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Abstract— Determining how the nervous system controls
tendon-driven bodies remains an open question. Stochastic
optimal control (SOC) has been proposed as a plausible analogy
in the neuroscience community. SOC relies on solving the
Hamilton-Jacobi-Bellman equation, which seeks to minimize a
desired cost function for a given task with noisy controls. We
evaluate and compare three SOC methodologies to produce
tapping by a simulated planar 3-joint human index finger:
iterative Linear Quadratic Gaussian (iLQG), Model-Predictive
Path Integral Control (MPPI), and Deep Forward-Backward
Stochastic Differential Equations (FBSDE). We show that
averaged over 128 repeats these methodologies can place
the fingertip at the desired final joint angles but–because
of kinematic redundancy and the presence of noise–they
each have joint trajectories and final postures with different
means and variances. iLQG in particular, had the largest
kinematic variance and departure from the final desired joint
angles. We demonstrate that MPPI and FBSDE have superior
performance for such nonlinear, tendon-driven systems with
noisy controls.

Clinical relevance— The mathematical framework provided
by MPPI and FBSDE may be best suited for tendon-driven
anthropomorphic robots, exoskeletons, and prostheses for am-
putees.

I. INTRODUCTION

Understanding how the nervous system controls tendon-
driven bodies - an important research area known as ‘neu-
romuscular control’ - is vital to advancing rehabilitation
and treatment technologies and theories for the restoration
of motor movement in patients with motor disabilities, as
well as creating robotic exoskeletons and prostheses for am-
putees. Tendon-driven systems, in particular, represent a class
of mechanical systems that are simultaneously under- and
over-determined [1]–[3]. Under-determined because multiple
combinations of tendon tensions can produce the same net
joint torques, and over-determined because the failure of any
one tendon to lengthen appropriately can disrupt or even
lock-up joint rotations.

There have been several theories that aim to explain
neuromuscular control [2], [4]–[8].
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In this paper, we more deeply investigate stochastic opti-
mal control (SOC) as a theory of neuromuscular control for
fingers to evaluate its potential in controlling tendon-driven
robotic prosthetic devices.

Stochastic Optimal Control relies on dynamic program-
ming, leading to the Hamilton-Jacobi-Bellman (HJB) equa-
tion, a backward nonlinear partial differential equation (PDE)
that aims to minimize the expectation of the desired cost
function based on a prescribed task. In general, solutions of
this backward PDE suffer from the well known “curse of
dimensionality,” which describes the exponentially increas-
ing computational complexity of solving the HJB as the
dimensionalty of the system increases [9]. Therefore, several
approximate methods have been presented that attempt to
solve the HJB equation [10]–[14]. These approximate meth-
ods try to address the “curse of dimensionality;” however,
in this work, we only consider scalable stochastic optimal
control methods that solve the HJB locally around a nominal
system trajectory without approximation.

We compare and contrast three SOC methods for control-
ling a tendon-driven index finger modeled in simulation to
perform a tapping task. These three methods are iterative
Linear Quadratic Gaussian (iLQG), Model Predictive Path
Integral (MPPI), and Forward-Backward Stochastic Differ-
ential Equations (FBSDEs). Previous work has demonstrated
that the iLQG method can be used to control the tendon-
driven index finger model [15].

iLQG relies on linearization of the dynamics of the system
and quadratic approximation of the cost function [16]. Thus,
conditions on differentiability of the model is necessary to
employ this method [17].

MPPI is advantageous in its ability to sample from non-
linear dynamics without requiring linearization [18], [19]. In
addition, MPPI is a parallelizable algoirthm that can run in
real time when implemented on a Graphical Processing Unit
(GPU). However, an assumption between control authority
and the system noise variance is required, which prohibits
tuning the control authority independent of the noise entering
the dynamics, thereby contributing to the potential difficulty
in computing the optimal control policy [20], [21].

FBSDEs do not require the aforementioned assumptions
in iLQG and MPPI and is therefore a more general frame-
work. However, the backward SDE introduces computational
complications, which require sophisticated machine learning
tools for computing solutions.

This paper is organized as follows: Section II introduces
the index finger model derived in [15], [22]. Section III
discusses the mathematical formulation of the stochastic
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optimal control problem being solved and presents an in-
tuitive explanation of each of the three different control
methods being compared. Section IV presents the results of
the simulation of the index finger completing a tapping task.
Section V discusses the limitations of current commercially
available robotic prostheses and analyzes the applicability of
these methods to this technology. Section VI presents our
conclusions and directions for future work.

II. INDEX FINGER DYNAMICAL MODEL

The skeleton of the human index finger is made up of
three joints connected by three rigid links. Two of the joints,
the interphalangeal proximal (PIP) and the interpahalangeal
distal (DIP), are described as hinge joints that can generate
flexion - extension. The metacarpophalangeal joint (MCP),
located closest to the human arm, is a saddle joint, so it
can generate flexion - extension in addition to abduction -
adduction.

The index finger has seven muscles. There are two flexor
muscles called the Flexor Digitorum Profundus (FDS) and
the Flexor Digitorum Superficialis (FDP). There are two
extensor muscles called the Extensor Communis (EC) and
the Extensor Indicis (EI). The last three muscles are called
the Radial Interosseous (RI), the Ulnar Interosseous (UI) and
the Lumbrical (LU).

The index finger has 11 tendons, seven of which actively
actuate the seven muscles of the index finger producing
torques at the three joints. The other four tendons are passive
since they are attached between the other tendons and the
bones. The passive tendons are called the Terminal Extensor
(TE), the Radial Band (RB), the Ulnar Band (UB), and the
Extensor Slip (ES).

The details of the complete index finger model including
modeling the tendon excursion, moment arm matrix, and
velocity of the tendons is thoroughly explained in [15].
Hence, we will simply present the index finger dynamics,
which are represented as stochastic differential equations
(SDEs).

dθ̇ = (−I(θ)−1C(θ , θ̇)+Bθ̇ + I(θ)−1T)dt (1)

T = M(θ)F (2)

dF =−1
τ
(F−u)dt +dw (3)

u > 0 (4)

where I(θ) ∈ R6×6 is the inertia matrix, C(θ , θ̇) ∈ R6×1

is a vector of centripetal and Coriolos forces, B ∈ R3×3

is the joint friction matrix, M ∈ R3×7 is the moment arm
matrix, T ∈ R3×1 is the torque vector, F ∈ R7×1 is the
tensions (forces) on the tendons, u ∈ R7×1 is the control
vector, w ∈ R7×1 is Brownian motion noise vector with
variance σ2I7×7, and dθ̇ ∈ R6×1 describes the joint space
kinematics (i.e. the joint angles and joint angular velocities)
for all three joints. For our simulations, we have excluded

the abduction-adduction movement of the MCP joint, so we
only examine planar movements. Therefore, the state-space
formulation of the index finger model has a dimensionality of
13, corresponding to six states for the joint space kinematics
(θ = (θ1,θ2,θ3, θ̇1, θ̇2, θ̇3)) and seven states for the tensions
(F) applied on the seven active tendons. Since tendons can
only pull on the muscles, imposing the constraint u> 0 gives
F> 0. Equation (3) is used to model delays in the generation
of tensions on the tendons. τ is the time constant of muscle
activation, which is 0.04 in all simulations.

A figure of the human index finger with labeled joints
and tendons is shown in Figure 1. While this model does
not consider the muscle activations, the model can easily be
extended to include them similar to the work in [17].

distal phalanx

middle phalanx

proximal phalanx

metacarpal

MCP  θ
1

DIP  θ
3

PIP  θ
2

Fig. 1. Anatomy of the index finger model used here and in [15]. The
finger flexes on the plane of the flexion angles θ1,θ2, and θ3. Figure adapted
from [8].

III. STOCHASTIC OPTIMAL CONTROL

Stochastic Optimal Control (SOC) seeks to find the control
input (u) at each time step that is optimal with respect to a
prescribed cost function (J) subject to the stochastic dynam-
ics of the system. In general, the cost function describes
the goal of the problem by penalizing the distance that the
system state is away from a desired target state or trajectory
as well as penalizing the amount of control effort necessary
to achieve the final state. In the case of our specific problem,
the goal is for the index finger to reach the final prescribed
tapping position specified by joint angles while minimizing
the amount of force necessary to achieve this goal. In general
SOC problems, the cost function is formulated as follows

J(x0, t0) = E
[
φ(xT ,T )+

∫ T

t0
L (xt ,ut , t)dt

]
(5)

where φ(xT ,T ) is the terminal cost and depends only on the
final state xT , L (xt ,ut , t) is the running state and control
cost, and T is the time horizon such that 0 < t < T < ∞.
Let (Ω,F ,{Ft}t≥0,Q) be a complete, filtered probability
space on which a m-dimensional standard Brownian motion
w is defined, such that {Ft}t≥0 is the normal filtration
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of w. The expectation in (5) is taken with respect to the
probability measure Q over the space of trajectories induced
by controlled stochastic dynamics. In general, the dynamics
are written as a nonlinear stochastic differential equation

dx = F(x,u)dt +B(x,u)dw (6)

where x ∈Rn×1 is the state vector, u ∈Rm×1 is the control
vector, and w ∈Rm×1 is a vector of Brownian motions with
Σ the covariance matrix.

The solution seeks to find the optimal balance between
achieving the desired final state while still minimizing the
amount of control input being injected into the system.
The optimal control (u∗) gives the minimum cost (J∗).
The optimal cost is defined as the minimum expected cost
evaluated with respect to the controlled trajectories satisfying
the SDE system dynamics accumulated over the time horizon
(t0, . . . ,T ) starting from the initial state xt0 going to the final
state xT . The optimal control and cost are described by the
following two equations

J(xt0 , t0) = minu(·)E
[
φ(xT ,T )+

∫ T

t0
L (xt ,ut , t)dt

]
(7)

The optimal control is given by solving the following

u(·) = argminu(·)E
[
φ(xT ,T )+

∫ T

t0
L (xt ,ut , t)dt

]
(8)

subject to the dynamics of the system. We consider dynam-
ics that are affine with respect to the control u.

F(x,u) = f (x, t)+G(x, t)u (9)

In this paper, we consider only quadratic costs so

φ(xT ,T ) = (x−η)TQT (x−η) (10)

where η is the target state and QT specifies the cost of the
deviation of the states from their desired target at the final
time. The running cost is

L (xt ,ut , t) = (x−η)TQ(x−η)+
1
2

uT
t Rut (11)

where Q is a matrix specifying the cost of the deviation of
the states from their desired target at each time step and R
is a symmetric positive definite matrix that specifies the cost
of the control effort. For any given initial conditions (xt0 , t0),
we wish to solve (7). The solution is obtained by solving the
associated HJB for the Value function [23]. As in [21], with
the set of admissible controls U , we can define the value
function as {

V (x, t) = infu(·)∈U [0,T ] J(x, t)
V (xT ,T ) = φ(xT ,T )

(12)

Using Bellman’s stochastic principle, as shown in [24], if the
value function satisfies certain conditions, then its solution
can be found with Itô’s Differentiation Rule to satisfy the

HJB equation
Vt + infu(·)∈U [0,T ]

{
1
2 tr(VxxBBT)+V T

x ( f +Gu)

+(x−η)TQ(x−η)+ 1
2 uTRu

}
= 0

V (xT ,T ) = φ(xT ,T )

(13)

where Vx,Vxx denote the gradient and Hessian of V respec-
tively. For the specific case of control-affine dynamics and
quadratic control cost, the infimum operation can be carried
out by taking the gradient with respect to u and setting it to
zero.

GT(x, t)Vx(x, t)+Ru = 0 (14)

Therefore, the optimal control is obtained as

u∗ =−R−1GT(x, t)Vx(x, t) (15)

While the details of the specific control algorithms can
be found in [17], [19], [21], we briefly give an intuitive
explanation of each method.

A. iLQG

iLQG starts by discretizing and linearizing the dynamics
using Taylor’s approximation up to the first order. Next,
the cost function is approximated to the second order (i.e.
quadratic). In this paper, we only consider quadratic costs, so
we can skip this step. The main idea is to take expansions on
both sides of the value function up to the second order and
equate the terms. By substituting in the expanded terms and
taking the gradient with respect to the control, we obtain a
control update law, which can be added to the control policy
at the current iteration. By applying the new control, the
nonlinear dynamics are propagated and a new trajectory is
generated. The algorithm is repeated again until convergence.

B. MPPI

MPPI is a subclass of Path Integral Control, which em-
ploys an information theoretic approach to solve the HJB
equation. Path Integral control is based on the SOC and
HJB formulation, while MPPI is based on the information
theoretic approach. In general these are not related, however
for the special case of control-affine dynamics and quadratic
control cost, the two overlap [25, Sec. III]. Since we have re-
stricted our problem to control-affine dynamics and quadratic
control cost, we can use either MPPI or Path Integral control.

MPPI equates a concept in information theory known as
the free energy to the Value function. Using this relation-
ship, which is obtained via the Feynman-Kac Lemma, the
algorithm avoids taking gradients of the value function by
instead sampling the controls from the stochasticity present
in the dynamics. MPPI uses a model-predictive control
(MPC) formulation to determine the controls that give the
best trajectories specified by the prescribed cost function for
a certain time horizon. At each time step, MPC calculates
several trajectories. The samples of trajectories are used to
calculate a cost for each trajectory. An exponential transfor-
mation is applied to all of the costs, which scales these costs
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to values between 0 and 1. Based on this transformation,
the control update law is in a sense a weighted average of
the sampled controls that gave the best trajectories in terms
of the minimum cost. In MPPI, the control authority is a
function of the stochasticity in the system.

C. FBSDEs

This method transforms the HJB equation into a system of
Forward-Backward Stochastic Differential Equations using
a nonlinear version of the Feynman-Kac lemma [26]. Intu-
itively, the nonlinear Feynman-Kac lemma is a mathematical
result that connects the solution of parabolic PDEs to a
system of FBSDEs.

FBSDEs is a more general approach compared to the
Path Integral Control framework, in that it does not rely on
any assumptions between control authority and noise. The
main challenge is in finding the solution to the backward
SDE. A backward SDE is a stochastic dynamical system that
propagates backwards from terminal time to initial time. It
turns out that this process requires the back-propagation of
a conditional expectation as the noise entering the system
evolves forward in time [27, Chapter 2]. One way to solve
this is by combining importance sampling while using a Deep
Neural Network (DNN) that approximates the gradient of the
value function at every time step. A recurrent neural network
architecture known as the Long-Short Term Memory (LSTM)
can be trained with any one of the variants of Stochastic
Gradient Descent. (For more details refer to our previous
works [21], [28], [29]). Once trained, the network can be
used to predict the optimal control at every time step starting
from the given initial condition.

IV. SIMULATION RESULTS

The three algorithms were tested on controlling the in-
dex finger to tap from a starting joint angular position of
θ0 = ( 5π

6 , π

2 ,
π

10 ) to a final joint angular position of θT =
( 7π

6 , π

4 ,
π

12 ). For all three algorithms, we used a Brownian
noise with σ = 0.1, a time horizon of 0.42 seconds, and
found the mean and standard deviation across 128 trials.
iLQG and MPPI were simulated with a time step of 0.01
whereas, FBSDE was simulated with a time step of 0.02. In
addition, the learning rate for iLQG was 0.1 and for MPPI
was 0.01.

The specific terminal, running state, and control cost
matrices were found by hand tuning until the algorithm
converged. For iLQG, the terminal cost was set to
QT = diag(6.8e4,1.23e4,5.04e4,0,10,50,0,0,0,0,0,0,0),
the running state cost was set to Q =
diag(6e4,1e2,6.0075e4,0.1,0.1,14,0,0,0,0,0,0,0), and
the control cost was set to R = rI7×7, where r = 2. The
simulation was run without parallelization in MATLAB on
a Dell laptop with an Intel(R) Core(TM) i7-7500U CPU
running at 2.70GHz and 12.0GB RAM. The total run time
for iLQG was 6261.536317 seconds.

For MPPI, the discrete formulation was implemented
using the software developed in [30]. The number of
sample trajectories was set to 2000. The MPC horizon

TABLE I
COMPARISON OF SOC ALGORITHMS FOR INDEX FINGER

Algorithm Advantages Limitations Performance

iLQG
Requires

low computational
resources

Requires
differentiability

conditions
Adequate

MPPI
Applicability to

non-differentiable
models

Requires a GPU
to run

in real time
Best

FBSDE Consistently
reaches target

Computationally
intensive Good

was set to 20 time steps. The terminal cost was set to
QT = diag(5e2,4e2,5.5e2,1e2,0,1e2,1,1,1,1,1,1,1).
The running state cost was set to Q =
diag(1e2,1e2,2e2,0,1,10,1,1,1,1,1,1,1). In MPPI,
the control cost is set to be inversely proportional to the
noise, so it was set to r = 10. The simulation was run
without parallelization in MATLAB on a Dell laptop with
an Intel(R) Core(TM) i7-7500U CPU running at 2.70GHz
and 12.0GB RAM. The total run time for MPPI was
7923.996634 seconds.

For FBSDE, the terminal cost and run-
ning state cost were both set to Q = QT =
diag(5,10,10,0.1,0.5,0.5,0,0,0,0,0,0,0). The control
cost was set to r = 0.2. We used two layer stacked LSTMs
with eight hidden units each and trained the network
for 10,000 iterations with a learning rate of 0.001 using
the ADAM optimizer. The simulation was run without
parallelization on the CPU version of TensorFlow [31] on a
desktop with an AMD FX(tm)-8320 Eight-Core Processor
8 and 15.6 GiB RAM. The total run time for FBSDE
was 8040.74667883 seconds. The results of the three joint
angles achieving their desired final positions are presented
in Figure 2.

We show that FBSDE produces very good results by con-
sistently reaching the target with the lowest variance. iLQG
gives inconsistent results with higher variance; however, it
requires the least amount of computational resources. MPPI
seems to converge the fastest and stays close to the desired
target but sometimes misses the mark at the final time.

Furthermore in Figure 2, we notice that the third joint, the
furthest linkage from the body, is seemingly more difficult to
control. This is due to the inertial property and interaction
torque that arise from the movement in other joints. This
difficulty is observed in other mechanical systems such as a
double inverted pendulum. We show that on average FBSDE
is able to successfully control this third link, whereas MPPI
has more difficulty and iLQG cannot seem to control the
third link at all.

V. DISCUSSION

The state-of-the-art commercially-available prosthetic de-
vices do not match the versatility of human movement in
neither design nor control [32], [33]. Different methods are
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Fig. 2. The trajectories of the three joint angles are shown comparing iLQG, MPPI, and FBSDE. We observe that iLQG produces the highest variance
and is less likely to reach the desired target than the other two algorithms. FBSDE gives good results with the lowest variance and can consistently reach
the desired target. MPPI gives the best results because it is able to converge the fastest but doesn’t always reach the target at the end time.

available to control prosthetic devices, but ‘...their control
is unnatural and requires a great amount of mental effort’
[33]. Another example in [34] presents an approach that
uses real-time biomechanical simulation to map between
residual electromyograms (EMGs) and the motions of the
intact hand. While real-time performance was achieved, the
results showed the model to be unstable.

Prosthetic devices could benefit from a tendon-driven
design [3], [35], and it is therefore important to find theoret-
ically rigorous control strategies for them–and formal SOC
is a natural candidate.

Our results show two SOC methods, namely MPPI and
FBSDE, capable of accurately and consistently controlling
a nonlinear tendon-driven finger to reach the designated
target without a prescribed trajectory in the presence of
noise. We hypothesize that iLQG gives poorer results due
to the required linearization of the dynamics, whereas the
sampling-based methods (MPPI and FBSDE) likely benefit
from sampling the natural dynamics of the system. MPPI
further has the better rise times to the target joint angles and
smoother average trajectories as seen in Figure 2.

However, all of these algorithms require tuning the cost
function based on building an intuition about the dynamical
system, which is not trivial. One drawback to MPPI and
FBSDE is that they require greater computational resources,
see Table I. MPPI simulates 2,000 trajectories at every time
step, and FBSDE requires a deep neural network to com-
pute the optimal control. However, MPPI is a parallelizable
algorithm that can be easily deployed on GPUs and can run
in real time. Additionally, given the continual acceleration

of hardware, we expect that these two methods will soon be
practical for prosthetic systems.

Despite the arduous tuning process and computational
load, we believe that MPPI and FBSDE are the best solutions
to control these tendon-driven systems. We envision that
MPPI and FBSDE could be the algorithms of choice to
control biomimetic hand prostheses like the one presented in
[36] because they are the most robust to unavoidable motor
and sensor noise and, –very likely–also robust to the external
perturbations that are part and parcel of interacting with the
environment.

VI. CONCLUSIONS

We compared three different stochastic optimal control
strategies for producing smooth tapping movements with a
tendon-driven human index finger in simulation. We found
that MPPI and FBSDE were superior to iLQG because
they produced lower variance in their trajectories and better
average tapping accuracy. In the future, we plan to test these
methods on tendon-driven hands and actual manipulation
tasks, including intermittent finger-object contact as demon-
strated in [37].
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