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stiffness analysis methods cannot be applied directly. To deal with
such architectures in a more efficient way, this paper has proposed a
new approach that allows us to obtain both singular and nonsingular
stiffness matrices. The proposed approach is appropriate for a general
case and independent of the type and spatial location of the passive
joints. The developed approach is based on the extension of the VJM
technique and includes two basic steps, which sequentially produce
stiffness matrices of separate chains and then aggregate them in a
common matrix.

In contrast with previous works, the desired stiffness matrix has been
presented in an explicit analytical form, as a sum of two terms. The first
of them has a traditional structure and describes manipulator elasticity
due to the link/joint flexibility, while the second one directly takes into
account the influence of the passive joints. To simplify analytical com-
putations, a recursive procedure has been proposed that sequentially
modifies the original matrix in accordance with the geometry of each
passive joint.

Advantages of the developed technique are illustrated by applica-
tion examples that deal with stiffness modeling of two Stewart–Gough
platforms. Future work will focus on the extension of these results for
the case of parallel manipulators with nonrigid platform and essential
external loading as well as experimental validations.
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A Novel Synthesis of Computational Approaches Enables
Optimization of Grasp Quality of Tendon-Driven Hands

Joshua M. Inouye, Jason J. Kutch, and Francisco J. Valero-Cuevas

Abstract—We propose a complete methodology to find the full set of fea-
sible grasp wrenches and the corresponding wrench-direction-independent
grasp quality for a tendon-driven hand with arbitrary design parameters.
Monte Carlo simulations on two representative designs combined with mul-
tiple linear regression identified the parameters with the greatest potential
to increase this grasp metric. This synthesis of computational approaches
now enables the systematic design, evaluation, and optimization of tendon-
driven hands.

Index Terms—Biologically inspired robots, grasping, mechanism design,
multifingered hands.

I. INTRODUCTION

Tendon-driven hands have been designed for the purposes of grasp-
ing and manipulation [1]–[6]. While their shortcomings can include
friction and tendon compliance [7], in certain applications (such as
dexterous hands), they have distinct advantages over torque-driven sys-
tems including lightweight, low backlash, small size, high speed, and
remote actuation [8], [9]. They can also offer significant design flexi-
bility in setting moment arms and maximal tendon tensions [8], which
allows optimization of system output capabilities for a particular task
while minimizing size and weight.

Several studies have addressed the problem of designing the topol-
ogy, tendon routing, or link design of tendon-driven manipulators (or
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Fig. 1. Integration of techniques that were previously isolated.

fingers) [2], [9]–[16]. According to [15], for example, “the knowl-
edge of maximum twist and wrench capabilities is an important tool
for achieving the optimum design of manipulators.” Optimization of
kinematic hand parameters, such as finger placements, link lengths,
and joint limits is addressed in [2], but we still lack comprehensive
methodologies to do large-scale optimization in these high-dimensional
parameter spaces. In addition, special attention has been given to the
design of manipulators with isotropic transmission characteristics (i.e.,
ability to transmit forces equally in all directions at the end effector) [2],
[10]–[14]. Advantages of this isotropy include more uniform tendon
force distribution and minimization of the dispersion of noise through
the system [2], [12]. However, it may be advantageous to design a fin-
ger with nonisotropic characteristics [9], as in the human hand [17]. In
addition, prior work on isotropic transmission does not consider limits
on tendon tensions, which is critical when designing small, dexterous
hands.

While there has been progress in designing and controlling tendon-
driven robotic hands, a complete methodology for the evaluation and re-
finement of alternative topologies based on general-purpose grasp qual-
ity (i.e., wrench-direction-independent) has not yet been synthesized
or implemented. Our novel synthesis of computational approaches now
allows us to integrate and expand prior work to eliminate the following
shortcomings of using previous techniques in isolation for optimization
of wrench-direction-independent grasp quality of tendon-driven hands.
The previously isolated computational approaches and the integration
we have accomplished are illustrated graphically in Fig. 1:

1) optimization intractability;
2) not considering tendon-driven architecture;
3) inability to calculate wrench-direction-independent grasp

quality.
The first shortcoming has been previously circumvented by using an

approximation of the full grasp wrench set itself using mathematically
convenient operations [18], [19]. If desired, our method can make
computations more efficient by a different method: mesh simplification
of the full grasp wrench set. This allows more accurate grasp quality
calculations than prior approximations. The second shortcoming has
not been addressed in several studies that only consider independent and
identical contact points for grasp planning or analysis [18]–[24]. We
have incorporated complete characterization of the force production
capabilities of arbitrary tendon-driven hands. The third shortcoming
was encountered in [25]. They used an efficient linear programming
approach to calculate a grasp quality metric for tendon-driven hands
based on a very specific, predefined task wrench space, in which a finite
number of required wrench magnitudes and directions was specified.

4. Simplify feasible object force set (optional)

5. Translate contact forces to object wrenches

6. Find feasible grasp wrench set

7. Compute grasp quality 

1. Select initial grasp parameters

3. Find feasible object force set

Procedural Steps

Fig. 2. Flowchart of steps for finding feasible grasp wrench set and computing
grasp quality.

They note that their methodology does not generalize to the full set of
feasible grasp wrenches. Our integrated method does generalize to the
full set of feasible grasp wrenches and allows efficient calculation of
wrench-direction-independent grasp quality for tendon-driven hands.

Many other studies have addressed multifingered grasp [26]–[31].
Several other grasp quality metrics can be computed based on other cri-
teria, but their application to the design of tendon-driven mechanisms
is extremely limited [27]. Compliances are included in grasp analysis
for statically indeterminate grasps in [26] and for grasp stiffness anal-
ysis in [29], [30]. We calculate the boundaries of the grasp wrench set,
where the forces are deterministic. A software environment for grasp
synthesis is presented in [31], but it does not consider tendon-driven
architecture.

We demonstrate this novel synthesis of techniques and compare
grasp quality among two tendon-driven finger topologies, two grasp
configurations, and thousands of parameter combinations. We then
use Monte Carlo simulations to demonstrate how this computationally
efficient method can be used to optimize grasp quality metrics by tuning
specific design parameters.

II. PROCEDURE

A. Finding the Set of Feasible Grasp Wrenches and Computing
Grasp Quality

Assessing the quality of a specific grasp with a specific hand/
manipulator topology requires computing the feasible grasp wrench
set and its associated grasp quality. A flowchart is shown in Fig. 2.
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Fig. 3. Example of a fingertip feasible force set and its intersection with a
friction cone to produce a feasible object force set.

1) Select Initial Grasp Parameters: The calculation of grasp qual-
ity involves a few preliminary parameters to be specified, based on the
finger geometry, number of fingers, and placement of grasping points.
Grasp qualities will differ when these parameters are altered (although
not substantially if they are not greatly altered, in general). Therefore,
the finger geometry (i.e., D–H parameters of the finger), finger place-
ments, finger postures, and object size and shape must all be specified
before the rest of the steps of the procedure are carried out. Finger
geometry is used to find the analytical manipulator Jacobian (see Ap-
pendix A for further details) and the finger postures are determined
from the finger geometry and choice of finger placements (which is
based on object size and shape) on the object.

2) Build Fingertip Feasible Force Set: The next step is to build the
set of 3-D forces that each finger can produce while maintaining a static
posture. This set has been called the feasible force set [17], [32], or
force manipulability set in the strong sense (i.e., zero endpoint torque)
using the language of [33], [34].1 The user must specify the finger input
parameters of topology (i.e., tendon routing), maximal tendon tensions,
moment arm values, finger posture, and link lengths. Then the feasible
force set can be calculated using the method described in detail in the
Appendix. A visual example of a feasible force set is in Fig. 3.

3) Find Feasible Object Force Set: The fingertip feasible force set
does not represent the actual forces that can be applied to the surface
of an object by the finger because fingertips can generally only push
against surfaces. To find these feasible object forces, we must find the
portion of the feasible force set that also lies inside a Coulomb friction
cone. We approximate this cone by using the convex hull of eight
vectors around the perimeter of the base of the cone, plus the origin, as
in [19], [26]. We intersect this cone with the feasible force set to find
the convex hull of feasible forces that may be applied to the object. We
call this set the feasible object force set, and an example is in Fig. 3.

The inputs required for this step are the static coefficient of friction
and the angle of finger contact (which is determined by object shape
and finger placement). We use the Qhull vertex enumeration algorithm
to complete the intersection of these convex sets.

4) Simplify Feasible Object Force Set: Due to the complexity and
high number of vertices that may define the feasible object force set for
each contact point, we may wish to simplify the set to make the analysis

1The force manipulability set in the weak sense is the set of all Cartesian
forces that can be exerted by a manipulator with no constraints on endpoint
torque. The strong sense force manipulability set is a subset of weak sense set
with the added constraint of zero endpoint torque.
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Fig. 4. (a) Example of an edge collapse operation. The vertices v1 and v2
are collapsed into a new vertex vnew . Adapted from [35]. (b) Example of using
edge collapse operations to simplify the feasible object force set from 19 vertices
down to 10 vertices. Note that this view is of the underside of the feasible object
force set in Fig. 3.

more computationally efficient.2 The analysis presented in this paper
can still be completed without this step, but for thousands or millions
of calculations, this step can be very beneficial with minimal loss in
accuracy. To this end, we use edge collapse operations to perform 3-D
mesh simplification, see Fig. 4(a). Due to the nature of tendon-driven
feasible force sets, there may be many vertices that are very near to
each other. The edge collapse operations, in effect, combine these very
close points into a few points or one point, as can be seen in Fig. 4. This
procedure was developed in computer graphics to reduce the processing
and display time for 3-D objects [35].

While some of the finer details of the feasible object force set are
eliminated after this process, this algorithm accomplishes the simplifi-
cation in a theoretically optimal manner (when considering the mini-
mization of quadric error). Because of this, the algorithm automatically
selects close vertices for edge collapse operations. Fig. 4(b) shows a
feasible object force set before and after simplification. We find that
it reduces computation time considerably with minimal effect on the
results (see Section III).

When the routing of the tendons is complex, such as in the hu-
man hand or in robotic hands with complex interconnections among
tendons such as in the ACT Hand [36], the mesh simplification will
improve performance even more drastically than with simple routings.
For example, simplification of the human finger feasible object force
sets in [37] from approximately 60 down to 12 vertices reduced com-
putation time from 50 to 1.37 s, a 97% reduction.

The single parameter input for this step is the number of desired
vertices for the simplified feasible object force set. Qslim is the program
used to implement the edge collapse operations for mesh simplification
[38].

5) Translate Contact Forces to Object Wrenches: The combined
forces of the fingertips produce a resultant wrench on the object. An
object wrench vector wi ,j produced statically by a point-contact force
with friction fi ,j at fingertip location i is given by the following equation
[13]:

wi ,j =

[
fi,j

λ(di × fi ,j )

]
(1)

2The number of vertices of the grasp wrench set is on the order of mn , where
n is the number of feasible object force set vertices, and m is the number of
fingers [19]. Therefore, the computation time can become intractable for high
numbers of vertices.



IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 4, AUGUST 2012 961

where λ is the scaling factor that converts units of torque to compa-
rable units of force, di is the vector from the torque origin to the ith
contact point, i = 1, . . . , n, where n is the number of fingertip contact
locations, and j = 1, . . . , mi , where mi refers to the number of points
defining the convex hull of the feasible object force set at fingertip
location i. Each mi may be unique, in contrast with analyses that treat
all contact points equally and for which all mi are equal. A reasonable
choice for λ is 1/r, where r is the distance from the torque origin to the
furthest point on the object from that origin. As noted in this choice of
λ guarantees that the feasible object wrench, and hence grasp quality
metrics, are independent of object scale.

We use a soft finger model for two-finger grasp so that the grasp can
produce force closure by withstanding tangential torque [39]. The finger
model assumes a certain contact area for the calculation of a rotational
coefficient of friction, but the contact is still considered to be a point
contact that can withstand tangential torque, which is described in [26].
Past work has shown that an approximately elliptical friction limit
suffices to enclose all combinations of tangential torque and shear force
that the fingertip can withstand without slipping or rotating. However, a
linear approximation of the friction limit surface is a valid conservative
way to model a soft finger [39], which we use to make calculations
more efficient: all we need to do is add and subtract the tangential
torque limit to the appropriate object wrench torque component for
each vertex of the feasible object force set. This process is similar to
that used in [40], but they do not consider any feasible force set (only
a simple friction cone). We assume that the fingertip can resist any
combination of tangential torque and tangential force for a constant
normal force underneath the boundary of the linear approximation.

The inputs to this step are the finger placements (for an arbitrary
grasp), and coefficient of rotational friction (which can be specified
directly or calculated from the soft-finger contact radius) if the grasp is
with two fingers, and linearization of the tangential torque capabilities
is utilized for two-finger grasp.

6) Find Feasible Grasp Wrench Set: After computing all the fea-
sible object wrenches that can be applied by each finger, these wrench
vectors in 6-D are combined to form the set of all wrenches in 6-D
space that can be applied to the object which the grasp can resist.
This set is a convex polytope found by taking the convex hull of the
Minkowski sum of the sets of feasible object wrench vectors, where
each set corresponds to a fingertip contact location. This operation is
given by the following equation [22]:

FGWS = ConvexHull

(
n⊕

i=1

{wi ,1 , . . . ,wi ,m i
}

)
(2)

where FGWS is the feasible grasp wrench set,
⊕

is the Minkowski
sum operator, n is the number of contact points, and {wi ,1 , . . . ,wi ,m i

}
denotes the mi wrench vectors defining the feasible forces at the ith
contact point. It should be noted that often the union and not the
Minkowski sum is used in grasp quality calculations to greatly reduce
computation time [18], [19].3

7) Compute Grasp Quality: Once we have calculated the feasible
object wrench set, we can compute a grasp quality based on that set.
The user can specify their own grasp quality metric of choice. We
chose as an example the wrench-direction-independent grasp quality

3The union limits the sum of finger forces (i.e., if one finger exerts more
force at a given time, then the other cannot produce as much force), while the
Minkowski sum limits each finger force (i.e., the feasible object force sets are
independent). While the union is computationally easier and still can provide
important information about a grasp, for this study, we concentrated on the more
realistic Minkowski sum. For more discussion, see [8].

Tendon 1
Tendon 2

Tendon 4
Tendon 6
Tendon 8

Tendon 3
Tendon 5
Tendon 7

Joint 1

Ad-abduct

Joint 2

Flex-extend

Joint 3

Flex-extend

Joint 4

Flex-extend

d=0

Fingertip

(a)

(b)

Tendon 1

Tendon 2

Tendon 3
Tendon 4
Tendon 5

2N Design

N+1 Design

Fig. 5. Grasp configurations analyzed. (a) 4-DOF robotic finger, 2N tendon
arrangement, with endpoint wrench description. (b) 4-DOF robotic finger, N + 1
tendon arrangement.

metric known as the radius of the largest ball. It was originally proposed
in [22]. Determination of this grasp quality metric involves calculating
the minimum offset (from the origin) of the halfspaces that define the
convex hull of feasible grasp wrenches. The minimum of these offsets
is equal to the radius of the largest ball, centered at the origin, that
the hull can contain. The metric, in effect, is equal to the maximal
magnitude of a wrench that can be applied to the object in all directions
in wrench space without it losing force closure (i.e., causing the grasp to
fail). A wrench vector whose magnitude is less than the grasp quality
can be applied to the object in any direction in 6-D wrench space
without losing force closure. These calculations have been completed
for independent and identical contact points in [18].

We use the Qhull vertex enumeration algorithm for the calculation
of grasp quality and it can also be easily implemented for 2-D or 3-D
visualizations of the feasible object wrench set [19].

B. Computing Grasp Quality Metrics for Specific
Manipulator Designs

Here, we describe the specifications of the designs we analyzed
and the parameters that we used in the computations and Monte Carlo
simulations presented in the results section.

1) Finger Topology: We performed this analysis on the two dif-
ferent finger topologies in Fig. 5(a) and (b). Both of them had four
kinematic degrees of freedom (DOFs): one universal joint at the base
of the finger and two parallel hinge joints distally. For the purposes of
kinematic clarity, the finger ad-abduction (i.e., side-to-side) axis was
considered to be immediately proximal to the perpendicular axis of the
first flexor-extensor joint, which is demonstrated in Fig. 5(a). The first
finger topology had a “2N” tendon arrangement, in which there are two
opposing (or antagonistic) tendons for each DOF, Fig. 5(a). This topol-
ogy is similar to that in the Utah/MIT, DLR, and Shadow Hands [1], [3],
[4].4 The second finger topology had an “N + 1” tendon arrangement,

4These hands are not all fully actuated, and some have coupled joints. How-
ever, they are 2N designs in the sense that they use two antagonistic, symmetri-
cally routed tendons to actuate each independent joint. It should also be noted
that there are many possible 2N, symmetric, antagonistic designs, and that we
simply chose this particular one for demonstration purposes.



962 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 4, AUGUST 2012

(c)(a)

x

y

z

y

z

(b)

Fig. 6. Grasp configurations analyzed. (a) Isometric view of two-finger grasp.
(b) Front view of two-finger grasp. (c) Side view of three-finger grasp.

which has one more tendon than DOF, and it is the minimum number of
tendons that can be used to fully control the finger [10].5 N + 1 topolo-
gies are analyzed for isotropic transmission in [11], [13] and analyzed
for implementation in the Stanford-JPL hand [2]. The particular N + 1
topology we analyzed (there are many possible N + 1 topologies) is in
Fig. 5(b).

For the baseline results, each of the three links of each finger had
length of 2 cm. The posture of the finger was 0◦ ad-abduction, 45◦

extension on joint 2, and 45◦ flexion on both joints 3 and 4. This is
the posture in Fig. 5. The link lengths and the posture were used to
calculate the Jacobian matrix for these fingers. All of the moment arms
for both topologies and all joints were given a value of 5 mm, which,
along with the tendon configuration, defined the R matrix. This matrix
was either 4 × 8 (2N design) or 4 × 5 (N + 1 design). The sum of the
maximal tendon tensions was 1000 N and divided up evenly among the
tendons. This defined the F0 matrix, which was a diagonal 8 × 8 (2N
topology) or 5 × 5 (N + 1 topology) matrix. The J , R, and F0 matrices
were then used to calculate the feasible force sets of the fingers.

The sum of maximal tendon tensions being equal is an important
constraint due to the size, weight, and motor torque (and therefore ten-
don tension) limitations inherent in dextrous hands. For example, the
torque capacity of motors is roughly proportional to motor weight, and
minimization of weight was an important consideration in the design
of the DLR Hand II [42]. In addition, the maximal force production
capabilities of the McKibben-style muscles are roughly proportional to
cross-sectional area [43]. Since the actuators, typically, will be located
in the forearm, then the total cross-sectional area will be limited to the
forearm cross-sectional area. In this first presentation of the methodol-
ogy, we do not consider alternative constraints on the actuation system
(e.g., electrical current capacity, tendon velocities, etc.).

2) Grasp Configuration: Both two- and three-finger grasps were
analyzed for each of the two topologies, and the finger placements are
in Fig. 6. The two-finger grasp simply had both fingertips on opposite

5Any more than N + 1 tendons is considered tendon redundancy, and typically
not more than 2N tendons are used in dexterous robotic fingers. Manipulators
or fingers with more than 2N tendons can have very interesting redundancy
properties, as in [16], and can be analyzed using our method as well.
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P
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Fig. 7. Uniform sampling distribution used for each independent parameter
value perturbation in Monte Carlo simulations.

sides of a sphere of radius 6 cm. The two-finger configuration is in
Fig. 6(a) and (b). The three-finger grasp had one fingertip at the bottom
and the other two fingers were placed so that they were 30◦ from a
vertical line going through the bottom finger [see Fig. 6(c)].

3) Calculating Grasp Quality: For the two-finger grasps, the linear
coefficient of friction was set to 0.5. The rotational coefficient of friction
was set to 2.5 times the linear coefficient of friction (in millimeter).
This corresponds to a very soft-finger contact radius of 5 mm [14].

The grasp analysis was performed in MATLAB (R2010a, The
MathWorks) on an Apple desktop computer (2 x 2.66 GHz Dual-
Core Intel Xeon) running OS X Version 10.6.4. The programs Qhull
(floating-point arithmetic vertex enumeration), LRS (lexicographic re-
verse search algorithm), and Qslim (edge collapse operations) were
used as compiled binaries for Mac OS X and were called through the
MATLAB “system” command [38], [44], [45]. The rest of the compu-
tations were completed using custom MATLAB code.

4) Monte Carlo Simulations: To demonstrate the computational
utility of our method, the baseline parameters of moment arms, maximal
tendon tensions, and link lengths were perturbed simultaneously and
independently [46]. To do so, we drew from uniform distributions with
the lower bound being 20% below each particular baseline parameter
value and the upper bound being 20% above the baseline parameter
value, for a total range of 40% variation (see Fig. 7). For each finger,
there are 14 nonzero moment arm values, three link lengths and eight
(for 2N topology) or five (for N + 1 topology) maximal tendon tensions,
for a total of 25 (2N topology) or 22 (N + 1 topology) total independent
parameters that were perturbed for each iteration. We performed 1000
iterations (each having their own set of parameters) for each of the
two topologies and each of the two grasp configurations. This number
of iterations was found to be sufficient for convergence, as in [47]
(discussed further in Section III).

5) Regression Analysis: To demonstrate the utility of these Monte
Carlo simulations for design and analysis purposes, the grasp quality
was regressed on the independent parameters that were varied during
the simulations. Stepwise regression on only the linear terms was per-
formed (i.e., no interaction or higher order terms were used) using an
initial model with no predictors, and predictors were added to the model
with a cutoff p-value of 0.05. This was performed in MATLAB. Prior
to the regression analysis, the independent parameters were normalized
so that the baseline value was equal to 1. In addition, the dependent
parameters were normalized so that their average was also 1. Therefore,
the regression coefficients represent the expected percentage increase
in the grasp quality with a 1% increase in the independent parameter.

III. RESULTS

A. Baseline Results

Table I shows the grasp quality results for the two “baseline” topolo-
gies (i.e., those with the nominal values for each design parameter) for
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TABLE I
BASELINE GRASP QUALITY RESULTS

2N Topology (N) N+1 Design (N)
2-finger 2.59 1.71
3-finger 8.66 5.60

Coefficient of static friction µs = 0.5. Units of gArasp quality
 are in newtons.

TABLE II
AVERAGE EVALUATION TIMES (STANDARD DEVIATIONS) DURING MONTE

CARLO SIMULATIONS, IN SECONDS

2N Topology (s) N+1 Topology (s)
2-finger 1.46 (0.30) 1.29 (0.42)
3-finger 9.79 (1.98) 9.77 (2.66)
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Fig. 8. Histogram of grasp quality values from Monte Carlo simulations for
two-finger grasp, 2N and N + 1 designs. The N + 1 topologies exceeding the
baseline 2N topology are shaded gray.

the two- and three-finger grasps. Despite the fact that both topologies
have the same sum of maximal tendon tensions (i.e., system input),
the 2N topology is clearly superior to the N + 1 topology (using the
nominal parameters) in grasp quality, and hence can resist wrenches of
higher magnitude in all directions.

In addition, as expected, the grasp quality is higher for the three-
finger grasp than the two-finger grasp for both topologies. These
baseline results were verified using the exact arithmetic vertex enumer-
ation code LRS [44], where the evaluation time was around 100 times
greater than the Quickhull algorithm [45].

B. Monte Carlo Simulations

Given that computation times for the baseline cases were fairly long
(about 30 s), especially for the three-finger grasp, we simplified the
feasible object force sets to make Monte Carlo simulations feasible.
We found that simplifying the feasible object force set down to 12
vertices reduced computation time by a minimum of 46% (reduction
from 23.7 to 12.7 s for N + 1, three-finger case) and a maximum of
77% (reduction from 39.9 to 9.10 s for 2N, three-finger case) out of the
four baseline cases, and resulted in less than 2% error in grasp quality.

The 1000 Monte Carlo simulations reached “convergence” in the
sense that the running mean and coefficient of variation varied less than
2% in the last 20% of iterations, similar to the criteria used in [22].
Average evaluation time for each of the four configurations is shown
in Table II. Fig. 8 shows histograms of the Monte Carlo grasp quality
results for two-finger grasp. The different finger topologies for this

TABLE III
SIGNIFICANT NORMALIZED REGRESSION COEFFICIENTS FOR GRASP QUALITY

WITH 95% CONFIDENCE INTERVALS ON N + 1 TOPOLOGY.
TWO-FINGER GRASP

Expected Percentage
Increase in Quality
for a 1% Increase 95% Confidence

Parameter in Parameter Value Interval

Link length
Link 2 -0.436 (-0.466, -0.406)
Link 1 -0.333 (-0.363, -0.302)
Link 3 -0.290 (-0.320, -0.260)

Max tension

Tendon 1 0.995 (0.265, 1.03)
Tendon 2 – –
Tendon 3 – –
Tendon 4 – –
Tendon 5 – –

Moment arm

1,1 1.01 (0.975, 1.04)
1,5 -0.593 (-0.623, -0.564)
2,5 0.553 (0.522, 0.583)
2,4 0.272 (0.243, 0.302)
1,4 -0.259 (-0.289, -0.228)
2,3 0.159 (0.128, 0.190)
1,3 -0.143 (-0.174, -0.112)
1,2 – –
2,2 – –
3,3 – –
3,4 – –
3,5 – –
4,4 – –
4,5 – –

Denotes not significant at the cutoff p-value of 0.05.
R2 = 0.930.

‘–’ Moment arms expressed

as (joint number, tendon number).

grasp certainly have different mean characteristic lengths (p < 0.00001)
when the parameter values are perturbed by 20%. However, for the N
+ 1 topology, we find that 19 parameter combinations exceed the grasp
quality of the 2N topology with baseline parameter values.

C. Regression Analysis

The significant regression coefficients at a cutoff p-value of 0.05 for
grasp quality for the N + 1, two-finger case are shown in Table III,
grouped by parameter type. The coefficient of determination R2 is
0.930, signifying a good fit for the linear model. Link lengths, maxi-
mal tendon tensions, and moment arms should be adjusted according
to Table III to produce the N + 1 topologies that exceed the baseline
2N topology. We find that decreasing the link lengths understandably
increases grasp quality (because it improves the moment-arm:lever-
arm ratio of the tendons), and decreasing the length of link 2 has the
greatest predicted effect on grasp quality. As would be expected, the
one significant regression coefficient for maximal tendon tension is
positive (i.e., grasp quality can never be worsened by increasing one
of the maximal tensions). However, not all maximal tendon tensions
improve this grasp quality metric, if increased. While all maximal ten-
don tensions change the size and shape of the feasible grasp wrench
set, some have insignificant effects on grasp quality because increasing
them increases the size of the feasible grasp wrench set in directions
that do not increase the weakest wrench capability of the grasp. That
is, they do not push out the boundary of the feasible grasp wrench set
that is closest to the origin. However, the maximal tension of tendon
1 does affect that boundary and increasing it enhances this metric of
grasp quality. Therefore, one of the “weak links” in this topology is the
maximal tension of tendon 1, which if increased leads to better per-
formance. Moment arms exhibit both positive and negative regression
coefficients in their effect on grasp quality, as they affect the direc-
tion and magnitude of the wrench basis vectors [17]. The best N + 1



964 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 4, AUGUST 2012

TABLE IV
EXPECTED (FROM LINEAR REGRESSION ON MONTE CARLO ITERATIONS) AND

ACTUAL (FROM COMPUTATIONAL METHOD IMPLEMENTATION) EFFECTS OF

MOMENT ARM ADJUSTMENTS BY 10% ON GRASP QUALITY OF N + 1 DESIGN.
TWO-FINGER GRASP

Grasp Normalized Expected Actual
Quality Coefficient Increase Increase

Baseline 1.709 – – –

Moment arm 1,1 (+10%) 1.880 1.01 10.1% 10.0%
Moment arm 1,5 (-10%) 1.812 -0.593 5.93% 6.03%
Moment arm 2,5 (+10%) 1.809 0.553 5.53% 5.88%
Moment arm 2,4 (+10%) 1.756 0.272 2.72% 2.79%
Moment arm 1,4 (-10%) 1.758 -0.259 2.59% 2.86%
Moment arm 2,3 (+10%) 1.733 0.159 1.59% 1.40%
Moment arm 1,3 (-10%) 1.734 -0.143 1.43% 1.47%

Moment arms expressed as (Joint number,tendon number).

topology from the Monte Carlo simulations (grasp quality of 3.31–94%
greater than the N + 1 baseline) has maximal tension of tendon 1 15%
higher than the baseline and the moment arm of tendon 1 across the
ad-abduction axis is 16% above baseline. These parameters have the
greatest effect on grasp quality, as can be seen in Table III.

Table IV shows the effects of adjusting the significant moment arm
parameters individually by 10% in the direction that increases grasp
quality while keeping all the other parameters at baseline levels. We see
that the predictions from even a simple linear regression are validated.

IV. DISCUSSION

In this paper, we have demonstrated a novel synthesis of compu-
tational approaches to evaluate the grasp quality of arbitrary tendon-
driven hand designs. Our formulation is efficient enough to consider
all finger design parameters (number and routing of tendons, tension
limits, and posture) and grasp (number and configuration of fingers,
friction characteristics, and object shape and size) and computes the
full feasible grasp wrench set, from which a variety of grasp quality
metrics can be obtained. In this first demonstration of our methodol-
ogy, we compared the wrench-direction-independent grasp quality for
two topologies, two grasp configurations, and thousands of parame-
ter combinations when grasping a sphere, and we present the steps
for extending this methodology to completely arbitrary hand designs,
objects, and finger placements.

Our Monte Carlo exploration of the design space demonstrates the
computational efficiency and utility of our method and shows that, as
expected, the 2N topology is generally superior to the N + 1 topology in
grasp quality and hence can resist wrenches of higher magnitude in all
directions. This is because this 2N topology can exert a wider range of
forces on the object than the N + 1 topology, resulting in higher grasp
quality. Importantly, however, our parameter exploration found certain
designs (within the allowed ±20% variability) for which the N +
1 topology can outperform the nominal 2N topology. If a designer
favors the N + 1 topology due to actuator/space/weight constraints,
there are N + 1 topologies that can meet or exceed the performance of
a nominal 2N topology (which may have less design flexibility because
of more tendons). These results would apply to most objects of similar
size since the main difference would be a small change in finger contact
angle.

In addition, the extensive exploration of the high-dimensional pa-
rameter spaces (i.e., 22 or 25 dimensions) allows us to identify some
critical design parameters for grasp quality (i.e., with a high R2 value
of 0.930, noted in Table III). Regressions for our N + 1, two-finger case
(see Table III), for example, it is clear that one tendon and one moment
arm are, from among 22 parameters, the most critical individual pa-
rameters in the design; altering them in isolation has the greatest effect

on grasp quality. Exploring second- and third-order parameter sensi-
tivities is likely intractable with this or most other techniques because
of the geometric growth of iterations needed. Second-order terms in a
regression would bring the number of regressed independent variables
to over 400, and third-order terms would raise that number to over
8000.

Nevertheless, our approach demonstrates sufficient computational
efficiency to enable, for the first time, exploring large-dimensional de-
sign spaces. Optional adjustments in mesh simplification procedures
or friction cone approximations can and do bring improvements to
speed with minimal loss in accuracy, but they are not central to our
methodology. Additionally, other techniques, such as hull approxima-
tion or the Voronoi filtering, could be used to simplify the grasp wrench
set. Importantly, we tested and found that our computationally stream-
lined floating-point computations produced results equivalent to the
100 times slower exact arithmetic calculations.

This approach is innovative because it now enables optimizing the
design of dexterous tendon-driven hands by testing hundreds or thou-
sands of alternative hand topologies quickly. For anthropomorphic
hands or prosthetic hands, link geometry is relatively fixed, but all ten-
don routing and moment arm values can be varied. For general-purpose
manipulators, everything from number and arrangement of fingers, to
DOFs and link lengths of each finger, to number, routing and strength
of tendons may be varied and evaluated. Any number of optimization
algorithms, including gradient-descent, genetic, or random search algo-
rithms, could be employed with this methodology to explore the design
space and optimize the topology of dexterous hands. The efficacy and
efficiency of random search algorithms are being explored in current
research.

This method can also be used to determine the optimal grasping
points of a particular object for a particular set of tendon-driven hand
design parameters. If this is desired, then many finger placements can
be tested to determine the one with the optimal grasp quality.

We calculate the grasp quality for precision grasp (i.e., grasp by the
fingertips) in this study. This is the grasp that is necessary to manipu-
late an object. Power grasp capabilities (where the fingers are wrapped
completely around an object) could be calculated with a modified ver-
sion of this algorithm. However, in general, power grasp quality and
precision grasp quality will tend to be highly correlated due to the fact
that a high flexion force in the fingers is desirable for both grasps.

The shaping of the feasible output of a robotic system via variation of
mechanical design parameters has been of interest for several decades
[2], [10]–[14]. Our novel synthesis of computational approaches now
enables its pursuit for large dimensional, tendon-driven systems. Grasp
quality, manipulability metrics, and hand complexity metrics such as
number of fingers, number of joints per finger, and number of tendons
could also be integrated into a multiobjective optimization algorithm.

Many other grasp quality metrics are easily computed using the basic
procedure we have described. One example is the volume of the feasible
wrench set [18]. Qhull can be easily queried to calculate this volume at
the same time it is calculating the weakest wrench metric we analyzed
in this study. Another example is task-specific grasp quality metrics
such as those used in [25], [48], and [49]. Once the grasp wrench set
is calculated, the straightforward linear programming technique used
in [25] can be used to calculate this metric for polytopes or using
singular value decomposition [49] for ellipsoids.

Future work will use this methodology to design dexterous, tendon-
driven hands with higher grasp capabilities than are currently available,
and simpler hands with specific capabilities. Furthermore, this work on
static grasp can be extended to manipulability sets or feasible accel-
eration sets, which quantify the velocities or accelerations with which
an object can be manipulated. This methodology could also be used
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in grasp planning, where an optimal or near-optimal grasp found for
a specific tendon-driven hand may actually be a bad grasp for another
tendon-driven hand. This methodology also enables the quantitative
analysis of biological hands and grasps (including human [37]) and
can help to answer questions about its anatomical structure; so we
can perhaps draw inspiration from it for novel robotic designs. Fi-
nally, this analysis can also be applied to design and optimize arbitrary
tendon-driven and reconfigurable robots, such as tensegrity structures,
to perform complex manipulation and locomotion tasks [50], [51].

APPENDIX

CALCULATION OF THE FEASIBLE FORCE SETS OF

TENDON-DRIVEN MANIPULATORS

Fundamental to feasible force set analysis is the calculation of the
posture-dependent manipulator Jacobian J(q). q is the vector of joint
angles (i.e., finger posture). The Jacobian represents a linear mapping
from angular velocities of the joints to endpoint velocity, as shown in
the following:

ẋ = J(q)q̇ (3)

where ẋ is the endpoint velocity vector (it can include both translational
and rotational components and therefore can be up to 6-D; see [34] for
more details), J(q) is the manipulator Jacobian, q is the vector of joint
angles (i.e., finger posture), and q̇ is the vector of joint angle velocities.

If an underactuated finger is being analyzed, then the Jacobian is
only constructed with columns that correspond with joint angles that
can be independently actuated, and the analytical expressions for each
entry of the Jacobian matrix, which would normally include all joint
angles, will only include the actuated joint angles. If the last two joints
are coupled such as in the human hand or shadow hand [3], [52], then
the last joint angle q4 would be a (presumably) linear function of q3

(e.g., q4 = q3/2). The Jacobian could be reduced from four to three
columns, and the analytical expressions for each entry of the Jacobian
matrix could be constructed as a function of three joint angles by sub-
stituting in for the last joint angle (e.g., substituting q3/2 in for q4 ).
The Jacobian would then be 3 × 3 (instead of 3 × 4), even though
there are four joint angles. Advanced kinetostatic analysis of under-
actuated fingers is performed in [53], although the simple procedure
just described should be sufficient for the calculation of feasible force
sets for most robotic applications. Furthermore, minimally underac-
tuated hands with, for example, one tendon for flexion and springs
for extension could be analyzed in the torque domain and appropriate
dimensionality reduction of the Jacobian matrix.

Once the Jacobian is calculated, using the principle of virtual work,
we can find the linear mapping between endpoint wrench (i.e., gen-
eralized forces which can include force and torque components and,
therefore, can be up to 6-D, depending on the formulation of the Jaco-
bian used) w and joint torques τ as shown in the following:

τ = JT w. (4)

Since we are analyzing tendon-driven systems, we also need the
moment arm matrix R which contains the values of the moment arms
for each of the tendons across each of the joints. It is a n × � matrix,
where n is the number of joints, and � is the number of tendons of
the manipulator. The entries are ri,j , which is a signed moment arm
value (positive values indicate positive torque generated at a joint when
tension is applied to the tendon, and v-v), i is the joint number and
ranges from 1 to n, and j is the tendon number, which ranges from 1
to �. The moment arm matrix can be used to transform tendon tensions
T to joint torques using the following:

τ = RT. (5)

We can use an activation vector a to represent the degree to which a
tendon is activated. Each element of a ranges between 0 (no activation)
and 1 (full activation). Further discussion may be found in [17]. If we
define F0 as a diagonal matrix of maximal tendon tensions, then we
get the following relation between activations and tendon tensions:

T = F0a. (6)

The first step to calculate the feasible force set is to find the feasible
torque set by taking the convex hull of points generated by mapping
each vertex of the feasible activation set to joint torque space by com-
bining (5) and (6):

τ = RF0a. (7)

The feasible 3-D force set can be found from this feasible torque
set by intersecting the feasible torque set with the linear subspace
spanned by the columns of JT [25], [54]. This can be accomplished
with any vertex enumeration algorithm. The vertices of this reduced-
dimensionality set can then be transformed to endpoint force space
using the Moore–Penrose pseudoinverse so that

w = J+T τ (8)

where J+T denotes the Moore–Penrose pseudoinverse of JT .6

If the 3-D feasible force set is being calculated (as in this study), then
the wrench vector in (8) will be of length 3 and will have components
of Fx , Fy , and Fz .
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