes,
see Fig. 5). The delay and sign of the relationship indicate that increases in alpha-band drive precede decreases in
EMG amplitudes by about 200 ms in either condition, although this could vary across individuals and conditions,
suggesting that the relationship is not obligatory. [Colour figure can be viewed at wileyonlinelibrary.com]
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Discussion

The idea that the nervous system may control groups of
muscles as functional units has been an influential, and
much debated, hypothesis for many years (Tresch & Jarc,
2009; Kutch and Valero-Cuevas, 2012; Bizzi & Cheung,
2013). However, there remains a disconnect between
popular methods which characterize synergies based on
patterns of muscle co-activation vs. methods which could
quantify and characterize the delivery of a commonneural
drive to multiple muscles of a synergy.

Coherence vs. EMG amplitude correlation

We tested for a direct relationship between EMG
amplitude correlations and common alpha-band drive
(as per intermuscular coherence) across seven upper
arm muscles in 10 participants. We found that EMG
amplitude correlations and alpha-band coherence were
consistently and strongly correlated across muscle pairs,
for both arm postures. In fact, the posture-induced
changes in bothmeasures were correlated with each other,
meaning that although both EMG amplitude correlation
and alpha-band coherence are posture-specific, the
relationship between the two was stable. Our data
indicating a direct relationship between coherence and
amplitude correlations may explain previous observations
that intermuscular coherence between muscles is highest
in tasks that require a high degree of task-relevant muscle
coordination (Nazarpour et al. 2012; de Vries et al. 2016;
Laine & Valero-Cuevas, 2017; Reyes et al. 2017). These
previous studies have shown that for a given muscle pair,
the strength and frequency spectrum of coherence can
be manipulated by task, with the most likely explanation
being that different tasks impose different intermuscular
coordination requirements. Our current results, however,
indicate that even within a task the degree to which a pair
of muscles shows correlated EMG amplitudes (across 21
pairs of muscles) is predictive of their average alpha-band
coherence over time, even though coherence changes
dynamically during task execution. The relationship
between coherence and EMG amplitude correlations
might be considered as an artifact of cross-talk or an
amplitude-dependent signal to noise ratio, if it were
not for the fact that coherence at any given moment in
time was not predictable from the amplitude of muscle
activity at that same time. Rather, coherence between
coordinated pairs of muscles increased as their EMG
amplitudes decreased; a phenomenon most clearly
observed when assessing groups of coordinated muscles
(Fig. 6). Moreover, the temporal variation in alpha-band
coherence was about 200 ms offset from variation in
EMG amplitudes as a result. Cross-talk and signal quality
issues would not be expected to produce an artifactual
coherence that is delayed like this, or which is most

apparent during periods of decreasing EMG activity.
Nor would one predict that such coherence would be
stronger on average between deltoid and triceps muscles
compared with adjacent heads of the biceps, as we
observed.

Synergies of neural input vs. synergies of muscle
output

We also expected that synergies could be identified
on the basis of their shared neural input (coherence)
rather than their output (EMG amplitudes). While some
have characterized coherence between selected muscles
of a synergy (De Marchis et al. 2015; Hu et al.
2018), it has never been clear if coherence between
muscles of a synergy is determined by their membership
within it. In the present study, we developed a method
that made it possible to define a synergy based on
time–frequency representations of coherence between
pairs of muscles. This advancement uncovered that
(1) temporal modulation of an intermuscular neural
drive was consistently time-locked to modulation of a
traditional EMG amplitude-defined synergy, and (2) that
the distribution of coherent alpha-band drive across
muscles can precisely match the weights/loadings of
an amplitude-defined synergy, though this was flexible
across tasks. Importantly, amplitude correlations and
coherence do not yield redundant information. For
example, the alpha-band intermuscular neural drive
gained strength and peaked at the rotation phases
where EMG amplitudes were decreasing. If this inverse
relationship were due to signal interference or electrical
cross-talk, coherence should have been largest or smallest
when EMG amplitudes were smallest or largest, not
delayed by ∼200ms as we observed. Therefore, our
findings suggest a physiological rather than artifactual
relationship, perhaps related to the inhibition, pre-
paration, or monitoring of a synergy rather than its direct
activation.
It should be emphasized that our data do not suggest

a simple, direct, causal relationship between coherent
alpha-band drive and amplitude correlations. A full
description of all possible types of hard-wired and
task-dependent connectivity among muscles is not
feasible at this time; however, the degree of multi-scale
network-level connectivity among muscles, even for
simple tasks, is likely complex (Boonstra et al. 2015,
2019; Kerkman et al. 2018, 2020). Even so, the nervous
system must still choose to execute certain tasks through
either synergistic or individualized control of muscles.
Alessandro et al. (2020) have recently suggested that the
critical factor motivating formation of synergies may
be the need to control internal joint mechanics. This
claim was supported by especially high EMG amplitude
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correlation between vastus lateralis and medialis muscles,
whose actions on the patella must be well balanced,
and they may even share most of their neural drive
(Laine et al. 2015). Our present data support a slightly
more general view that functionally relevant amplitude
correlations are more likely to be enforced through a
neural synergy. For example, we found that the post-
erior deltoid was both correlated and coherent with the
middle deltoid, but when the elbow was lowered, the
posterior deltoid contributed much less to the alpha-band
synergy. When the elbow is raised, posterior deltoid
activity participates in shoulder abduction (a function
of the middle deltoid), but works against it when the
elbow is lowered (Hik & Ackland, 2019). Accordingly,
the elbow-up task may have required more cooperation
between deltoid muscles. If it is true that synergies
derived from shared drive only reflect task-relevant
muscle correlations, it would bridge the present work
with a parallel line of investigation, where synergies are
defined in the context of a system tuned to control only
task-relevant variability (Latash et al. 2007). It should be
noted that the muscles involved in this shoulder-elbow
synergy are particularly relevant for the rotation of the
crank. In contrast, the trapezius muscle, while active as
a postural muscle, does not directly contribute to crank
rotation, and shared little or no alpha-band coherence
with the other muscles. While it is possible that artifacts
like cross-talk might influence the composition of any
synergy derived from surface EMG, such a mechanism
would not explain our findings regarding the posterior
deltoid. Its overall coherence with the middle deltoid
was very similar across the two tasks (Fig. 2C), and the
∼12 ms delay between signals seems unlikely if coherence
just reflected the measurement of one signal from two
sensors.

Potential origins and clinical correlates of
intermuscular alpha-band drive

Stroke can often cause abnormal coupling and
coactivation of elbow and shoulder muscles (Dewald
et al. 1995), severely restricting upper limb activities. It
has been suggested that damaged corticospinal pathways
are maladaptively replaced by reticulospinal pathways
through changes in the pontomedullary reticular
formation and/or ipsilesional cortical control over it
(Schwerin et al. 2008; Owen et al. 2017; McPherson et al.
2018; Li et al. 2019). Stimulation of the reticulospinal tract
through acoustic startle produces a coherent alpha-band
drive to the neck and upper limb muscles (Grosse &
Brown, 2003), and after stroke, spastic muscles receive
(Dai et al. 2017) and share (Lan et al. 2017; Chen et al.
2018b) an amplified neural drive of the same frequency.
Our results suggest alpha-band coherence between

elbow and shoulder muscles exists even in non-disabled
adults, which could mean that the pathological synergies
observed in stroke are amplifications of a natural drive
rather than the development of a new pathway to muscles.
Further, pathological synergies coupling the elbow and
shoulder muscles are made worse by abduction of the
shoulder (Lan et al. 2014, 2017; Ellis et al. 2017). We also
observed that coherence between shoulder and elbow
muscles was, at least for some muscle pairs, notably
stronger when the shoulder was abducted (elbow-up
posture). This is, to our knowledge, novel evidence
that the effect of shoulder abduction on intermuscular
coherence/synergies observed in stroke is mirrored
in non-disabled adults, and also suggests a possible
reticulospinal route for the observed alpha-band inter-
muscular neural drive.
Alpha-band coherence between muscles is also

amplified in Parkinson’s disease during static (Flood et al.
2019) and dynamic (Laine & Valero-Cuevas, 2020) tasks,
and its magnitude can be altered when a task requires a
different pattern of intermuscular coordination (Laine &
Valero-Cuevas, 2020). We have argued that this could be
a fingerprint of damage to the cerebello-thalamo-cortical
circuit, which resonates at alpha-band frequencies and
synchronizes with motor output through its projections
to the cortex and/or pontomedullary reticular formation
(Gross et al. 2002; Soteropoulos, 2005; Williams et al.
2010). Dysfunction of the cerebello-thalamo-cortical
circuit may also generate much of the tremor seen in
Parkinson’s disease (Lewis et al. 2007; O’Callaghan et al.
2016; Dirkx et al. 2016, 2017; Lefaivre, 2016; Muthuraman
et al. 2018; Madelein van der Stouwe et al. 2020) and even
essential tremor (Bareš et al. 2012; Buijink et al. 2015;
Louis 2018). It is also critical for the planning, timing
and coordination of multi-muscle activities (Diedrichsen
et al. 2007; Manto et al. 2012; Bodranghien et al. 2016;
Nashef et al. 2018, 2019) and perhaps unsurprisingly, its
altered function in Parkinson’s disease influences muscle
synergies (Mileti et al. 2020).
It is worth noting that the cerebellum’s role in

controlling muscle synergies might not be to activate the
agonists but instead to activate antagonists which slow
or stop a movement, or to dynamically regulate stretch
reflex gains associated with a movement (Schieber &
Thach, 1985; Thach et al. 1993). If the alpha-band drive
identified in the present study does reflect a cerebellar
circuit operation, it would likely serve these functions,
since itsmagnitudewasmodulated out of phase with over-
all muscle activity, peaking as the synergy became less
active.
Finally, coordinated patterns of alpha-band drive to

members of a synergy might reflect coordinated afferent
feedback. For individual muscles, cycles of excitation
around the monosynaptic stretch reflex cause oscillations
in the alpha-band (Lippold, 1970; Christakos et al. 2006;
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Erimaki and Christakos, 2008). However, it is not clear
how multiple muscles across the limb would become
synchronized with each other in a similar manner.
Potentially, spinal interneurons could coordinate afferent
feedback across synergist muscles (Hart & Giszter,
2010; Levine et al. 2014). Some degree of task-specific
processing seems necessary though, as exchange of
afferent feedback between shoulder and elbow muscles
would not be expected to produce simultaneous (near
zero phase lag) oscillations across all muscles of a synergy.
In summary, while we can only speculate as to the
precise physiological function of coherent alpha-band
drive, current evidence suggests it is at least informative
of afferent reflex loops, cerebellar circuits, or brain-
stem output, and may be useful for detecting and
assessing alterations of neural activity in conditions such
as Parkinson’s disease or stroke.

Limitations

Our study focused on the alpha-band but we also
observed 30–50 Hz (gamma-band) coherence among
muscle pairs, primarily in the elbow-up posture, which
occurred simultaneously with the alpha-band signal we
have characterized here. A direct analysis is beyond the
scope of the present investigation but a gamma-band drive
could be generated within the same cerebellar circuit that
generates the alpha-band drive tomuscles during dynamic
actions (Popa et al. 2013; Soteropoulos, 2005).
Additionally, we focused on the first principal

component of either EMG amplitudes or alpha-band
drive because other components contributed little to the
overall signal modulation, our task was not designed
to be high dimensional, and our recorded muscle set
was not sufficiently comprehensive to capture the full
dimensionality of the task. Also, the first principal
component is the most direct and logical extension
of pairwise correlation techniques and therefore most
well-suited to our study. That said, our methods could
easily be extended to multiple synergies defined by any
factorization method of choice. It would be interesting,
for example, to determine if synergistic drives related
to grip or posture overlap with those that more directly
control a task such as crank rotation. Our methods could
also be applied, withminimalmodification, to the analysis
of motor unit activity decomposed from intramuscular
or high-density surface EMG electrodes. Direct analysis
of motor unit activity would reduce various sources of
contamination such as cross-talk, which are more likely
to occur in standard surface EMGmeasurements.
A further limitation is the precision with which

coherence can be assigned to a given phase of the rotation
cycle. For the frequencies analysed, wavelet widths were
always longer in duration than the ∼55 ms on average

that it took to rotate the crank 10 degrees. Although
we obtain a coherence value per 10 degrees of rotation,
coherence values in adjacent phase bins are not totally
independent. For the present study, this was not a concern,
and our methods are appropriate for slow, evenly paced
cyclical tasks. Analysis of faster actions with uneven or
uncontrolled cycle-phase durations would also be possible
with minor modifications to our techniques. For example,
using shorter wavelet widths could increase independence
of adjacent phase bins, and a non-uniform speed of task
execution within or across cycles could be accounted for
by task-appropriate pre-averaging and/or weighting of the
time–frequency data in each relevant phase bin prior to
calculating coherence across cycles.
It is also relevant to note that our sample size is not

sufficient for fully characterizing the variance of our
measures across the general population, or for identifying
any subgroups that may exist. For example, we have no
reason to expect that age or sex are relevant biological
variables in the context of this study, but this would need
to be confirmed using a much larger sample population.
It was not within the scope of this study to provide
a normative dataset, but rather to uncover, at least in
some individuals, a connection between multi-muscle
coordination patterns and the distribution of oscillatory
neural drive across muscles, and to describe a novel
methodology for accomplishing this task.
While further work is required to extend our findings to

more frequencies, synergies, muscles and tasks, our work
provides a foundation for such efforts, establishing a novel
premise and introducing a new methodological strategy
for characterizing synergies of neural origin.
Overall, our study provides evidence for a relationship

between EMG amplitude correlation and alpha-band
coherence measured across pairs of muscles. Our
extension of this concept to groups of muscles rather
than pairs, and analysis of how multi-muscle coherence
is modulated over time, suggest that coherent alpha-band
oscillations may relate to the monitoring or fine-tuning
of synergies as per control requirements of a task, and
are not likely to reflect an oscillatory component of
synergy activation signals. The alpha-band drive, being
delayed with respect to muscle activation, points towards
a sensory/proprioceptive origin, but elucidation of what,
if any, functional role is served through propagation
of alpha-drive to active muscles remains an important
subject for future investigation. While it is clear that
alpha-band drive is ubiquitous, task-dependent and
altered by neurological damage/disease, a causal role
in any particular aspect of motor control has not been
established.With a better understanding of how this signal
emerges, it could be possible to use its measurement as an
assay or marker for neural circuit integrity, and our study
contributes to the body of knowledge required for such
efforts.
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