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Abstract— Estimating the Center of Pressure (CoP) under
legged robots is useful to control their posture and gait. This
is traditionally done using contact sensors at the base of
the foot or with sensors on distal joints, which are subject
to wear and damage due to impulse forces. In vertebrates,
skin and ligament deformation at the ankle is a particularly
rich source of sensory information for locomotion. For our
bipedal mechanism, afferent signals from sensors on synthetic
skin wrapped around the ankles sufficed to estimate the
location of the CoP with a mean accuracy >81.5%. For this
we used K-Nearest Neighbors (KNN) algorithm trained on
the same force magnitude applied at four and nine ground-
truth CoP locations. For a single mechanical foot (i.e., single
stance), signals from skin or ligaments (i.e., elastic rubber
sheets and cables, respectively) also sufficed to calculate the
CoP (Mean prediction accuracy >91.3%). Moreover, the visco-
elasticity of these elements serves to passively stabilize the
ankle. Importantly, training the single leg case with forces of
different magnitudes also resulted in similarly accurate mean
CoP prediction accuracy >84.5%. We show that using bio-
inspired proprioceptive skins and/or ligament arrangements can
provide reliable COP predictions, while permitting arbitrary
postures of the ankle and no sensors on the sole of the foot
prone to wear and damage. This novel approach to estimation
of the CoP can be used to improve locomotion control in a new
class of bio-inspired rigid, soft and hybrid (soft-rigid) legged
robots.

I. INTRODUCTION

In contrast to engineered systems where controlled vari-
ables are measured directly and accurately, biological sys-
tems use mechanoreceptors that are often distributed and
non-collocated [1], [2]. Haptic sensors on the skin are often
thought of as pressure sensors which help on estimating
parameters like the Center of Pressure (CoP) on the soles of
the feet [3], [4]. However, a less known but no less critical
example of noncollocated sensors (both, in animals and in
robots) is that of mechanoreceptors on the skin surrounding
joints [5] [6]. These cutaneous sensors react to stretch rather
than pressure and are a prime example where the information
from multiple distributed mechanoreceptors are processed to
extract estimates of joint angles which the nervous system
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uses to control limb movements [7], [8], [9]. Furthermore,
skin stretch plays an important role in understanding ankle
positions [10], [11], [12]. Here we explored whether the
strain measured by sensors on a low-cost artificial skin
wrapped around the ankles of a bipedal mechanism suffices
to estimate its CoP (Fig. 1).

Common solutions for measurement of the COP involve
signal acquisition from the sole of the robot’s foot, to then
use a model-based, [13], [14], [15], [16], [17] or a data-
driven approach [18]. For some of the mentioned studies,
it is described that the sensors are used to calculate the
Zero Moment Point (ZMP). For these studies, calculation
of ZMP depends on the CoP location; the former should
always coincide with the later for dynamically balanced
configurations [19]. Relying on detailed models of the robot’s
dynamics to calculate the CoP makes the system prone to
failure when there are mismatches between the model and
the real system dynamics due to wear and tear, damage,
degradation, lack of information about the system, model
simplicity or poor parameter identification [20]. In [21] a
“redundant” sensor architecture together with a model-free
machine learning approach is used to observe the behaviour
of a soft actuator. Similarly to [21], we use machine learning
to avoid the need for precise modeling and characterization
of sensors and body dynamics.

We calculate the position of the CoP by measuring the
strain experienced by a low-cost sensorized artificial skin
wrapped around the ankles of an eight Degrees-of-Freedom
(DoF) biped, as well as around a two DoF uniped structure.
This skin functions as a passive neutral-position ankle stabi-
lizer while providing strain measurements as afferent sensory
information. We used these strain measurements to train a
K-Nearest Neighbor (KNN) algorithm to estimate the CoP’s
location known a priori. The foot-leg mechanism, stabilized
by the taut elastic skin makes the ankle joints return to a
neutral configuration when not loaded. To further validate our
results, we also performed experiments where we substituted
the skin with ligaments with different stiffnesses to operate
like guy-wires. This approach presents an alternative to
sensors on the sole of the foot which are subject to wear and
potential damage due to impulse forces caused by robot-floor
interaction [22].
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Fig. 1. A and B show experiments to estimate the Center of Pressure, while C presents device details. A) Biped standing on the force plate with
CoP sensing area marked by a numbered grid. The force plate provides ground truth CoP locations (i.e., labels) while signals from four leaf spring sensors
on each of the biped’s ankles are recorded (i.e., features). B) Foot structure in an upside-down position to which Center of Pressure loads were applied
to different locations on its sole. Simultaneously, data was recorded from the spring leaf sensors (i.e., features). C) Ankle joint consists of a universal
joint. Two strain gauges are encapsulated inside two metal layers that form the leaf spring sensor. When the leaf spring geometry changes due to the skin
elongation or contraction, the strain gauge electric resistance changes, generating a signal which depends on the strain the skin experiences derived from
its elongation.

II. METHODS

A. Biped, Artificial Skin, Ligaments and Force Plate Con-
struction

We developed a simple biped with eight DoF (i.e., two per
ankle and two per hip joint), Fig. 1-A. For manufacture and
debugging simplicity we did not include knees. As explained
in [19], the forces and moments that an ankle is subjected
to, can be used to understand foot-ground interaction; thus
the shape of a structure over this joint can be ignored or,
in our case simplified. The two legs are connected by a
transversal post which we call ”hip”. We added a 900 grams
mass (i.e., black cube in Fig 1-A) to the hip bar to increase
the load and moments applied to the ground and ankle joints
respectively. Due to the biped’s symmetry with respect to its
sagittal plane, and the high density of the 900 grams mass
compared to the hip bar, we know that the Center of Mass
(CoM) of the biped is located within this mass, for these
experiments a different mass could have been used, as long
as the biped’s CoM location is the one just described. The
leg and foot incorporates mounting points for both skin and
ligament components (Fig. 1-C and 2).

We also created a sensorized visco-elastic skin structure.
The sensing component of the skin, which we call ”leaf
spring sensor” consists of three parts: a strain device en-
capsulated in a double-layer aluminum arch, a load bearing
buffer structure made of a double-layer of highly elastic
rubber polymer, and metal connectors that facilitate the
connection to the leg structure (Fig. 1-C, upper right corner).
Two Comidox BF120-3AA strain gauges were attached to the
proximal side of the arch structure and reinforced with an
electrical tape infill. When the leg experiences a perturbation,
the skin elongates causing the strain gauges to sense the
surface deformation of the aluminum arch structures. A pair

of Adafruit ADS-1015 amplifiers (Adafruit Industries, New
York, NY, USA) were used in conjunction with a diagonal-
half Wheatstone bridge to prepare the strain gauge signals
for acquisition using a PC.

For some experiments, we replaced the skin or sections of
it with ligaments (Fig. 2); to mount them, we created a struc-
ture employing SparkFun TAL-220b load cells (SparkFun
Electronics, Boulder, CO, USA) as the sensing element. As
ligaments, we used Dacron® cable and extension springs, and
then used them to couple the load cells to the leg (Fig. 2). The
flexibility and elasticity of these ligaments buffered the load
cell from the motion of the leg. This was done to combat the
typically limited range of motion of commercially available
load cells. Four load cells and accompanying cable mounting
mechanisms were attached to the leg structure and special
care was taken to maintain equal tension on each load cell
while the structure was in equilibrium. The consistent elastic
properties of the ligaments (especially the extension springs
version) combined with a stiff mounting structure allowed
us to reliably measure load-cell tension, even after extensive
use and testing.

To measure the ground truth of the CoP for the double
stance case, we created a 40.9× 40.9 cm force plate sensor
(Fig 1-A). The plate edges dimensions were chosen based on
the biped’s support polygon dimensions (i.e., three foot-sole
areas). Four SparkFun TAL-220b load cells placed under the
plate’s surface, determined the 8.0×8.0 cm CoP sensing area
(i.e., square framed with black electrical tape in Fig 1-A).
Placing the sensors in this position increased the sensitivity
to the CoP position variations throughout experiments.

Overall, the mechanisms’ manufacture was of low-cost,
keeping in mind that we want to show that the introduced
techniques can be applied to a variety of equivalent ankles
and artificial skins incorporating different technologies.
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B. Double Stance Experiments

First, we trained the force plate on both nine and four
ground truth CoP locations marked on a numbered 8×8 cm
grid on the plate center, subdivided by four or nine squares
(16 and 7.1 cm2 respectively). For this, we used a mass
equivalent to the mass of the biped but with a 2.4 cm2 base
to ensure localized loading. We then centered the biped over
the force plate and positioned its CoM centered over the
numbered grid. We used the trained platform to assign CoP
values (i.e., labels) to the afferent signals provided by the
skin (i.e., features) while manually manipulating the biped
mechanism to place its CoM over different locations of the
numbered grid (Fig. 1-A). During the experiments, the CoM
remained over each number in the grid for the same amount
of time.

As shown in Fig. 1-A, to ensure that the load experienced
by the platform only depends on the biped’s position and
mass, we equipped the bipedal structure with a rope to pull
the hip towards a desired location, while we compensated
rotational hip movements by holding the opposite side of
the hip. Hip rotation compensation was done to keep the
CoM projection on the force plate within the numbered grid
area. In our experiments, CoP and CoM are in the same
region (i.e., anterior or posterior with respect to the coronal
plane, and/or lateral right or left with respect to the sagittal
plane); this is consistent with the well-studied relationship
between CoM and CoP for static cases [23], [24]. Due
to the low friction between the metal foot and the acrylic
platform, electrical tape was used to hold the foot at the
desired position on the force plate.

The prediction of the CoP is possible after training a KNN
algorithm [25] with afferent strain data from a synthetic
skin (i.e., features), and using CoP locations as ground truth
labels. We report results of five nearest neighbors (K = 5).
For some cases there is a better prediction accuracy using
a different K, but considering that the best K cannot be
determined while a robot operates, we chose K=5 as our
standard parameter for our algorithm.

C. Single Stance Experiments

For this experiment, we mounted just one foot of the
biped on an upside-down position. This allows its two
degree-of-freedom ankle to flex when applying a 900 gram
load. We first applied this load across nine numbered and
equally segmented locations forming a 3x3 grid of boxes
on its upward facing sole. For a second experiment version,
we increased the resolution of the square segments to 16,
forming a 4x4 grid on the sole. For both cases, the total grid
area was 85.9 cm2.

A 900 grams mass was used to mimic the load that our
biped foot would experience while being on single stance
position. Each sequence consisted of applying the load to
all grid locations by a human operator following a visual
cue on a screen, while data was recorded from the leaf
spring sensors (i.e., features). The collected data consists of
28 complete sequences. (Fig. 1-B).

Fig. 2. Non-homogeneously distributed sensors, subjected to different
conditions can enable the prediction of body states. A) Render of Foot-
Ankle-Leg with Dacron Cable Ligament Assembly; ligaments can also be
extension springs, as shown in B). Two mounting points are available, one
being more proximal to the knee. When using the distal mounting point,
we noticed a lost in state observability due to the universal joint and mount
point alignment. B) Foot-Ankle-Leg with a combination of skin with 30
mm Leaf Springs and a Extension Spring Ligament.

In the same way as described for the double stance
experiment, the prediction of the CoP is possible by using
skin afferent information as features and CoP locations as
labels to train a KNN algorithm [25]. The main difference
is, in the case of the double stance, the ground truth CoP
was given by a trained force plate. But, for the single
stance experiment, the labels were automatically assigned.
The operator follows a visual cue on a screen to apply the
load to the foot sole. Same values shown on the screen are
assigned as labels to the data features. While a value is
shown on the screen, a batch of 25 lines of data are recorded
(each line containing all sensors readings), only the twelfth
line of each batch is used to train the KNN model. This
helps to ensure that the recorded features corresponds to the
correct ground truth CoP label, by giving enough time to the
operator to manually change the position of the load to the
correspondent value on the foot sole grid.

D. Code

For Sections II-B and II-C We used C++ (Arduino boards)
and Mathworks (Natick, MA, USA) MATLAB for data
acquisition. The Caret library in R was used to perform
KNN analyses. Validity of our estimator was performed with
five-Fold Cross-Validation to all our experiments [26]. Code
repository link in Supplementary Information (Section V).
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III. RESULTS

We focus on the CoP prediction done from skin afferent
signals and compare them to predictions obtained from
equivalent mechanisms (i.e., springs and string ligaments).
For all the following results, unless explicitly mentioned,
training and testing were done with the K-Nearest Neighbor
approach described in Methods (Section II-B and II-C).

A. Double Stance Case

Skin wrapped around the ankles of a bipedal structure
can be used to show its CoP location. In our experiments
we estimate the location of the biped’s CoP with a mean
accuracy >81.5%.

Four CoP locations experiments: Force plate prediction
accuracy for these experiments was 97.6%. Three tests were
performed; for each tests, CoP values assigned by the force
plate were predicted with respective accuracies: 87.44%,
82.76% and 77.29%. In Fig. 4-A the CoP prediction accuracy
for one of the tests of this experiment is presented (i.e.,
87.44% = 97.6%× 89.6%).

Nine CoP locations experiments: Force plate prediction
accuracy for this experiments was 97.2%. One tests was
performed; the CoP values assigned by the force plate were
predicted with an accuracy of: 80.8%. In Fig. 4-B the CoP
prediction accuracy for this experiment is presented (i.e.,
78.53% = 97.2%× 80.8%).

B. Single Stance Case: Skin vs. Ligaments

For single stance case situations, ankle-wrapping skin or
ligament strain afferent signals suffice on estimating the
structure’s CoP.

The mean prediction accuracy for the skin case was
91.44% while for the string and spring ligament cases was:
86.68% and 95.75% respectively (Table I). It is important to
consider that skin sensors are not calibrated; this can be seen
in (Fig. 3) when comparing section A (same baseline for all
signals) with section B (different baseline for each signal),
respectively for the skin and spring cases.

C. Single Stance Case: Skin with 30 and 40 mm Spring Leaf
Sensor versions

Regardless of their type, sensors that provide strain mea-
surements of ankle skin can enable CoP estimation. Here
we show how similar CoP prediction results can be obtained
from two versions of the used sensor.

Nine CoP locations experiments: When the CoP was es-
timated from the artificial skin afferent signals, the maximum
and minimum prediction accuracies were 96.79% and 81.5%
(Table I). For the skin, a total of 6 prediction accuracies were
calculated using different leaf spring sensor sizes: 3 for the
30 mm and 3 for the 40 mm cases. Respectively, the mean
prediction accuracies obtained were 87.42% and 95.47%.

Sixteen CoP locations experiments: For this case, the
CoP was estimated with a mean prediction accuracy of
97.05% (Table I).

TABLE I
CENTER OF PRESSURE PREDICTION ACCURACY, SINGLE STANCE

D. Single Stance Case: Skin and Ligament combination

Here we show how the CoP can be estimated using signals
from skin and tendon strain sensors simultaneously (Fig 2
and Table I). Signals from different sensors are used to build
a prediction or understanding of a phenomenon or parameter
(see Discussion, Section IV).

Maximum and minimum CoP prediction accuracy values
for these cases were 92.79% and 84.85%. Even though skin
and extension spring elements have very different stiffnesses,
we didn’t observe a significant drop in prediction accuracy
with respect to the other already presented results (Table I).

E. Statistical Significance

After performing a five-fold cross-validation to all our our
experiments, we obtained a Kappa value that was always
above 0.81 for the single stance experiments. For the double
stance experiments, we consistently obtained a Kappa value
above 0.70. The obtained values point to a substantial or
an near-perfect agreement (Kappa >0.61 or Kappa >0.81
respectively) [26]. Overall, this can be interpreted as the pre-
diction almost always been accurate: the prediction ”agrees”
with the real or ground truth values.

F. Convergence to Stable Equilibrium Point

To demonstrate how the plant, for all skin and ligaments
stance configurations, converges to a stable equilibrium point
(i.e., neutral ankle position or foot-leg in a 90 deg angle),
we let the ankle go to its neutral position after perturbing it.
During this simple test we observed how signals converge
to the same signal value (e.g. 1400 for the extension spring
configuration).
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Fig. 3. Raw signal samples: A) Skin with 40 mm Leaf Spring and B)
Extension Spring Ligaments.

TABLE II
CENTER OF PRESSURE PREDICTION ACCURACY, SINGLE STANCE:

”BLIND TESTS”: VARIABLE AND UNKNOWN TRAINING LOAD

IV. DISCUSSION

We show that bio-inspired proprioceptive skins and/or
ligament arrangements can provide reliable COP predictions
via a model-free machine learning approach (KNN), while
permitting arbitrary postures of the ankle and no sensors on
the sole of the foot prone to wear and damage. It is important
to consider that we use a very low-cost artificial skin to show
that different kinds of skins and/or ligaments (capable of
measuring strain or longitudinal deformation) can be used
to calculate the CoP. We propose this novel approach to
estimate the CoP, that can be used to improve locomotion
control in a new class of bio-inspired rigid, soft and hybrid
(soft-rigid) legged robots.

Our work is motivated by the well-known problem that
sensors placed on the sole of the foot are subject to wear and
impulse forces [22]. Our alternative, as in nature, is to use
skin and ligament strain sensors at the ankle. Our work now
demonstrates that these non-collocated strain sensors suffice
to estimate the CoP of bipeds during double and single
stance. We observed that non-homogeneously distributed
sensors, subjected to different conditions (i.e., strain sensors
mounted on a combination of skin and ligaments surrounding
the ankle, as described in Section III-D, Figure 2 and Table I)
can enable the prediction of body states. This observation is
aligned with our previous publication [27] where sensory
signals are fused to show the benefits of distributed sensing
for balance. Sensorized skins also have the advantages of (i)
passively stabilizing the ankle, while (ii) not restricting the
DoFs of the mechanism, allowing smooth movements and
applicability to soft or hybrid (soft-rigid) robots [21].

Similar to our approach, in [18], the CoP location of a
commercial prosthetic foot was estimated by measuring the
strain experienced by structural elements at the ankle. We
extend that approach by showing that measuring skin and
ligament strain is also enough to calculate the CoP. Table I
and Fig. 4 show that we can estimate the CoP for the double
and single stance cases, mean prediction accuracy values of
92.4% and 81.51% respectively.

Even though we got a mean CoP prediction accuracy
>80% in the double stance experiments, we identified two
main areas for potential improvements of this experiment:
(i) using a robotic biped with motors to change its posture,
instead of manually changing and holding new positions
and (ii) increasing the resolution of the force plate used to
provide more accurate ground truth CoP values. As shown in
Fig. 4-A and explained in Section II-B; our self-built force
plate provides measurements of the ground truth for the four
CoP locations to be predicted with skin afferent signals. But
the resolution of the force plate may not have been high
enough to provide accurate ground truth CoP locations for
the nine CoP locations experiment (Fig. 4-B). This likely
explains why we do not see a solid blue diagonal in Fig. 4-
B. Regarding the ability of the skin alone to estimate the CoP,
we show that (for the single stance experiments, where no
force plate is involved) afferent signals from the skin suffice
to estimate up to 16 CoP locations with a prediction accuracy
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Fig. 4. Skin strain afferent signals enable the prediction of the Center of Pressure. Confusion Matrices that show percentages of how much the
prediction of the CoP (i.e., x axis) agrees with the ground truth CoP value (i.e., y axis). All cases done using skin with 30 mm Leaf Spring Sensors.
A) Double stance experiment, four CoP locations prediction accuracy: 87.44% = 97.6% × 89.6%. 97.6% Force Plate Prediction Accuracy. CoP values
assigned by the plate were 89.6% correctly predicted using skin afferent signals. B) Double stance experiment, nine CoP locations prediction accuracy:
78.53% = 97.2% × 80.8% (Same rationale than in A). Even though this prediction value is high, CoP values were not assigned correctly by the force
plate: the biped was manipulated to reach nine CoP locations (as described in Section II-B), but only some points (i.e., labels) were assigned by the plate
while performing the task. This is considered a poor test due to the incapability of the force plate to better assign nine CoP location labels. C) We show
with the single stance experiment that a synthetic skin is capable of providing signals to estimate 16 CoP values. Experiments protocol described in Section
II-B and II-C and in Fig. 1-B.

of 96.8% (Fig. 4-C).
We did an additional ‘blind test’ which involves a training

load with variable and unknown magnitude. This was our
attempt to approximate what a foot would experience in a
natural terrain where ground reaction forces are variable and
not known a priori. We repeated the experiments described
in the Section II-C and Fig. 1-B, but instead of applying
a same 900g load, a human operator applied a variable
and unmeasured load to the foot sole with her index finger
at the same specified locations (results on Table II). We
obtained overall prediction accuracies close to the ones
obtained for the constant force case (cf. 84.53%, Table II,
and 91.37%, Table I). Kappa Values consistently pointing to
high prediction accuracy (i.e., >0.61 for setups combining
skin and ligaments and >0.71 for setups with only skin or
ligaments).

Finally, the consistency of all results involving two
versions of the spring-leaf skin sensors, ligaments, and
skin+ligaments combination (Tables I, II and Fig. 4-C) high-
lights the likely generalizability of our approach to different
kinds of artificial skins, ligaments and their combination.
This approach should be useful to robotics, as it is known
to be critical in biological systems. As mentioned in [28],
afferent signals produced by skin stretched at the ankle or
knee have a significant impact on the control of joint angles
during walking. In [28], the importance of skin sensation is
stressed by showing that it has a greater impact on ankle
joint control than visual cues.

V. CONCLUSIONS

We believe that this bio-inspired study will motivate
engineers and scientists to further explore the benefits and
applications of the bio-inspired, non-collocated propriocep-
tion for the control of locomotion in legged robots.

SUPPLEMENTARY INFORMATION

The code and the supplementary files can be accessed
through project’s Github repository at:
https://github.com/CatStrain/Cat_skin
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