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Abstract—Selecting a model topology that realistically pre-
dicts biomechanical function remains an unsolved problem.
Today’s dominant modeling approach is to replicate experimental
input/output data by performing parameter estimation on an
assumed topology. In contrast, we propose that modeling some
complex biomechanical systems requires the explicit and simul-
taneous exploration of model topology (i.e., the type, number,
and organization of physics-based functional building blocks)
and parameter values. In this paper, we use the example of mod-
eling the notoriously complex tendon networks of the fingers to
present three critical advances towards the goal of implementing
this extended modeling paradigm. First, we describe a novel
computational environment to perform quasi-static simulations
of arbitrary topologies of elastic structures undergoing large
deformations. Second, we use this form of simulation to show that
the assumed topology for the tendon network of a finger plays an
important role in the propagation of tension to the finger joints.
Third, we demonstrate the use of a novel inference algorithm that
simultaneously explores the topology and parameter values for
hidden synthetic tendon networks. We conclude by discussing
critical issues of observability, separability, and uniqueness of
topological features inferred from input/output data, and out-
line the challenges that need to be overcome to apply this novel
modeling paradigm to extract causal models in real anatomical
systems.

Index Terms—Bioinformatics, biomechanical model, hand, ma-
chine learning.

I. INTRODUCTION

ANALYTICAL and computational biomechanical models
are traditionally constructed by using expert knowledge to

approximate the observable functional anatomy by a mechanical
structure, and then optimizing model parameters to fit measured
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biomechanical data (e.g., [1]–[4] and Fig. 1(a)). The inevitable
discrepancies between model predictions and experimental data
are, to a large extent, attributed to the variability and uncertainty
in parameter values [5], [6].

More fundamentally, however, the validity and usefulness of
the state-of-the-art modeling necessarily depends on whether
the structure (i.e., topology) of the model (and not just model
parameters) chosen by the expert(s) is appropriate to the re-
search question. This has naturally led to valuable debates
about the virtues of, for example, “simple” versus “complex”
models, “generic” versus “subject or patient specific” models,
or “deterministic” versus “probabilistic” models to name a few.
In spite of numerous modeling efforts and successes in sim-
ulation, optimization, and computer-aided design (CAD)-like
packages for biomechanical systems, assembling causal (i.e.,
functionally predictive) models where biomechanical function
robustly emerges from the structure remains a challenging
problem. Therefore, much work is directed at understanding
the paradigm within which the state-of-the-art modeling is
being carried out, and proposing means to extend it. For
example, there is a healthy debate on alternative versions of
muscle models [7], thumb [5], [6], or ankle [8] kinematics. In
this paper, we propose a systematic means to improve mod-
eling efforts by simultaneously exploring model structure and
parameters.

The novel model inference approach we present here is
based on the explicit distinction between model topology and
parameter values [Fig. 1(b)]. Traditionally, models are defined
a priori from expert knowledge, and then their parameters are
adjusted. Although some parametric identification methods
exist for automatically adjusting the parameters of these models
[9]–[11], identifying the accurate topology will be difficult for
modeling increasingly complex biomechanical systems. Here,
we introduce a method to explore both the topology and param-
eters simultaneously. The topology of a model is its structure
explicitly defined by the type, number, and organization of the
elementary building blocks of the biomechanical description
(i.e., tendons, muscles, bones, ligaments, pulleys, etc.) and
is the unambiguous statement of the assumed biomechanical
structure and the causal relationships assumed to be at work.
The parameters values are the particulars associated with each
building block (i.e., shape, size, strength, material properties,
etc.), which define a particular instantiation of the assumed
model topology [12]–[14]. Thus, a model is a particular instan-
tiation of a topology with specific parameter values [13], [15]
[Fig. 1(b)].

Importantly, in cases where noise is not a dominant artifact,
an advantage of the model inference approach is that the in-
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Fig. 1. Comparison between (a) optimization over the parameter space versus
(b) optimization over the model space. Note that in (a) the topology of the model
is assumed a priori and remains fixed, whereas in (b) both the topology and pa-
rameters can be adjusted to fit the data. Importantly, (b) can converge to a single
or multiple models compatible with the data. (c) The estimation–exploration in-
ference algorithm is an improvement on (b) using online sparse experimentation
to execute only informative tests.

evitable discrepancies between predicted and measured data are
now interpreted as either unsatisfactory parameter values, inad-
equate model topology, or both [13]. The modeling debate is

thus enlarged to include whether additional or alternative ex-
plorations of the parameter values would improve results suf-
ficiently, or if using an alternative model topology would be
more fruitful, or even necessary [6], [13]. The search for an
appropriate model then happens over the larger model space,
which now encompasses the combination of the spaces of pos-
sible topologies and possible parameter values, both subject to
anatomical and biomechanical constraints.

The focus of this paper is on functional models that provide
insight into the biomechanical system’s actual inner workings.
This is in contrast to, say, a neural network model representa-
tion, which provides a mathematical mapping of inputs to out-
puts, but offers less insight into the structure and function of the
real system. The objective of this paper is to present three fol-
lowing critical advances towards the goal of implementing this
extended modeling paradigm using as examples 2-D and 3-D
tendon networks analogous to those found in human fingers:

• describe a novel computational environment to perform
quasi-static simulations of arbitrary topologies of elastic
structures undergoing large deformations;

• use this form of simulation to show that the assumed
topology for the tendon network of a fingers plays an
important role in the propagation of tension to the finger
joints;

• demonstrate the use of a novel inference algorithm that
simultaneously explores the topology and parameter values
for hidden synthetic tendon networks, with both random
and intelligent testing.

Finally, we conclude by discussing critical issues of observ-
ability, separability, and uniqueness of topological features in-
ferred from input/output data, and outline the challenges that
need to be overcome to apply this novel modeling paradigm to
extract causal models in real anatomical systems.

II. METHODS

The proposed computational environment has the following
characteristics: 1) it is designed to handle complex networks of
elastic structures, such as the tendon networks in the fingers,
2) it uses a special quasi-static solver to find static equilibrium
positions under known applied loads, 3) it permits simultaneous
variation of model topology and model parameter values, and
4) it utilizes a stochastic optimization algorithm to search dif-
ferent combinations of model topology and model parameter
values automatically, since stochastic algorithms are capable of
handling discrete design variables such as those related to model
topology.

A. Computational Environment to Describe and Simulate
Biomechanical Models

1) Description of Anatomical Structures for Quasi-Static
Simulation: To explore the problem of modeling the structure
and function of the fingers, we have developed a biomechanical
model simulator to describe the structure of arbitrary topo-
logical arrangements of fundamental musculoskeletal building
blocks (Fig. 2; tendons, muscles, articular surfaces, bones,
ligaments, and pulleys; [12], [13], [16]). Each building block is
defined by its parameter values and described by a strain–stress
relationship (which can be highly nonlinear) and a function that



VALERO-CUEVAS et al.: BEYOND PARAMETER ESTIMATION: EXTENDING BIOMECHANICAL MODELING 1953

Fig. 2. Sample 3-D finger model in our simulator. The simulator uses a relax-
ation algorithm to predict the biomechanical function emerging from the topo-
logical layout of building blocks with specific parameter values. Given an input
in the form of, say, changes in muscle tensions, the forward simulator predicts
the new equilibrium 3-D posture of the finger. This schematic example contains
all muscles of the index finger and tendinous interconnections as per Winslow’s
idealization of the extensor mechanism. This model is topologically equivalent
to our 3-D finger model [36]. Like other CAD-like modeling environments, it
can be easily described by a script language (inset), via a graphical user inter-
face or autonomously via application programming interface.

relates strain to geometry (e.g., constant volume muscle). The
simulator allows us to construct biomechanical models either
interactively (through the graphical user interface in Fig. 2),
through a biomechanical model script (see inset in Fig. 2), or
through an application programming interface which allows ex-
ternal programs, such as a computational inference algorithm,
to describe and solve biomechanical models automatically.
Fig. 2 shows the example of a topologically plausible schematic
biomechanical model of the index finger. Joint axes define the
ball-and-socket, saddle-shaped, hinge, and sliding joints.

2) Causal Interaction Among Anatomical Structures (Quasi-
Static Forward Simulation): In our simulator, the biomechan-
ical function of the system emerges from the topological layout,
size, and organization among building blocks. The simulator
uses a novel relaxation-based approach for solving the kine-
matic motion of compound nonlinear mechanisms with mul-
tiple entangled kinematic chains [25]. The simulator accounts
for quasi-static viscous-like motion (“pseudo” or “first-order”
dynamics) but ignores dynamic effects. This property is specif-
ically well suited to the simulation of hand function during ev-
eryday multifinger manipulation. Numerous studies have estab-
lished that the fingers are damped systems where inertial effects
are only important for high-speed trilling motions or tremors
not seen in every day manipulation tasks (e.g., [17]–[22]). The
biomechanical descriptions in our models are functional (i.e.,
simulatable) in the strict sense that we can predict the following:
1) the new equilibrium 3-D posture the finger will assume for

a given change in muscle actuation if allowed to move (be it
driven by tendon tensions or excursions), 2) the endpoint, joint,
tendon pulley, and tendon forces for a given change in muscle
force if constrained not to move, or 3) external loads applied
anywhere on the structure.

The forward simulation process for biomechanical systems
uses a relaxation solver similar to that used for design automa-
tion of robotic structures [23]. For a detailed description of
the relaxation solver, please see [24]. Briefly, the algorithm
performs iterations in response to applied loads or muscle
forces until equilibrium is reached. Each iteration has two
stages: computation of loads on elements and then computation
of displacements at nodes to reach local equilibrium. A “node”
is the connection between two or more elements, such as joints
(connecting two bones), tendon insertions (connecting a tendon
to a bone), or tendon junctions (connection tendons). The
force-computation stage looks at each element of the structure
and uses an element-specific mathematical model to compute
residual forces in that element at its current state. For example,
a tendon might behave elastically if it is in a state of tension, but
might exert no force if in compression. In the second stage, all
loads are accumulated at each of the structure nodes and node
displacements are calculated using node-specific mathematical
models. For example, a node representing a junction between
three tendons might move freely in the direction of the resultant
force being applied to it. The exact amount of displacement
can be estimated from the stiffness of the node, derived from
the stiffness of the elements connected to it. These cycles are
iterated until all calculated node displacements are below the
numerical threshold for negligible displacements. The relax-
ation process finds local equilibria, and by propagating loads
and displacements, equilibrium is reached. If elements are
well behaved (i.e., monotonic: smaller displacements produce
smaller loads, and conversely, smaller loads produce smaller
displacements), then the biomechanical model is guaranteed
to reach equilibrium after a finite number of steps. However,
there might be more than one equilibrium configuration. The
simulation will find an equilibrium state that the biomechanical
model can reach through successive incremental adaptations
from the initial configuration.

B. Inference of Planar Hidden Networks via a Genetic
Algorithm That Searches the Model Space

The problem of inferring an arbitrary network of elastic
strings is one of system identification. In our prior work [15],
[16], [25], we used a genetic algorithm to infer both, the
topology and parameter values for models that emulate the
propagation of tensions in a hidden network of strings. The data
is obtained through testing of the “target” or “hidden” system,
which in this work is a simulated (synthetic) tendon network
hidden in a “black box.” A test or data point is defined as a
set of forces applied at prespecified “input” nodes on the target
network and the resulting reaction forces at grounded “output”
nodes. Those forces are applied and the target network is
relaxed to equilibrium using the method described previously.
In the “A” network shown in the top part of Fig. 5, for example,
the input force is applied at the apex and the output forces are
reaction forces at the grounded bottom nodes.
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The inference algorithm sequentially tests the target system,
adds the data point to the database, and evolves models to ex-
plain the latest data point in addition to all prior data points.
The figure-of-merit attached to each model (its “fitness”) cor-
responds to the largest error in matching the set of data points
seen so far. The models are evolved until the fitness remains
stagnant for 50 generations, at which point a new experiment
(i.e., loading test) is performed on the black box and a new data
point is added. The choice of experiments is described in the
following for each portion of our work.

The models space is searched using a genetic algorithm, to
find the best model (topology and parameters) that matches data
points generated by tests so far. Note that while there are a
number of optimization techniques that could be used, genetic
(and other) stochastic algorithms are capable of handling dis-
crete design variables due to, for example, severe discontinu-
ities when a string is added to or removed from the network.
In contrast, gradient-based optimization algorithms only work
with continuous design variables when computation of the ob-
jective gradients is possible [15], [16], [25].

1) Genetic Encoding of the Network: In the genetic algo-
rithm, each individual is a network of 25 nodes arranged in a
regular 5 5 layout, and connected by 72 horizontal, vertical,
and diagonal links. Thus, each individual resembles the meshes
shown in the bottom part of Fig. 5. A direct encoding (i.e., rep-
resentation) is used; the genotype and phenotype are the same.
Depending on the problem, different nodes are grounded. Ca-
bles only connect at circled nodes.

The dimensions of the individuals, as well as the positions
of their input and grounded nodes, match those of the target
network. If the target fits within a rectangle of dimension
of arbitrary length units, the mesh dimensions will also be .
Also, input forces are applied to the same location in both the
target system and the meshes. If the target system has an input
node at the Cartesian location , then the mesh, in its resting
configuration, must have a node at at which an input force
can be applied. Finally, if the target system has a grounded node
at location , then the models must also have a grounded
node at the same location. The position of all internal nodes in
the target network is unknown.

The variables of the model are the resting (free) lengths of
the links. In any particular problem, the set of grounded nodes
remains constant, as do the values of and , the elastic mod-
ulus and cross-sectional area of the links. Thus, the functional
behavior of the network is determined entirely by the resting
lengths of the links in the network, and the genetic operators op-
erate exclusively on these resting lengths. The input loads to this
system (i.e., tests) are applied at the bottom three nodes (bottom
of Fig. 5) and may vary in magnitude and direction (so long as
they point downwards).

2) Fitness: The fitness of an individual (i.e., model) in a pop-
ulation is a function of the error between the output predictions
of that individual for a series of tests and the actual outputs ob-
served from the target network on the same series of tests. To
calculate the fitness of an individual in the population, the data
obtained from the “real” (black box) target system are used.
Each data point has the form

where the ’s are input forces applied to the target network and
the ’s are the output forces observed at the grounded nodes.

The input forces from a data point are applied to the indi-
vidual whose fitness is being calculated. That individual is then
brought to its static equilibrium configuration using the relax-
ation method described previously. The residual forces at the
grounded nodes are then stored as

Since the target network and the individuals have the same
dimensions and identical locations of input and output nodes,
the force outputs of a highly fit individual should match those of
the target network. The difference between actual and predicted
forces constitutes the error of the network for that data point.
The error for data point , , is given by

where is the number of output (grounded) nodes in the net-
work, is the force predicted by the model, and is the force
observed in the target system. Note that the forces are vector
quantities. Therefore, if and have equal magnitude but
different direction, the error will be nonzero. Also note that the
error contribution from each output force is normalized.

The total error for the network is a weighted contribution of
the average error and the maximum error calculated over all the
data points

The fitness is defined to be

Fitness

3) Genetic Operators: The selection method used is deter-
ministic crowding, which is one way to maintain population di-
versity [26]. The mutation operator performs point mutations
by modifying the resting length of randomly chosen links in the
network. The existing length is incremented by a number drawn
from a normal distribution with a mean of zero. A two-point
crossover operator is used; it chooses two nodes at random in
the parents and swaps all the links in the patch between those
nodes.

C. Simulating Two Alternative 3-D Tendinous Networks to
Demonstrate Sensitivity to Model Topology

To demonstrate how the choice of topology affects the trans-
mission of tendon tension, we present simulations of two al-
ternative, yet tenable, topologies of the extensor mechanism of
a generic index finger (Fig. 4). While this conjecture has been
mentioned in the literature (e.g., [27]–[29]), this is the first study
to directly and quantitatively compare alternative 3-D topolo-
gies of the extensor mechanism. The specific topology of the
Winslow’s rhombus tendon network (i.e., the number and con-
nectivity of strings that compose it) we studied is representative
of the tendon network of a generic finger dimensioned after our
finger models in [29]–[31] (Fig. 3). The input loads to the tendon



VALERO-CUEVAS et al.: BEYOND PARAMETER ESTIMATION: EXTENDING BIOMECHANICAL MODELING 1955

Fig. 3. The 3-D implementation of Winslow’s rhombus.

network are those from an extrinsic extensor muscle (EE) such
as extensor digitorum communis (EC), dorsal interosseous (DI),
and palmar interosseous (PI) muscles. The outputs of the tendon
network are the proximal and terminal slips (Fig. 3). Given that
the focus of this paper is to investigate the effect of loading on
tension propagation through a network of simulated tendons,
the following hold. 1) All elastic strings are assigned the same
nominal stiffness of 1 GPa, a realistic value from the literature
[32], with a radius of 0.5 mm. 2) The nodes defining the finger
joints are fixed in space to define the posture studied. The nodes
and rods defining the rigid phalanges have a high stiffness of 8
GPa and radii of 10, 8, 6, and 4 mm for the metacarpal, prox-
imal, middle, and distal phalanges, respectively. 3) The bony
insertions of DI and EE tendons onto the proximal phalanx are
not included because they vary across fingers. 4) The lumbrical
muscle is not included because of its small size, its insertion
varies across fingers and has its origin in the deep flexor which
is not part of the extensor mechanism. For the purposes of this
paper, we focus on a longitudinally symmetric network with one
input tendon on each side. Passive tissue exists to keep the ex-
tensor mechanism centered on the finger. To emulate the pas-
sive fascia aligning the tendon network [33], [34], the two nodes
defining the central band (shown in white in Fig. 3) are con-
strained to stay on the midline. All other nodes are free to move
in 3-D.

Fig. 4. Two alternative topologies for Winslow’s rhombus shown in the “ex-
tended” and “flexed” postures simulated. The two topologies differ in the pres-
ence or absence of a transverse band (rows in Fig. 3). The more proximal or
distal insertion of the diagonal band and lateral offshoot (columns) is a param-
eter difference.

Our chosen topologies either have or are missing the trans-
verse bands connecting the central band to each lateral band
(Fig. 3; cf. top and bottom rows in Fig. 4); and have either a
relatively proximal or distal insertion for the two cross strings
connecting those bands (left and right columns in Fig. 4, re-
spectively). The model without the transverse band is compat-
ible with Winslow’s tendinous rhombus (dating from the 17th
Century) as described by Zancolli [27], whereas the model with
the transverse band was proposed by Garcia-Elias [28] when
measuring the tensile properties of the tendinous elements of
the extensor mechanism. The more proximal or distal insertions
of the diagonal bands and lateral offshoots are varied to find
the sensitivity to these yet unknown parameters. In all cases,
Winslow’s rhombus drape and wrap over the frictionless surface
of the finger bones fixed in two functional postures with neutral
ad-abduction: the “extended” posture has 10 flexion at all joints
and the “flexed” posture has a 45 flexion at the metacarpopha-
langeal and proximal interphalangeal joints, and a 10 flexion
at the distal interphalangeal joint (Figs. 3 and 4).

To study the longitudinally symmetric behavior of the net-
work, we define the following three symmetric loading condi-
tions where there is always at least a 10-N tension at each input
tendon simulating muscle tone: i) extensor loading (100 N to EE
and 10 N to DI and PI tendons), 2) interosseous loading (10 N to
EE and 100 N to DI and PI tendons), and 3) full loading (100 N
to each tendon). The maximal simulated applied tension is 100
N, which is compatible with the maximal force generating ca-
pacity of the extrinsic extensor and interosseous muscles of the
middle finger [34]. The red solid dots on the middle and distal
phalanges are the visible portions of the insertion node onto each
bone. The simulations compute the resulting tensions in all ele-
ments when the network reach equilibrium (within 1 N residual)
as per the relaxation solver described previously.
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Fig. 5. Evolving two target planar networks. (Top left) A target network of interconnected strings in the shape of the letter “A” and (bottom left) a more complex
network inspired by Winslow’s rhombus to be evolved from their respective homogenous lattices of strings connected at the nodes (right column). The arrows
indicate sample external (input) loads at movable nodes, and the square nodes are (output) nodes fixed to ground where reactions forces are
measured.

D. Inferring a Planar Hidden Network by Searching the
Model Space

The goal of this portion of our work is to demonstrate the use
of the model inference algorithm to search the model space to
infer 2-D models of tendon networks to reproduce input/output
data. Inferring the topology and parameters for complex 3-D
networks is beyond the scope of this work. Rather, we first tackle
the problem of inferring the topology of two planar networks of
elastic strings (Fig. 5). The first has an asymmetric shape sim-
ilar to that of the letter “A” (top of Fig. 5) whose bottom two
nodes are grounded and a force is applied to only the topmost
node; the applied forces are limited to those with an upward
vertical component. The second tendon network is a symmet-
rical network inspired by Winslow’s rhombus [13], [39] where
the top two (output) nodes lie along the vertical centerline of
the network, correspond to tendon insertions into bone, and are
grounded (Fig. 3). External forces are applied to the bottom
three (input) nodes; these forces are parallel to the input tendons

in their resting configuration and their vertical components are
required to be downward. Additionally, the force magnitudes
are capped.

For the “A” target, a set of nine systematic tests is run on this
network, consisting of all permutations of applied force magni-
tudes of 0.5, 1.0, and 1.5 with angles of 45 , 90 , and 135 (the
angle is measured from the horizontal). After a test, networks
are evolved to explain that test and all previous tests. For the
network inspired by Winslow rhombus, random tests are chosen.
Since the angles of the applied external forces are always chosen
to be parallel to the input tendons, a test consists of a set of three
force magnitudes. After each randomly designed test, networks
are evolved to explain that test and all previous tests.

E. Exploration–Estimation Inference Algorithm: Coevolution
of Models and Tests

Last, we present a proof-of-concept initial demonstration
of the inference of the hidden topology using sparse, intelli-
gent testing. This approach focuses on using active learning
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Fig. 6. Effect of topology on the tension distribution through the tendinous network.

methods used successfully in other domains [35], [36], and
now used for the inference of biomechanical systems. Briefly,
estimation–exploration algorithm [14], [37] we have developed
is stochastic, inspired by ideas from evolutionary processes,

and in particular, coevolution of two antagonist coexisting
populations like predator–prey or host–parasite subecosystems.
A schematic of the estimation–exploration algorithm is shown
in Fig. 1(c). One population contains 2000 random “candidate
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Fig. 7. Effect of topology on the ratio of tensions between the proximal and terminal slips. The relative tensions in the proximal and terminal slips are the defining
factor of the possible extension torques that can be produced at the proximal and distal interphalangeal joints, and thus define finger motion and force production
capabilities.

tests” (vertical tension at the input nodes, which results in
measured reaction forces at the output nodes and locations of
the input nodes) to be applied to the target system, while we
also have five populations of “candidate models” (networks
of elastic strings with the same number of input and output
nodes, and location of output nodes; see Sections II-B–II-D).
The populations of models are evolutionarily bred by means of
variation and selection. The fitness of candidate models is their
ability to explain observed data obtained in all experiments
so far. The fitness of candidate tests is their ability to create
disagreement in the predictions among the fittest models from
each of the two populations.

The evolution of candidate models and candidate tests are the
estimation and exploration phases, respectively. Each of the two
populations of models has 60 candidate models, initially seeded
at random. The two populations of models are initially shown
the data from a first random test. Thereafter, the populations
evolve using Gaussian crossover at 95% and mutation at 5%
rates, respectively, until the populations converge (i.e., the fit-
ness of the best model in each population does not change in 150
generations). We take such local convergence as an indication
that it is necessary to introduce a new data point (test) to make
additional progress. Such new data point will be the product of
the next intelligent test, chosen by delivering 2000 random tests
to the fittest models from each of the two populations and identi-
fying the test that makes those two models disagree most. Once
chosen, the intelligent test is applied to the target system and its
resulting data becomes the next data point, in addition to all pre-
vious tests, given to the two populations of models to repeat the
evolutionary process to reach a new local convergence. Note that
after the first iteration the two populations of models are created
by combining the best model from the previous iteration with 59
new random models. The progress of the algorithm is quantified
by the objective fitness of the models, which is the maximal Eu-
clidean norm of the differences in measured reaction forces plus

differences in location of input nodes between the best models
and the target network over 100 random tests.

III. RESULTS

In contrast to prior models of the extensor mechanism where
tendon tensions are invariant linear functions of input forces, we
found—as expected—that tendon tensions are sensitive to net-
work topology, finger posture, and input muscle forces (Fig. 6).
For three loading conditions (100 N to EE and 10 N to DI and PI
tendons, 10 N to EE and 100 N to DI and PI tendons, or 100 N
to each tendon) we found that adding the third tendon changed
tendon tensions, on average, 12 14% (7 11 N) and 31
44% (8 6 N) for the extended and flexed postures, respec-
tively. Changing the insertion location of the cross strings (a
change in a parameter, rather than topology) shows that a more
distal insertion changed tendon tensions, on average, 50 91%
(11 14 N) and 52 43% (19 10 N) for the extended and
flexed postures, respectively. Note that Figs. 7 and 8 also show
how simultaneous changes in topologies and parameter values
lead to substantially different functional predictions.

Of more critical biomechanical relevance, the extension
torques the extensor mechanism can produce at the proximal
and distal phalangeal joints are also sensitive to topology. Fig. 7
shows how, for each loading condition, the different topologies
produce a wide range of relative tension (i.e., extension torques)
at the two distal joints of the fingers. The sensitivity is larger
for the flexed posture (wider ranges for the interosseous and
extensor loading conditions); and in the case of the extensor
loading condition, the different topologies lead to reversals in
the distribution of tension between the joints (ratios are both
and 1).

We evolve a network whose functional behavior and topology
resembled the “A” network of Fig. 8 and of a more complex
network in Fig. 9. With only one data point, the inference algo-
rithm is, naturally, not able to evolve a network whose topology
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Fig. 8. Top panel: evolution of an “A” network. Top left shows the best network
evolved after one test on the target network. Top right shows the best after three
tests. Bottom left shows the best after nine tests. Bottom right shows the target
network. The intensity of each tendon represents the relative tension carried by
it. Bottom Panel: maximal relative fitness of the population versus the number
of individuals evaluated for the “A” network. Markers indicate each new test
performed on the target system after the relative fitness had reached a plateau
for 50 generations (i.e., evaluations).

resembled that of the target system. However, even after only
three (Fig. 8) and ten (Fig. 9) tests on the target system, evo-
lution finds a network whose topology includes key features of
the target. Note that the likelihood of a tendon being present is
shown by the intensity of its color and the evolved network is
similar to the target network. Notice that the top right network
in Fig. 8 displays a kink on the right that is characteristic of
the target “A” when pulled up and to the right; and that after
ten tests on the target system (Fig. 9), the topology of the best
network begins to share key topological features with the target
network such as the central rhombus and connectivity among
nodes. However, the center tendon in the target system that runs
from the lower ground to the middle input node is not visible in

Fig. 9. Top panel: evolution of a complex tendon network inspired by
Winslow’s rhombus. Top left shows the best network evolved after one test on
the target network. Top right shows the best after ten tests. Bottom left shows
the best after 30 tests. Bottom right shows the target network. Bottom panel:
maximal relative fitness of the population versus the number of individuals
evaluated for the complex network. Markers indicate new tests on the target
system after the relative fitness had reached a plateau for 50 generations (i.e.,
evaluations). A large drop in fitness indicates the addition of an informative
data point.

the fully evolved network, but can be detected using intelligent
testing (see Section IV).

Figs. 8 and 9 also show the maximal fitness of the model pop-
ulation versus the number of function evaluations for each net-
work. Markers indicate points where new tests are performed on
the target system. Notice that the maximal fitness often drops at
these times because new data is made available for fitness cal-
culations. Such tests happen to be the most informative. Per-
formance is measured against the number of network simula-
tions (evaluations) that need to be carried out, as these dominate
the computational cost of out methods. The number of experi-
mental tests on the target system dominates the physical cost of
the method.

The estimation–exploration inference algorithm, which fo-
cuses on minimizing the physical cost of the method, is able to
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Fig. 10. Separability, observability, and uniqueness of network components and topologies. (a) The 1-D (b) 2-D substructures that can be equivalent under certain
parameter settings. These two equivalencies can be used to (c) transform network into (d)–(g) a series of equivalent topologies. Reverse application of these
equivalence operators can transform networks (d)–(g) into their canonical form (c).

extract a functionally equivalent and topologically similar net-
work in only 18 tests. Fig. 11 shows the results for these simu-
lations and presents a first demonstration that this method can
be statistically better than using random tests.

IV. DISCUSSION

We present critical advances towards the goal of imple-
menting an inference approach to create data-driven biome-
chanical models by simultaneously inferring both model
topology and parameter values. First, we show using a rep-
resentative 3-D model of a finger that the choice of model
topology dramatically affects model predictions. Then, we
present the sample test problem of extracting the topology of a
hidden planar network of elastic tendons, which is a first step to-
wards solving the notoriously difficult problem of modeling the
tendon network of the fingers as a 3-D deformable network of
elastic tendons [13], [29]. Specifically, we describe a first-gen-
eration computational environment (which we are currently
expanding beyond tendon and bone elements) that accounts for
a new aspect of biomechanical modeling (explicit exploration
of model topology) by using a special static solver (relaxation
method) and genetic algorithm (inference algorithm). We show
that the estimation algorithm is able to infer functionally equiv-
alent networks that resemble the hidden target network. Last,
we introduce an extension that uses the estimation–exploration
algorithm to infer the target network with sparse testing. By
coevolving populations of candidate model topologies that
explain available data and candidate tests to generate data that
makes models disagree, the estimation–exploration algorithm
shows significantly better convergence than randomly selected
tests to recover functionally equivalent representations of a
hidden planar tendon network. We conclude by discussing

Fig. 11. Statistical trend in objective error for random versus intelligent tests
(mean SE for ten runs). The estimation–exploration inference algorithm has
statistically lower objective error after only six tests ( 0.05 because SE
ranges do not overlap) and produces the best model that has a 14% error after
18 tests (see inset). The estimation–exploration inference algorithm was exe-
cuted ten times (i.e., using intelligent tests) and the mean and standard error for
the best model in each run is shown as a solid line. We also executed ten runs
using random tests, the results of which (mean and standard error) are shown as
a dashed line.

limitations, future directions, as well as model observability
and uniqueness.
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Our simulation environment is particularly well suited to sim-
ulate the large deformations in the tendon network of the fin-
gers, as well as everyday manipulation movements that involve
low masses and accelerations. To our knowledge, this is the
first computational environment that allows automatic descrip-
tions and simulation of anatomical structures that accommo-
date complex, nonlinear tendinous interconnections wrapped
over rigid links, such as those in the extensor mechanism as
a function of finger posture and tendon tensions or the tendi-
nous origin of the lumbricals [27], [28], [32], [34], [38]. This
quasi-static simulation environment based on a relaxation solver
is capable of robustly simulating populations of arbitrary, non-
linear models autonomously generated by our model inference
algorithm. More generally, it is a modeling platform that at the
moment includes simple building blocks to simulate arbitrary,
hinged, or deformable systems consisting of bones, ligaments,
tendons, skin, muscles, etc. (a sample is shown in Fig. 2). In this
simulator, the physical behavior of the systems emerges from
the properties of the building blocks, their topology, and pa-
rameter values. To date, we have used this simulator for 2-D
(this work) and 3-D tendon networks [29]. Other advantages of
this modeling environment are that joints need not be defined
by joints, but can be constructed by defining the geometry of
the articular surfaces and adding ligaments with the appropriate
origin and insertion points. Our future work will continue to ex-
tend and validate the building blocks to enable physics-based,
causal functional models of arbitrarily complex systems such
as the human hand, internal organs, plants, microorganisms, or
biological systems living in low-Reynolds numbers regimes.

The relaxation solver itself has several benefits, as follows. 1)
It is accurate, as it takes into account large angular changes at
joints. This aspect is critical for correct musculoskeletal sim-
ulations involving large deformations and angular variations.
2) A relaxation solver accommodates highly nonlinear behav-
iors, typical of biomechanical tissue (e.g., a tendon is nonlin-
early elastic in tension but sustains no load in compression) and
can handle multiple entangled chains that are common in many
biomechanical systems such as tendon networks, synovial cap-
sules, muscles with multipennate or fanned muscle fibers, etc.
3) It is robust in handling numerical singularities in the biome-
chanical model (e.g., tendon bifurcations or junctions, sudden
tendon loading/unloading) and other biomechanical model in-
stabilities. This is especially important because the biomechan-
ical models that we will be evaluating are iteratively generated
by the synthesis algorithm, not by a human, and might occasion-
ally contain local, transient singularities.

While showing that the choice of model topology that affects
behavior is not necessarily unexpected, the literature on hand
biomechanics to date has not addressed this issue. We have pre-
viously shown that the very complexity and deformability of the
tendon network of the fingers may be critical to the neural con-
trol of manipulation [29] and the present work now enables fu-
ture detailed exploration of its topology and its functional conse-
quences. As such, these results strongly motivate the systematic
search in the model space for topologies for the tendon networks
that are compatible with experimental data.

Figs. 8 and 9 demonstrate first examples of the successful in-
ference of the topology of a planar biomechanical model of a
tendon network. The computational efficiency and robustness
of our simulation environment enable us to explore the model
space by coevolving topology and parameter values of candi-
date models. For computational simplicity, our models in this
first example are planar networks of tendons that are first ap-
proximations to the functional structure of the tendon networks
of the fingers. Future experiments may also evolve the elastic
coefficients and cross-sectional areas, as well as other parame-
ters of more sophisticated elements. Our research goals include
the further development of our inference algorithm to eventually
be able to infer the topology of complex 3-D structures such
as those in Figs. 2–4. It is important to make it clear that the
applicability of the model inference algorithm is not limited to
the use of the quasi-static simulator described here, but rather
is amenable for use with any simulation engine such as those
for rigid-body dynamics or biochemical models of muscle. The
model inference algorithm only needs some simulation engine
to predict fitness of a population of models.

Our work naturally has limitations that suggest directions for
future work. First, it will be necessary to extend our work to
the inference of actual physical systems. This initial validation
of a model inference algorithm is based on the target system
being a numerical simulation, i.e., a truth-test or hidden-but-
known-system approach. This truth-test approach is our neces-
sary first step before we can apply it to inference of the structure
of actual cadaver hands by delivering known tensions and excur-
sions to tendons and measuring the forces and motions arising
at the finger (for a description of that experimental strategy, see
[39]–[41]). By making the topology itself a subject of search,
we encounter a number of fundamental questions about the ob-
servability, separability, and uniqueness of networks that will
shed new light on basic questions about biomechanical mod-
eling. Model inference based on genetic algorithms is computa-
tionally costly because increasing the population size of models
and tests (Fig. 1) can only be advantageous. In fact, for our fu-
ture work on inferring models from cadaver tissue, we envision
its application as a large-scale parallel computing network that
allows the model inference algorithm to propose a next best
test every few minutes so that convergence is reached before
the unembalmed tissue degrades. Alternatively, when applying
similar algorithms to the online inference of networks of neu-
romuscular control and learning on human subjects, or control
strategies for functional electrical stimulation, it will be even
more necessary to know the next best test in a matter of seconds.
Regarding cross-validation strategies, there are alternative op-
tions for using data (e.g., all at once to infer the model topology
and then using a second set for cross validation as in surrogate
modeling applications). However, here we present the “incre-
mental” approach that corresponds to the real-life case where
one wants to perform the fewest tests possible on the (hidden)
physical system, and by necessity use data as it becomes avail-
able. Future work will need to investigate whether and how the
inferred topology depends on the order in which the data points
are fed to the algorithm.
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Questions concerning “which model is correct” and anatom-
ical variability will be cast more specifically in future work. The
inferred models of the two networks we studied are not topolog-
ically identical to the target networks, even though they shared
key topological features and are functionally equivalent in the
sense that the reaction forces for the target and inferred systems
are numerically similar. Our model inference algorithm con-
verges to a family of functionally equivalent models that are not
identical to each other or to the target network. This means that
searching the model space can and does lead to nonunique solu-
tions, likely because having access to only the input/output pairs
of data yields an under constrained problem where the observ-
ability and separability of the details of the network are limited.
This results in the following questions. 1) Can the algorithm be
improved to yield unique solutions identical to the target model
(e.g., by adding additional reasonable and tenable constraints
such as node locations, total area or mass, or cumulative resting
length of the topology, etc.)? 2) Can model fitness or conver-
gence be modified to incorporate some aspect of topological
uniqueness? 3) Does the inability to infer the exact topology
on the basis of input/output data sets is an inherent character-
istic of tendon networks or the model space which may have
multiple local minima? Thus, our current work will continue
along the lines of the detailed exploration of observability, sepa-
rability, and uniqueness of features of tendon networks. Fig. 10
shows examples of separability, observability, and uniqueness
of network components. The issue of functional equivalence
and observability is critical to the development of this kind of
physics-based, causal models because they will be most useful
clinically when they can infer specific anatomical structures
associated with observed function (e.g., whether lengthening,
shortening, or replacing some specific tendon, muscle, ligament,
skin patch, tendon pulley, etc., will lead to a desirable func-
tional outcome). In contrast to modeling approaches such as,
say, neural networks that provide a mathematical mapping of
inputs to outputs, we prefer to propose to develop modeling ap-
proaches capable of providing biomechanical insight. Thus, we
will continue to work on an approach based on building blocks
and topological rules that are physics-based and very much em-
ulating functional anatomy.

Specifically, with respect to modeling the hand, the tools and
approaches have not changed much since the 1960s and 1970s
when An, Chao, Brand, Tubiana, and others first proposed a
biomechanical approach to this complex system. In [29], we de-
scribe how the function of tendon networks has been debated
since the time of Vesalii and DaVinci [27], [42], [43], and how
the very “complexity” of the system may be an important ex-
ample of brain-body coevolution that enhances the biomechan-
ical function of the fingers in ways not possible with “simple”
tendon paths from muscle to bone. That prior work and the
present results showing sensitivity to assumed topology of the
tendon network suggest that detailed modeling of the anatomy
of the hand and our understanding of its neuromuscular con-
trol are still in their infancy. For example, our results inferring
functionally equivalent networks to Winslow’s rhombus sug-
gests we may need to rethink whether the tendon network of

the fingers has “crossover” tendons (i.e., with the diagonal band
and lateral offshoot sliding past each other; Fig. 3). Winslow’s
anatomy book published in 1732 has no illustrations [43] (a
copy exists at Cornell University’s Koch Library Division of
Rare and Manuscript Collections). The first graphical descrip-
tions of Winslow’s rhombus were by Zancolli in 1979 [27] and
Chao and An who draw it with crossover tendons as in Fig. 3
[1]. By showing functionally equivalent networks that do not
include such crossover tendons, our results suggest future work
to establish whether tendon networks with crossover tendons
are observable, separable, or unique. Representations without
crossover tendons may be more anatomically tenable because
they prevent sliding and rubbing that may induce damage to the
tendon sheaths and lead to adhesions. In fact, a detailed dissec-
tions of the extensor mechanism shows how the graphical de-
scription in Fig. 3 is more of a functional diagram than a model
(see anatomical drawings in, for example, [27], [28], [44], and
[45]) because clear and independent crossover tendons are not
easily seen.

We conclude by showing a simple example of the estima-
tion–exploration inference algorithm to begin to address the
questions of whether it is possible to use fewer, more infor-
mative, tests to avoid unnecessary interrogations of the target
system. While many machine learning and bioinformatics
methods are data intensive, biological systems can often pro-
vide only a limited amount of data because of cost, difficulty,
time, risk, availability of samples, fragility or because the prop-
erties of the system may change over time. Thus, methods that
can perform system identification on biological systems with
sparse interrogation are necessary for certain classes of prob-
lems. This algorithm offers an online, data-sparse approach,
as an alternative to traditional batch (offline) data-intensive
bioinformatics approaches, and is thus much more suitable for
the inference of in vitro and in vivo biomechanical systems.
This concept significantly reduces the number of tests in a
number of other problem domains including inference of robot
kinematic structures, inference of gene-regulation networks,
and inference finite-state machines [14], [37]. Fig. 11 shows
that implementing the estimation–exploration algorithm is
feasible and better than using an equivalent number of random
tests. Based on these encouraging first results, we will continue
to compare this novel algorithm to other active model extraction
methods.
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