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Abstract— We provide an overview of optimal control meth-
ods to nonlinear neuromuscular systems and discuss their lim-
itations. Moreover we extend current optimal control methods
to their application to neuromuscular models with realistically
numerous musculotendons; as most prior work is limited to
torque-driven systems. Recent work on computational motor
control has explored the used of control theory and esti-
mation as a conceptual tool to understand the underlying
computational principles of neuromuscular systems. After all,
successful biological systems regularly meet conditions for
stability, robustness and performance for multiple classes of
complex tasks. Among a variety of proposed control theory
frameworks to explain this, stochastic optimal control has
become a dominant framework to the point of being a standard
computational technique to reproduce kinematic trajectories of
reaching movements (see [12])

In particular, we demonstrate the application of optimal
control to a neuromuscular model of the index finger with all
seven musculotendons producing a tapping task. Our simu-
lations include 1) a muscle model that includes force- length
and force-velocity characteristics; 2) an anatomically plausible
biomechanical model of the index finger that includes a tendi-
nous network for the extensor mechanism and 3) a contact
model that is based on a nonlinear spring-damper attached at
the end effector of the index finger. We demonstrate that it is
feasible to apply optimal control to systems with realistically
large state vectors and conclude that, while optimal control is an
adequate formalism to create computational models of neuro-
musculoskeletal systems, there remain important challenges and
limitations that need to be considered and overcome such as
contact transitions, curse of dimensionality, and constraints on
states and controls.

I. INTRODUCTION
The anatomical and physiological properties of muscle

dynamics and musculo-skeletal structures naturally lead to
nonlinear models for neuro-musculo-skeletal systems. Fur-
thermore, the physiology and neural control of muscle tissue
leads to stochasticity of neural commands and muscle acti-
vation (for a review please see [12]). Here we provide an
overview of control methods applicable to such nonlinear
stochastic models, and present extensions to these theories
using an anatomically-realistic, tendon driven model of the
index finger.

II. MODEL BASED STOCHASTIC OPTIMAL CONTROL
METHODS

To capture this complexity, nonlinearities, and noise of
these neuro-musculo-skeletal systems in mathematical terms,
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we consider the nonlinear stochastic dynamics of the form:

dx = f (x,u)dt +F(x,u)dω (1)

where x ∈ℜn×1 is the state, u ∈ℜm×1 is the control and
ω ∈ℜp×1 Brownian motion noise with variance σ2Ip×p. To
capture the different sources of randomness in the nervous
system we are assuming state and control dependent noise
and therefore the term F(x,u) is a function of state x and
controls u.

In stochastic optimal control theory, the goal is to find the
control policy which minimizes a cost functions subject to
the stochastic dynamics (1). The cost function is given by
the equation that follows:

Jπ(x, t) = E
[

h(x(T ))+
∫ T

t0
`(τ,x(τ),π(τ,x(τ)))dτ

]
The term h(x(T )) is the terminal cost in the cost function

while the `(τ,x(τ),π(τ,x(τ))) is the instantaneous cost
rate which is a function of the state x and control policy
π(τ,x(τ)). The cost Jπ(x, t) is defined as the expected cost
accumulated over the time horizon (t0, ...,T ) starting from
the initial state xt to the final state x(T ). The optimal cost
or value function is defined as:

V (x, t) = min
u

Jπ(x,u, t)

The expectation above is taken over the noise ω . With
respect to classical optimization methods, stochastic optimal
control can be seen as a constrained optimization problem
where the constrains corresponds to stochastic dynamics of
the system. From the control theoretic point of view, optimal
control is a principled way to find control policies that
will not only stabilize a system around a desired behavior
but will also achieve the desired task by minimizing some
performance criterion.

Therefore, in stochastic optimal control theory the stochas-
tic dynamics and the cost function to minimize are the es-
sential components of the overall mathematical formulation.
There is a variety of optimal control algorithms depending
on 1) the order of the expansion of the dynamics, 2) the order
of the expansion of the cost function and 3) the existence of
noise.

More precisely, if the dynamics under consideration are
linear in the state and the controls, deterministic, and the
cost function is quadratic with respect to states and controls,
we can use one of the most established tools in control
theory: the Linear Quadratic Regulator [9]. For such type
of optimal control problems the dynamics are formulated
as f (x,u) = Ax + Bu, F(x,u) = 0 and the immediate cost
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LQR LQG iLQR iLQG DDP SDDP
Linear Dynamics x x - - - -
Quadratic Cost x x - - -

FOE of Dynamics - x x - -
SOE of Cost - x x x x

SOE of Dynamics - - - x x
Deterministic x x - x -

Stochastic - x - x - x

TABLE I
OPTIMAL CONTROL ALGORITHMS ACCORDING TO FIRST ORDER

EXPANSION (FOE) OR SECOND ORDER EXPANSION (SOE) OF

DYNAMICS AND COST FUNCTION AND THE EXISTENCE OF NOISE.

l (τ,x(τ),u(τ,x(τ))) = xT Qx+uT Ru. Under the presence of
stochastic dynamics F(x,u) 6= 0, the resulting algorithm is
called the Linear Gaussian Quadratic Regulator (LQG).

For nonlinear deterministic dynamical systems, expansion
of the dynamics is performed and the optimal control al-
gorithm is solved in iterative fashion. Under a first order
expansions of the dynamics and a second order expan-
sion of the immediate cost function l (τ,x(τ),u(τ,x(τ)))
the derived algorithm is called Iterative Linear Quadratic
Regulator (iLQR) [6]. A better approximation of dynamics
up to the second order results in one of the most well know
optimal control algorithm especially in the area of Robotics,
Differential Dynamic Programming [5]. Both iLQR and DDP
are iterative algorithms that start with an initial trajectory
in states and controls x̄ and ū and result in an optimal
trajectory x∗, an optimal open loop control command u∗, and
a sequence of control gains L which are activated whenever
deviations from the optimal trajectory x∗ are observed. The
difference between iLQR and DDP is that DDP provides a
better approximation of the dynamics but with an additional
computational cost necessary to find the second order deriva-
tives.

In cases where noise is present in the dynamics either
as multiplicative in the controls or state, or both, we have
the stochastic version of iLQR and DDP, the Iterative
Linear Quadratic Gaussian Regulator (iLQG) [11] and the
Stochastic Differential Dynamic Programming (SDDP) [10].
Essentially SDDP contains as special cases all the previous
algorithms iLQR, iLQG and DDP since it requires second
order expansion of the cost and dynamics and it takes into
account control and state dependent noise. This is computa-
tionally costly because second order derivatives have to be
calculated. An important aspect of stochastic optimal control
theory is that, in cases of additive noise, the optimal control
u∗ and the optimal control gains L are both independent of
the noise and, therefore, the same with the corresponding
deterministic solution. In cases where the noise is control
or state dependent, the resulting solutions iLQG and SDDP

differ from the solutions of the deterministic versions iLQR
and DDP. In the table I we provide the classification of
the optimal control algorithms based on the expansion of
dynamics and cost function as well as the existence of noise.

In the section that follows we present iLQG algorithm by
presenting the main steps and equations of this algorithm.

III. ITERATIVE STOCHASTIC OPTIMAL CONTROL

There are 4 important initial steps for the application
of iLQG which are 1) the discretization of the continuous
dynamics 2) the linearization of the discrete equations 3)
quadratic approximation of the cost function and 4) the
quadratic approximation of the value function.

Starting with the discretization step we have that x̄tk+1 =
x̄tk + ∆t f (x̄tk , ūtk). The resulting discrete dynamics are non-
linear and they are linearized around a nominal trajectory x̄tk
as follows;

δxtk+1 = Akxtk +Bkδutk +Γk
(
δutk

)
ξ tk

where Γk is the noise transition matrix that is control
depended and it is defined as follows:

Γk
(
δutk

)
=
[

c1,k +C1,kδutk · · · cp,k +Cp,kδutk

]
with ci,k =

√
dtF(i) and Ci,k =

√
dt∂F(i)/∂δu. The state

and control transition matrices are expressed as: Ak = I +
dt∂ f/∂x and Bk = dt∂ f/∂u. The quadratic approximation of
the cost function is given as follows:

Costk = qk +δxT
tk q+

1
2

δxT
tk Qkxtk (2)

+δuT
tk r+

1
2

δuT
tk Rkutk +δxT

tk Pkutk

where the terms : qk,qk ∈ ℜn×1,Qk ∈ ℜn×n,rk ∈
ℜm×1,Rk ∈ ℜm×m,Pk ∈ ℜn×m are defined as: qk =
dt `; qk = dt ∂`/∂ , Qk = dt ∂ 2`/∂x∂δx; Mk =
dt ∂ 2`/∂u∂x, rk = dt ∂`/∂δu; Rk = dt ∂ 2`/∂u∂u.

The value function Vk (δx) is expanded up to the second
order and thus is expressed as follows:

Vk (δx) = sk + sT
k+1δx+δxT Sk+1δx (3)

After the 4 initial steps the main equations of iLQG
algorithm can now be applied as it is illustrated in table
III. Essentially, the initialization of the algorithm consists
of an initial trajectory in states {x0, ....,xT} and controls
{u0, ...,uT−1}. By treating the initial trajectories as current,
the nonlinear dynamics and the cost function are linearly and
quadratically approximated. In addition, the value function
Vk is evaluated at the current state trajectory, starting from
the terminal state xT and propagated backwards until x0.
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Backward propagation of the value function is reduced to
the backward propagation of the quantities sk ∈ ℜ,sk ∈
ℜn×1,Sk ∈ ℜn×n as it is shown in table III. The next step
after the backward propagation of the value function is
the computation of the control corrections {δu0, ...,δuT−1}
. These corrections are added to the current control tra-
jectory {ui

0, ...,u
i
T−1} and the new controls are generated

{ui+1
0 , ...,ui+1

T−1}. With these new controls the nonlinear dy-
namics are forward propagated and the new trajectory in
states is created {xi+1

0 , ...,xi+1
T }. The new trajectories in states

and controls are treated as the current and the algorithm
repeats with the computation of the approximations of the
dynamics, the cost and the value function around these
current trajectories.

The convergence of the iLQG algorithm is achieved when
the cost of the current state trajectory reaches its local
minimum. Since the algorithm is gradient based, during the
iterations the cost of every current trajectory should decrease
until it stabilizes around a local minimum. Such convergence
depends on the tuning of the cost function as well as the
parameter γ in the control update equation u∗ = u∗+γ ·δu∗.
Furthermore the nonlinearities in the dynamics and cost
function may affect the convergence of iterative optimal
control methods. In this case, fine discretization reduces the
approximation error of dynamics and achieves convergence.

In the next section we describe the bio-mechanical model
of the index finger and we provide the application of iLQG
for the control of the index finger. The task is tapping with
the index finger.

IV. INDEX FINGER MODEL

The skeleton of the human index finger consist of 3 joints
connected with 3 rigid links. The two distal joints (proximal
interphalangeal (PIP) and the distal interphalangeal (DIP))
are approximated as hinge joints that can generate both
flexion-extension. The metacarpophalangeal joint (MCP) is
a saddle joint and it can generated flexion-extension as well
as abduction-adduction.

Fingers have at least 6 muscles, and the index finger is
controlled by 7. Starting with the flexors, the index finger
has the Flexor Digitorum Profundus (FDP) and the Flexor
Digitorum Superficialis (FDS). The Radial Interosseous (RI)
acts on the MCP joint. Lastly, the extensor mechanism
acts on all three joints. It is an interconnected network of
tendons driven by two extensor muscles Extensor Digitorum
Communis (EC) and the Extensor Indicis Proprius (EI), and
the Ulnar Interosseous (UI) and Lumbrical (LU) muscles.
We also include 4 passive tendon elements that complete this
network. These passive tendons are the Terminal Extensor
(TE), the Radial Band (RB) the Ulnar Band (UB) and

TABLE II
PSEUDOCODE OF THE ILQG ALGORITHM

• Given:
– An immediate cost function `(x,u)
– A terminal cost term φtN .
– The stochastic dynamics dx = f (x,u)dt +F(x,u)dω

• Repeat until convergence:
– Given a trajectory in states and controls x̄, ū find the

quadratic approximations of the stochastic dynamics At ,Bt ,Γt
and the quadratic approximation of the immediate cost function
`o, `x, `xx, `uu, `ux around these trajectories.

– Compute all the terms H,Qu,G and g according to:

g = rk +BT
k sk+1 +σ

2
∑

i
CT

i,kSk+1ci,k

G = Pk +BT
k Sk+1Ak

H = σ
2
∑

i
CT

i,kSk+1Ci,k +BT
k Sk+1Bk +Rk

– Back-propagate the quadratic approximation of the value func-
tion based on the equations:

Sk = Qk +AT
k Sk+1Ak +LT

k HLk +LkG+GT Lk

sk = qk +AT
k sk+1 +LT

k Hlk +GT Lk +LT
k g

sk = qk + sk+1 +
1
2

σ
2
∑

i
cT

i,kSk+1ci,k +
1
2

lT
k Hlk + lT

k g

– Compute δutk =−H−1 (g+Gδxtk

)
– Update controls u∗ = u∗+ γ ·δu∗
– Get the new optimal trajectory x∗ by propagating the nonlinear

dynamics dx = f (x,u∗)dt +F(x,u∗)dω .
– Set x̄ = x∗ and ū = u∗ and repeat.

the Extensor Slip (ES). We simulate 11 tendons in total,
7 active (i.e., driven by independently controlled muscles)
and 4 passive. The length and velocity of muscle fibers
is an important determinant of muscle force production. In
modeling practice, the changes in tendon length (also called
tendon excursions) are the means of calculating muscle fiber
lengths and velocities [12]. Therefore, we present the means
to calculate tendon lengths with the understanding that these
produce the necessary muscle fiber lengths and velocities
to implement our Hill-type muscle model (see below). The
basic equation for modeling the tendon lengths L according
to [2] is given by:

L = θd +2y
(

1− θ/2
tan(θ/2)

)
(4)

where d is the distance from the straight part of the tendon
towards the long axis and θ is the corresponding angle
rotation. The term y corresponds to the distance from the
end of the straight part towards the joint centre (i.e., moment
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arm). This distance is measure along the axis of the bone.
A second order polynomial approximation of the equation
above is formulated as follows:

L = (b+hθ)θ (5)

where b and h are constants. With the exception of FDS and
FDP, the equation above is used for modeling the lengths of
tendons for muscles that are involved in flexion-extension
as well as for abduction-adduction. A subscript, a, will
be used to denote the dependence of the tendon length of
the abduction-adduction motion, with φ being the adduction
angle.

For the FDS and FDP tendons we decided to use the
more accurate model for tendon length (4) since these
tendons depend on the majority of rotational variables. More
precisely,the length of FDS depends on θ1,θ2,θ3 and φ while
the length of FDP depends on θ1,θ2 and φ . Obviously, the
use of approximated model (5) for the case of FDS and
FDP would have caused higher approximation errors than for
the case of tendons which depend only on 1 or 2 rotational
variables. More precisely we will have

LFDP = θ1dFDP
1 +2yFDP

1

(
1− θ1/2

tan(θ1/2)

)
+ θ2dFDP

1 +2yFDP
2

(
1− θ2/2

tan(θ2/2)

)
+ θ3dFDP

3 +2yFDP
3

(
1− θ3/2

tan(θ3/2)

)
+

(
bFDP

a +hFDP
a φ

)
φ (6)

LFDS = θ1dFDS
1 +2yFDS

1

(
1− θ1/2

tan(θ1/2)

)
+ θ2dFDS

1 +2yFDS
2

(
1− θ2/2

tan(θ2/2)

)
+

(
bFDS

a +hFDS
a φ

)
φ (7)

The tendon length mechanism for EC and TE is rather
simple due to their dependence on the rotation of only one
joint. The tendon extensor for EC is a function of the rotation
at the DIP joint while the tendon length of TE is function
of the rotation at the PIP joint.

LT E =−rT E
θ3, LES =−rES

θ2 (8)

The tendon lengths of the RB and UB are functions of
the rotation around the PIP joint with the addition of the
terminal extensor.

LRB =−
(
bRB +hRBθ2

)
θ2 +β

RBET E (9)

LUB =−
(
bUB +hUBθ2

)
θ2 +β

UBET E (10)

For the RI the muscle length is a function of the MCP
rotation only that includes flexion-extension and abduction-
adduction. Therefore its tendon length is formulated as
follows:

LRI =
(
bRI +hRIθ1

)
θ1

−
(
bRI

a +hRI
a φ
)

φ (11)

Similarly, the muscle length for the LI is a function of the
MCP rotation but with the addition of the tendon length of
the UB. Consequently its tendon length is formulated by the
following equation:

LUI =
(
bUI +hUIθ1

)
θ1

+
(
bUI

a +hUI
a φ
)

φ +LUB (12)

The length of the LU muscle is a function of the MCP
rotation with the addition of the UB and the subtraction of the
FDP tendon lengths. The length of FDP tendon is subtracted
from the total length of the LU since the origin of LU is on
the FDP tendon. Thus we will have that:

LLU =
(
bLU +hLU θ1

)
θ1

−
(
bLU

a +hLU
a φ

)
φ

+ LRB−LFDP (13)

Finally the muscle lengths of the main extensors of the
index finger, EC and EI are function of the MCP rotation and
with the addition of the displacements that are transformed to
the next joints PIP and DIP through the extensor mechanism.

LEC = −rEC
θ1−

(
bEC

a +hEC
a φ

)
φ

+ min(L1,L2,L3) (14)

and

LEI = −rEI
θ1 +

(
bEI

a +hEI
a φ
)

φ

+ min(L1,L2,L3) (15)

where the terms L1,L2 and L3 are defined as L1 = LES,
L2 = LUB +

(
1−βUB

)
LT E and L3 = LRB +

(
1−β RB

)
LT E

In this work we have slightly modified the extensor
mechanics for the EI and the EC muscles to avoid the
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nonlinear operator min by assuming that: LEC = −rECθ1−(
bEC

a +hEC
a θ1

)
θ1 + E (L1,L2,L3) and LEI = −rEIθ1 −(

bEI
a +hEI

a φ
)

φ + E (L1,L2,L3) with the length function
E (L1,L2,L3) defined as E (L1,L2,L3) = ∑

3
j=1 w jL jwith

∑
3
j=1 w j = 1 and w j > 0∀ j = 1,2,3. There are 39 parameters

for the equations of the 11 tendons lengths of the index which
are provided in table [2].

V. INDEX FINGER MOMENT ARM

Since the lengths have been defined for the 11 tendons
of the index finger, the moment arm matrix for the 7
muscles can been found according to the equation M(Θ) =
∇ΘL where Θ = (θ1,θ2,θ3,φ)T and L ∈ ℜ7×1 defined as
L =

(
LFDS,LFDP,LLU ,LRI ,LLU ,LEC,LEI

)T . More precisely
the moment arm vector for the FDP tendon is expressed as
MFDP

Θ
=
(

MFDP
θ1

,MFDP
θ2

,MFDP
θ3

,MFDP
φ

)
where ∀i = 1,2,3 we

have that

MFDP
θi

= dFDP
i + yFDP

i

(
sin(θi)−θi

2sin2 (θi)

)
(16)

and MFDP
φ

= haφ . In cases where θi = 0 then the mo-
ment arm of the FDP is given by the following equa-
tion limθi→0 MFDP

θi
= dFDP

i , ∀i = 1,2,3. The moment
arm vector for the FDS tendon is expressed as MFDS

Θ
=(

MFDS
θ1

,MFDS
θ2

,MFDS
θ3

,MFDS
φ

)
where ∀i = 1,2 we have that:

MFDS
θi

= dFDS
i + yFDS

i

(
sin(θi)−θi

2sin2 (θi)

)
(17)

(18)

and MFDS
θ3

= 0, MFDS
φ

= haφ . Similarly when θi = 0 then
the moment arm of the FDS is given by the following
equation:limθi→0 MFDS

θi
= dFDS

i ∀i = 1,2. For the LU tendon
the moment arm vector is expressed as:

MLU
Θ

=


MLU

θ1
MLU

θ2
MLU

θ3
MLU

φ

=


bLU +hLU θ1−MFDP

θ1
MRB

θ2
−MFDP

θ2
MRB

θ3
−MFDP

θ3
−bLU

a −hLU
a φ −MFDP

φ

 (19)

Similarly for the UI and RI tendons we will have

MRI
Θ

=


MRI

θ1
MRI

θ2
MRI

θ3
MRI

φ

=


bRI +hRIθ1

0
0

bRI
a +hRI

a φ

 (20)

and

MUI
Θ

=


MUI

θ1
MUI

θ2
MUI

θ3
MUI

φ

=


bUI +hUIθ1

MUB
θ2

MUB
θ3

bUI
a +hUI

a φ

 (21)

As we can see from above the moment arm vectors for UI
and RI are function of the moment arm vectors of UB and
RB tendons which are defined as follows

MUB
Θ

=


MUB

θ1
MUB

θ2
MUB

θ3
MUB

φ

=


0

−(bUB +hUBθ2)
−rT E

0

 (22)

and

MRB
Θ

=


MRB

θ1
MRB

θ2
MRB

θ3
MRB

φ

=


0

−(bRB +hRBθ2)
−rT E

0

 (23)

Finally, the moment arm vectors of the main extensor
tendons EC and EI of the index finger are expresses as:

MEC
Θ

=
[

MEC
θ1

MEC
θ2

MEC
θ3

MEC
φ

]T
= (24)

=


−rEC

−w1rES−w2(bUB +hUBθ2)−w3(bRB +hRBθ2)
−w2rT E −w3rT E

−bEC
a +hEC

a φ


(25)

and

MEI
Θ

=
[

MEI
θ1

MEI
θ2

MEI
θ3

MEI
φ

]T
=

=


−rEI

−w1rES−w2(bUB +hUBθ2)−w3(bRB +hRBθ2)
−w2rT E −w3rT E

−bEI
a +hEI

a φ


(26)

The moment arm matrix for the muscles MΘ is therefore
defined:

[
MFDP

Θ
MFDP

Θ
MLU

Θ
MUI

Θ
MRI

Θ
MEI

Θ
MEC

Θ

]
(27)

Since the tendon length is a function Θ(t) the velocity
with which the tendon length changes over time is given by
dL(Θ)

dt = ∂L(Θ)
∂Θ

∂Θ
∂ t . Thus we will have that:

V
(
Θ,Θ̇

)
= MΘ× Θ̇ (28)
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Joint Tendons
DIP Terminal Extensor (TE)

Flexor Digitorum Profundus (FDP)
PIP Extensor Slip (ES)

Radial Band (RB)
Ulnar Band (UB)

Flexor digitorum superficialis (FDS)
Flexor digitorum profundus (FDP)

MCP Extensor digitorum Communis (EC)
Extensor indicis (EI)

Radial Interosseous (RI)
Ulnar Interosseous (UI)

Lumbrical (LU)
Flexor digitorum superficialis (FDS)
Flexor digitorum profundus (FDP)

TABLE III
CORRESPONDENCE OF THE 7 MUSCLES OF THE INDEX FINGER WITH THE

3 JOINTS MCP, PIP AND DIP.

where MΘ = ∂L(Θ)
∂Θ

is the moment arm matrix and Θ̇ =
∂Θ
∂ t corresponds to the velocity of the length change.

VI. MUSCLE MODEL

In our simplified Hill-type muscle model [3] the torque is
generated by the muscles FDS, FDP, LU, UI, RI, EC and EI.
Therefore the torques are formulated as follows: τ = M(θ) ·
T
(
α,L(θ) ,V

(
θ , θ̇

))
. The tension depends on the activation

of the muscles but also varies with the
length L = L(θ) and velocity V = V (θ , θ̇) of the mus-

cle fibers. These are calculated on the basis of tendon
lengths (as described above) that are function of joint
angles and angular velocities of the index finger, respec-
tively. Therefore the tension produced by each muscle and
present in each tendon is mathematically formulated as
follows: T

(
α,L(θ) ,V

(
θ , θ̇

))
= FL (L(θ)) · FV

(
V
(
θ , θ̇

))
·

α +FP (L(θ)) where the terms FL (L(θ)) and FV
(
V
(
θ , θ̇

))
are force functions that describe the force-length and force-
velocity properties of muscles [4]. These force functions
are defined as follows FL (L(θ)) = exp

(
− (L(θ)−1.1)2

2·L2
a

)
and

Fp (L(θ)) = 0 if (L < 1) or Fp (L(θ)) = (L(θ)−1)2 Lβ

otherwise. In addition, FV
(
V
(
θ , θ̇

))
= 2

1+exp(V(θ ,θ̇)·Ld)
if

(V < 0) or FV
(
V
(
θ , θ̇

))
= 1 + 2

1+exp(V(θ ,θ̇)·Ld ·Lc)−1
1
Lc

oth-
erwise. The length of the muscles is expressed in units of
L0 where L0 is the length at which the maximum isometric
force is generated [3], [4]. In addition velocity V

(
θ , θ̇

)
is

expressed in units of L0/sec. The muscle length and velocity
are converted into normalized units of L0 according to the
operating length range of each one of the muscles. After
specifying the moment arm of the index finger and discussing
the muscle model used in this work, in the next section we
provide our result on the application of stochastic optimal
control for movement generation of the tendon-driven index
finger.

VII. MODELING INDEX DYNAMICS AND CONTACT

We are modeling the index finger as a 3 link multi-body
dynamical systems. The forward dynamics of the index finger
are expressed as follows:

θ̈ = −I(θ)−1 C
(
θ , θ̇

)
+ I(θ)−1

τ + I(θ)−1 J(θ)T Fe

τ = M(θ) ·T
(
α, l (θ) ,V

(
θ , θ̇

))
(29)

ȧi = −1
c

(ai +u) , i = 1, ...,7 (30)

where θ and θ̇ are the joint position and joint velocities,
ai’s are the activation variables and ui’s are the control
neural signals. Moreover, I(θ) is the inertia matrix, C

(
θ , θ̇

)
is the vector of centripetal and coriolis forces and J(θ)
is the jacobian matrix which maps the end effector force
to joint torques. The forward dynamics are driven by the
torques τ and the end effector force Fe activated during
contact with a surface. The torques are driven by the 7
tensions applied through by the 7 muscles of the index finger.
The matrix M is the moment arm matrix and the function
T (θ ,L(θ),V(θ̇) correspond to the applied tensions. The
function L(θ) and V(θ̇) correspond to the tendon excursions
and velocities specified in section V. The contact force Fe
is given by a nonlinear spring damper formulation that is
given as Fe(θ , θ̇) = Ks (lo−|ye− yd |)+ Kd ẏ4

e with ye is the
actual end effector position in the y direction while yd is the
desired position. The terms Ks and Kd are constants while
lo is the length of the virtual spring attached into the end
effector. The force in the end effector depends on the joint
angles and and joint velocity since ye = l1c1 + l2c12+ l3c123
and ẏe =−l1s1θ̇1− l2s12(θ̇1 + θ̇2)− l3s123(θ̇1 + θ̇2 + θ̇3).

We have applied the iLQG algorithm to control the index
finger for the tapping task. The cost function for this task is
specified as J(x) = (θ −θ ∗)T QT (θ −θ ∗)+ 1

2
∫ T

t0 uT Rudt +∫ T
tc (θ −θ ∗)T M (θ −θ ∗)dt. Essentially the cost function

consists of the 3 terms. The first term penalizes deviations
of the index finger from the target posture at the terminal
time T . The second term penalizes the control cost over the
entire time horizon and the third term penalizes deviations
from the desired posture after the time tc = 0.275sec which is
the time that contact occurs. The tuning of the cost function
is specified as Q = M = 5000I3×3 and R = 0.001.

The results of our simulations are illustrated in figures 1
and 2. More precisely, in 1 the kinetics of the muscles are
illustrated. As we can see for the tapping task, the flexors
decrease their length while extensors increase their length as
expected. Figure 2 illustrates the torques and the end effector
force generated due to contact. Before contact the torques
and the end effector force are zero while after contact they
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Fig. 1. The time history of the length and velocity of the muscles of the
index finger for the tapping task with zero terminal velocity.
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Fig. 2. The time history of the torques and the force applied to the finger
due to contact.

are set to no zero values with the highest value for the torques
at the MCP joint.

VIII. CONCLUSIONS

In this note, we give overview of optimal control methods
based on their characteristic of the order of the expansions of
dynamics and cost function. In particular we describe optimal
control approaches applicable to nonlinear and stochastic dy-
namical systems such as realistic models of neuro-musculo-
skeletal systems. We use the index finger as a sample system
whose anatomical complexity has challenged prior methods.
Moreover, we demonstrate the application of these optimal
control methods to what, to our knowledge, is the most
complex model of a tendon-driven system. Prior work has
been largely limited to torque-driven systems which lack the
important nonlinearity of uni-directional actuation, or to sim-
pler tendon driven systems for which the state vector is much
smaller. Therefore our work presents important extensions
and innovations in the applicability of optimal control to
realistic models of neuro-musculo-skeletal systems.

Many challenges remain, and the limitations of our work
suggest directions for future work. For example, besides
requiring accurate knowledge of the dynamics of the system
and cost functions, constraints in control and state variables
are very often required in neuromuscular systems. We have
used heuristic methods to minimize the violation of such
constraints, but the field of optimal control in general still

requires a rigorous formulation and numerical approaches
to robustly impose such constraints on states and controls.
These constrains not only increase the computational cost
of the optimal control methods, but can lead to infeasible
optimization problems. In addition, validation of predictions
using experimental tendon-driven systems is necessary. Be-
fore this can be done, however, optimal control methods
will have to be refined to tolerate discrepancies between the
model used to find control policies and the actual nonlinear
dynamics of physical systems. In fact, the ability of the
central nervous system to control well (even optimally?) such
nonlinear, stochastic neuro-musculo-skeletal plants suggests
that fundamental developments in control theory will be
necessary to understand motor function in detail.
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