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produce distinct rehabilitative trends in
stroke survivors
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Abstract

Background: Comparing the efficacy of alternative therapeutic strategies for the rehabilitation of motor function in
chronically impaired individuals is often inconclusive. For example, a recent randomized clinical trial (RCT) compared
robot-assisted vs. conventional therapy in 77 patients who had had chronic motor impairment after a cerebrovascular
accident. While patients assigned to robotic therapy had greater improvements in the primary outcome measure
(change in score on the upper extremity section of the Fugl-Meyer assessment), the absolute difference between
therapies was small, which left the clinical relevance in question.

Methods: Here we revisit that study to test whether the multidimensional rehabilitative response of these patients can
better distinguish between treatment outcomes. We used principal components analysis to find the correlation of
changes across seven outcome measures between the start and end of 8 weeks of therapy. Permutation tests verified
the robustness of the principal components found.

Results: Each therapy in fact produces different rehabilitative trends of recovery across the clinical, functional, and
quality of life domains. A rehabilitative trend is a principal component that quantifies the correlations among changes
in outcomes with each therapy.

Conclusions: These findings challenge the traditional emphasis of RCTs on using a single primary outcome measure
to compare rehabilitative responses that are naturally multidimensional. This alternative approach to, and interpretation
of, the results of RCTs may will lead to more effective therapies targeted for the multidimensional mechanisms of
recovery.

Trial registration: ClinicalTrials.gov number NCT00719433. Registered July 17, 2008.

Background
Randomized clinical trials (RCTs) of various sizes and
complexity have sought to compare the efficacy of alter-
native therapeutic strategies for the rehabilitation of
motor function in chronically impaired individuals. But
differentiating the benefits of robot-assisted vs. conven-
tional therapies for arm function in chronic stroke survi-
vors has proven elusive because RCTs do not point to a
clear clinical preference [1–5]. Physiological details and
treatment protocols aside, we believe that a contributor

to inconclusive results in rehabilitation RCTs could be the
focus on a single primary outcome to quantify a rehabili-
tative response that is naturally multidimensional and
longitudinal—especially because it is well known that
gains in the primary outcome in chronic populations tend
to be small and differ little across therapies [1–4].
As a result of this focus on a primary outcome, ana-

lyses of changes in the available secondary outcomes are
considered to be only indirectly informative and specula-
tive. In reality, however, the secondary outcomes may
provide insight into why the primary outcomes changed
or not. In fact, the International Classification of Func-
tioning, Disability and Health (ICF) by the World Health
Organization [6] teaches us that quantifying the multiple
dimensions of body structure and function, activity and
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participation requires several outcomes. Seen from this
perspective it is difficult to define and justify a specific
selection of—and hierarchy among—primary and sec-
ondary outcomes. Thus, several rehabilitation studies
have begun to explore interactions among outcomes
[7–12]. Because one may intuit that different therap-
ies may lead to different rehabilitative trends, a sys-
tematic exploration and quantitative evaluation of this
idea should be performed. In addition, a prior study
using the ARMin III robot in a within-subject design
found that robotic therapy can elicit improvements in
arm function across different outcome measures that
are distinct from, and perhaps a supplement to, con-
ventional therapy [13]. Elaborating on this multidi-
mensional approach to rehabilitation, we now present
what to our knowledge is the first example of distinct
rehabilitative trends between robot-assisted vs. con-
ventional therapies in the context of an RCT. In par-
ticular, we contrasted robot-assisted therapy as per
the ARMin (an exoskeleton robot that allows task-
specific training in three dimensions with assistance
as needed control) vs. conventional outpatient ther-
apy. Typical conventional outpatient therapy is a het-
erogeneous combination of physical and occupational
therapies following various models of practice [14–
16]. The goal of this study is not to reproduce the re-
sults of the prior RCT, compare across typical con-
ventional outpatient therapies, nor suggest how to
program robotic therapy differently. Rather, it is to
perform a secondary analysis to test for different re-
habilitative trends in that prior study.

Methods
We tested for distinct differences between robot-assisted
vs. conventional therapies in chronically impaired stroke
survivors by retrospectively analysing changes in all the
seven motor function outcomes from our recent pro-
spective, multicentre, parallel-group randomized trial
(ClinicalTrials.gov number NCT00719433) [2]. That
RCT agreed with others by finding statistically signifi-
cant, but small, changes in the primary outcome (i.e.,
Fugl-Meyer Assessment, score, upper motor functional
part, FMA) between therapies. As in other studies of
stroke rehabilitation, that left the clinical advantage of
either therapy in question [1–4, 17].
Here we re-examine the data from that NCT00719433

study (Table 1) by using principal components analysis
(PCA) to quantify the rehabilitative trends between the
start and end of 8 weeks of therapy (Tables 2 and 3, Fig. 2
and Additional file 1). Note that the goal of this study is
not to suggest how to modify the robotic and conven-
tional therapies in that prior study. Rather, it is to per-
form a secondary analysis to explore rehabilitative trends
in that study given that all outcome measures available to
us and allow the use of PCA of all outcome measures.
The outcome measures obtained in that NCT00719433

study are listed and described in Table 1. Note that these
are variables with different units and numerical magni-
tudes. Therefore, to compare them in a way that mitigates
their numerical differences, we first transformed them by
taking the natural log of the values [18].
As shown schematically for three outcomes in Fig. 1,

PCA finds the best linear fit to the change in each of the

Table 1 Outcomes included in this study, collected in RCT NCT00719433 [2]

Outcome Link to ICF Description

FMA Body structure & function Upper extremity motor function of the Fugl-Meyer Assessment [35]

WMFTf Activity Wolf Motor Function Test function-domain. A qualitative measure of
motor performance of the affected arm in the clinical environment [27]

WMFTt Activity Wolf Motor Function Test time-domain. A quantitative measure of
performance of the affected arm in the clinical environment [27]

Mean strength Body structure & function Voluntary joint torque capability as measured by ARMin. A patient’s arm
is brought to predefined positions and the patient applies maximal,
voluntary, and isometric torques in directions of shoulder abduction,
adduction, anteversion, and retroversion, and of elbow flexion and
extension. Peak torques are added to calculate the mean strength in
Newton-meters. Patients in the conventional therapy group experienced
ARMin only during this assessment of mean strength, but this exposure
did not involve any training [2].

Grip strength Body structure & function As measured by a handheld dynamometer (Jamar, Sammons Preston
Rolyan, Bolingbrook, IL, USA).

MAL Activity Motor Activity Log. A structured interview with the patient about quality
of movement of the affected arm in the natural, home, and community
environment [36]

SIS Participation Stroke Impact Scale (version 2.0). A self-reported measure of health status.
We used the physical dimensions score from the four domains of strength,
hand function, mobility, and activities of daily living [37].
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outcomes between the start and end of each therapy.
The visualization of a hyperplane embedded in the
seven-dimensional space of seven outcomes is not
possible to show graphically, but the intuition ob-
tained in the three dimensional schematic example
carries over to higher dimensions. The PCs are a set
of vectors expressing the main correlations among
the changes in outcome measures, where the entries
in each of the vectors (known as loadings) describe
the seven-dimensional changes in outcomes that best
explain the effects of the RCT. Each of the seven

principal components (PCs) is a column vector as
shown in Tables 2 and 3.
We also tested the robustness of the rehabilitative

trends found. We did so by using a permutation test
[19] that randomly and repeatedly shuffled patients into
two groups, A and B, of size equivalent to the conven-
tional and robot-assisted therapies. That is, for each
shuffle, all subjects were randomly assigned to one of
two groups. We then repeated the PCA on each of these
shuffled groups to see how likely it is for our actual re-
sults are to appear by a chance, see Additional file 1.

Table 2 Rehabilitative trends (i.e., correlations among changes in outcomes)

Conventional Robot-assisted

Link to ICF Change in outcome 1st PC trend 2nd PC trend 1st PC trend 2nd PC trend

Body structure & function FMA 0.81 0.41 0.87 0.23

Activity WMFTf 1 −0.64 0.76 0.83

Activity WMFTt 0.76 −0.94 1 0.41

Body structure & function Mean strength 0.83 0.11 −0.64 1

Grip strength 0.59 0.13 −0.85 0.43

Activity MAL 0.53 1 −0.18 1

Participation SIS 0.81 0.39 −0.56 0.11

% Contribution 31.02 % 18.48 % 30.35 % 21.16 %

Cumulative % 49.50 % 51.51 %

Table 3 Details of all seven principal components

Metric 1st PC 2nd PC 3rd PC 4th PC 5th PC 6th PC 7th PC

Conventional therapy

FMA 0.81 0.41 −0.71 −0.05 −0.10 1.00 −0.26

WMFTf 1.00 −0.64 0.20 −0.32 −0.22 0.16 1.00

WMFTt 0.76 −0.94 −0.28 −0.28 −0.21 −0.42 −0.83

Mean strength 0.83 0.11 −0.48 1.00 0.39 −0.50 0.23

Grip strength 0.59 0.13 1.00 0.63 −0.57 0.25 −0.36

MAL 0.53 1.00 −0.15 −0.47 −0.65 −0.66 0.08

SIS 0.81 0.39 0.58 −0.47 1.00 −0.05 −0.23

% Contribution 31.02 % 18.48 % 15.93 % 11.18 % 9.20 % 8.51 % 5.67 %

Cumulative % 31.02 % 49.50 % 65.43 % 76.62 % 85.82 % 94.33 % 100.00 %

Robot-assisted therapy

FMA 0.87 0.23 0.44 −0.86 −0.60 0.44 0.58

WMFTf 0.76 0.83 0.12 0.15 1.00 0.31 0.24

WMFTt 1.00 0.41 −0.40 −0.38 −0.19 −0.50 1.00

Mean strength −0.64 1.00 −0.26 −0.36 −0.10 −0.95 0.60

Grip strength −0.85 0.43 −0.43 −0.79 0.09 1.00 −0.37

MAL −0.18 1.00 0.29 1.00 −0.58 0.41 −0.30

SIS −0.56 0.11 1.00 −0.51 0.25 −0.36 −0.60

% Contribution 30.35 % 21.16 % 15.60 % 12.97 % 8.01 % 6.66 % 5.26 %

Cumulative % 30.35 % 51.51 % 67.11 % 80.08 % 88.08 % 94.74 % 100.00 %

For each therapy we show all seven principal components (PCs) as per their loadings and percent variance explained. The 3rd to 7th PCs are included for
completeness, but we refrain from interpreting them as they each explain increasingly less variance
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Results
Table 2 and Fig. 2 describe the rehabilitative trends be-
tween the start and end of 8 weeks of therapy. These re-
habilitative trends quantify the correlations among
changes in outcomes with each therapy. They are
expressed as seven principal components (PCs) in the
form of column vectors1, Table 2. PCs are rank-ordered,
with the first explaining the most change (i.e., variance),
and the seventh the least. The entries of each PC, called
loadings, specify the details of each rehabilitative trend.
Tables 1 and 2 show the loadings and variance explained
for all seven PCs, which are also plotted in Fig. 2. The
first two PCs suffice to explain ~50 % of the variance.
The 3rd to 7th PCs each explains a decreasing amount
of variance in the results, ranging from 16 to 5 %. Thus
interpreting them becomes increasingly uncertain. There-
fore, we focus on the first two PCs and refrain from doing
so and only point out that the five remaining PCs con-
tinue to show differences between therapies—which is our
main finding.
In individuals receiving conventional therapy, the 1st

and 2nd PCs together explain 49.50 % of the total mean
effect of therapy (31.02 and 18.48 %, respectively,
Table 2). The details of the 1st most dominant trend
(i.e., the 1st PC) show that the Wolf Motor Function
Test function-domain (WMFTf, a qualitative measure of
motor performance of the affected arm in the clinical
environment) shows the biggest change, which is posi-
tively correlated with changes in FMA score (with a nor-
malized strength of correlation 0.81), and the correlation
with the other outcomes (ranging from 0.83 to 0.53).
The 2nd most dominant trend (i.e., the 2nd PC), in con-
trast, has the Motor Activity Log (MAL, a structured
interview with the patient about quality of movement of
the affected arm in the natural, home, and community

environment as the dominant element, with positive
weak to moderate correlations with FMA, mean strength
(a measure of voluntary joint torque capability), grip
strength, and the physical domain of the Stroke Impact
Scale (SIS, a combination of the four domains of
strength, hand function, mobility, and activities of daily
living of the complete SIS questionnaire), but strong
negative correlations with WMFTf and the Wolf Motor
Function Test time-domain (WMFTt, a quantitative
measure of performance of the affected arm in the clin-
ical environment).
In contrast, stroke survivors receiving robot-assisted

therapy show different 1st and 2nd dominant trends
explaining 51.51 % mean effect of therapy (30.35 and
21.16 %, respectively). In them, WMFTt shows the stron-
gest effect in the 1st, most dominant trend, which is
strongly and positively correlated with FMA and WMFTf
(0.87 and 0.76, respectively). However, these are negatively
correlated with all other outcomes. In the 2nd most dom-
inant trend, all outcomes are positively correlated, with
mean strength and MAL both sharing the most dominant
effect, but weakly correlated with FMA and SIS.
In addition, permutation tests based on data shuffling

allowed us to test the robustness of the details of the
two main rehabilitative trends shown in Fig. 2. As de-
scribed in the Additional file 1, we find that the loadings
of the 1st and 2nd PCs (i.e., the two main rehabilitative
trends) show distinct departures from the loadings seen
in the 100 shufflings into groups A and B. That is, each
of the 100 shufflings produces loadings for each PC. We
then compared the distribution of all loadings values
found for the random groups A and B to the actual
value of the loadings found for the conventional and
robot-assisted groups. As is shown in Additional file 1,
we find that of the 14 possible loading values for 1st PC

Fig. 1 Rehabilitative trends obtained from principal components analysis (PCA). Consider the schematic case of three outcomes, where the
change in each outcome with therapy is plotted for all subjects. PCA finds the best linear fit to the data using 3 perpendicular vectors: the 1st,
2nd, and 3rd principal components (PCs), labeled in descending order by variance explained. Each PC is a rehabilitative trend that quantifies the
correlations among outcomes
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(i.e., 7 loading values for each of the two groups A and
B), in only 4 cases did the actual value of the loadings
for the conventional and robot-assisted groups overlap
with the bulk of the shuffled values (within the two cen-
tral quartiles). For 2nd PC that proportion was only 6 of
14. Thus the experimental values for the loadings for the
1st and 2nd PCs are very unlikely to have arisen by
change—and thus support the notion that the rehabilita-
tive trends we detect using PCA are likely valid.
Similarly, the percentage of variance explained by the

1st and 2nd PCs of the experimental conventional and
robot-assisted therapies are unlikely to have arisen by
chance. We say this because a similar permutation tests
shown in Additional file 1 shows that the actual values
of variance explained found for the conventional and
robot-assisted groups is not contained within the bulk of

the shuffled values. Moreover, the fact that the variance
explained by the 1st PC of the actual data was higher
than for the shuffled values, and vice versa for the 2nd
PC, indicates that the experimental data have more
“structure” than the shuffled data. By more structure we
mean a stronger departure from randomness because
the percent of variance explained by the 1st and 2nd
PCs are more dissimilar than in the shuffled data.
These acceptable heuristic nonparametric interpreta-
tions strongly suggest the rehabilitative trends are not
random, and differ between the robot-assisted and
conventional therapies. Apropos the robustness of our
results, an often-mentioned advantage of robotic ther-
apy is that it can better standardize therapeutic deliv-
ery and dosage, which is harder to accomplish in
multi-center, multi-therapist delivery of conventional
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therapy. However, the robustness of our results as tested
by the random shuffling of patients into two groups (see
Additional file 1), shows that any variability introduced by
differences in conventional therapy across centers and
therapist did not wash out the difference in rehabilitative
trends between the two therapies.
Another more geometrically intuitive measure of the

uniqueness of each rehabilitative trend is the direction
of its PC vector in 7-dimensional space. As show in
Fig. 1, each rehabilitative trend is a PC vector in the 7-
dimensional space of changes in outcomes. The similar-
ity between any two vectors in that space is found by the
dot product of their unit vectors. This produces a value
between 1 (parallel or identical) and 0 (perpendicular or
most dissimilar), which corresponds to included angles
of 0° and 90°, respectively. As shown in the Additional
file 1, for each of the random shuffling of patients into
groups A or B, we dotted the 1st and 2nd PCs with the
1st and 2nd PCs from the actual experimental assign-
ment of patients. We find the experimental 1st and 2nd
PCs are on average at least 40° away from their respect-
ive PCs in the shuffled data. Therefore, the PC vectors
from the real data are not similar to the vectors arising
from a random grouping of patients.

Discussion
We interpret these results as demonstrating that robot-
assisted and conventional therapies each produce differ-
ent rehabilitative trends. To begin with, in robot-assisted
therapy we see that improvements of motor function in
the clinical environment (FMA, the a priori primary out-
come of this study) can occur without concomitant im-
provements of function in the natural environment (i.e.,
MAL and SIS, the 1st PC of robot-assisted therapy).
Conversely, functional improvements in the natural en-
vironment (MAL) can occur without improvements in
motor function in the clinical environment (2nd PC of
both therapies). Even if one is tempted to infer that the
rank order of the 1st and 2nd trends is simply reversed
across therapies (i.e., we see all positive loadings in the
1st PC of the conventional, and the 2nd PC of the
robot-assisted therapies), we still see sign differences in
the loadings across PCs, further indicating they are dif-
ferent. While future work is necessary to establish how
robust these trends remain in the long-term, these re-
sults already allow us to make our two main claims: the
numerical robustness of different rehabilitative trends in
the short-term, and that that using a single primary out-
come as the sole criterion for clinical relevance fails—at
the very least—to consider the multi-dimensional nature
of short-term recovery.
The limitations of PCA (see below) and the heterogen-

eity of conventional therapy in this study are a limitation
that, nevertheless, do not challenge our result that

robot-assisted and conventional therapies each produce
different rehabilitative trends. In contrast to conven-
tional therapy, robotic therapy can—in principle—better
standardize therapeutic delivery across patients and cen-
tres. This is harder to accomplish in multi-center, multi-
therapist delivery of conventional therapy. However, the
robustness of our results as tested by the random shuf-
fling of patients into two groups (see Additional file 1),
shows that the unavoidable variability introduced by,
say, measurement error, inter-subject differences, or dif-
ferences in conventional therapy across centres did not
wash out the difference in rehabilitative trends between
the conventional and robot-assisted therapies.
Before discussing the results in detail, there are several

methodological issues to consider given that interpreting
PCA requires a certain degree of analytical nuance. As
with any dimensionality-reduction technique [18], one
must be careful not to over-interpret the results of PCA.
We emphasize that our interpretation of the PCA result-
s—and their robustness to data shuffling—pertains only
to the demonstration that robot-assisted and conven-
tional therapies each produce different rehabilitative
trends. Going beyond this to evaluate the number of
PCs to consider, and to interpret their individual load-
ings, requires care. As to the first issue, PCs are defined
and listed in order of descending importance (i.e., per-
cent of variance explained); and determining how many
PCs to consider depends on the nature of the question.
If one is interested in the number of PCs necessary to
provide an equivalent—but lower dimensional or more
compact—representation of the data, researchers in the
field of motor control usually use as many PCs as neces-
sary to explain 60 to 80 % of the variance in the data
[18, 20]. However, our goal here is simply to demon-
strate that the dominant trends (i.e., PCs that suffice to
account for 50 % of the variance) are distinct across the
two rehabilitation groups. Given that we are not making
an argument about the amount of dimensionality reduc-
tion, the first two PCs suffice to establish differences in
the dominant trends. The 3rd to 7th PCs each naturally
explains an additional and decreasing amount of vari-
ance in the results, ranging from 16 to 5 %. But inter-
preting them becomes increasingly unclear, and they are
not necessary or useful to establish differences in the
dominant rehabilitative trends. Although we refrain from
discussing them in detail, the supplemental material fur-
ther show that the five remaining PCs continue to show
differences between therapies—which reinforces our
main finding.
As to the second issue, interpreting the loadings of

each PC must be done carefully. That is, the PCs are or-
thogonal basis vectors that are equivalent to the semi-
principal axes of an ellipsoid centered on the centroid of
the data cloud (Fig. 1). Therefore, by the linear nature of
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PCA, PCs are orthogonal to each other and their load-
ings contain positive and negative values. This is a well-
known drawback of PCA when applied to data where
negative values or correlations do not make much sense.
These cases include studies of neuron firing rates or
muscle activations that are presumably always positive
[21, 22], or as in this study where positive improvements
with therapy are presumably expected. In this our first
multi-dimensional comparison of rehabilitation strat-
egies, we opted to use PCA (rather than other tech-
niques like nonnegative matrix factorization [21])
because we did not want to make rigid positivity as-
sumptions; and because PCA is a straightforward linear
technique well-suited to a first attempt to ask whether
robot-assisted and conventional therapies each produce
different rehabilitative trends. Our main result does not
depend on the details of the loadings or the orthogonal-
ity of the PCs. Thus our interpretation of the loadings is
preliminary and serves mostly to guide future work; and
negative loadings do not necessarily mean that some
outcomes decrease as others increase—but rather that
their 7-dimensional covariance is best described by a 7-
dimensional ellipsoid with those semi-principal axes. Fu-
ture studies could and should explore these results with
other linear and nonlinear techniques.
What can be the reasons for—and clinical conse-

quences of—these different rehabilitative trends? These
trends could be influenced, at least in part, by differ-
ences in expectations on the part of the patients and
therapists (including enthusiasm for novel devices and
therapies, or higher affinity for human interaction), and
by how these different expectations translate from activ-
ities in the clinical environment to activities in their nat-
ural environment. Additional work is needed to determine
how clinically- and personally-significant these differences
in trends are in the short- and long-terms, and how these
multidimensional changes inform the selection, design,
implementation and evaluation of each therapy.
We propose that these trends are in fact the result of

the nature—and intended and unintended consequence-
s—of each treatment protocol. Therapy sessions necessar-
ily involve prioritization of activities due to considerations
of rehabilitation philosophy and goals, time, cost, cognitive
state, fatigue, etc. Of great interest is the fact that both
therapies produce trends that include negative correla-
tions among outcomes, which suggest the possibility of
trade-offs in recovery across them. For example, conven-
tional therapy includes strengthening exercises where the
therapists resist the arm and encourages finger function.
This may explain the high and medium correlation of
changes in mean strength and grip strength to changes in
clinical tests with (WMFTf and FMA in their 1st PC). In
contrast, the robot-assisted therapy encouraged functional
involvement of the limb in every day tasks, but did not

emphasize limb strength. As commented recently [23],
the antigravity support to encourage performance of simu-
lated activities of daily living in the robot-assisted therapy
(a personally stimulating goal) may have prevented
strength increase in the paretic arm muscles (best pro-
moted by rote strengthening exercises). This may explain
the negative correlations between strength and clinical
tests (FMA, WMFTf and WMFTt in their 1st PC). The
trade-offs of each therapy may not only be responsible for
differences in trends, but may also lead to different impli-
cit and explicit expectations on the part of the therapist
and patient. Likewise, the continued personal contact with
an empathic clinician during conventional therapy may
explain the consistently positive correlation of subjective
quality of life outcomes (the two questionnaires MAL and
SIS) with motor function (FMA in both the 1st and 2nd
PCs of conventional therapy). In contrast, the robot-
assisted therapy displays a potentially more objective, and
less optimistic, correlation among motor function (FMA)
and transfer to the natural environment (MAL and SIS).
Such a dichotomy has been reported previously [24, 25].
Even so, the transfer of skills to daily life remains unclear
because even within each of the therapies MAL and SIS
are not consistently correlated with each other. Recent
work shows that without the ‘transfer package,’ even the
benefits of intense practice does not persist and transfer
well to the natural environment [26].
Interestingly, changes in the primary outcome (FMA

score) were the dominant effect only in one case: the
6th PC of patients receiving conventional therapy that
explained only 8.51 % of the therapeutic effect (see
Additional file 1). Changes in the Wolf Motor Function
Test were often dominant in both robot-assisted and
conventional therapies (i.e., one of its elements was the
dominant factor in the 1st PC of both therapies).
Therefore, one interpretation is that changes in Wolf
Motor Function Test could be a more sensitive out-
come than FMA, as has been proposed in [27, 28], at
least in the mild to moderately impaired patients. Alterna-
tively, it may also mean that the gains in Wolf Motor Func-
tion Test were more variable than the gains in other
scores—and thus not necessarily a more sensitive outcome.
These results call for the development and evaluation

of novel RCTs that leverage treatment protocols to ex-
ploit the different mechanisms of each rehabilitative
trend. In spite of their strong technological and physio-
logical foundations, previous rehabilitation RCTs empha-
sizing a single outcome implicitly assume a relatively
narrow perspective to physical activity and its restor-
ation. This is perhaps necessary to make them statisti-
cally rigorous and practical given the available resources,
the robot-assisted implementation (e.g., automated re-
peated task practice), or the specific training and limita-
tions of therapists. Thus there are often good reasons to
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select and declare a single primary outcome a priori
(e.g., definition of sample size, comparison of studies)
and this is even reflected in the “Statistical Principles for
Clinical Trials” [29]. In each case, therapeutic choices
and RCT designs (including the choice of the primary
outcome measure) are necessarily the embodiment of a
particular therapeutic philosophy, value system, and ap-
proach given the resources and skills available. The spe-
cific origins and perspectives of each therapy define the
therapeutic focus in practice, but therapy must necessarily
(explicitly and implicitly) affect multiple dimensions of
body structure and function, activity and participation as
per the ICF, Table 2. Our goal is not to replace current
RCT philosophy, but rather to complement it using the
additional information available in the multidimensional
nature of function and recovery. This view complements
the choice of a primary outcome measure (which remains
a point of contention when comparing RCTs) by empha-
sizing that there is additional information in the multidi-
mensional nature of function and recovery.
It is encouraging, therefore, that in some fields

RCTs advocate and report the use of multiple patient-
centered outcomes [30, 31]; and promising that we
were able to identify different rehabilitative trends.
This agrees with others who suggest that recovery
may depend on processes that affect multiple interre-
lated abilities simultaneously, occurring at both global
and task-specific levels [13, 32]. Therefore, our identi-
fication of distinct rehabilitative trends is likely not
an isolated occurrence limited to the therapies we
compared in this study. Rather, we propose that the
choices inherent to any therapeutic approach will nat-
urally produce a particular rehabilitative trend.
How should we leverage these rehabilitative trends to

improve therapeutic outcomes? A single primary out-
come measure has the clear advantage of lending itself
to uni-dimensional power analysis of clinically meaning-
ful changes. In fact, the dramatic drop in statistical
power inherent to multi-dimensional analyses may be
one of the forces driving the community’s preference for
a single primary outcome. A single primary outcome
measure may be the only statistically feasible means to
design RCTs with a realistic number of subjects and
cost. From this perspective, PCA appears to be most
useful for retrospective or exploratory analyses, as it is
less clear how it can be used at the outset during the de-
sign of an RCT. But this multidimensional perspective,
even if retrospective and at odds with today’s univariate
statistical formalism, can be made useful in subsequent
studies or RCTs by guiding the programming of the ro-
botic therapy, modifying the emphasis in the traditional
therapy, and evaluating the relevance of the results to
goals of the ICF’s. For example, our results have already
emphasized the need to modify the robotic protocol to

promote finger strength, and provided valuable infor-
mation and motivation to compare and contrast the
Fugl-Meyer and Wolf Motor Function tests in the con-
text of other outcome measures. It also confronts us to
understand the relationship between the worthwhile
goals of the ICF, vs. the real-world limitations of indi-
vidual outcome measures as reported recently [33, 34].
Moreover, this multidimensional approach to rehabili-
tative trends enables and complements the develop-
ment and testing of multi-variable models of plasticity
and motor learning in the context of the emerging field
of computational neurorehabilitation [24].
While this work addresses a relevant problem in re-

habilitation trials by using a novel retrospective analysis
of all outcome measures, it is important to highlight its
potential clinical utility going forward. Given that PCA
is such a common and accessible analysis tool, we
propose that investigators could revisit their databases of
outcomes (which rarely include solely the primary out-
come). A retrospective analysis as presented here may
allow the extraction of additional information from in
the multidimensional response to therapeutic interven-
tion and functional recovery. That is, PCA should be
used retrospectively to understand how the primary and
secondary outcomes interact, and to set up future trials
and mechanistic questions about how therapeutic inter-
ventions—robotic or not—impact outcomes. Perhaps es-
pecially in negative trials to understand why there were
no differences in the primary outcome. In addition, fu-
ture directions could include finding predictors of re-
habilitative trends based on the initial presentation of
the patient along one or multiple outcomes. Similarly,
whether and how such presentation affects the nature of
the rehabilitative trends is a question that is enabled by
this approach. However, the scope of this first paper is
limited to presenting the existence of such distinct
multi-dimensional rehabilitative trends.
The concept of rehabilitative trends has important im-

plications to the basic science and implementation of ef-
fective neuro-rehabilitative therapies. On the one hand,
it enables the study of physiological and social psycho-
logical mechanisms that produce such interactions
among outcomes. On the other, it encourages the appli-
cation of this broader perspective to align the trade-offs
and strengths of both robot-assisted and conventional
therapies with the specific rehabilitative trends to meet
the specific goals of the patient. Future RCTs should
focus on what these distinct trends really mean and how
one could use that information to shape the specific
therapy for each individual patient.

Conclusions
Our results demonstrate that robot-assisted and conven-
tional therapies each produce different rehabilitative
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trends of recovery across the clinical, functional, and
quality of life domains. A rehabilitative trend is defined
as correlations among changes in outcomes with each
therapy. These findings challenge the traditional em-
phasis of RCTs on using a single primary outcome meas-
ure to quantify and compare rehabilitative responses
that are naturally multidimensional. This alternative ap-
proach to, and interpretation of, the results of RCTs may
will lead to more effective therapies targeted for the
multidimensional mechanisms of recovery.

Endnote
1There are seven PCs because PCA is based on the co-

variance matrix among the seven outcomes, which has
seven rows and columns.

Additional file

Additional file 1: This supplemental material assess the robustness of
the principal components analysisresults in the main text. (DOCX 889 kb)
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We	used	principal	components	analysis	(PCA)	to	obtain	the	rehabilitative	trends	between	10	

the	start	and	end	of	eight	weeks	of	therapy.	Using	the	change	in	each	of	the	outcomes	between	the	

start	 and	 end	 of	 each	 therapy	 (Table	 1	 of	 the	manuscript),	 PCA	 finds	 the	 best	 linear	 fit	 to	 the	

data—shown	 in	 Figure	 1	 of	 the	 manuscript	 using	 a	 schematic	 in	 three	 dimensions.	 The	

visualization	of	a	hyperplane	embedded	in	seven	dimensions	is	not	possible	to	show	graphically,	

but	 the	 intuition	 obtained	 in	 the	 three	 dimensional	 schematic	 example	 carries	 over	 to	 higher	15	

dimensions.	The	PCs	are	the	vectors	of	correlations	that	describe	the	seven	dimensional	changes	

in	 outcomes	 that	 best	 explain	 the	 results	 of	 the	 randomized	 clinical	 trial.	 Each	 of	 the	 seven	

principal	components	(PCs)	is	a	column	vector	as	shown	in	Tables	1	&	2	of	the	manuscript.	

	

Each	 PC	 represents	 a	 rehabilitative	 trend	 as	 it	 quantifies	 how	 the	 correlations	 among	20	

changes	in	outcomes	explain	their	total	change	(i.e.,	variance)	with	therapy.	PCs	are	rank-ordered,	

with	the	first	explaining	the	most	variance,	and	the	seventh	the	least.	The	entries	of	each	PC,	called	

loadings,	 specify	 the	 details	 of	 each	 rehabilitative	 trend.	 Tables	 1	 &	 2	 show	 the	 loadings	 and	

variance	 explained	 for	 all	 seven	 PCs.	 The	manuscript	 only	 discusses	 the	 first	 two	 PCs	 in	 detail	

because	they	suffice	to	explain	~50%	of	the	variance.	The	3rd	to	7th	PCs	each	explains	a	decreasing	25	

amount	 of	 variance	 in	 the	 results,	 ranging	 from	 16%	 to	 5%.	 Thus	 interpreting	 them	 becomes	

increasingly	 unclear.	 Therefore,	 we	 refrain	 from	 doing	 so	 and	 only	 point	 out	 that	 the	 five	

remaining	PCs	continue	to	show	differences	between	therapies—which	is	our	main	finding.		

	

Our	results	further	show	that	the	1st	and	2nd	rehabilitative	trends	are	robust	because	they	30	

are	 unlikely	 to	 appear	 by	 chance.	We	 did	 so	 by	 using	 a	 permutation	 test	 1	 that	 randomly	 and	



	 2	

repeatedly	shuffled	patients	into	two	groups,	A	and	B,	of	size	equivalent	to	the	conventional	and	

robot-assisted	therapies.	That	is,	we	performed	100	iterations	of	our	PCA	analysis	where,	for	each	

shuffling,	we	 assigned	 patients	 to	 one	 of	 two	 groups	 at	 random.	We	 found	 a	 low	probability	 of	

replicating	 the	 actual	 1st	 and	2nd	 PCs	 for	 each	 therapy.	As	 show	 in	 Figure	 S1,	 the	percentage	 of	

variance	explained	by	the	1st	and	2nd	PC	of	the	conventional	and	robot-assisted	therapies	has	a	low	5	

probability	of	appearing	by	chance.	The	variance	explained	(asterisks)	of	the	actual	therapies	lie	

outside	of	the	central	quartiles	of	the	shuffled	groups	A	and	B,	and	thus	occur	<75%	of	the	time	in	

the	shuffled	data.	Moreover,	there	is	a	stronger	tendency	towards	a	non-uniform	structure	in	the	

experimental	groups	 than	 in	 the	shuffled	groups.	This	 is	evidenced	by	 the	 fact	 that	 the	variance	

explained	by	the	actual	1st	PCs	is	higher	than	in	the	shuffled	groups,	and	vice	versa	for	the	2nd	PCs.	10	

By	 comparison,	 therapies	 with	 similar	 effects	 would	 lead	 to	 a	 more	 uniform	 distributions	 of	

variance	explained	across	all	PCs.	That	is,	the	distribution	of	variance	in	the	experimental	groups	

exhibits	more—not	less—structure	that	is	expected	to	occur	by	chance.	

	

	

	
Figure	 S1.	Box	 plots	 of	 variance	 explained	 by	 all	 seven	 PCs	 after	 patients	 are	 randomly	
shuffled	100	 times	 in	 to	groups	A	and	B.	Note	 the	actual	 experimental	 values	of	 variance	
explained	by	the	1st	and	2nd	PCs	(asterisks)	do	not	lie	within	the	two	central	quartiles,	and	
thus	 have	 a	 low	probability	 of	 appearing	 by	 chance.	 The	 3rd	 to	 7th	 PCs	 are	 included	 for	
completeness,	but	we	refrain	from	interpreting	them	as	they	each	explain	increasingly	less	
variance.	
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	 In	 addition,	 data	 shuffling	 allowed	 us	 to	 test	 the	 robustness	 of	 the	 details	 of	 each	

rehabilitative	 trend,	 which	 is	 given	 by	 the	 loadings	 of	 each	 PC	 as	 shown	 in	 Figure	 1	 of	 the	

Manuscript.	 Figure	 S2	 now	 shows	 that	 the	 loadings	 of	 the	 1st	 and	 2nd	 PCs	 (i.e.,	 the	 two	 main	

rehabilitative	trends)	show	distinct	departures	from	the	 loadings	seen	in	the	100	shufflings	 into	

groups	 A	 and	 B.	 Shuffling	 data	 repeatedly	 would	 naturally	 tend	 to	 produce	 loadings	 that	 are	5	

similar	across	both	groups	A	and	B,	which	can	be	seen	by	the	clear	overlap	of	box	plots	in	Figure	

S2.	 However,	 the	 actual	 rehabilitative	 trends	 we	 report	 show	 clear	 departures	 from	 this	

uniformity.	

	

	 Lastly,	 a	 more	 quantitative	 and	 intuitive	 measure	 of	 differences	 between	 seven-10	

dimensional	rehabilitative	trends	in	the	real	data	compared	to	those	in	the	shuffled	groups	is	the	

angle	between	 their	PC	vectors.	Each	rehabilitative	 trend	 is	a	PC	vector	 in	7-dimensional	 space,	

and	 the	 similarity	 between	 two	 vectors	 is	 found	 by	 the	 dot	 product	 of	 their	 unit	 vectors.	 This	

produces	a	value	between	1	(parallel	or	identical)	and	0	(perpendicular	or	most	dissimilar),	which	

intuitively	 corresponds	 to	 included	 angles	 of	 0°	 and	 90°,	 respectively.	 	 For	 each	 of	 the	 random	15	

	
Figure	S2.	 The	 loadings	of	 the	 two	main	 rehabilitative	 trends	 of	 the	 conventional	 and	 robot-
assisted	 therapies	 show	distinct	departures	 from	 those	of	 a	 random	shuffling	of	patients	 into	
groups	A	and	B.	Note	that	few	of	the	actual	experimental	loading	values	lie	close	to	the	median	
or	in	the	two	central	quartiles	of	the	shuffled	data.	
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assignments	of	patients	into	groups	A	or	B,	we	dotted	their	1st	and	2nd	PCs	with	the	actual	1st	and	

2nd	PCs	from	the	real	assignment	of	patients.	Figure	S3	shows	that	the	actual	experimental	1st	and	

2nd	PCs	are	always	far	from	having	a	zero	angle	with	their	respective	PCs	in	the	shuffled	data	(in	

general	>40°	except	for	the	1st	PC	for	traditional	therapy).	Therefore,	the	PC	vectors	from	the	real	

data	are	not	similar	 to	 the	vectors	arising	 from	a	random	grouping	of	patients.	 	Taken	together,	5	

these	analyses	strongly	support	our	interpretation	that	the	experimental	rehabilitative	trends	we	

report	are	robust,	and	that	each	of	the	therapies	produces	distinct	rehabilitative	trends.	

	

References	
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Figure	S3.	The	included	angle	(left	scale)	between	the	actual	experimental	PCs	and	each	of	their	
respective	PC	in	the	shuffled	data	quantify	their	degree	of	similarity	(right	scale).	We	find	that	
the	 main	 rehabilitative	 trends,	 the	 1st	 and	 2nd	 PCs,	 of	 the	 conventional	 and	 robot-assisted	
therapies	 show	 large	 angles	 (a	median	 of	~50%	 similarity	 for	 three	 out	of	 four	 cases,	~80%	
similarity	 for	 the	1st	PC	of	conventional	 therapy)	 from	those	of	a	random	shuffling	of	patients	
into	groups	A	and	B.	
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