
  

 

 
Abstract—The rehabilitation of manipulation ability in 

orthopedic (e.g., thumb carpometacarpal osteoarthritis- CMC 

OA) and neurological (e.g., Parkinson’s disease- PD) conditions 

depends critically on our ability to detect dysfunction and 

quantify its evolution and response to treatment. The Strength-

Dexterity (SD) test is a validated indicator of dynamic 

dexterous manipulation function, but its ability to categorize 

clinical populations has not been tested. We 1) used the SD test 

to compare manipulation ability among patients with OA and 

PD and healthy age-matched elderly control subjects; and 2) 

compared and evaluated the ability of different clustering 

techniques to classify subjects into clinical or control groups 

and calculate their respective cluster centroids. We considered 

five clustering methods (three hard and two fuzzy): K-means, 

K-medoids, Gaussian expectation-maximization (GEM), 

Subtractive, and Fuzzy C-means clustering. We found the 

centroids of the SD test scores differed significantly between the 

clinical and control groups.  Of the five methods considered, 

the GEM clustering algorithm most accurately classified SD 

test performance between these two groups. 

 

I. INTRODUCTION 

Numerous conditions impair sensorimotor function 

of the hand, including osteoarthritis (OA) and Parkinson’s 

disease (PD). OA is the most common form of arthritis and 

is a major cause of pain and disability in the elderly affecting 

millions of people in the United States alone [1, 2]. The 

reduced functional ability associated with OA reported by 

both clinicians and patients can be attributed to mechanical 

properties, such as joint pain and stiffness, however other 

factors are also likely to contribute [3, 4].  OA related 
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sensorimotor deficiencies include impaired proprioception 

[2, 5, 6], muscle weakness and fatigue [3], and unequal 

muscle activation patterns [3-5], and a reduction in gray 

matter due to pain [7].  PD is a progressive neurological 

disorder, most commonly associated with the elderly, 

characterized by numerous motor features including tremor, 

rigidity, bradykinesia, and postural instability, which can 

impact sensorimotor function to varying degrees [8, 9].  The 

loss of manual dexterity frequently occurs in people 

diagnosed with PD and CMC OA, and can affect 

performance of activities of daily living (ADLs) including 

writing, cutting food and feeding, and dressing [1, 2, 8, 9].  

While it is known that dysfunction of the musculature of the 

hand contributes to the reduction in function and ability to 

perform ADLs reported by and observed in individuals with 

CMC OA and PD, its extent remains unknown. Therefore, 

further research into understanding factors related to 

manipulation dysfunction might prove to be important in the 

clinical management of such individuals and in the 

evaluation of alternative treatments. 

The Strength-Dexterity (SD) test is a validated 

instrument for quantifying dynamic dexterous manipulation 

at very low force levels < 3 N (300 gmf) [10-12], which 

when combined with cluster analysis may serve as a means 

to detect and quantify sensorimotor dysfunction during 

dexterous manipulation. The SD test involves using the 

fingertips to compress, as far as possible, a slender spring 

prone to buckling. This requires control of fingertip motions 

and force vectors at very low force levels [10-12]. 

Measuring dynamical ability with such low forces make it 

uniquely applicable to weaker clinical populations, children, 

and older adults. A lengthier version of the SD test has been 

shown to discern between older adults with and without 

CMC OA [10] and to quantify the development and decline 

of hand dexterity across the lifespan [13].  Further evidence 

suggests that the SD test quantifies a unique construct (i.e. 

dexterity) that is reflective of sensorimotor processing for 

skilled finger function because it is independent of strength 

[10-13], is affected by development and aging [13], and 

engages distinct cortico-striatal-cerebellar networks in a 

context-sensitive way [14].  We now 1) evaluate the ability 

of a shortened, clinical version of the SD test [12] to 

quantify differences in dexterous manipulation between 

older adults with and without hand dysfunction (due to CMC 

OA or PD) and healthy control subjects; and 2) compare and 

evaluate the ability of different clustering techniques to 

classify subjects into clinical or control groups and calculate 

their respective cluster centroids.   
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II. METHODS 

Cluster analysis is a method of grouping a set of 

objects in such a way that objects in the same group are 

more similar to each other than to those in other groups. We 

review five of the most representative off-line clustering 

techniques in this study to classify sensorimotor control of 

the hand as measured by SD test performance: 

 K-means, 

 K-medoids, 

 Gaussian expectation-maximization (GEM), 

 Subtractive, and 

 Fuzzy C-means (FCM). 

A. Training Data Set 

The clinical group, defined as individuals 

diagnosed with either CMC OA or PD, consisted of 47 

participants (37F, 10M, 66.4 ± 9.2 years, 69 hands).  The 

control group consisted of 29 healthy, age-matched 

volunteers (19F, 10M, 65.6 ± 9.7 years, 52 hands) with no 

history of hand injury or disease or neurological disorder. 

All participants performed the SD test, which was conducted 

with a custom spring (Century Springs Corp., Los Angeles, 

CA) outfitted with two compression miniature load cells 

(ELB4-10, Measurement Specialties, Hampton, VA). The 

load cells were connected to a signal conditioning box and a 

USB-DAQ (National Instruments, Austin, TX) and sampled 

at 400 Hz using custom Matlab software (The Mathworks, 

Natick, MA) [12].   
Participants were asked to compress the spring to 

the point of maximal instability they could sustain (i.e., 
beyond which they felt it would slip out of their hand), and 
maintain that level of compression at a steady level for at 
least three seconds [11, 12].  At least three successful 
compression holds were collected per subject. The dependent 
variables were the mean compression force (F), the mean first 
derivative of force (ΔF/Δt), and the mean root-mean-square 
error (RMSE) of the maximal three hold phases. These data 
were considered the training data set for the second purpose 
of the study. 

B. Clustering Techniques 

We describe the five clustering algorithms briefly 

and provide references for further details.  All techniques 

were applied to the data set in Matlab. Hard clustering 

techniques included in this study are either centroid-based 

(K-means and K-medoids) or distribution-based (GEM) 

algorithms. In fuzzy (or soft) clustering, each data point has 

a degree of belonging to clusters, rather than belonging 

completely to just one cluster as in hard clustering. As such, 

points on the edge of a cluster, may be in the cluster to a 

lesser degree than points in the center of cluster [15].  Fuzzy 

clustering techniques included in this study are Subtractive 

and FCM.  

Hard clustering attempts to group a set of n vectors 

xj, j = 1,…, n, into c clusters Gi, i = 1,…, c.  The first two 

techniques considered in this study, K-means and K-

medoids clustering, are common centroid-based methods 

based on distance between an observation, xk, in group j and 

the cluster centroid, ci, are used to define the objective 

function given by (1) [16], 

.                        (1) 

Once the cluster centers, ci, are defined, the membership 

function, uij, groups an observation, xj, in the cluster with the 

nearest centroid and is defined by (2) [16], 

 

.    (2) 

 

Both the K-means and K-medoids algorithms are 

partitional and both attempt to minimize squared error. 

However, unlike the K-means algorithm, the K-medoids 

technique specifies that centroids must be observations in 

that cluster.  

In distribution-based clustering, clusters are defined 

as objects belonging most likely to the same distribution. An 

advantage is that it closely resembles the way artificial data 

sets are generated by sampling random objects from a 

distribution [17].  The third technique, GEM, is the most 

well known method of Gaussian-based clustering.  The 

GEM technique alternates between performing an 

expectation (E) step, which creates a function for the 

expectation of the log-likelihood and a maximization (M) 

step, which computes parameters maximizing the expected 

log-likelihood found on the E step. This alteration continues 

between the two steps until the resulting values converge to 

fixed points.  The objective function is given by (3) [16],   

,             (3) 

where p(xj|ci) is the probability that xj is generated by the 

Gaussian distribution with center ci, and p(ci) is the prior 

probability of ci.  The membership function, uij, is given by 

(4) [17], 

.                                  (4) 

GEM not only generates clusters, but also produces complex 

models for the clusters that can capture correlation and 

dependence of attributes, which can be informative. 

The fourth technique, Subtractive clustering, is a 

fast, quick one-pass fuzzy algorithm for estimating the 

number of clusters and the cluster centers in a set of data 

based on density distributions [18].  Data points with high-

density values have numerous neighboring data points and 

the points having the largest density values are designated 

cluster centers. The cluster density, Dj, at a given 

observation, xj, is calculated by (5) [18], 

 

,               (5) 

where ra is a positive constant representing a neighborhood 

radius and xi is the cluster center.   

 The fifth technique, FCM, follows the basic idea 

of K-means clustering with the difference that in FCM each 
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data point belongs to a cluster to a degree of membership 

grade between 0 and 1, while in K-means every data point 

belongs to a cluster [19]. The objective function follows (1) 

and is given by (6) [19],   

,              (6) 

where uij is the membership value (between 0 and 1), ci is 

the cluster center of the fuzzy group, dij is the distance 

between the cluster center and data point, and m is a 

weighting exponent [19].  

III. RESULTS 

A. Sensorimotor Dysfunction as Measured by the SD test 

The SD test provides the average compression force 

during the hold phases for each participant during the SD 

test, F, from which its maximal time derivative (ΔF/Δt) and 

root-mean-squared error (RMSE) are also obtained.  We 

found no significant differences in average compression 

force, F (p = 0.19).  However, two-tailed t-tests revealed that 

both mean ΔF/Δt (p < 0.00001) and mean RMSE (p < 

0.00001) of the force signal during the hold phases of 

control participants were significantly lower than in 

individuals in the clinical group, indicating that control 

subjects display more efficient sensorimotor control of the 

hand (Table I).   

The mean RMSE (abscissa) and mean ΔF/Δt 

(ordinate) for the control (red) and clinical (blue) groups 

were plotted and used as the training data set for the 

clustering analyses presented below (Fig. 1a). 

B. Comparison of Clustering Techniques 

The most appropriate clustering algorithm for a 

particular data set often needs to be chosen experimentally 

with a training data set.  In this case, we applied three hard 

clustering algorithms, K-means, K-medoids, and GEM, to 

the data set described in the Methods section to determine 

the ability of each to correctly assign each observation to the 

appropriate group.  The assigned groups from each method 

are illustrated in Fig. 1(b, c, d).  GEM clustering was the 

most accurate clustering method (86% accuracy) followed 

K-means (81% accuracy) and then K-medoids (69% 

accuracy). 

In addition to classification accuracy, we compared 

each clustering technique’s ability to locate the centers of the 

two clusters. A cluster center indicates the heart of each 

cluster, so that when presented with an input vector, the 

system can determine which cluster to assign the input 

vector by measuring a similarity metric between the input 

vector and the cluster centers. The cluster centers for each 

group were calculated with the five algorithms and are 

presented in Table II along with the percent difference from 

the original centroids (Table I) for comparison purposes. 

Centroids calculated by GEM clustering were the 

most similar to the original centroids (Table I) (6% 

difference), followed by Subtractive (14% difference), K-

means (29% difference), K-medoids (42% difference), and 

FCM (48% difference).  The original and estimated centroid 

locations for each group are further illustrated in Fig. 2.  

 

IV. CONCLUSIONS 

A key finding of this study is that, while clinical 

experience shows that CMC OA—a strictly skeletal 

condition—leads to loss of manipulation ability, it is 

surprising that its associated disability in manipulation is so 

similar to that found in PD—a strictly neurological 

condition. We find both clinical conditions are associated 

 
Fig. 2: Comparison of estimated centroid locations vs. original 

(true) locations. 

 

 
Fig. 1: Comparison of hard clustering techniques.  The original data sets 

from the control and clinical groups are shown (a) and compared to 

groups created from K-means (b), K-medoids (c), and GEM (d) 
clustering, i.e. the three hard algorithms. Subtractive and FCM techniques 

are not illustrated, as they do not feature distinct cluster assignments.  

 

Table I: Dependent Variables from the SD test 
 

Group 
SD test dynamics (* p < 0.0001) 

mean F (g) mean RMSE * mean ΔF/Δt * 

Control 168.8±38.4 0.0673 [C1x] 0.0236 [C1y] 

Clinical 
174.8±41.1 

(OA: 181.6; PD: 164.3) 
0.1325 [C2x] 0.1212 [C2y] 

 

Table II: Comparison of centroid locations by clustering technique 
 

Cluster Method 
Centroid Calculations 

C1x C1y C2x C2y % diff 

K-means 0.0779 0.0311 0.1668 0.1759 29 

K-medoids 0.0819 0.0367 0.1729 0.1927 42 

GEM 0.0701 0.0250 0.1381 0.1324 6 

Subtractive 0.0756 0.0317 0.1395 0.1276 14 

FCM 0.0793 0.0392 0.1833 0.2046 48 
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with significantly worse sensorimotor control of dynamic 

dexterous manipulation at very low force levels, which is 

critical to ADLs. This lends renewed urgency to better 

understand how degradation of the articular surface, a 

skeletal deficit, triggers a cascade of neuromuscular effects. 

That is, the functional link between skeletal and 

neuromuscular pathology is strong, but its mechanisms 

remain unclear. Note that for the purposes of this first 

comparison of clinical and control populations we grouped 

the patients with CMC OA and PD together. However, 

further work is needed to test for similarities and differences 

in the sensorimotor control deficits between CMA OA and 

PD, which are beyond the scope of this short paper.  In 

addition, we find that the metrics obtained from the fast and 

simple SD test at low force magnitudes (which do not 

exacerbate joint tenderness or pain) are informative of the 

integrity of the neuro-musculo-skeletal system; and that 

clustering algorithms succeed with such data.   

Clustering techniques have many applications 

including biological sciences data classification, character 

recognition, and astronomical classification [16]. We 

considered both hard and fuzzy clustering methods in this 

preliminary study.  Fuzzy methods are often considered 

when sharp boundaries do not exist between data sets, as is 

the case in many real/biological applications.  Three hard 

clustering algorithms (K-means, K-medoids, and GEM) 

were applied to the training data set to determine the ability 

of each to correctly classify data points into the clinical and 

control groups (Figs. 1(b,c,d)).  GEM was the most accurate 

hard clustering method, correctly classifying 86% of the data 

points in the set.  All five algorithms were used to estimate 

the centroids of the two clusters and the results are presented 

in Table II and illustrated in Fig. 2.  Again, GEM clustering 

was the most accurate method for this data set, with 

estimated centroids 6% different from the original centroids.   

While the GEM algorithm most accurately grouped 

the data set into the correct clusters, the accuracy of all 

methods was lower than desired at classifying data points at 

the cluster borders and estimating centroid locations, 

particularly for the clinical group (Fig. 2).  Future work will 

consider more distribution-based clustering techniques in an 

attempt to improve the accuracy.  These results show that 

borderline cases are naturally harder to classify, but the clear 

spread of the clinical group up and to the right (and the 

success at classification) shows that the SD test has potential 

to quantify the level of disability and response to treatment 

in non-borderline cases. We emphasize the need for future 

studies to identify and quantify sensorimotor changes in 

each of the pathologies studied, and the mechanism via 

which the SD test is able to detect those changes.  

Understanding the combined mechanical and sensorimotor 

effects of aging with a disability on quality of life and ability 

to perform ADLs is an important public health issue, and the 

SD test combined with a distribution-based clustering 

algorithm may be important tools to best develop and apply 

treatments to improve sensorimotor function for dexterous 

manipulation in our aging populations. 
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