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Abstract— Here, we promote the perspective that a compu-
tational model can be a rigorous crystallization of a hypothesis
for the mechanisms generating observed data. We provide
an example of using this approach to discriminate among
hypotheses despite uncertainty in parameter values. Humans
have been shown to produce non-uniform patterns of force
fluctuation when they exert force in different directions with
the index finger. We computationally formulated two hypotheses
for this observation based on different cost functions of muscle
effort, and then stochastically explored the space of unknown
parameters to convergence to generate probability distributions
of predictions from each hypothesis. The observed data were not
within the probability distribution for Hypothesis 1: the sum of
muscle forces is minimized, but were within the corresponding
distribution for Hypothesis 2: the sum of squared muscle
forces is minimized. Therefore, this approach provides rigorous
evidence that Hypothesis 2 can not be rejected in favor of
Hypothesis 1. The advantages and pitfalls of this computational
approach to hypothesis testing are discussed.

I. INTRODUCTION

Computational modeling has become an important tool to
understand neuromuscular systems. Computational models
are often used to support an interpretation of experimental
findings, but are much less often used as rigorous imple-
mentations of hypotheses that could be supported or rejected
based on comparison with experimental data. Consequently,
computational modeling has not reached its full potential
because there is perhaps too much emphasis on finding
a model that “fits” the data and not enough emphasis on
rejecting models that are inconsistent with experimental
observations [1].

Computational hypotheses for neuromuscular function are
not routinely rejected because it is always possible that
poor agreement with data is simply due to a particular
choice of some parameter. Many parameters in biological
systems are extremely difficult or impossible to measure,
which is particularly true in human neuromuscular systems
in which invasiveness must be minimized. However, it may
often be possible to estimate reasonable bounds for unknown
parameters.

In this paper, we describe a procedure for formulating
hypotheses into computational models, and then numerically
searching across unknown parameter values to determine if
that hypothesis could feasibly predict the data under any
choice of parameter values. The approach provides a means
of confidently rejecting hypotheses that are inconsistent with
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data, which increases the scientific utility of computational
models for studying neuromuscular systems.

II. PROCEDURE

Monte Carlo methods are a well known means to assess
the robustness of numerical simulations [2]. The Monte
Carlo approach adapted to hypothesis testing involves a
chain of steps beginning with some measured experimental
data (Figure 1). The experiment produces some data, from
which a test statistic is calculated. Computer models, which
may have many unknown parameters, are coded for the
observed test statistic. All unknown parameters are varied
stochastically through their feasible range, and the simulated
test statistic is calculated for each generated parameter set.
Upon convergence of this stochastic process, it is possible
to determine if the model could have ever generated the
measured value of the test statistic under any possible
parameter set. Models that are not consistent with the data
can then be confidently rejected as infeasible [1].

We now provide a step by step example of using this
approach.

A. Perform experiment

Previous studies have demonstrated that there is signifi-
cant information about the nervous system controls multiple
muscles in the structure of force fluctuations during isometric
tasks [3], [4]. One study in particular showed that the pattern
of multidirectional force fluctuation varied depending on
the direction that the subject was exerting force with their
index finger [4]. When the index finger exerted force in
some directions, the force tended to fluctuate along the
direction of the task (task-directed fluctuations), whereas
forces fluctuated more randomly in other task directions
(non-task-directed fluctuations) (Figure 2). Force fluctuations
were task-directed when the task direction aligned with the
direction of muscle action for some muscles, consistent with
those muscles being the primary muscles used for those
tasks. We showed that non-task-directed fluctuations were
consistent with the coactivation of multiple muscles with
distinct lines of action [4].

What is puzzling about these data, however, is that task-
directed fluctuations did not appear around the task direction
of flexion, for which the flexors digitorum profundus and
superficialis have their lines of action. This observation led
us to speculate that the pattern of multidirectional force
fluctuation may be indicating something about the “cost
function” (i.e., the computational representation of the cost-
benefit compromise in terms of unavoidable metabolic, wear,
accuracy, speed, etc. consequences of motor actions) used by
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Fig. 1. Monte Carlo approach to model evaluation and hypothesis testing. An experiment is performed that produces some data, from which a test
statistic is calculated. A computer model is coded that generates an output comparable to the statistics of the experimental data (or target test statistic).
All parameters are varied stochastically within their feasible range, and a distribution of possible test statistics are generated for that model. One can then
determine whether there exist sets of parameter values for the model that can replicate the distribution of the experimental data. If possible predictions of
the model cannot replicate the experimental data, the hypothesis encoded in the model is likely untrue and a new hypothesis needs to be developed and
encoded. Adapted from [1].
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Fig. 2. Ellipses showing the magnitude and shape of the covariance of
force for many tasks in the flexion/ extension-abduction/adduction force
plane. Adapted from [4].

the brain to activate redundant muscles. Different cost func-
tions naturally favor different muscle coordination patterns.

B. Formulate Hypotheses

These simple force-production tasks are under-
constrained, thus the central nervous system (CNS)
has flexibility in the choice of coordination pattern (i.e.,
the contribution of each muscle) for a particular output
force. Researchers have repeatedly hypothesized that the
CNS selects a particular coordination pattern by minimizing
some cost function (see [5] for a review).

We first consider the question of whether our multidi-
rectional force fluctuation measurements could potentially

disambiguate different cost functions. A simple abstraction
of the lines of action for the 7 muscles controlling the index
finger is helpful for this purpose (Figure 3). Muscle 1 is an
representation of the two extensor muscles, extensor indicis
(EI) and extensor digitorum communis (EDC). Muscle 2
is a representation of the first dorsal interosseous (FDI)
and lumbrical (LUM) muscles. Muscle 3 is a representation
of the flexors, flexors digitorum superficialis (FDS) and
profundus (FDP). Muscle 4 is a representation of the first
palmar interosseous (FPI). We consider 2 cost functions for
m muscles, where F is a desired fingertip force, A is a matrix
encoding the mechanical action of all muscles, f is a vector
of muscle forces:

Hypothesis 1 : min
m∑

i=1

fi subject to Af = F and fi ≥ 0

(1)

Hypothesis 2 : min
m∑

i=1

f2
i subject to Af = F and fi ≥ 0

(2)

For muscles 1, 2, and 3, tasks in the direction of the
muscle action are best accomplished, independent of cost
function choice, by using each muscle alone, because all
of these muscles do not have another muscle within 90◦

on both sides (Figure 3). In contrast, muscle 3 has muscles
on each side within 90◦. For tasks in the flexion direction,
Hypothesis 1 would predict activation of muscle 3 alone,
but Hypothesis 2 would predict load sharing among muscles
with very different lines of action. Therefore, we predict
that Hypothesis 1 would generate task-directed ellipses in
the flexion direction, and would therefore be inconsistent
with the observed data. Hypothesis 2 would generate non-
task-directed ellipses for tasks in the flexion direction, and
therefore would serve as plausible alternative.
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Fig. 3. An abstraction of the lines of action for the 7 index finger muscles
allows an insight that minimizing

P
fi would activate the flexor by itself

for tasks in flexion, whereas optimizing
P
f2

i would lead to load sharing
with muscles 2 and 4. The best balance of muscles is shown in brackets
next to each desired force output.

C. Compute Test Statistic

To compare these hypotheses numerically against the
experimental data, it is necessary to have a rigorous and
tenable test statistic (a.k.a goodness-of-fit metric). In the case
of multidirectional patterns of force fluctuation, we decided
to use a test statistic which was the fraction of total variance
in the direction of the task itself, and then examine this
test statistic as a function of the task direction. We call this
test statistic the task-directed variance fraction, and denote
it by the symbol η. If the average output force is F̄ , and
ˆ̄F represents a unit vector in the direction of F̄ , η can be
calculated from:

η =
ˆ̄FT cov[F ] ˆ̄F

Trace(cov[F ])
(3)

η will be close to 1 when the force covariance ellipse is
narrow and elongated along the direction of the task, and
will be small when the ellipse is non-task-directed (Figure
4). A polar plot in which each point represents a trial, with
direction indicating the task direction, magnitude indicating
the value of η for that trial, shows the consistency of the
η statistics across subjects (Figure 4). When this data is
averaged across subjects (black curve in (Figure 4)), it is
clear that task direction near flexion (270◦) corresponded
to relatively low values of η. We will now examine the
parametric sensitivity of Hypothesis 1 and 2 to determine if
the observed η-function rules out either of these hypotheses.

D. Code Model(s) of Test Statistic

We used an action matrix A, which maps from muscle
force to fingertip force, from the literature [6]. For each task
around a circle in the adduction/abduction-extension/flexion
plane, we identified coordination patterns of muscle forces
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Fig. 4. The test statistic η quantifies the fraction of variance total variance
in the direction of the task. Examples of the η value for four covariance
ellipses are shown at the top, where the diagonal line represents the direction
of the task. Adapted from [4].

satisfying each hypothesis separately. The coordination pat-
tern, f?, was then used to predict the endpoint force mean
and covariance according to the equation:

F̄ = Af̄? (4)

cov[F ] = Acov[f?]AT (5)

η could then be predicted for each simulated task using
Equation 3.

E. Vary Parameters

We considered the unknown parameters of the model de-
fined by Equations (4-5) to be the constant of proportionality
between average muscle force and the standard deviation of
muscle force. For each muscle i, the standard deviation of
muscle force σi is given by σi = kif̄i. Since we are assuming
no correlation among the forces exerted by different muscles,
this relation completely defines the covariance matrix of
muscle force cov[f ]. We varied the coefficients ki across a
5-fold range from 0.01 to 0.05, consistent with the literature
[7], [8].

F. Hypothesis Test

Our Monte Carlo analysis revealed that, despite an exhaus-
tive search of combinations of force fluctuation standard de-
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Fig. 5. Results of varying force fluctuation standard deviation coefficients.
A. The closest simulated η- function to the data for Hypothesis 1 (H1) and
Hypothesis 2 (H2). Notice that Hypothesis 1 produces an η- function with
four peaks, while Hypothesis 2 can produce a 3 peak η-function that is very
close to the data. B. Across all combinations of force fluctuation standard
deviation coefficients, only Hypothesis 2 can produce η- functions with 3
peaks, whereas Hypothesis 1 always produced η functions with 4 and 5
peaks. The shaded regions show the convex hulls for the number of peaks
versus the RMS error across all parameter combination examined (for both
1000 and 10000 Monte Carlo iterations). The bar graph on the x-axis shows
the marginal distribution of the number of peaks.

viation coefficients, minimization of the sum of muscle force
(Hypothesis 1) could not ever reproduce the experimentally-
observed η-function. In contrast, minimization of the sum
of squared muscle forces (Hypothesis 2) remained a viable
hypothesis. Not only did Hypothesis 1 generate larger de-
viations from the experimental data across the Monte Carlo
search, but Hypothesis 1 always generated η-functions with 4
or more peaks, which was inconsistent with the experimental
η-function which had 3 peaks.

III. DISCUSSION

Here we have shown that experimental measurements of
human motor noise are incompatible with a cost function that
minimizes the simple sum of muscle forces. This hypothesis
testing framework has the advantage that models are treated
as computational implementations of specific hypotheses,
which allows hypotheses to be numerically tested against
experimental data.

A pitfall of the Monte Carlo approach is that parameter

ranges must be carefully chosen to reflect the experimenters
a priori beliefs about the potential range of parameters. In
this study, we chose to vary the force fluctuation standard
deviation coefficients within a range that was plausible given
previous studies. It is possible that a larger range could
revel different results, and thus the results of Monte Carlo
simulations must always be evaluated in the context of the
range over which particular parameters were varied. While
the computational cost grows exponentially with the number
of variables to explore, these methods are amenable to
parallelized implementations, and there are extensions such
as Markov chains that remain tractable even for complex
biomechanical models [9].

Relating to the hypotheses tested in this example, cost
functions for multi-muscle coordination have traditionally
been studied by comparing predictions of different cost
functions against EMG data (typically intramuscular). Our
results indicate that the cost functions could be studied
much more non-invasively by exploring the patterns of force
fluctuations that are emitted by the body during natural force
production. However, since the dependence of muscle force
fluctuations on average muscle force is not known exactly
for all muscles, this study also highlights the importance of
Monte Carlo simulations to check that the desired hypotheses
can be distinguished from the non-invasive data.
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