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Abstract
Objective: One goal of neuromorphic engineering is to create ‘realistic’ robotic systems that 
interact with the physical world by adopting neuromechanical principles from biology. Critical 
to this is the methodology to implement the spinal circuitry responsible for the behavior of 
afferented muscles. At its core, muscle afferentation is the closed-loop behavior arising from 
the interactions among populations of muscle spindle afferents, alpha and gamma motoneurons, 
and muscle fibers to enable useful behaviors. Approach. We used programmable very- 
large-scale-circuit (VLSI) hardware to implement simple models of spiking neurons, skeletal 
muscles, muscle spindle proprioceptors, alpha-motoneuron recruitment, gamma motoneuron 
control of spindle sensitivity, and the monosynaptic circuitry connecting them. This multi-
scale system of populations of spiking neurons emulated the physiological properties of a pair 
of antagonistic afferented mammalian muscles (each simulated by 1024 alpha- and gamma-
motoneurones) acting on a joint via long tendons. Main results. This integrated system was 
able to maintain a joint angle, and reproduced stretch reflex responses even when driving 
the nonlinear biomechanics of an actual cadaveric finger. Moreover, this system allowed us 
to explore numerous values and combinations of gamma-static and gamma-dynamic gains 
when driving a robotic finger, some of which replicated some human pathological conditions. 
Lastly, we explored the behavioral consequences of adopting three alternative models of 
isometric muscle force production. We found that the dynamic responses to rate-coded spike 
trains produce force ramps that can be very sensitive to tendon elasticity, especially at high 
force output. Significance. Our methodology produced, to our knowledge, the first example 
of an autonomous, multi-scale, neuromorphic, neuromechanical system capable of creating 
realistic reflex behavior in cadaveric fingers. This research platform allows us to explore the 
mechanisms behind healthy and pathological sensorimotor function in the physical world by 
building them from first principles, and it is a precursor to neuromorphic robotic systems.
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Introduction

Which minimal features of the human sensorimotor nervous 
system are the sine qua non for healthy function in the physical 
world? And, how do these features lead to pathology or pro-
vide opportunities for treatment? Neuroanatomists and elec-
trophysiologists since the time of Sherrington have mapped 
the circuitry in the human spinal cord. But it is still unclear 
how the known spinally-mediated neural mechanisms can 
naturally and robustly contribute to healthy voluntary func-
tion and to clinical symptomatology such as flaccidity, tremor, 
and spasticity. There is no animal model for the human spinal 
neural system given its known evolutionary adaptations—
especially for the human hand [1–3]. Moreover, it is difficult 
and invasive to use microneurography to quanti fy the dynam-
ical interactions among upper and lower motoneurones, 
proprioceptors, muscles, and tendons in humans. Today’s 
dominant reductive approach to understanding of human 
sensorimotor function will continue to have these limitations 
even after collecting massive amounts of additional in vivo 
neural recordings.

A promising alternative is to create a synthetic (in the inte-
grative sense) and physiologically realistic system to identify 
what types of neural interaction are necessary and sufficient 
to reproduce the observed human healthy and pathologic 
behavior—and putting it to the ultimate test of physical imple-
mentation. The history of such a synthetic analysis approach 
for information processing in neuroscience dates back to the 
1940s, when scientists started creating artificial neurons and 
neural networks using analog electronic circuits [4]. Dynamic 
models of neurons on digital computers soon followed [5, 6]. 
Special-purpose hardware acceleration using very large scale 
integrated-circuit (VLSI) technology started to provide some 
key insights in neural computation, including asynchrony 
among neurons, spike representation of information, and 
self-improving mechanisms such as plasticity [7–10]. This 
so-called ‘neuromorphic’ hardware has been successfully 
applied to understanding mechanisms of memory [11], visual 
representation [12], and recently cognitive function [13].

It remains challenging to use this synthetic approach for 
understanding sensorimotor function given the many com-
plex and often nonlinear subsystems involved. For example, 
a model of even the monosynaptic stretch-reflex is likely to 
be inadequate unless it contains all of the following: a popu-
lation of neurons (sensory and motor); the peripheral physi-
ological elements (muscles, proprioceptors, skeletal system) 
with which those neurons interact [14]; the nonlinear viscoe-
lastic and biomechanical system moved by the muscles; and 
the physical environment with which the full system must 
interact. The computational cost of spike-to-spike simulation 
usually slows the entire system down, thus making it difficult 
to couple such a non-real-time system with real objects inter-
acting in the physical world.

This paper presents what to our knowledge is the first 
autonomous, multi-scale, physiologically faithful neuro-
morphic system to implement the neuromechanical features 
of afferented muscles in real-time from neurons to physical 
finger function. Our methodology is critically enabled by our 

recently developed VLSI neuromorphic platform [15] and a 
new design of the actuators of the neuromechanical plant. 
This synthetic analysis approach creates sensorimotor circuits 
that are biologically realistic but emulated on non-biological 
hardware.

We demonstrate the exploration of the functional signifi-
cance of spinal proprioceptive monosynaptic pathways, their 
afferent gains, and their dynamical interaction with a cadaveric 
finger’s actual skeletal structures and functions. In principle, 
the monosynaptic spinal pathways can provide fast, contin-
uous feedback control that presumably has a stabilizing effect 
on human joints. However, it is not clear which structures and 
features are essential for joint stabilization. To this purpose, 
testing a minimal sensorimotor system is a critical first step. 
Furthermore, we consider the cadaver experiment the most 
rigorous test to date of a physical neuromorphic sensorimotor 
model, since it includes the actual nonlinearities of anatom-
ical tissues and the biomechanics of a real joint—which is the 
very challenge confronting a biological sensorimotor nervous 
system. It is non-trivial for a closed-loop system—which has 
nonlinear sensory input, nonlinear motor output, noisy signal 
transduction, and prominent conduction delays—to achieve 
simple tasks such as maintaining a static posture in the pres-
ence of perturbation.

Our neuromorphic implementation of a sensorimotor 
system follows a systematic build-up from pure software 
simulation, to a scalable VLSI hardware design, to a hard-
ware-in-the-loop robotic joint, and finally a neuromorphically 
controlled human cadaver. We consider each phase essential 
for validating technical soundness and physiological realism. 
Our eventual goal is to validate or revise our understanding 
of the neuromechanical mechanisms at the foundation of sen-
sorimotor function. If successful, this work will allow for a 
new paradigm for systematic understanding of sensorimotor 
health, disease and treatment.

Methods

System architecture

The emulated sensorimotor system consisted of an antago-
nist pair of muscles each with a non-reciprocal stretch reflex, 
including the muscle spindles, spindle afferents, and alpha-
motoneuron pools of the simulated extensor indicis proprius 
and flexor digitorum profundus muscles (figure 1). Briefly, the 
following events occur when establishing tensions in an emu-
lated muscle: (1) a train of alpha-motoneuron spikes activates 
a muscle model; (2) the muscle model computes the current 
muscle force, based on physiological activation-contraction 
dynamics and force-length and force-velocity properties of 
skeletal muscle; (3) the current muscle force is generated by 
brushless DC motors controlled in real-time as a torque fol-
lower; (4) the ensuing changes in muscle length and velocity 
are transduced and sent to emulated muscle spindles, thus 
incurring subsequent reflex behavior. See figure 1(C) for the 
final design of the system.

For each of the two muscles, all spiking neuron behavior was 
generated autonomously and in real-time by a low-cost FPGA 
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(Xilinx Spartan-6). It emulated 256 spindle afferents [16, 17], 
1024 spiking neurons (768 alpha-motoneurones plus 256 sen-
sory neurons  =  1024) as simplified by Izhikevich [16, 18], and 
a lumped-parameter muscle model in parallel with a model 
of the associated surface electromyogram (EMG). This setup 
had multiple parallel proprioceptive closed-loop pathways, 
resembling the concurrent monosynaptic pathways in human 
spinal cord [19]. The hardware emulates parallel propriocep-
tive pathways including monosynaptic connections with 32 ms 
loop-delay representing the spinal proprioceptive pathway. The 
delays were chosen to approximate known conduction delays.

For each muscle, the 768 alpha-motoneurons were divided 
into 6 groups representing motor units of 6 different sizes 
(figure 2(A)). This allowed us to implement a system in which 
Henneman’s size principle [20] emerged naturally during 
simulated voluntary motor unit recruitment. In one experi-
ment (See Results, NEURONAL BEHAVIOR), we emu-
lated 20 groups of motor units to better demonstrate their 
recruitment order; in the rest of experiments we reduced to 
number of motor units to 6 due to computational cost. The 
neuromorphic system was also connected to a fresh-frozen, 
unfixed, cadaveric hand specimen—where the two muscles 

drove the metacarpophalangeal joint of the cadaver index 
finger by pulling on the tendons of the extensor digitorum 
communis and flexor digitorum profundus (figure 2(B)). The 
mathematical definitions of the components corresponding to 
figure  2(A) are listed in table  1. Our only algorithmic con-
straints in the platform were that the adjacent components 
must have compatible interfaces, and the interfacing variables 
must also be physiologically attainable. The behavior of the 
system emerges from the interaction of emulated components.

Neuron

We used Izhikevich’s simplification [16] of the classic 
Hodgkin–Huxley model [5] for neuron emulation. The 
Izhikevich model takes the postsynaptic neural current as the 
input and produces a spike train as the output. We chose the 
Izhikevich model for the combination of accurate approx-
imation to spiking dynamics and computational efficiency. 
Neuronal synapses were implemented using a simple model 
based on neural recording of hair cells in rats [21], which 
characterized the rising time and falling time profile of the 
EPSC (excitatory post-synaptic current) as follows:

I t
V te e

0

if 0
otherwise

m

t
V

t
Vm md r( )( ) ⩾

⎧
⎨
⎪

⎩⎪
= × −τ τ− −

The key parameters in this synapse model are the time con-
stants for rise ( rτ ) and decay ( dτ ) of the postsynaptic potential. 
In our emulation 0.001 srτ =  and 0.003 sdτ = . Our approach 
of neuron emulation has been previously reported [18].

Muscle

Muscle converts individual motor unit action potentials 
(MUAPs) to force. The time course of a twitch is sluggish 
compared to MUAPs as a result of the release, diffusion and 
reuptake of calcium by the sarcoplasmic reticulum [22, 23] as 
well as the effects of connective tissue viscoelasticity on cross-
bridge dynamics [24]. Moreover, the resulting muscle force 
changes according to its length and velocity (as per the force-
length and force-velocity properties), and history of its active 
state [25]. All these dynamics are muscle fiber-type dependent 
[26]. Consequently, a muscle model critically implements the 
dynamic relationship that gives rise to its force as functions 
of the action potential firing rate, muscle type, instantaneous 
length, and shortening velocity.

Three alternative muscle models were implemented and 
compared according to their responses to neuromorphic 
MUAPs. The first muscle model is a linear, second-order, 
low-pass filter. The impulse response of a low-pass filter 
naturally and credibly characterizes the muscle force elic-
ited by each motoneuron spike (a muscle twitch) [19]. This 
simplest of dynamical models allows the width of a muscle 
twitch to be easily adjusted. We enforced the low-pass filter 
to be critically-damped, therefore the oscillations common 
in second-order systems were eliminated to forbid negative 
forces that are unrealistic for muscles. The free parameters, 

Figure 1. (A) Components of the human sensorimotor system 
focused on in this study. The system includes a finger joint 
comprising two opposing monoarticular muscles (abductor 
and adductor), muscle spindles, spindle afference, and alpha-
motoneuronpools. (B) Model of the neuromuscular system in this 
study. Our model includes monosynaptic connections with 32 ms 
loop-delay. (B) Conceptualized block diagrams. (C) Final design of 
the system with an illustration of the robotic joint, muscle simulated 
using DC torque motor; spinal cord simulated using neuromorphic 
hardware based on FPGA.
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e.g. gain, damping ratio and natural frequency of the filter had 
been estimated from an isometric force generation task in the 
absence of fatigue [22]:

F s

I s s s

62 178.5

62.8 987.02

( )
( )
=

+ +

where F(s) is muscle force, I(s) is the neural spike train, and s 
indicates the Laplace transform.

The second muscle model is an accepted version of the well-
known Hill-type model [27]. The Hill-type model uses stan-
dalone mechanical components to approximate features during 
muscle contraction, e.g. force production, viscoelasticity, sudden 
release, etc. Our implementation was identical to that described 
in Shadmehr and Wise [28] with an interface to receive and 
integrate real-time spiking MUAPs. The active force generation 
component of the model in the isometric condition was:

Figure 2. (A) Detailed implementation of the motor nervous system on neuromorphic hardware. The components are implemented 
separately for the flexor and extensor, which simultaneously drive the joint modeled as a beam freely rotating around the endpoint. For 
each muscle, the muscle force is calculated from a muscle model activated by 6 motoneuron pools of different sizes, each pool comprising 
of 128 motoneurons modeled by Izhikevich [16]. The motoneuron pools receive excitatory input from the spinal loop. In the spinal loop, 
the sensory feedback is provided by muscle spindles implemented as Mileusnic and colleagues did [17], which include both the Primary 
(Ia) and Secondary (II) afferences to provide the dynamic and static proprioceptive information about the muscle. A total of 128 spindles 
are implemented for each muscle, thus providing 128 spiking afferents. Due to the limited capacity of each FPGA unit, the system must 
be distributed on multiple FPGAs. The entire system uses 4 FPGA boards enabling 2 muscles with 2300 neurons. Only half of the system 
(abductor) is shown. (B) The cadaver finger setup that provides realistic joint configuration and tendon elasticity for the neuromorphic 
system to activate. In this study, only the metacarpophalangeal joint of the index finger was involved.

J. Neural Eng. 14 (2017) 025001
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F s

A s s

1.33

0.49 2.1

( )
( )
=

+

A s

I s s s

48144

30.6

45845

29.4

( )
( )
=
+

−
+

where A(s) is the muscle activation.
The third muscle model is the two-element Hill-type 

model that differentiates fast and slow muscle fibers. This 
model includes a series of nested first order differential equa-
tions  with time-varying dynamics to generate the muscle 
active state. The structure of the model followed Wakeling 
et al [29]. The active force generation component of the model 
in the isometric condition was:

t
a t i t a t

i td

d
1 11 1 1 1 1

1
( ) [ / ( [ ] ( ))] ( ) ( )

τ β β
τ

+ + − =

t
a t a t a t

a td

d
1 12 1 2 2 1 2

1

2
( ) [ / ( [ ] ( ))] ( ) ( )

τ β β
τ

+ + − =

t
F t a t F t c

a td

d
1 1type 1 3 3 2 type

2

3
( ) [ / ( [ ] ( ))] ( ) ( )

τ β β
τ

+ + − =

F t F t F tslow fast( )   ( ) ( )= +

where , , ,1 2 3 1 2 3{ }β β β τ τ τ  was 0.73, 0.74, 0.92, 34.06, 36.27,{
}37.82  for slow muscle fibers and {      0.90, 0.99, 0.98, 18.14,

20.91, 20.75  } for fast muscle fibers.

Muscle spindle

Each muscle was assigned 128 muscle spindles following a 
lumped-parameter spindle model characterizing cat soleus 
spindles [17]. We know of no model for human muscle spin-
dles that is as well validated. This model requires static and 
dynamic gamma-motoneuron inputs represented as sensor 
gains to tune the pattern of afferent spike trains. Our neuro-
morphic implementation of muscle spindle and its spiking 
afferents followed Mileusnic et al [15].

Motor unit pool

As mentioned above, for each muscle, 768 alpha- motoneurons 
were divided into 6 groups representing motor units of 6 
 various sizes. As a result, Henneman’s size principle emerged 
naturally during the hardware-in-the-loop emulation for vol-
untary motor unit recruitment (figure 3(A)), our emulated 
results were qualitatively similar to the motoneuron activities 
decomposed from human EMG [30]. Each size of motor unit 
was emulated with 128 stochastic copies, i.e. noise was added 
to each copy such that all 128 motor units fire at random even 
when their inputs are identical. Pseudorandom white uniform 
noise (5 mV amplitude) was added to the membrane poten-
tial of each neuron to emulate the large number of inputs that 
a neuron usually receives from the dendritic tree. The noise 
level was set to create a typical 4.8 mV fluctuation in the 

membrane potential [31]. Pseudorandom noise is generated 
using a linear-feedback-shift-register [32].

The size of a motor unit was not explicitly modeled. We 
focused on the effect that small motor units require less EPSP 
to activate due to lower capacitance and membrane resist-
ance; therefore, we implemented the size of a motor unit by 
changing the excitability of the motoneuron and the resulting 
twitch force. Details on motor unit emulation were previous 
reported [18].

Mechanical Embodiment of an agonist-antagonist muscle 
pair driving a single planar joint: Robotic finger

The implementation shown in figure  1(C) is a robotic 
mechanical finger with one joint, with the distal joint splinted 
to allow rotation only at the proximal joint. The total length 
of the finger from the axis of rotation to the tip of the finger 
was 12.5 cm. The joint had a movement range of 120°, with 
a moment of inertia of approximately 2.63  ×  10−4 kg m−2  
(a total mass of 0.049 kg). Tendons were attached to the joint 
through a pulley of 8.8 mm in radius. The pulley was attached 
to the distal segment of the joint, such that any tension in 
the tendon resulted in a torque applied to the distal segment. 
Kevlar strings (Model 8800K41) were used as surrogates of 
muscle tendons. Each tendon was wrapped around the axle 
of its motor (see below) to generate tension in it, and incre-
mental encoders (model HEDS-5500, Avago Technologies) 
mounted on the motor axle transduced tendon excursion in 
real-time.

The desired musculotendon force was computed from the 
muscle models in real-time with 1 kHz sampling rate. That 
digital force signal was then transformed into an analog force 
signal using a NI PXI-6723 D/A card (13 bits resolution), 
which was used as the reference signal to control the force of 
a Faulhaber DC motor (model 3863h024c). The motor driver 
was an LDUS1 (Western Design) with PCU-S3 Chassis. The 
low-level control law was a PID controller optimized using 
MATLAB Control System Toolbox for our DC motor that 
had a bandwidth of 34.5 Hz, above which the driving signals 
would be attenuated by the DC motor itself. The tendon force 
was measured by a load cell (Interface SML 10) holding a 
pulley that guides the Kevlar tendon. A signal conditioner 
(Interface model SGA) amplified the output of the load cell. 
The force was converted to digital using a NI PXI-6250 D/A 
card and sampled at 1 kHz for the low level controller and 
acquisition purposes.

Table 1. The mathematical definitions of the components for the 
neuromorphic implementation of sensorimotor system.

Component Mathematical definition

Neuron S t f I t,neuron neuron( ) ( )=∗

Synapse I t f S t,synapse( ) ( )= ∗

Spindle S t f L L I t, ˙, , , ,afferent spindle dynamic static( ) ( )= Γ Γ∗

Muscle T t f S L L t, , ˙,muscle( ) ( )=
Joint F t f T t,muscle( ) ( )=

*  =  Spiking signal.
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Mechanical embodiment of an agonist-antagonist muscle 
pair driving a single planar joint: Cadaver finger

A critical test of our implementation is to control a real bio-
mechanical plant in the form of a cadaver finger that is not 
chemically preserved. As in prior studies [33], we actuated the 
tendons of a cadaveric index finger with electric motors. This 
involved thawing a fresh frozen cadaver arm, resecting it at the 
mid-forearm level, and removing all muscle, skin and fat tissue 
to dissect and isolate the proximal end of the insertion ten-
dons of the muscles of interest. In this study, only the insertion 
tendons of the flexor digitorum profundus and extensor indicis 
proprius were dissected and isolated. We fixed the specimen 
rigidly to a tabletop using an external fixator (Agee-WristJack, 
Hand Biomechanics Lab, Inc., Sacramento, CA), and tied and 
glued (Vetbond, 3M, St Paul, MN) the proximal end of the ten-
dons to Kevlar cords attached to our brushless DC motors.

Electromyography (EMG)

Another measurable output of muscle is its EMG. We imple-
mented a surface EMG model by superimposing MUAPs 
from 6 sizes of motor unit pools, with each MUAP modeled 
as a bipolar waveform approximated by two cascaded expo-
nential filters. This produced realistic surface EMG signals as 
described in previous studies [34].

Experiments: muscle function, muscle spindle function, 
and emergent closed-loop stretch reflex

We systematically implemented and validated the func-
tional features of the neuromorphic system at three functional 
levels: muscle function, muscle spindle function, and emer-
gent closed loop stretch reflex. Table 2 shows the functional 
features tested at four complexity levels of implementation: 
software simulation (MATLAB Simulink, Mathworks Inc.), 
hardware emulation (FPGA, Xilinx Inc.), robotic finger con-
trol, and cadaver finger control. Our implementations progres-
sively approximated in vivo human sensorimotor function for 
monosynaptic stretch reflexes.

We verified the emulated multi-scale system in a series of 
experiments. First, the activity of motoneurons and spindle 
afferents was verified by comparing the emulated firing pat-
terns to classic experimental results. Subsequently, muscle 
functions were verified when producing twitch response and 
unfused and fused tetanus responses. The stretch reflex, as the 
primary emergent behavior, was verified by applying mechan-
ical force perturbations to the robotic finger. We created force 
perturbations using a Phantom Desktop haptic robot (Phantom 
Premium 1.0, Sensable Group) that applied a 4.0 N horizontal 
force pulse perturbation lasting 20 ms. We also created posi-
tion perturbations using a servomotor (Dynamixel RX-28) 
rotating the joint by approximately 30° for at least 1 s. Lastly, 
we verified the closed-loop behavior of gamma-dynamic and 

Figure 3. (A) The spiking behavior of motoneuron from human data [35] (upper panel, reproduced with permission) and our emulation 
(lower panel). The emulation included 20 motor units with different sizes to verify Henneman’s sizeprinciple. As expected, the emulated 
motor units show a progressive recruitment order that is qualitatively similar to human data. The inset compares the force change pattern 
between human (black) and emulation (red). (B) Similar to cat soleus spindles [36] (upper panel, reproduced with permission), the action 
potential of spindle afferents from FPGA emulation (lower panel) show distinguishable patterns between Primary and Secondary fibers. 
The differentiation between ventral root intact and ventral root cut was also compatible, i.e. the firing rate reduced without ventral root 
input.

J. Neural Eng. 14 (2017) 025001
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gamma-static input when driving a cadaveric finger. In all 
experiments we recorded all variables in figure 1(D).

Results

Neuronal behavior

Figure 3 shows the spiking behavior of motoneuron and 
spindle afferents. In this experiment, we emulated 20 motor 
units with different sizes to verify that Henneman’s size- 
principle could be reproduced. As expected, the emulated 
motor units show a progressive recruitment order that is  
qualitatively similar to human data [30] (figure 3(A)).

The spiking behavior of spindle afferents was verified in 
a virtual stretch-and-hold experiment. Similar to the classic 
experiment on decerebrate cat, the muscle was stretched to 
36.8% of its resting length, corresponding to the 14 mm elonga-
tion of cat soleus muscle [35]. Responses were recorded both 
in the presence (ventral roots intact) and absence (ventral roots 
cut) of tonic fusimotor activity. As can be seen in figure 3(B), the 
emulated Primary (Ia) afferent show stronger phasic response 
than Secondary (II) afferent; while the Secondary (II) afferent 
produced stronger tonic response. The results are qualitatively 
similar between biological and emulated experiments.

Gamma fusimotor drive behavior

We tested 4 combinations of gamma fusimotor drive (gamma 
dynamic low/high, gamma static low/high, low  =  10 Hz, 
high  =  200 Hz) to validate their relative contributions 
to the stretch reflex. A typical EMG response to a ramp- 
and-hold muscle stretch includes a burst and subsequent tonic 
components. We quantified the EMG burst as the average 
EMG amplitude between 20 ms and 220 ms after the onset 
of muscle stretch; while the subsequent 200 ms of averaged 
EMG was calculated to represent the tonic EMG response 
(representative traces are shown in figure 4(A)). The cadaver 
finger was stretched with 15 repetitions under each combina-
tion of gamma dynamic and static drive. Across repetitions, 
the EMG traces showed variability due to the synaptic noise 
implemented in our system. As expected, the EMG bursts 
were affected by both gamma dynamic and static drive, but 
dominated by gamma dynamic drive (figure 4(B)); the relative 
contributions of gamma dynamic and static drive were clearly 
disambiguated from EMG tonic responses (figure 4(C)).

Muscle behavior

Skeletal muscle has a low-pass response that converts alpha-
motoneuron spikes into time-varying force twitches under 
temporal and spatial summation. The magnitude of the 
response depends on the muscle’s instantaneous fiber length 
and shortening velocity. (We did not include a tendon of 
origin, since that would only have the effect of increasing the 
rise time of force and washing out the force-length proper-
ties [25].) In the cadaver finger, the tendon of insertion was 
the actual anatomical tendon. Our modular system allows the 
future implementation of any other muscle model by simply 
replacing it in the code that drives the DC motors. Future work 
will explore the consequences of implementing additional 
models as reviewed in [36, 37].

Figure 5 shows the software simulation and neuromor-
phic emulation of three muscle models when producing 
twitch response and unfused and fused tetanus responses. 
We systematically increased the action potential firing rate 
from 0.2 Hz to 80 Hz (figure 5(A)). In software simulation 
(figure 5(B)), the forces of the low-pass filter and simple 
Hill-type muscle models were almost identical. The two-
element Hill-type model had a longer twitch contraction 
time. The twitch responses of the low-pass filter and Hill-
type models started overlapping at 10 Hz whereas this hap-
pened at 5 Hz for the two-element model. The force became 
relatively constant (with individual twitches no longer 
perceptible) above 40 Hz for the two-element muscle and 
above 80 Hz for the others. Figure 5(C) demonstrates the 
forces measured from the robotic mechanical plant driven 
by our emulated system.

Reflex behavior

We tested the emergent behavior when the robotic finger 
with hardware-in-the-loop was perturbed by a second robot 
(Phantom Desktop, see Methods). Both gamma-dynamic 
and gamma-static drives were set to 80 Hz to provide mod-
erate fusimotor activity. When perturbed using a ramp stretch 
(figure 6(A)), the multi-scale information shows that the force 
in the stretched muscle increased due to higher firing rates in 
the motoneuron pool (2 neurons from each of the 6 motor 
units are shown); the emulated EMG also confirms such  
reflex behavior. When perturbed using a 4.0 N (figure 6(B)), 
20 ms force pulse, the robotic joint was displaced by ~30° 

Table 2. The systematic progression for the neuromorphic implementation of sensorimotor system.

Motoneuron size-
principle (figure 3)

Spindle afferents 
(figure 3)

Muscle properties 
(figure 5)

Monosynaptic 
reflex (figure 6)

Disambiguate gamma static 
versus dynamic (figure 4)

Software 
simulation

○ ○ ○ ○ ○

Hardware 
emulation

♦ ♦ ♦ ○ ○

Robotic finger ♦ ○
Cadaveric finger ♦

♦  =  Shown in this report.
○  =  Implemented but not shown.
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and returned to the original angle after ~200 ms. This veri-
fies that the chosen components from human sensorimotor 
system suffice to recover the original joint angle after a 
perturbation.

Our last experiment was to infer gamma activity during 
human experiments [45] using a neuromorphic reflex 
loop on a cadaver finger. We constructed three boundary 
cases to provide insights for inference (figure 7). Case 1: 
no static gamma, the spiking pattern has no static comp-
onents. Case 2: no dynamic gamma, the spiking pattern has 
no break in the shortening period. Case 3: both velocity 
response and position response are present. From the com-
parison between human data and emulated results, it can be 
inferred that both gamma static and gamma dynamic need 
to be moderately active (at least 10 Hz) to allow sensing of 
elongation of the muscle fiber, while not being excessively 
active so that the spindle responses are low or silent during 
shortening.

Discussion

Decades of studies on neurophysiology provide an abundance of 
models characterizing components of the motor nervous system. 
The informational characteristics of physiological components 
allows us to model them as functional structures that convert 
input signals to certain outputs. In particular, within a monosyn-
aptic spinal loop illustrated in figure 1(A), passive extension of 
the joint will elicit a chain of physiological activities in: muscle, 
muscle spindle, spindle afferents, synapses, motoneurons, and 
contractile elements of muscle. The techniques of neuromorphic 
modeling and emulation allow us to focus only on the informa-
tional consequence of each component. Therefore it becomes 
possible to probe all of the signals and states of the system. Our 
long-term goal is to understand the interactions among physi-
ological components for creating sensorimotor functions. We 
are also interested in how small-scale abnormality may develop 
into clinical symptoms over time.

Figure 4. Emulated EMG responses when the cadaver finger was externally rotated, with 4 combinations of gamma dynamic and static. 
(A) Representative emulated EMG responses to a ramp-and-hold muscle stretch comprising of a burst and subsequent tonic components. 
(B) Across 15 repetitions, the emulated EMG traces showed variability due to the synaptic noise implemented in our system. Statistics 
show that EMG Bursts were affected by both gamma dynamic and static, but primarily gamma dynamic; the relative contributions of 
gamma dynamic and static were clearly disambiguated from EMG tonic responses.
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It is important to highlight that this study presents a neu-
romorphic system that is meant to test the function of spinal 
circuits in the context of stretch reflexes. Thus we are not 
addressing the more general problem of cortico-spinal con-
trol of finger movements or forces. Rather, the work presented 

here is a critical first step towards creating neuromorphic sys-
tems to understand the nature and control of low-level neuro-
mechanical function. Future studies will leverage this work 
to generate hypotheses about higher-level neural control of 
movement and force.

Figure 5. Software simulation and neuromorphic emulation of the low-pass filter, simple Hill-type and two element Hill-type muscle 
models in producing twitch response and unfused and fused tetanus responses: (A) action potential firing rate changed systematically 
from 0.2 to 80 Hz; (B) simulated forces from the three muscle models; (C) the measured forces of the neuromorphic system with the three 
muscle models.

J. Neural Eng. 14 (2017) 025001
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Advantage of neuromorphic modeling

The importance of monosynaptic stretch reflex emula-
tion for understanding the neural control of movement has 
not only been acknowledged in concept [38], but it also has 
been attempted several decades ago using analog circuits and 
mechanically simulated muscles [39]. In comparison to pre-
vious attempts, one technical advantage of our design is the 
neuromorphic modeling that enables emulation of spiking neu-
rons. When both muscle drive and muscle spindle afferents are 
driven by spiking interfaces, it allows for future studies of long-
term adaptation under the influence of spike-timing-dependent- 
plasticity (STDP), as well as the effect of medical intervention 
or disease that affects the membrane properties of neurons.

The current system did not include a cerebro-spinal comp-
onent that is potentially crucial for the neural control of human 
hands. Nevertheless, due to the concurrent FPGA architecture 
it is straightforward to mount a supraspinal emulation on top 
of the existing system, without compromising its real-time 
performance. We have previously shown the utility of using 
a neuromorphic cerebro-spinal emulation to study the role of 
long-latency reflex in childhood dystonia [40].

Our system can be implemented on general-purpose neuro-
morphic platforms such as the Neural Engineering Framework 
[41], SPiNNaker [42], and others. The potential benefit 
includes accelerating spike-based algorithms using our high-
speed spiking neural simulator in the loop, ‘native’ communi-
cation when stimulating live tissues without hand-designing 

the neural circuitry in hardware, and using spiking representa-
tion as an efficient coding strategy for system status.

Spindle responses

Figure 7(A) shows an initial burst in spindle firing rate which 
has also been documented in rats [43]. The physiological 
underpinning for the initial burst is probably due to stiction 
responses in presence of high gamma dynamic input, which is 
not incorporated in the original spindle model. In our previous 
work [15], we demonstrated that our emulation could produce 
such initial bursts, but similar firing rate comparisons were not 
available in this study due to restricted bandwidth in closed-
loop emulations.

Cadaveric specimens

Figure 1(A) shows how it is critically important to validate 
such systems using actual cadaver fingers. From a purely 
mechanical standpoint, the tendon excursions that determine 
the muscle fiber length and velocity are neither assumed nor 

Figure 6. The emergent behavior with multi-scale information, 
when the robotic finger with hardware-in-the-loop was perturbed 
by a second robot (Phantom Desktop). Both gamma-dynamic 
and gamma-static drives were set to 80 Hz to provide moderate 
fusimotor activity. (A) Perturbation using a tonic force. The 
emulated force and EMG in the stretched muscle increased due to 
higher firing rates in the motoneuron pool. (B) Perturbation using 
a 4.0 N, 20 ms force pulse, the robotic joint was displaced by ~30° 
and returned to the original angle after ~200 ms. In the motoneuron 
raster panels, 2 neurons from each of the 6 motor unit pools  
(12 motoneurons) are shown. Due to the added motor noise, even 
the 2 neurons from the same motor unit pool did not show identical 
spike trains. This verifies that the chosen components from human 
sensorimotor system suffice to stabilize the joint. Figure 7. Inferring the gamma activity during human experiment 

using neuromorphic reflex loop on a cadaver finger. (A) Activity 
of a muscle spindle recorded from human [45], reproduced with 
permission. (B) Emulation Case 1: no static gamma, the spiking 
pattern has no static components. Case 2: no dynamic gamma, the 
spiking pattern has no break in the shortening period.  
Case 3: a mixed condition with both gamma dynamic and static 
activity, which shows both velocity response and position  
response.
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approximated. They are the actual values seen in an anatom-
ical system. Therefore, we can be assured that the mechanical 
input to the spindle afferent system is not only realistic, but 
also real. Moreover, the use of neuromorphic hardware to 
drive the tendons of cadaveric fingers is a novel and useful 
intermediate step between pure numerical simulations and 
system-wide microelectrode recordings in humans.

Muscle models

The selected muscle models represented different trade-offs 
between physiological realism and computational cost. The 
parameters of the first two (low-pass filter and simple Hill-
type) models were tuned based on in situ studies of the cat 
soleus and frog gastrocnemius muscles. The parameters of the 
two-element Hill-type model were based on in vivo studies 
of the goat gastrocnemius muscle [44]. The choice of muscle 
model should be tailored to the specific need of future experi-
ments. Differences between the measured forces and the soft-
ware simulation seen in figure 5(C) are most likely explained 
by the limited bandwidth as the force did not imitate the high 
frequency oscillation of unfused tetanus response especially 
for neural firing rate above 10 Hz. Overall, it is within our 
interest to test and compare the different models in a reper-
toire of functional postural and movement.

Conclusions

This work is the first presentation of a methodology to build an 
electromechanical system that implements physiological prin-
ciples of the sensorimotor control of afferented muscles. The 
neuromorphic technology enables emulation of spiking neurons, 
and the interconnection among neurons follows experimentally 
identified circuitry. The methodology was validated by system-
atically adding complexity to the emulation and comparing the 
results with known experiments in neurophysiology. Using this 
methodology, we demonstrated that this simplified neuromor-
phic model of the sensorimotor systems suffices to produce 
realistic reflex behavior. Furthermore, it enables us to examine 
the effect of muscle properties on the closed-loop behavior by 
considering both the passive and active nature of muscle. In Part 
II of this work, we will show that it enables us to explore for the 
first time the effect of fusimotor drive on the reflex response. 
Nevertheless, these results are only a first step that justifies 
future work to produce more quantitative comparisons between 
neuromorphic and physiological recordings. Despite limitations 
and simplifications, our neuromorphic system provides a synth-
etic analysis approach that creates a unique research platform for 
understanding how spinal neurons and circuitry produce healthy 
and pathologic sensorimotor behavior.
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