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Abstract
Much debate has arisen from research on muscle synergies with respect to both limb

impedance control and energy consumption. Studies of limb impedance control in the con-

text of reaching movements and postural tasks have produced divergent findings, and this

study explores whether the use of synergies by the central nervous system (CNS) can

resolve these findings and also provide insights on mechanisms of energy consumption. In

this study, we phrase these debates at the conceptual level of interactions between neural

degrees of freedom and tasks constraints. This allows us to examine the ability of experi-

mentally-observed synergies—correlated muscle activations—to control both energy con-

sumption and the stiffness component of limb endpoint impedance. In our nominal 6-

muscle planar arm model, muscle synergies and the desired size, shape, and orientation of

endpoint stiffness ellipses, are expressed as linear constraints that define the set of feasible

muscle activation patterns. Quadratic programming allows us to predict whether and how

energy consumption can be minimized throughout the workspace of the limb given those

linear constraints. We show that the presence of synergies drastically decreases the ability

of the CNS to vary the properties of the endpoint stiffness and can even preclude the ability

to minimize energy. Furthermore, the capacity to minimize energy consumption—when

available—can be greatly affected by arm posture. Our computational approach helps rec-

oncile divergent findings and conclusions about task-specific regulation of endpoint stiff-

ness and energy consumption in the context of synergies. But more generally, these results

provide further evidence that the benefits and disadvantages of muscle synergies go hand-

in-hand with the structure of feasible muscle activation patterns afforded by the mechanics

of the limb and task constraints. These insights will help design experiments to elucidate the

interplay between synergies and the mechanisms of learning, plasticity, versatility and

pathology in neuromuscular systems.
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Author Summary

The manner in which the nervous system coordinates the multiple muscles in the body is
complex. It has been studied for decades, but a more full understanding is needed to enable
the development of effective evaluation and treatment methods in disorders that cause
neuromuscular disability such as cerebral palsy and stroke. In addition, the computational
control of robots has and will continue to improve as the brain’s methods of muscular con-
trol are progressively reverse-engineered. Here, we study the capacity of arm muscles to
regulate the stiffness of the hand for tasks such as using tools, stabilizing hand-held
objects, and using doors. Using a simplified but generalizable model, we show that there
will be necessary trade-offs in the functional capabilities of the limb if the nervous system
chooses to control muscles in functional groups. This adds to our understanding of the
consequences of different strategies to control muscles for real-world tasks with multiple
and often competing demands. It enables future research and clinical experiments on the
learning and execution of the multiple tasks of varying difficulty encountered in real life. It
also sheds light on the design of control strategies for robots to operate in human and
unstructured environments.

Introduction
Limb impedance control by the central nervous system (CNS) has been a subject of much
study and debate over the past three decades. Numerous experiments and theoretical analyses
have studied the biomechanical and neuromuscular capabilities of the CNS to regulate the
impedance of a limb (e.g., [1–22]). The preferred paradigm of many studies is to analyze the
stiffness the human arm can produce at its endpoint (i.e., the hand) in reaching-like postures
in a horizontal plane in front of a seated subject. One set of experimental findings is that, after
some training, the CNS can regulate to varying degrees the orientation and eccentricity of arm
stiffness ellipses to perform a task more reliably and efficiently than before training [1, 4, 5, 10].
Another set of experiments concludes that the CNS cannot arbitrarily regulate endpoint stiff-
ness, and that it is only able to rotate the orientation of the stiffness ellipsoid around 30° [15,
20, 21]. Here we focus on reconciling some of these conflicting results by using novel computa-
tional analyses of tendon-driven systems to establish the neuromechanical capabilities of bio-
logical limbs in the context of muscle synergies.

The existence and interpretation of muscle synergies is controversial and has received much
attention in the recent literature [23–29]. Synergies—defined as the correlated activation of
multiple muscles by using a small number of coordination patterns—are theoretically one way
to simplify the control of movement in the highly redundant musculature of vertebrates. They
have also been observed by EMGmeasurements during reaching movements with the arm
[19]. Here we explore the restrictions synergies could impose on the ability of the CNS to syn-
thesize arm endpoint stiffnesses with differing characteristics.

There is extensive literature on the analysis and synthesis of endpoint stiffness in robotic
limbs [7, 30–33]. The theoretical contributions and conclusions of these robotics studies are
independent of the mechanisms and limitations of sensorimotor control by the CNS, and
hence form a good theoretical foundation to design and interpret experiments to study the neu-
romechanical capabilities of biological limbs both in the presence and absence of synergies. In
[34] such an approach was used to compare theoretical predictions against experimental find-
ings by recording from a few finger muscles.
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In this study, we investigate the effects of muscle synergies on endpoint stiffness synthesis
and energy consumption (Fig 1). To this end, we apply principles of robotics in a novel compu-
tational formulation for tendon-driven systems that allows us to easily and efficiently analyze
the range over which the stiffness of the endpoint of the limb can be modified. More specifi-
cally, we are referring to the magnitude of endpoint stiffness in a variety of directions which
can be mathematically approximated by a stiffness ellipse. From an engineering perspective, we
can call this the range of ‘stiffness realizations’ because each of them is an instance of the neu-
romechanical capabilities of the limb. By studying stiffness realizations in the presence and
absence of muscle synergies throughout the workspace, we find that synergies drastically
decrease the ability of the CNS to synthesize an arbitrary stiffness ellipse.

Importantly, our work takes on the approach that we are interested in finding the families
of feasible endpoint stiffness realizations throughout the workspace of the limb. That is, how
much can the nervous system control the size, shape (i.e., eccentricity) and orientation of end-
point stiffness ellipses for all limb postures? Due to muscle redundancy, there may be multiple
ways to achieve any one possible stiffness ellipse. That set of multiple neural commands that
can achieve a given realization is its ‘feasible activation set’ [35, 36]. We can therefore optimize
over that set to find the muscle activation pattern that produces the desired endpoint stiffness
while minimizing energy consumption. The question is, then, how do muscle synergies com-
promise—or even annihilate—the ability of the nervous system to control the properties of
endpoint stiffness and minimize energy consumption?

As mentioned in the Discussion, this neuromechanical approach emphasizes the feasibility
of neuromechanical actions and allows us to consider several potential confounds when com-
paring across studies. Such studies may include examination of the extent, efficacy and nature
of training, the influence of limb postures on task goals specified by the experimenter, and the
implicit neural strategies specified by the CNS with regard to stiffness regulation in health and

Fig 1. Overview.We explore the interactions of muscle synergies with endpoint stiffness synthesis and
energy consumption in the context of feasible activations to meet task constraints.

doi:10.1371/journal.pcbi.1004737.g001
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disease. Our results also allow us to discuss how learning, experimental design, and neural
strategies affect our ability to tune endpoint stiffness.

Methods

Armmodel
We use a simplified planar arm model with 6 muscles similar to those that have been used in
other theoretical and computational studies [3, 8, 12, 13, 37] (Fig 2). In those studies as well as
this study—as described below—the spatial distribution of the stiffness of the endpoint of the
limb, Kend, is a matrix that is calculated as a function of individual musculotendon stiffnesses,
which are the elements of the matrix Kmuscles. The individual musculotendon stiffness gener-
ated by each muscle is represented by a numerical variable that is, in effect, a lumped parameter
model introduced by Hogan and Mussa-Ivaldi [8, 13] that combines the active and passive
components of muscle and the passive components of tendon. This approximation remains
commonplace and valid in the computational literature whose goal is not to simulate the physi-
ology of musculotendon stiffness, but rather use a mechanical analogue of musculotendons to
allow the study of the feasible mechanical behavior of the limb. This lumped parameter
approach is accepted in the computational literature to replicate the fact that musculotendons
have stiffness, and that stiffness can be modulated by the individual neural commands to the
muscles of a limb, the activation vector~a. The reader is referred to the literature for details [3,
8, 12, 13, 37], but a brief description is presented below.

We use workspace constraints identical to those used in [8] to produce the workspace of the
limb (i.e., the locations that are reachable by the endpoint), also shown in Fig 2. As is common,

Fig 2. Methods.We use a 6-muscle planar armmodel to quantify the effects of synergies on endpoint
stiffness and energy consumption within the workspace. For any posture in the workspace of the arm, neural
commands to the muscles can set the active endpoint stiffness of the limb—visualized as an ellipse of a
particular size, shape (i.e., eccentricity), and orientation.

doi:10.1371/journal.pcbi.1004737.g002
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we use singular value decomposition (SVD) to transform the endpoint stiffness matrix (Kend)
to an ellipse that represents the characteristics of this matrix—shape (can also be termed eccen-
tricity)—measured by the matrix condition number, and orientation of the major axis with
respect to the x-axis.

Theoretical endpoint stiffness formulation
We begin our formulation with the endpoint stiffness matrix, Kend, as a function of muscle
active stiffnesses, Kmuscles. As a point of clarification, we focus on muscle active stiffness that
results from the feedforward activation of the muscle such as during force production or co-
contraction. We do not include passive stiffness, which normally refers to the inherent material
properties of the limb or muscles with no muscle activation. This could arise, for example,
from tendon properties. Similarly, as mentioned in the Discussion, we do not include the time-
delayed stiffness resulting from reflexes, often called reflexive stiffness. In our formulation,
Kend relates the vector of differential endpoint displacements to differential endpoint forces:

@~F ¼ Kend@~x ð1Þ

where @~F is the endpoint force vector resulting from a displacement vector @~x . The joint stiff-
ness matrix, Kjoint, relates the vector of differential joint angle displacements to differential
joint torques:

@~t ¼ Kjoint@
~y ð2Þ

where @~t is the joint torque vector resulting from a joint angle displacement vector @~y. The
endpoint stiffness matrix is dependent on the joint stiffness matrix as well as the manipulator

Jacobian J (which is posture dependent: a vector of joint angles~y uniquely defines the posture):

_~x ¼ Jð~yÞ _~y ð3Þ

where _~x denotes the endpoint velocity vector and _~y denotes the joint angle velocity vector.
The endpoint stiffness matrix, in the absence of an external tip force, is given by [8]:

Kend ¼ J�TKjointJ
�1 ð4Þ

Furthermore, the joint stiffness matrix is given by [8]:

Kjoint ¼ RKmusclesR
T ð5Þ

where Kmuscles is the diagonal matrix of muscle stiffnesses and R is the moment arm matrix
relating joint angle changes to tendon displacements, @~s:

@~s ¼ R@~y ð6Þ

Combining Eqs 4 and 5, we obtain the relationship of muscle stiffness to endpoint stiffness:

Kend ¼ J�TRKmusclesR
TJ�1 ð7Þ

This is equivalent to other formulations, such as in [34]. The diagonal elements of Kmuscles

are assumed to be linearly related to their corresponding muscle forces [38]:

Kmuscles ¼ a� diagð~FmusclesÞ ð8Þ
For simplicity in this study, we assume the scaling factor α is equal to one. We can define a

Muscle Synergies, Limb Stiffness, and Energy Consumption

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004737 February 11, 2016 5 / 24



diagonal matrix of maximal muscle forces, Fmax, so that we can calculate~Fmuscles using the mus-
cle activation vector~a:

~Fmuscles ¼ Fmax~a ð9Þ

The entries of~a are inside the interval [0, 1] since muscle force can only be positive (this
constraint can also be expressed as the requirement that the activation vector lies in the positive
orthant of the unit hypercube in activation space). We assume Fmax to be the identity matrix
for simplicity in this study.

Reformulation of endpoint stiffness as a set of linear equations
Using Eqs 7, 8 and 9 and reformulating the endpoint stiffness matrix, the moment arm matrix,

and the Jacobian, we can make the endpoint stiffness ~Kend a vector that is a linear function of
the muscle activations.

~Kend ¼ ~J�T ~RFmax~a ð10Þ

We show these reformulations in Fig 3. (•) denotes element-by-element multiplication, and
Ri is the i

th row of R. The Jacobian reformulation is specific to the 2-link planar arm model, but
similar expressions can be formulated for Jacobians of higher dimensions.

The endpoint stiffness and the moment arm matrices have been previously reformulated in
this way [33]. And [34] speaks of the equations defining iso-stiffness planes. But to the best of
our knowledge, no study has yet reformulated the Jacobian in this way to allow for the simple
set of linear equations found in Eq 10 relating muscle activations to endpoint stiffness.

Energy consumption
Each realization of a given endpoint stiffness matrix—and its associated ellipse—is produced
by a given neural command,~a, as shown in Eq 10. As per Eq 9, the individual forces in each

Fig 3. Reformulation of stiffness equations.Obtaining Eq 10 requires that we transform the matrices in Eq
7. In this way, the vector ~Kend can be expressed as a set of linear equations in~a. These linear equations
become the linear constraints for endpoint stiffness that we use to solve the quadratic programming problem
to minimize energy. (•) denotes element-by-element multiplication, and Ri is the ith row of R.

doi:10.1371/journal.pcbi.1004737.g003
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muscle contribute to the overall stiffness of the limb while producing zero net torque at each
joint to maintain equilibrium. These isometric muscle forces have a metabolic cost, which we
calculate as the sum of squares of muscle forces [39]:

energy ¼
X6

k¼1

ðFmaxk
� akÞ2 ð11Þ

Simulating synergies
We simulate synergies that have been experimentally observed in a previous EMG study of
static postures similar to those used during arm reaching tasks [19]. These synergies couple the
bi-articular muscles with the mono-articular elbow muscles as shown in Fig 4. Quantitatively,
that study found that the elbow stiffness from co-contraction of the bi-articular muscles was
approximately one half of the elbow stiffness from the mono-articular elbow muscles. They did
not find mono-articular shoulder muscles to have synergies with the bi-articular muscles.

Consequently, for our model, the activation of the shoulder synergy, ashoulder, activated the
two mono-articular shoulder muscles with unity weight. The activation of the the elbow syn-
ergy, aelbow, activated the mono-articular elbow muscles with unity weight and the biarticular
muscles with weights of one-half (Fig 4).

In the presence of these synergies, one parameter suffices to change the orientation and
shape of the endpoint stiffness ellipse: the ratio of elbow synergy activation to shoulder synergy
activation, aelbow/ashoulder. Increasing the activation of both synergies simultaneously and pro-
portionately only increases the size of the ellipse but not its shape or orientation (i.e., the angle
from the x-axis to the major axis of the ellipse). As we will see in the results, this one-dimen-
sional manifold in muscle activation space does not allow the realization of the arbitrary end-
point stiffness ellipses because the synergies, by coupling muscles, also couple two important

Fig 4. Shoulder and elbow synergies.We simulate experimentally-observed synergies that group the
mono-articular shoulder muscles and all the muscles crossing the elbow. Briefly, a synergy is the correlated
activity of muscle activations. Each synergy is independently controlled and synergistically drives its muscles
according to specific muscle weighting parameters. In this case, we simulate how two synergies drive the six
muscles of an arm as per the number of synergies and weights reported by [19].

doi:10.1371/journal.pcbi.1004737.g004
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stiffness characteristics: the stiffness ellipse’s shape and orientation. That is, in the presence of
synergies, as just described, there is only one free parameter that can be varied to control these
characteristics, aelbow/ashoulder. Therefore, changing orientation independently of shape is
impossible.

To further explore this coupling of task constraints by synergies, we vary the ratio of shoul-
der synergy activation to elbow synergy activation (by varying aelbow/ashoulder) over a range of 2
orders of magnitude (1/10 to 10) to see how much the orientation of the ellipse is able to
change.

Checking for realizable endpoint stiffnesses and considering energy
minimization
In the absence of synergies in our model (i..e, all muscles can be activated independently), we
can determine if the arm is able to meet the constraints that

1. all activation vectors lie within a unit 6-dimensional cube in the positive octant of the activa-
tion space [35, 40] (i..e, all activations lie between 0 and 1)

0 � ai � 1 ð12Þ

2. the net joint torque vector is zero (i.e., the posture is in equilibrium)

RFmax~a ¼ 0 ð13Þ

3. and the endpoint stiffness has a given desired shape and orientation, as in Eq 10

~J�T ~RFmax~a ¼ ~Kend;desired ð14Þ

Then if 9~a s.t. Eqs 14, 13 and 12, are satisfied, ~Kend;desired is realizable in the absence of

synergies.
An illustration of these constraints, the existence of a solution, and the potential for energy

minimization in the absence of synergies is illustrated in Fig 5 for a simple 3-muscle model.
We use three muscles because this allows us to visualize the feasible activation space in 3D, and
each of the linear constraints can be shown as a plane, whose intersection is a line that still
holds some redundancy. Since this example is for a manipulator with only one joint, the end-
point stiffness is only in the x-direction. Thus

1. the feasible activation set begins as a 3-dimensional unit cube in the positive octant.

2. The constraint of zero endpoint force is a 2-dimensional plane in activation space passing
through the origin. This is because endpoint forces have a minimal value of 0 at zero
activation).

3. The constraint for desired endpoint stiffness of unity is also a 2-dimensional plane in activa-
tion space, but it does not pass through the origin. This is because muscle activation is
required to produce stiffness: at the origin, there is no muscle contraction, therefore there is
no muscle stiffness stiffness or endpoint stiffness.

This geometric interpretation [34, 35, 43, 44] helps us understand the effect of synergies as
additional constraints on feasible activations. The intersection of the first two functional
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Fig 5. Visualization of mechanical and energetic constraints. A. Consider a limb with one rotational joint
driven by 3 muscles. We show the parameters and variables needed to implement Eq 14. B. As described
elsewhere in detail [34–36, 41, 42], the set of all physiologically feasible neural commands to a limb that can
be visualized as a positive hypercube of as many dimensions as there are independently controllable
muscles (3 in this case). Each constraint that defines the mechanical task reduces the set of feasible neural
commands to a subset of that hypercube. Therefore, the feasible activation set for a task is the intersection of
those constraints that lie within the hypercube. If the constraints are linear functions of activation, they reduce
the subset of feasible neural commands to a hyperplane. We see this for the linear constraints defining the
size, shape (i.e., eccentricity) and orientation of the desired endpoint stiffness ellipse (blue plane); and
enforcing static equilibrium with zero endpoint force (green plane). Their intersections with the hypercube are

Muscle Synergies, Limb Stiffness, and Energy Consumption
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constraints is a one-dimensional linear subspace of solutions that mathematically satisfy Eqs
14 and 13. Further constraining this subspace by the activation N-cube (Eq 12) results in the
muscle activation solution space to realize a unity stiffness. In this the feasible activation space,
that has the structure of a one-dimensional subspace (i.e., a line), energy (measured by the sum
of the squares of the muscle forces, or concentric spheres) can be minimized or maximized by
varying the activation point in the feasible activation set (i.e., a point along the line). The pres-
ence of even a simple synergy for this model (a1 = 2a2) results in an additional constraint plane
that passes though the origin that will reduce the feasible activation set, reducing the
dimensionality of the solution space. In this simple example, the dimensionality is reduced to
zero—a unique solution [40, 43, 45]. But even in high dimensions [41], synergies will reduce
what is already a well-structured space.

In our 6-muscle model, the activation hypercube is 6-dimensional. The constraint of zero
endpoint force is a 4-dimensional hyperplane in activation space passing through the origin (6
dimensions − 2 equilibrium constraints = 4-dimensional solution space; Eq 12 is a system of
two equations, one for each joint). The constraint for a desired endpoint stiffness is a 3-dimen-
sional hyperplane in activation space (6 dimensions − 3 stiffness constraints = 3-dimensional
solution space; as per Fig 3, Eq 14 is a system of three equations, one for each unique element

of the symmetric matrix ~Kend;desired). The intersection of these two hyperplanes is a one-dimen-

sional linear subspace (6 dimensions − 2 equilibrium constraints − 3 stiffness
constraints = 1-dimensional feasible activation space) embedded in 6-dimensional space. It sat-
isfies Eqs 14 and 13. If any part of this solution subspace lies in the activation N-cube (satisfy-
ing Eq 12 as well), then the desired stiffness is realizable. Furthermore, synergy constraints can
reduce the dimensionality of the solution space to zero (i.e., there is a solution, it will be the
unique solution of a point at the intersection of a line with a plane), or they can overconstrain
the problem, making the desired stiffness unrealizable.

Within this context, we can now explore the range of achievable endpoint stiffness ellipse
orientations given the arm posture and a desired ellipse shape. To this end, we fixed both the
condition number of the stiffness matrix and the posture, and then determined a set of desired
endpoint stiffnesses, each corresponding to a different ellipse orientation. We formulated a
constrained quadratic programming problem, with the optimization criteria being minimizing
the sum of squares of muscle activations. If an optimum was found, then the orientation (for
that specific posture and ellipse shape) is realizable. We did this every 5° around the full range
of orientations (i.e., 180°) and then checked the fraction of these orientations that are realizable.
An example of the fraction of realizable orientations for all postures in the workspace is shown
in Fig 6.

Exploring energy expenditure within the solution space
The constraints in the realizability tests have five equality constraints (Eqs 14 and 13). Since
there are 6 muscles, if there is any solution which satisfies Eq 12, in general there will be a one-

shown schematically as triangular polygons. The feasible activation set that meets both constraints, if it
exists, is the black line—which naturally contains infinitely many points (i.e., muscle redundancy). The
individual solution with the minimal energetic cost is given by the point where the line is tangential to the
smallest spherical manifold defined by the quadratic cost function in Eq 11. C. A muscle synergy can similarly
be visualized as a constraint that ties the activations of several muscles in an obligatory way, which in this
3-dimensional example reduces the set of all physiologically feasible neural commands from a cube to a
plane. This reduction in independently controllable muscle actions has the inevitable consequence of
reducing—or even annihilating—the ability to meet multiple endpoint stiffness and energetic constrains as
shown in our results.

doi:10.1371/journal.pcbi.1004737.g005
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dimensional feasible activation space for the desired endpoint stiffness embedded the 6-dimen-
sional muscle activation space. Vertex enumeration algorithms can be used to determine the
vertices of this one-dimensional manifold (which is a convex set [35]). However, we and the
available literature, are also interested in the maximal and minimal energy expenditures within
this feasible activation space. Therefore, we can use opposite quadratic programming optimiza-
tion criteria to determine both of these energy expenditures. For the minimal energy expendi-
ture, as already described, our optimization criteria is to minimize the sum of squares of the
muscle forces. For maximal energy expenditure, our optimization criteria is to maximize the
sum of squares of the muscle forces. From these extreme values we can then determine the
maximal amount of energy reduction that is possible. For example, if the maximal energy
expenditure is 0.5, say, and the minimal energy expenditure is 0.35, then there is a maximum
of 30% reduction in energy possible.

Our rationale for quantifying these ratios is that, for given observed stiffness ellipsoid in
human subjects experiments, we want to know whether or not the central nervous system
could minimize energy expenditure. If there is a large possible range of energies expended for a
same endpoint stiffness ellipse, then it may only be possible for experimental means such as
EMG to reach strong conclusions about energy minimization. But if the range is low, then
EMGmeasurements may not have the resolution to reveal much additional information about
energy expenditure (above the information obtained by only measuring the stiffness ellipse).

Fig 6. Method to find realizable endpoint stiffnesses throughout the workspace. Using our 6-muscle
planar arm model, we are able to iteratively check for realizable endpoint stiffness ellipses throughout the
workspace. In this case, the ability to set its orientation in 5 degree increments for a given stiffness ellipse
shape (i.e., eccentricity). As the posture of the limb changes to make the endpoint visit each point in the
workspace, the associated changes in its Jacobian matrix and the constraints of the task interact to affect the
realizable endpoint stiffness ellipses. Red regions indicate the locations of the endpoint where all orientations
are realizable (i.e., 100% or a fraction of 1), whereas deep blue and black regions indicate the locations in the
workspace for which there is very limited or non-existent ability to arbitrarily control the orientation of the
endpoint stiffness ellipse (i.e., 20%—0% or fractions of 0.2—0).

doi:10.1371/journal.pcbi.1004737.g006

Muscle Synergies, Limb Stiffness, and Energy Consumption

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004737 February 11, 2016 11 / 24



Results

Realizable endpoint stiffness ellipses
Fig 7 shows the fraction of realizable endpoint stiffness ellipse orientations for various ellipse
shapes throughout the workspace. We can make a couple of observations from Fig 7. First, pos-
ture has a very large effect on the range of realizable orientations (also observed in [22]). Sec-
ond, the range of realizable orientations decreases with increasing ellipse eccentricity. Thus a
more uniform ellipse that is closer to a circle is easier to achieve throughout the workspace, but
also arguably less able to set specific directions of higher or lower stiffness. Also, our computa-
tional results for ellipse eccentricity = 1 is identical to the theoretical result determined by [8].

Realizable orientations in the presence of synergies
To explore the effect of synergies in detail, we performed a more detailed analysis for a single
posture. In that sample posture, Fig 8 shows the range of sizes and orientations of the stiffness
ellipse achievable when varying the ratio of elbow to shoulder synergy activations from 10−1 to
10. The arm endpoint is in a sample x − y position (0,1), where each link of the arm has length
of 1. The area of the ellipses in Fig 8 are normalized to be equal to each other to highlight the
covarying shape and orientation of the stiffness ellipses.

Fig 7. Results without synergies. The fraction of realizable stiffness orientations is heavily influenced by
arm posture and stiffness ellipse shape (i.e., eccentricity measured by condition number, or ratio of length of
the major to the minor axis).

doi:10.1371/journal.pcbi.1004737.g007
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The range of orientations is approximately 70°, which represents a realizable fraction of ori-
entations of about 0.39. In this posture, shown in Fig 8, for all 3 ellipse shapes, the fraction of
realizable orientations is 1 (all orientations are achievable) in the absence of synergies (Fig 7).
In addition, we see that as the orientation of the ellipse in Fig 8 changes, the shape of the ellipse
must also change. The range of physically-realizable ratios of elbow to shoulder synergy activa-
tion are likely much less extreme than two orders of magnitude, which would result in an even
smaller range of possible ellipse orientations. Therefore, we see that using the synergies
observed by Gomi and Osu [19] severely limits the ability of the CNS to control the shape and
orientation of the endpoint stiffness of the arm.

Energy expenditure ranges
Fig 9 shows the greatest possible reduction in energy expenditure given a stiffness ellipse shape
and arm posture for any orientation. Note the strong dependence on the posture of the arm
(i.e., location in the workspace). In general, the maximal possible energy reduction for many of
the workspace postures for these stiffness ellipse shapes is low (10–30%), but can increase sig-
nificantly to around 50% for some specific postures.

Fig 10 summarizes our findings, and compares them to prior work. We see that implement-
ing fewer synergies (i.e., fewer muscle groupings, that reflect greater correlation among muscle
activations) reduces the independent controllability of the size, shape and orientation of the
stiffness ellipses, as well as the energy consumption.

Discussion
The literature on muscle synergies is large and growing. There are already several papers debat-
ing their origins, advantages, and disadvantages [24, 28, 29, 42, 46]. The goal of this study, how-
ever, is to speak to the need pointed out by several authors to investigate the relationship
between muscle synergies and the neuromechanical constraints that define a task (sometimes
also called task variables) [24, 28, 34, 40, 42, 46]. We do so in the context of the

Fig 8. Synergies reduce the ability to control endpoint stiffness. Shoulder and elbow synergies (Fig 4)
cause covariation of stiffness ellipse eccentricity with orientation and limit the range of ellipse orientations.
Note that as the elbow to shoulder activation ratio changes from 10−1 to 10 the shape and orientation
(direction of major axis) of the ellipse follow an obligatory relationship. This is expected from the fact that
adding a synergy—correlated activation of multiple muscles—reduces the set of feasible activations, Fig 5.

doi:10.1371/journal.pcbi.1004737.g008
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Fig 10. Summary of results and comparison to prior work. Implementing fewer synergies (i.e.,
independently controllable groupings of muscle activations) improves the independent control over the size,
shape and orientation of the stiffness ellipses, as well as the energy consumption associated with each
solution.

doi:10.1371/journal.pcbi.1004737.g010

Fig 9. Some arm postures compromise the ability to minimize energy. Black regions indicate locations in
the workspace (i.e, limb postures) where meeting the desired endpoint stiffness leaves no room to minimize
energy. These regions are also heavily influenced by the desired stiffness ellipse shape (i.e., eccentricity).
Even when minimizing energy is possible, that ability seldom reaches a reduction of 50% and is
typically < 10–30%.

doi:10.1371/journal.pcbi.1004737.g009
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neuromechanical consequences of using synergies while meeting the multiple and compound-
ing constraints that define tasks in the ‘real world’ [34, 41, 45, 47], such as the well accepted
need to regulate the stiffness of the endpoint of the arm (e.g., [1–22]).

In the literature mentioned above, the origins of synergies as well as their specific structure
and permanence continue to be debated. In their paper on static arm postures, Osu and Gomi
(1999) mention that other arm synergies have been reported and that the regulation of muscle
activation in static conditions seems to be quite different from that during movements. Neverthe-
less, this does not affect our main finding that synergies—regardless of their origin, structure or
permanence—have important neuromechanical consequences in a variety of functional domains.
This is because synergies imply a loss of control degrees of freedom (i.e., fewer independently
controllable muscles). Therefore, the specifics of the synergies we chose to simulate as reported
by Osu and Gomi do not affect the generality of our results. In fact, we went on to simulate five
additional synergies as shown in Figs 11 and 12, labeled Cases 2 through 6. In all cases, synergies
yield a reduction in the controllability of the size, shape and orientation of the stiffness ellipses.

It is important to mention that comparing muscle coordination and stiffness regulation in
static versus dynamic movement conditions may not be advisable—or even possible. This
stems from the fact that the physics and neuromuscular physiology of the control of static
force versus movement are inherently distinct and can even be incompatible; see [36, 45, 48–
50] and references therein. In addition to the differences in their governing equations and the
force-length properties of muscle, the control of movement at a neurological level additionally
requires the careful and time-sensitive orchestration of alpha-gamma co-activation and recip-
rocal inhibition of eccentrically contracted muscles to prevent the disruption of the movement
[51]. This stems from the fact that the control of tendon excursions is overdetermined (few
joint angles determine the necessary lengths of all musculotendons). This is the opposite of the
underdetermined control of joint torques (many combinations of muscle forces can equiva-
lently produce a given net joint torque) [36, 41]. Therefore, orchestrating alpha-gamma co-
activation and reciprocal inhibition to produce movement imposes additional time-varying
constraints that distort and reduce the feasible activation set for a given endpoint stiffness
ellipse compared to the static condition. From this perspective, our results for static endpoint
stiffness are a best-case scenario as the additional constraints to produce movement will likely
exacerbate the limitations imposed by synergies. Understanding muscle coordination and stiff-
ness regulation in static versus dynamic movement conditions remains an important area in
motor control in need of attention [36, 48].

The feasible activation set—i.e., all feasible neural commands to achieve a given task [34, 35,
41, 43, 44]—has a well defined structure given by the biomechanics of the limb and the con-
straints defining the task. Muscle synergies reduce the number of independent degrees of free-
dom for control from the (usually large) number of independently controlled muscles, to a
smaller number of independently controlled groupings of muscle activations. The presence of
synergies, by reducing the number of independent degrees of freedom for control, naturally
reduces the size and affects the shape of the feasible activation set—and therefore the set of
tasks that are possible [34, 40].

This geometric approach uses a 6-muscle arm model with experimentally derived synergies
to show that synergies severely constrain the ability to control the properties of the stiffness of
the arm’s endpoint. Furthermore, it also shows reduction in the flexibility of energy consump-
tion to implement them. That is, by reducing the dimensionality of the feasible activation set,
synergies drastically limit the ability to orient the endpoint stiffness ellipse independently of its
shape. The range of achievable orientations in the absence of synergies is already very sensitive
to posture, but still allows significant energy minimization in some postures. Implementing
synergies drastically reduces, and can even remove, the ability to minimize energy.
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Fig 11. Regardless of their details, synergies bring about functional limitations, Part I. In addition to the
synergies reported by Osu and Gomi (1999), we explored the functional consequences of five additional
potential synergies (i.e., weights in the correlations among muscle activations). The first two are shown here
as Cases 2 and 3. The remaining three are shown in Fig 12.

doi:10.1371/journal.pcbi.1004737.g011
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We would like to point out an important difference in our formulation compared with
other modeling studies for arm stiffness [3, 5, 7, 8, 11, 15]. The general form of the joint stiff-
ness matrix in these studies is (for all equal moment arms):

Kjoint ¼
Ks þ Kb Kb

Kb Ke þ Kb

" #
ð15Þ

where Ks is the shoulder stiffness provided by co-contraction of the mono-articular shoulder
muscles, Kb is the bi-articular joint stiffness provided by co-contraction of bi-articular muscles,
and Ke is the elbow stiffness provided by co-contraction of mono-articular elbow muscles. This

Fig 12. Regardless of their details, synergies bring about functional limitations, Part II. Functional consequences of three additional potential
synergies, for total of five beyond those reported by Osu and Gomi (1999), as mentioned in Fig 11. Because synergies invariably imply a loss of control
degrees of freedom (i.e., fewer independently controllable muscles as seen in Fig 5), it is to be expected that they all reduce the controllability of the size,
shape and orientation of the stiffness ellipses as shown here and in Fig 11. Therefore, our results are generalizable to the concept of synergies in general,
and are not limited to the particulars of any one specific synergy.

doi:10.1371/journal.pcbi.1004737.g012
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implies 3 constraints, and therefore 3 degrees of freedom for the system. However, our formu-
lation without synergies has 4 degrees of freedom since only 2 constraints must be satisfied
(RF0~a ¼ 0).

This study analyzes the extent to which the active stiffness (i.e., not including passive or
reflexive muscle stiffness) of the endpoint of a simulated arm can be controlled in the presence
or absence of muscle synergies. That is, the extent to which the endpoint of the limb would dis-
place passively in response to a force perturbation in every direction. That stiffness is the prod-
uct of the level of activation of each muscle, and the anatomy and posture of the limb. We
assumed, as others have in the past, that the active stiffness of a muscle is linear and propor-
tional to the maximal force a muscle can produce and the level to which it is activated. While
the linearity of active muscle stiffness with respect to muscle strength and activation is likely
not entirely realistic, we focused on the effects of the presence or absence of muscle synergies.
Using a nonlinear relationship would likely produce different numerical results for the precise
shape, size and orientation of stiffness ellipses. However, it would not overcome the limitations
that muscle synergies impose because those limitations come about from a reduction of the
number of individually controllable muscles. That is a matter of scale rather than quality.
Future work should naturally explore whether or not more realistic physiological mechanisms
for muscle stiffness exacerbate the effects of synergies—particularly in neurological conditions.
In addition, this model is limited in that it does not take into account passive muscle stiffness,
reflexive stiffness, or feedback pathways, which can clearly be used to minimize energy further
depending on the frequency content of a perturbation or motor noise during a task. It has been
suggested [9] that some studies involving endpoint stiffness analysis may incorporate active
reflex contributions [1, 5, 21]. If only active, neurally-driven, stiffness properties are considered
and there is no net force at the endpoint, then the endpoint stiffness matrix is symmetric. It has
been noted that any non-symmetric component of endpoint stiffness “can only be due to het-
eronymous inter-muscular feedback” [8]. Although future work is needed to explore these
effects, our study is still able to help shed light on conflicting findings even if we only consid-
ered active stiffness without producing any net endpoint force or torque.

A subtle but important issue is that studying symmetric endpoint stiffness does not take away
from our findings, bur rather enhances our result about the functional limitations of synergies.
Adding a net endpoint force (or torque) deforms the symmetry of endpoint stiffness, but it also
further constrains the range of stiffness modulation. Balasubramanian and colleagues have made
this point well by indicating that defining an endpoint force imposes an additional set of func-
tional constraints that compromise the modulation of endpoint stiffness [34]. Similarly, our for-
mulation presents a best-case scenario from the perspective that we do not consider the effects
of signal-dependent noise. Selen and colleagues [52] studied the general case of endpoint stiff-
ness modulation while producing a net endpoint force vector plus a non-zero endpoint torque
under different stability conditions. They demonstrate the additional control trade-offs that arise
when considering the potentially destabilizing effect of signal-dependent noise.

Our model, like many others used to study arm stiffness [3, 8, 12, 13, 37], assumes equal
moment arms, equal maximal muscle forces, and a planar 6-muscle arm anatomy. While this
work could be easily extended to 3-D modeling and utilizing physiological values for moment
arms and maximal muscle forces (as in [22]), our model includes both mono-articular and bi-
articular muscles. These suffice to capture the gross capabilities of human arms since there are
no bi-articular muscles that cross over from one side of the shoulder to the other side of the
elbow. More importantly, the results and conclusions formed here about the effects of syner-
gies, stiffness synthesis, and energy minimization remain the same.

Our results suggest ways in which future high-dimensional models and arm stiffness experi-
ments may be conducted to analyze stiffness synthesis strategies used by the CNS such as
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synergies, energy minimization, posture adjustment, and active reflex pathways. Reaching
experiments could test stiffness ellipses in various postures during the reaching movement,
since stiffness ellipsoid orientation flexibility is very sensitive to small changes in posture. Find-
ings that conflict with the results of such a study could be analyzed in more detail as this would
suggest significant feedback pathways that were developed as a result of motor learning and
neural plasticity. More research into muscle synergies will help elucidate existing mysteries of
neuromuscular control and empower improved mechanisms for therapeutic interventions for
neuromuscular disorders in aging and disease.

More generally, to our knowledge, this is the first study of the neuromechanical and ener-
getic consequences of using synergies while meeting the multiple and compounding force and
stiffness constraints that define tasks in the real world, particularly important for unstructured
environments. As pointed out previously (e.g., [34, 45, 47]), we expected to see a natural reduc-
tion of task capabilities with the implementation of synergies. But understanding the specific
task-level neuromechanical trade-offs in detail is critical to move our field forward. For exam-
ple, Selen and colleagues [52] highlight that (even in the absence of synergies) observed stiff-
ness geometries and their pattern of change with instability are the result of a tradeoff between
maximizing the mechanical stability and minimizing the destabilizing effects of signal-
dependent noise. In addition, as pointed out in [42], understanding neuromechanical trade-
offs require that we distinguish between synergies that are extracted descriptively from data vs.
synergies that are implemented prescriptively by a controller. The work presented here is very
much taking the latter approach. We asked what feasible activation sets result when meeting a
given set of task constraints with and without synergies. We find that when synergies are
implemented prescriptively, the trade-off is a drastically reduced, or lost, ability to control the
details of the endpoint stiffness of the arm, and the energy used to produce it.

An objection to the strength (though not to the substance) of this conclusion is that having
many more muscles will naturally allow the implementation of synergies without such a drastic
reduction of the feasible activation set. We agree with this interpretation as we have argued
that thinking of vertebrates as having ‘too many’muscles is paradoxical with evolutionary biol-
ogy and clinical reality. That is, we have barely enough muscles for versatile and robust func-
tion in the real world [41, 45, 47]. Prescriptive synergies can and should be generalizable,
flexible and learnable as correctly argued by several authors [26, 29, 46, 53], which is enabled
by our many muscles.

More generally, every modeling study must assess its generalizability to everyday life—espe-
cially models with a relatively small number of joints and muscles. In such simplified systems,
a few constraints may suffice to artificially deplete the system of its control degrees of freedom.
The question then becomes whether, in models with many more muscles, the achievable stiff-
nesses are ‘good enough’ for the usual, day-to-day operation of the limb; and if so, from the
functional perspective this reduced flexibility may not really be a disadvantage at all. We and
others have debated this important issue in the contexts of muscle redundancy for the produc-
tion of static forces, unimpeded limb motion, and their combinations [41, 45, 48, 54, 55].
Importantly, real world tasks are the subject of neuroethology, which includes the evolutionary
and comparative study of the mechanistic control of natural behavior by the nervous system
[56–58]. In this context, having more (or even many more) muscles than joints would be an
appropriate anatomical adaptation to satisfy multiple constraints. This is because natural
behavior is defined by multiple and often competing constraints, which would naturally reduce
the feasible activation set (and therefore the feasible output sets) much more than the reduc-
tionist experimental tasks we often study [35, 47]. Therefore, the extent and quality of redun-
dancy cannot be expressed simply as the number of muscles. It is the structure and
dimensionality of the feasible activation set (after all relevant constrains are taken into
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consideration) that helps us see muscle redundancy from a neuroethological perspective. For a
critical review of the classical concept of muscle redundancy see [36]. For example, in the case
of producing active endpoint stiffness during limb movement while manipulating an object,
the nervous system must issue neural commands, coordinated throughout the entire duration
of the movement, to at the very least simultaneously:

• Set the necessary endpoint stiffness size, shape and orientation [19]

• Specify the direction, speed and duration of the movement [1]

• Control for the desired endpoint forces and torques [34]

• Consider the influence of motor noise [52]

• Regulate activity across the α-motoneuron pools to produce the necessary joint torques as
per the classical muscle redundancy force-sharing problem (e.g., [39, 43])

• Coordinate reciprocal inhibition of α-motoneuron pools across shortening and lengthening
muscles [59]

• Tune γ-drive and/or inhibit the stretch reflex in muscles undergoing eccentric contractions
(e.g., [51, 60])

• Mediate interneuronal interactions [61]

• Satisfy the temporal constraints of conduction velocities, muscle excitation-contraction
dynamics, and activation/deactivation time constants [62] to ensure the continuity of these
neural commands as the motion progresses

This compounding of multiple, potential conflicting, spatial and temporal constraints natu-
rally leads to a dramatic shrinking of the set of feasible neural commands for natural move-
ments even when we have many muscles. This line of thinking helps clarify the apparent and
longstanding paradox between the classical concept of muscle redundancy and the clinical real-
ity of motor development and dysfunction [36]. For example, clinicians have long been aware
of how disorders of reflexes or the neural circuits of ‘afferented muscles’ lead to disruptions or
failures of everyday movements and interactions with objects (for an overview see [63, 64]).
Thus, these pathologies of everyday limb function may in fact be a natural consequence of the
nervous system failing to meet the multiple and stringent spatio-temporal demands listed
above—in spite of having many muscles.

In spite of the simplified model used in the prior literature and here, our results nevertheless
add to current thinking about endpoint stiffness in two critical ways. First, they enable us to
explore the specific task-level trade-offs associated with specific synergies. And second, they
show that there is a natural limit to how generalizable and flexible any synergy can be. Simply
said, every synergy that is prescribed will reduce the feasible activation set (and thus the set of
feasible actions) as strictly as the mechanics of the limb or the constraints of the task.

Thus if one is to prescribe synergies to meet the multiple constraints of the many tasks we
face in real life, how many synergies should one learn? The idea that each prescribed synergy
solves, by construction, a well-defined control problem is well studied in the control literature
[42, 65, 66]. We propose that the approach presented here will enable future research to under-
stand the extent to which organisms find the middle ground between prescribing synergies to
simplify control (at the expense of loss of functionality) and retaining the independence of
muscle control to enable the learning, execution and refinement of motor function that meets
the multiple and competing demands of tasks in the real world.
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