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Abstract—Computational models of the neuromuscular system
hold the potential to allow us to reach a deeper understanding
of neuromuscular function and clinical rehabilitation by comple-
menting experimentation. By serving as a means to distill and ex-
plore specific hypotheses, computational models emerge from prior
experimental data and motivate future experimental work. Here
we review computational tools used to understand neuromuscular
function including musculoskeletal modeling, machine learning,
control theory, and statistical model analysis. We conclude that
these tools, when used in combination, have the potential to fur-
ther our understanding of neuromuscular function by serving as
a rigorous means to test scientific hypotheses in ways that comple-
ment and leverage experimental data.

Index Terms—Biomechanics, computational methods, modeling,
neuromuscular control.

I. INTRODUCTION:
WHY IS NEUROMUSCULAR MODELING SO DIFFICULT?

F OR the purposes of this review, we define computational
models of neuromuscular function to be algorithmic repre-

sentations of the coupling among three elements: the physics of
the world and skeletal anatomy, the physiological mechanisms
that produce muscle force, and the neural processes that issue
commands to muscles based on sensory information, intention,
and a control law. Some of the difficulties and challenges of neu-
romuscular modeling arise from differences in the engineering
approach to modeling versus the scientific approach to hypoth-
esis testing. From the engineering perspective, computational
modeling is a proven tool because we are able to use modeling
to design and build very complex systems. For example, air-
liners, skyscrapers, and microprocessors are three examples of
systems that are almost entirely developed using computational
modeling. The obvious extension of these successes is to expect
neuromuscular modeling to have already yielded deeper under-
standing of brain–body interactions in vertebrates, and revolu-
tionized rehabilitation medicine.

To explain why this is not a reasonable extrapolation, we
point out that engineers tend to apply an inductive approach and
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build models from the bottom-up, where the constitutive parts
are computational implementations of laws of physics and me-
chanics known to be valid for a particular regime (e.g., turbulent
versus laminar flow, continuum versus rigid body mechanics,
etc.) that we understand well, or have at least been validated
against experimental data in those regimes. The behavior of the
model that emerges from the interactions among constitutive el-
ements is carefully compared against the engineers’ intuition
and further experimental data before it is accepted as valid.

Neuromuscular modeling, on the other hand, tends to be
used for scientific inquiry via a deductive approach to proceed
from observed behavior in a particular regime that is measured
accurately (e.g., gait, flight, manipulation), to building models
that are computational implementations of hypotheses about
the constitutive parts and the overall behavior. This deductive
top-to-bottom approach makes the emergent behavior of the
model difficult to compare against intuition, or even other
models, because the differences that invariably emerge between
model predictions and experimental data can be attributed to
a variety of sources ranging from the validity of the scientific
hypothesis being tested, to the choice of each constitutive
element, or even their numerical implementation. Even when
models are carefully built from the bottom-up, the modeler is
confronted with choices that often affect the predictions of the
model in counterintuitive ways. Some examples of choices are
the types of models for joints (e.g., a hinge versus articulating
surfaces), muscles (e.g., Hill-type versus populations of motor
units), controllers (e.g., proportional-derivative versus linear
quadratic regulator), and solution methods (e.g., forward versus
inverse).

Therefore, we have structured this review in a way that first
presents a critical overview of different modeling choices, and
then describes methods by which the set of feasible predictions
of a neuromuscular model can be used to test hypotheses.

II. OVERVIEW OF MUSCULOSKELETAL MODELING

Computational models of the musculoskeletal system (i.e.,
the physics of the world and skeletal anatomy, and the phys-
iological mechanisms that produce muscle force) are a neces-
sary foundation when building models of neuromuscular func-
tion. Musculoskeletal models have been widely used to charac-
terize human movement and understand how muscles can be co-
ordinated to produce function. While experimental data are the
most reliable source of information about a system, computer
models can give access to parameters that cannot be measured
experimentally and give insight on how these internal variables
change during the performance of the task. Such models can
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Fig. 1. Simple model of the human arm consisting of two planar joints and six
muscles.

be used to simulate neuromuscular abnormalities, identify in-
jury mechanisms, and plan rehabilitation [1]–[3]. They can be
used by surgeons to simulate tendon transfer [4]–[6] and joint
replacement surgeries [7], to analyze the energetics of human
movement [8], athletic performance [9], design prosthetics and
biomedical implants [10], and functional electric stimulation
controllers [11]–[13].

Naturally, the type, complexity, and physiological accuracy
of the models vary depending on the purpose of the study. Ex-
tremely simple models that are not physiologically realistic can
and do give insight into biological function (e.g., [14]). On the
other hand, more complex models that describe the physiology
closely might be necessary to explain some other phenomenon
of interest [15]. Most models used in understanding neuromus-
cular function lie in-between, with a combination of physio-
logical reality and modeling simplicity. While several papers
[16]–[23] and books [24]–[26] discuss the importance of mus-
culoskeletal models and how to build them, we will give a brief
overview of the necessary steps and discuss some commonly
performed analyses and limitations using these models. We will
illustrate the procedure for building a musculoskeletal model
by considering the example of the human arm consisting of the
forearm and upper arm linked at the elbow joint as shown in
Fig. 1.

A. Computational Environments

The motivation and advantage of graphical/computational
packages like SIMM (Motion Analysis Corporation), Any-
Body (AnyBody Technology), MSMS, etc. [27]–[29], is to
build graphical representations of musculoskeletal systems, and
translate them into code that is readable by multibody dynamics
computational packages like SDFast (PTC), Autolev (Online
Dynamics Inc.), ADAMS (MSC Software Corp.), MATLAB
(Mathworks Inc.), etc., or use their own dynamics solvers.
These packages allow users to define musculoskeletal models,
calculate moment arms and musculotendon lengths, etc.

This engineering approach dates back to the use of computer-
aided design tools and finite-element analysis packages to study
bone structure and function in the 1960s, which grew to include
rigid body dynamics simulators in the mid 1980s like ADAMS
and Autolev. Before the advent of these programming environ-
ments (as in the case of computer-aided design), engineers had
to generate their own equations of motion or Newtonian anal-
ysis by hand, and write their own code to solve the system for
the purpose of interest. Available packages for musculoskeletal
modeling have now empowered researchers without training in

engineering mechanics to assemble and simulate complex non-
linear dynamical systems. The risk, however, is that the lack
of engineering intuition about how complex dynamical systems
behave can lead the user to accept results that one otherwise
would not. In addition, to our knowledge, multibody dynamics
computational packages have not been cross-validated against
each other, or a common standard, to the extent that finite-el-
ements analysis code has [30] and the simulation of nonlinear
dynamical systems remains an area of study with improved in-
tegrators and collision algorithms developed every year. An ex-
ercise the user can do is to simulate the same planar double or
triple pendulum (i.e., a limb) in different multibody dynamics
computational packages and compare results after a few seconds
of simulation. The differences are attributable to the nuances of
the computational algorithms used, which are often beyond the
view and control of the user. Whether these shortcomings in
dynamical simulators affect the results of the investigation can
only be answered by the user and reviewers on a case-by-case
basis, and experts can also disagree on computational results in
the mainstream of research like gait analysis [31]–[33].

B. Dimensionality and Redundancy

The first decision to be made when assembling a muscu-
loskeletal model is to define dimensionality of the muscu-
loskeletal model (i.e., number of kinematic degrees-of-freedom
and the number of muscles acting on them). If the number of
muscles exceeds the minimal number required to control a set
of kinematic degrees-of-freedom, the musculoskeletal model
will be redundant for some submaximal tasks. The validity and
utility of the model to the research question will be affected
by the approach taken to address muscle redundancy. Most
musculoskeletal models have a lower dimensionality than
the actual system they are simulating because it simplifies
the mathematical implementation and analysis, or because a
low-dimensional model is thought sufficient to simulate the
task being analyzed. Kinematic dimensionality is often reduced
to limit motion to a plane when simulating arm motion at the
level of the shoulder [34]–[36], when simulating fingers flexing
and extending [37], or when simulating leg movements during
gait [38]. Similarly, the number of independently controlled
muscles is often reduced [39] for simplicity, or even made
equal to the number of kinematic degrees-of-freedom to avoid
muscle redundancy [40]. While reducing the dimensionality of
a model can be valid in many occasions, one needs to be careful
to ensure it is capable of replicating the function being studied.
For example, an inappropriate kinematic model can lead to er-
roneous predictions [41], [42], or reducing a set of muscles too
severely may not be sufficiently realistic for clinical purposes.

A subtle but equally important risk is that of assembling a
kinematic model with a given number of degrees-of-freedom,
but then not considering the full kinematic output. For example,
a three-joint planar linkage system to simulate a leg or a finger
has three kinematic degrees-of-freedom at the input, and also
three kinematic degrees-of-freedom at the output: the and
location of the endpoint plus the orientation of the third link. As
a rule, the number of rotational degrees-of-freedom (i.e., joint
angles) maps into as many kinematic degrees-of-freedom at the
endpoint [43]. Thus, for example, studying muscle coordination
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to study endpoint location without considering the orientation
of the terminal link can lead to variable results. As we have
described in the literature [44], [45], the geometric model and
Jacobian of the linkage system need to account for all input and
output kinematic degrees-of-freedom to properly represent the
mapping from muscle actions to limb kinematics and kinetics.

C. Skeletal Mechanics

In neuromuscular function studies, skeletal segments are gen-
erally modeled as rigid links connected to one another by me-
chanical pin joints with orthogonal axes of rotation. These as-
sumptions are tenable in most cases, but their validity may de-
pend on the purpose of the model. Some joints like the thumb
carpometacarpal joint, the ankle and shoulder joints are com-
plex and their rotational axes are not necessarily perpendicular
[46]–[48], or necessarily consistent across subjects [46], [49],
[50]. Assuming simplified models may fail to capture the real
kinematics of these systems [51]. While passive moments due
to ligaments and other soft tissues of the joint are often ne-
glected, at times they are modeled as exponential functions of
joint angles [52], [53] at the extremes of range of motion to pas-
sively prevent hyper-rotation. In other cases, passive moments
well within the range of motion could be particularly important
in the case of systems like the fingers [54], [55] where skin, fat,
and hydrostatic pressure tend to resist flexion.

Modeling of contact mechanics could be important for joints
like the knee and the ankle where there is significant loading on
the articulating surfaces of the bones, and where muscle force
predictions could be affected by contact pressure. Joint me-
chanics are also of interest for the design of prostheses, where
the knee or hip could be simulated as contact surfaces rolling
and sliding with respect to each other [56]–[58]. Several studies
estimate contact pressures using quasi-static models with de-
formable contact theory (e.g., [59]–[62]). But these models fail
to predict muscle forces during dynamic loading. Multibody
dynamic models with rigid contact fail to predict contact pres-
sures [7].

For the illustrative example carried throughout this review,
we will use the simple two-joint, six-muscle planar limb shown
in Fig. 1. We model the upper arm and the forearm as two rigid
cylindrical links connected to each other by a pin joint repre-
senting the elbow and shoulder joints as hinges. We will ne-
glect the torque due to passive structures and assume frictionless
joints. We will not consider any contact mechanics at the joints.
This model will simulate the movement and force production of
the hand (i.e., a fist with a frozen wrist) in a two-dimensional
plane perpendicular to the torso as is commonly done in studies
of upper extremity function [34]–[36].

Commentary 1: Modeling contact mechanics is the first of
several elements we will point out throughout this review where
the community of modelers diverge in approach and/or opinion.
The computational approach to use when simulating contact
mechanics among rigid and deformable bodies remains an area
of active research and debate, and no definitive method exists
to our knowledge. This affects neuromuscular modeling in two
areas.

• Joint mechanics. An anatomical joint is a mechanical
system where two or more rigid bodies make contact at

their articular surfaces (e.g., the femoral head and ac-
etabulum for the hip, the distal femur, patella and tibial
plateau for the knee, or the eight wrist bones and distal
radius for the wrist). Their congruent anatomical shape,
ligaments, synovial capsule, and muscle forces interact
to induce kinematic constraints and produce the func-
tion of a kinematic joint. These mechanical systems are
quite complex and their behavior can be load-dependent
[63]. Most modelers correctly assume that the system can
be approximated as a system of well-defined centers of
rotation for the purposes of whole-limb kinematics and
kinetics (e.g., [12], [29], [64]). However, including con-
tact mechanics in joints like the knee and ankle could
affect force predictions in muscles crossing these joints.
For example, modeling a joint as deformable surfaces
that remain in contact introduces additional constraints,
thereby reducing the solution space when solving for
muscle forces from joint torques [65]. If joint behavior
or the specific loading of the articular surfaces is the
purpose of the study as when studying cartilage loading,
osteoarthritis or joint prostheses (e.g., [56], etc., among
many), then it is critical to have detailed models of the
multiple constitutive elements of the joint. Recent studies
have combined dynamic multibody modeling in conjunc-
tion with deformable contact theory for articular contact
which makes it possible to simultaneously determine con-
tact pressures and muscle forces during dynamic loading
[65]–[69].

• Body-world interactions. Faithful and accurate simula-
tions of the interactions among rigid and deformable
bodies have been an active area of investigation, including
foot–floor contact, accident simulation, surgical simula-
tion, and hand–object interactions (e.g., [70]–[72]). Most
recently, there have been advances that have crossed over
from the computer animation and gaming world that
provide so-called “dynamics engines” that can rapidly
compute multibody contact problems [70], [73], [74].
Some recent examples of fast algorithms to simulate
body–object interactions include [73] and [75]. While
some of these dynamics engines emphasize speed and a
realistic look over mechanical accuracy, some examples
of new techniques can be both accurate and fast [75], [76].

D. Musculotendon Routing

Next, we need to select the routing of the musculotendon
unit consisting of a muscle and its tendon in series [77], [78].
The reason we speak in general about musculotendons (and not
simply tendons) is that in many cases it is the belly of the muscle
that wraps around the joint (e.g., gluteus maximus over the hip,
medial deltoid over the shoulder). In other cases, however, it
is only the tendon that crosses any joints as in the case of the
patellar tendon of the knee or the flexors of the wrist. In addi-
tion, the properties of long tendons affect the overall behavior
of muscle like by stretching out the force-length curve of the
muscle fibers [77]. Most studies assume correctly that muscu-
lotendons insert into bones at single points or multiple discrete
points (if the actual muscle attaches over a long or broad area
of bone). Musculotendon routing defines the direction of travel
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of the force exerted by a muscle when it contracts. This de-
fines the moment arm of a muscle about a particular joint,
and determines both the excursion the musculotendon will
undergo as the joint rotates an angle defined by the equa-
tion, , as well as the joint torque at that joint due
to the muscle force transmitted by the tendon ,
where is the minimal perpendicular distance of the musculo-
tendon from the joint center for the planar (scalar) case [78]. For
the three-dimensional (3-D) case, the torque is calculated by the
cross product of the moment arm with the vector of muscle force

.
In today’s models, musculotendon paths are modeled and vi-

sualized either by straight lines joining the points of attach-
ment of the muscle; straight lines connecting “via points” at-
tached to specific points on the bone which are added or re-
moved depending on joint configuration [79] or as cubic splines
with sliding and surface constraints [80]. Several advances also
allow representing muscles as volumetric entities with data ex-
tracted from imaging studies [81], [82], and defining tendon
paths as wrapping in a piecewise linear way around ellipses
defining joint locations [12], [64]. The path of the musculo-
tendon in these cases is defined based on knowledge of the
anatomy. Sometimes, it may not be necessary to model the mus-
culotendon paths but obtaining a mathematical expression for
the moment arm ( ) could suffice. The moment arm is often
a function of joint angle and can be obtained by recording in-
cremental tendon excursions ( ) and corresponding joint angle
changes ( ) in cadaveric specimens (e.g., [83], [84]).

For the arm model example (Fig. 1), we will model muscu-
lotendon paths as straight lines connecting their points of in-
sertion. We will attach single-joint flexors and extensors at the
shoulder (pectoralis and deltoid) and elbow (biceps long head
and triceps lateral head) and double-joint muscles across both
joints (biceps short head and triceps long head). Muscle origins
and points of insertion are estimated from the anatomy. In our
model of the arm in Fig. 1, we shall model musculotendons as
simple linear springs. We then assign values to model parame-
ters like segment inertia, elastic properties of the musculoten-
dons, etc. At this point the model is complete and ready for dy-
namical analysis.

Commentary 2: Until recently, tendon routing was defined
and computed using via points along the portions of its path
where it crossed a joint. However, the more realistic extension of
this process uses tendon paths that wrap around tessellated arbi-
trary bone surfaces, but defined to pass along specific via points,
but the tendon path between via points need not be straight and
can be affected by the shape of the bones and the tension in the
tendon [76], [80]. Another approach is to eliminate via points al-
together and calculate the behavior of the tendons as they drape
over surfaces. This allows calculating the way tendon struc-
tures slide over complex bones, where tension transmission is
affected by finger posture and tendon loading [80], [85]–[88].
These methods come at a computational cost but are arguably
necessary in some cases, as when simulating the tendinous net-
works of the hand [80], [86], [88].

E. Musculotendon Models

The most commonly used computational model of mus-
culotendon force is the one based on the Hill-type model of

muscle[77], largely because of its computational efficiency,
scalability, and because it is included in simulation pack-
ages like SIMM (Motion Analysis Corporation). In Hill-type
models, the entire muscle is considered to behave like a large
sarcomere with its length and strength scaled-up, respectively,
to the fiber length and physiological cross-sectional area
of the muscle of interest. This model consists of a parallel
elastic element representing passive muscle stiffness, a parallel
dashpot representing muscle viscosity, and a parallel contractile
element representing activation-contraction dynamics, all in
series with a series elastic element representing the tendon.
The force generated by a muscle depends on muscle activation,
physiological cross-sectional area of the muscle, pennation
angle, and force-length and force-velocity curves for that
muscle. These parameter values are generally based on animal
or cadaveric work [89]. Five parameters define the properties
of this musculotendon model. Four of these are specific to the
muscle: the optimal muscle fiber length, the peak isometric
force (found by multiplying maximal muscle stress by physi-
ological cross-sectional area), the maximal muscle shortening
velocity, and the pennation angle. The fifth is the slack length
of the tendon (tendon cross-sectional area is assumed to scale
with its muscle’s physiological cross-sectional area [90]).
Model activation-contraction dynamics is adjusted to match
the properties of slow or fast muscle fiber types by changing
the activation and deactivation time constants of a first order
differential equation [77]. This Hill-type model has undergone
several modifications but remains a first-order approximation
to muscle as a large sarcomere with limited ability to simulate
the full spectrum of muscles, or of fiber types found within
a same muscle, or the properties of muscle that arise from it
being composed of populations of motor units such as signal
dependent noise, etc. Several researchers have developed al-
ternative models for muscle contraction, which were used in
specific studies [91]–[94].

The alternative approach has been to model muscles as popu-
lations of motor units. While this is much more computationally
expensive, it is done with the purpose of being more physio-
logically realistic and enabling explorations of other features of
muscle function. A well-known model is that proposed by Fu-
glevand and colleagues [95], which has been used extensively
to investigate muscle physiology, electromyography, and force
variability. However, the computational overhead of this model
has largely limited it to studies of single muscles, and is not
usually part of neuromuscular models of limbs. In order to de-
velop a population-based model that could be used easily by
researchers, Loeb and colleagues developed the Virtual Muscle
software package [96]. It integrates motor recruitment models
from the literature and extensive experimentation with musculo-
tendon contractile properties into a software package that can be
easily included in multibody dynamic models run in MATLAB
(The Mathworks, Natick, MA).

Commentary 3: Most investigators will agree that defining
and implementing more realistic muscle models is a critical
challenge to be overcome in musculoskeletal modeling. The rea-
sons include the following.

• Muscles are the actuators in musculoskeletal systems,
and the neural control and mechanical performance of
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the system depend heavily on their properties. There
is abundant experimental evidence that the nonlinear,
time-varying, highly individuated properties of muscles
determine much about neuromuscular function and per-
formance in health and disease. Therefore, before realistic
muscle models are available, testing theories of motor
control will remain a challenge.

• Muscle models today fall short of replicating some funda-
mental physiological and mechanical features of muscles.
In a recent study, for example, Keenan and Valero-Cuevas
[97] showed that the most widely used model of popula-
tions of motor units does not robustly replicate two funda-
mental tenets of muscle function: the scaling of EMG and
force variability with increasing muscle force. Therefore,
there are some critical neural features of muscle function
that are yet to be characterized experimentally and encoded
computationally (for another example, see [98]).

• Is it even desirable or possible to build a “complete” model
of muscle function? A good model is best tailored to a
specific question because it can make testable predictions
and/or explain a specific experimental phenomenon. Thus,
such models are more likely to be valid and useful. For
example, some researchers focus on time- and context-
sensitive properties like residual force enhancement [98]
or force depression [99], others investigate the complex
3-D architecture of muscles and muscle fibers [100], and
others mentioned above focus on total force production or
populations of motor units. Therefore the challenge is to
decide what is the best combination of mechanistic and
phenomenological elements to make the model valid and
useful for the study at hand.

• Muscle energetics is another important aspect of mod-
eling that deserves attention. An obvious disadvantage
of Hill-type muscle models is that they do not capture
the distribution of cross bridge conformations for a given
muscle state (length, velocity, activation, etc.) because
the details of energy storage and release in eccentric
and concentric contractions associated with cross bridge
state and parallel elastic elements are vaguely understood
[101], [102]. Therefore, muscle energetics is a clear case
where, in spite of what is said in the above paragraph,
it may be necessary to create models that span multiple
“scales” or “levels of complexity.” Several authors have
repeatedly pointed out the need for accurate muscle ener-
getics to understand real-world motor tasks such as [103]
and [104].

• Lastly, modeling and understanding muscle function will
require embracing the fact that muscle contraction is an
emergent dynamical phenomenon mediated (or even gov-
erned?) by spinal circuitry. So far most modelers have fo-
cused on driving muscle force with an unadulterated motor
command. Motor unit recruitment, muscle tone, spasticity,
clonus, signal dependent noise, to name a few, are features
of muscle function affected to a certain extent by muscle
spindles, Golgi tendon organs, and spinal circuitry. Thus
advancing and using models of muscle proprioceptors and
spinal circuitry will become critical to our understanding
of physiological muscle function [105]–[107].

III. FORWARD AND INVERSE SIMULATIONS

In “forward” models, the behavior of the neuromuscular
system is calculated in the natural order of events: from neural
or muscle command to limb forces and movements. In “inverse”
models, the behavior is assumed or measured and the model is
used to infer and predict the time histories of neural, muscle,
or torque commands that produced it. The same biomechanical
model governed by Newtonian mechanics is used in either
approach, but it is used differently in each analysis [24], [26].

A. Forward Models

The inputs to a forward musculoskeletal model are usually in
the form of muscle activations (or torque commands if the model
is torque driven) and the outputs are the forces and/or move-
ments generated by the musculoskeletal system. The system dy-
namics is represented using the following equation:

(1)

where is the system mass matrix, the vector of joint ac-
celerations, the vector of joint angles, the vector of Cori-
olis and centrifugal forces, the gravitational torque, the
instantaneous moment arm matrix, the vector of muscle
forces, and the vector of external torques due to ground re-
action forces and other environmental forces. This system of or-
dinary differential equations is numerically integrated to obtain
the time course of all the states (joint angles and joint angle
velocities ) of the system. The input muscle activations could
be derived from measurements of muscle activity (electromyo-
gram) or from an optimization algorithm that minimizes some
cost function, for example, the error in joint angle trajectory for
all joints and energy consumed [108]. Forward dynamics has
also been used in determining internal forces that cannot be ex-
perimentally measured like in the ligaments during activity or
contact loads in the joints. It gives insight on energy utiliza-
tion, stability and muscle activity during function for example
in walking simulations [109]. It gives the user access to all the
parameters of the system and to simulate effects when these are
changed. This makes it a useful tool to study pathological mo-
tion and for rehabilitation. [22] provides a review on many of
the applications of forward dynamics modeling.

B. Inverse Models

Inverse dynamics consists of determining joint torque and
muscle forces from experimentally measured movements and
external forces. Since the number of muscles crossing a joint is
higher than the degrees-of-freedom at the joint, multiple sets of
muscle forces could give rise to the same joint torques. This
is the load-sharing problem in biomechanics [110]. A single
combination is chosen by introducing constraints such that the
number of unknown variables is reduced and/or based on some
optimization criterion, like minimizing the sum of muscle forces
or muscle activations. Several optimization criteria have been
used in the literature [111]–[113]. Muscle forces determined by
this analysis are often corroborated by electromyogram record-
ings from specific muscles [114], [115]. Since inverse dynamics
consists of using the outputs of the real system as inputs to
a mathematical model whose dynamics do not exactly match
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Fig. 2. Schematic description of the interactions among machine learning, control theory, and estimation-detection theory.

with the real system, the predicted behavior of the model does
not necessarily match with the measured behavior of the real
system. This is an important problem in inverse dynamics and
is discussed in more detail in [116].

Both forward and inverse models are useful and can be com-
plementary and the choice is largely driven by the goals of the
study. The main challenge with both these analyses is exper-
imental validation because many of the variables determined
using either approach cannot be measured directly. The reader
is directed to articles and textbooks that describe these methods
in detail [12], [24], [64], [117]–[119].

IV. COMPUTATIONAL METHODS FOR MODEL LEARNING,
ANALYSIS, AND CONTROL

We have discussed the computational methods used to de-
fine and assemble known musculoskeletal elements of models.
However, there exist complementary computational methods to
expand the utility of these models in several ways. For example:

• use experimental data to “learn” the complex patterns or
functional relationships, and thereby create model ele-
ments that are not otherwise available (e.g., the inverse
dynamics of a complex limb, mass properties, complex
joint kinematics, etc.);

• find families of feasible solutions when problems are high
dimensional, nonlinear, etc. (e.g., characterize kinematic
and kinetic redundancy);

• find specific optimized solutions for a specific task;
• establish the consequences of parameter variability and un-

certainty;
• explore possible control strategies used by the nervous

system;
• predict the consequences of disease, treatment, and other

changes in the neuromusculoskeletal system;
• consider noise in sensors and actuators.

The computational methods that allow such explorations stem
from the interface of three established fields combining engi-
neering, statistics, computer science, and applied mathematics:
machine learning, control theory, and estimation-detection
theory. While these fields are vast, and the subject of active
research in their own right, we portray a categorization of their
techniques and interactions as they relate to our topic (Fig. 2).
Experts in these fields will have valid and understandable
objections to our specific simplifications and categorizations.
However, we believe that nonspecialists will nevertheless ben-
efit from it at the onset of their exploration of these areas; and
nuance will emerge as they become proficient.

What is most important to extract from this categorization
is that, even though most of these areas matured decades ago,
only a few techniques are commonly used in neuromuscular
modeling (indicated with **) and a few others are beginning to
be used (indicated with *). To be clear, several of these tech-
niques are routinely used, and even overused, in the context
of psychophysics, biomechanical analysis, gait, and EMG anal-
ysis, data processing, motor control, etc. Therefore, they will not
be altogether new to someone familiar with those fields. How-
ever, neuromuscular modeling has not tapped into these avail-
able computational techniques. Our aim here is to succinctly de-
scribe them in the context of neuromuscular modeling and point
to useful literature.

Another important idea we wish to convey is that the expertise
you may have with one of these techniques in a different con-
text enables their use for neuromuscular modeling. For example,
you may be familiar with the use of principal components anal-
ysis for EMG analysis, and the same techniques can be used to
approximate the main interactions among the parameters of a
model.

Lastly, we wish to invite the community of practitioners and
students in machine learning, control theory, and estimation-de-
tection theory to join forces with our community of neuromus-
cular modelers. For example, we can find collaborators in those
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fields, train students with backgrounds in those fields, or expand
our use of those techniques. This commitment is particularly
necessary to move beyond traditional discipline-based training
where, for example, control theory is taught in the electrical
engineering curriculum, and machine learning in computer sci-
ence—and each is taught as mutually independent, and separate
from the problems of neuromuscular systems.

V. MACHINE-LEARNING TECHNIQUES FOR

NEUROMUSCULAR MODELING

Machine learning is the general term used for a scientific dis-
cipline whose purpose is to design and develop computational
algorithms that allow computers to learn based on available data
(such as from experiments or databases) or on-line during it-
erative or exploratory behavior [120]–[122]. For the purposes
of this review, we will use the two-link arm model introduced
in Section II to illustrate two main classes of machine-learning
approaches.

• Learning functional relationships. It is often necessary to
use experimental data to arrive at a computational repre-
sentation of model elements lacking analytical description.
Or even if such analytical representation exists, it may only
be an approximation that needs to be refined due to struc-
tural or parameter uncertainty. Learning functional rela-
tionships has been called a “black box” approach.

• Learning solutions to redundant problems (i.e.,
one-to-many mappings). Machine-learning techniques
can be used to solve the redundancy problem common in
neuromuscular systems when these solutions cannot be
found analytically, particularly, if the problem is nonlinear,
nonconvex or high-dimensional.

A. Learning Functional Relationships

In neuromuscular models, a functional relationship may de-
scribe, for example, the inertia tensor, moment arm matrix, Ja-
cobian matrix, or inverse dynamics. Such relationships could be
derived analytically, but often an analytical solution is not avail-
able or feasible, e.g., due to intersubject variability or structural
uncertainties, like variability or uncertainty about link lengths,
joint centers of rotation, centers of mass, and inertial properties.
For minor uncertainties, where only a few parameters need to
be determined, these parameters could be inferred by fitting the
model to experimental data. For example, limb lengths could
be extracted from motion tracking data using probabilistic-in-
ference methods [123]. Such an approach, however, becomes
increasingly difficult if too many parameters are unknown or
uncertain. Apart from computational problems, the state that
fully defines the dynamics of the neuromuscular system may
be unobservable [124]. These shortcomings motivate methods
to learn functional relationships, as described in this section.
These methods focus on the so-called “model-free” approach
that does not require an a priori analytical model.

This model-free approach avoids finding the underlying
structure of a system. Examples of finding the structure, e.g.,
the number of model elements and their connectivity, can be
found in [87] and [125]–[127]. Typically, the search space

for these problems is large and the fitness landscape is often
fragmented and discontinuous: that is, the fitness of a model
can change dramatically when a model element is added or
removed [87], [128]. In this section, however, we focus on the
aim of replacing unknown elements of neuromuscular models
by learned functional representations.

We illustrate learning functional relationships using our arm-
model example (Section II). Our task is to track a given trajec-
tory with the hand. Here, we omit finding and implementing a
controller. Instead, we want to find a computational representa-
tion of the inverse dynamics—which in turn may be used by a
controller for tracking. For this simple example, the inverse dy-
namics can be found analytically, but for illustration purposes,
we assume it is unknown.

In our task, the goal of the machine-learning algorithm is to
find a computational function that maps from desired acceler-
ations of the endpoint onto joint torques. Before learning this
mapping, we need to identify the dependencies across vari-
ables so that they can be measured. That is, the appropriate
data need to be collected. Note that this implies that the mod-
eler has (or will spend time acquiring) an intuitive sense of the
underlying causal interactions at play to properly identify the
data to collect. For example, the joint torques will depend
on the limb’s mass and inertial properties, the state variables
of the system (joint angles, , and angular velocities, ), and,
finally, on the desired hand acceleration, ; thus, the torques
are if mass and inertia parameters are assumed
constant. For ease of illustration, we assume that the limb is
controlled by torque motors (finding muscle commands is illus-
trated later in this section) and that the Jacobian of the system
is full rank (i.e., the dynamics is invertible). Problems with
noninvertible mappings are illustrated in Section V-B. We now
critically review several techniques to find the target mapping
from measurements.

1) Computational Representation of Functional Relation-
ships: A foundation of machine-learning methods is to find
numerical functions that approximate relationships in data.
These functions can take numerous forms that range from
linear and polynomial to Gaussian and sinusoidal or sum of
these. In the machine-learning framework, these functions
are called basis functions [120], [122]. A typical scenario in
a machine-learning problem is for the modeler to prespecify
the basis functions to fit to the data. In this case, the modeler
has an a priori opinion of what the underlying structure of
the mapping should be. If the a priori opinion is valid, then
these algorithms converge quickly to the desired mapping and
have good performance. However, for many problems in neu-
romuscular biomechanics, such intuition or prior knowledge
is not available. More advanced machine-learning algorithms
can select from among families of basis functions, as well
as estimate their parameter values [122], [129]. As the basis
functions become more complex, however, the model becomes
more opaque and provides less intuition. We now discuss the
use of basis functions in the context of supervised learning.

2) Supervised Learning Methods: In supervised learning, for
a given input pattern, we posit an a priori function to produce
the corresponding output pattern. Thus, the problem is function
approximation, which is also known as regression analysis.
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Generally, the input–output relationship will be nonlinear.
A common approach to nonlinear regression is to approxi-
mate an input–output relationship with a linear combination
of basis functions [121]. Popular examples of this approach
are neural networks [130], support vector regression [131],
and Gaussian process regression [132]; the latter has been
introduced to the machine-learning community by Williams
and Rasmussen [133], but the algorithm is the same as the
50-year-old “Kriging” interpolation [134], [135] developed by
Daniel Krige and Georges Matheron.

Some supervised learning methods go beyond producing a
functional mapping, and also predict confidence boundaries for
each predicted output. Gaussian process regression is an ex-
ample of these methods that has a solid probabilistic foundation
and therefore enjoys high academic interest. Unfortunately,
however, Gaussian process regression is computationally ex-
pensive: the training time (i.e., computational cost) scales with
the cube of the number of training patterns. Faster variants
have been developed, but they essentially rely on choosing
a small enough set of representative data points to make the
solution computationally feasible [132]. If the computation of
confidence boundaries is not important, then support vector
regression is a faster alternative because the training time scales
with the square of the number of training patterns.

An alternative for fast computation and with the option
to compute confidence boundaries is locally weighted linear
regression [136]–[138]. A challenge with locally weighted
regression is the placement of the basis functions, which are
typically Gaussian. An optimal choice for centering Gaussian
functions is often numerically infeasible. A further problem
of locally confined models arises in high-dimensional spaces:
the proportional volume of the neighborhood decreases expo-
nentially with increasing dimensionality; thus, eventually this
volume may not contain enough data points for a meaningful
estimation of the regression coefficients—see the “curse of
dimensionality” [139]. Counteracting this problem using local
models with broad Gaussian basis functions is often infeasible,
since these may lead to over-smoothing and loss of detail.
Fortunately, many biological data distributions are confined
to low-dimensional manifolds, which can be exploited for
supervised learning [137], [138], [140].

Generally, finding the model parameters to fit a functional
relationship is an optimization problem; therefore, we dis-
cuss briefly convergence and local minima. Some of the
above-mentioned techniques, like linear regression and Kriging
interpolation, provide analytic solutions to function approxi-
mation and, thus, avoid problems with lack of convergence and
local minima. However, finding a proper family of basis func-
tions and their parameters is typically a complex optimization
problem requiring an iterative solution. Whereas most estab-
lished methods have guaranteed convergence [122], they may
result in local minima, which are not globally optimal. This
problem has been addressed by using, for example, annealing
schemes [141], [142] and genetic algorithms [143]. The latter
are particularly useful if the parameter domain is discrete, like,
e.g., for the topology of neural networks [144]. As a down-
side, these optimization methods tend to be computationally
complex and provide no guarantee to find a globally optimal

solution; the problem of local minima remains, therefore, an
area of active research.

Commentary 4: Artificial neural networks (ANNs) are per-
haps the best-known example of supervised learning. They are
widespread, but their use has also been controversial.

• There are largely two communities who use ANNs. From
the perspective of one community, the network connec-
tivity, parallel processing, and learning rules are biolog-
ically inspired. Therefore, the focus is on understanding
computation in biological neurons, and the fact that cer-
tain networks can do function approximation efficiently is
simply an additional benefit [145]. In contrast, the statis-
tical-machine-learning community sees ANNs as a spe-
cific algorithmic implementation and focuses on the func-
tion-approximation problem per-se and, thus, sees no need
to address this problem exclusively with neural networks
[121], [122].

• The selection of the topology of the network (number of
neurons and their connectivity) is to a large extent heuristic,
and unrelated to the a priori knowledge of the underlying
structure of the mapping.

• The more complex the network, the more it will tend to
overfit the data and lack generalization. Heuristics have
been developed to mitigate overfitting: for example, the
number of parameters to learn should be less than 1/10 of
the training data [130].

3) Data Collection and Learning Schemes: Having pre-
sented the nature of function approximation, we now describe
different strategies for collecting training data necessary to
compute the approximation (Fig. 3). Here, we focus on learning
inverse mappings, like the inverse dynamics of a limb, which
pose a challenge for data collection (Fig. 4).

• In direct inverse modeling [146], a sequence of random
torques is delivered to the system to produce and record
hand accelerations [Fig. 3(a)]. To assemble input–output
training patterns, we take as input the observed time series
of the arm state (posture, velocity) and acceleration, and as
output the corresponding torque time series. The inverse
mapping is then obtained using a supervised learning
method (e.g., locally weighted linear regression with
Gaussian basis functions [136]). Whereas feeding random
sequences of torques is the most straightforward way to
collect training patterns, its disadvantage is that it may
not produce the desired accelerations, and therefore, the
mapping found may not generalize well to the desired
accelerations—see Fig. 4 and [147].

• To better explore the desired set of accelerations, feed-
back-error learning [148] and distal supervised learning
[147] directly feed the inverse model with desired acceler-
ations [Fig. 3(b)]. This method requires a preliminary in-
verse model, found perhaps using direct inverse modeling.
Since the errors in torque space are not directly accessible,
the resulting errors in acceleration space are mapped back
onto torque space. Feedback-error learning uses a linear
mapping, and distal supervised learning requires the ability
to do error-backpropagation (as in ANNs [130]) through an
a priori learned forward model (which learns the opposite
direction). If the errors are small and the underlying map-
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Fig. 3. Block diagram representation of data collection and supervised learning
schemes (see text for detailed description of each case). In every case, data is
collected in the real world by feeding joint torques to the real-world Plant (gray
block). These torques can be: (A) selected at random, (B) based on a preliminary
inverse model that may (C) include noise and selective use of training data, or
(D) selected with the benefit of a demonstrator. For simplicity of illustration, the
dependence of the inverse model and controller on state, , is omitted. (A)
Direct inverse modeling. (B) Feedback-error learning. (C) Staged learning. (D)
Learning from demonstration.

ping is locally linear, feedback-error learning is the method
of choice. However, small errors require a well initialized
inverse mapping. Distal supervised learning, to our knowl-
edge, is not often used in practice today.

• Staged learning [149], [150] also feeds the inverse model
with desired accelerations, but does not require a well ini-
tialized model [Fig. 3(c)]. The output of the inverse model
is augmented with noise before applying it as torques to
the arm. If the resulting accelerations show a better per-
formance—based on some quality criterion—the applied
torque is used as training pattern for a new generation

(new stage) of inverse models. Compared to feedback-error
learning, this method can be applied to a broader set of
problems (see feedback-error learning above), but comes
at the expense of a longer training time.

• Alternatively, we may learn from demonstration. For ex-
ample, a proportional-integral-derivative (PID) controller
could be used to demonstrate (i.e., bias and/or guide)
the production of training data to learn the inverse-dy-
namics mapping close to the region of interest [Fig. 3(d)]
[151]–[153]. If a suitable demonstrator is available, this
last option is the method of choice.

B. Learning Solutions to Redundant Problems

There is a long history of ways to solve the “muscle redun-
dancy” problem with linear and nonlinear optimization methods
based on specific cost functions [110], [154]. However, these
methods provide single solutions that minimize that specific
cost function, which is often open to debate. An alternative
method is to solve for the entire solution space so as to explore
the features of alternative solutions. If the system is linear for a
given posture of the limb [44], [45], [155], the complete solution
space can be found, which explicitly identifies the following:

• the set of feasible control commands, e.g., the feasible ac-
tivation set for muscles;

• the set of feasible outputs, e.g., the feasible set of acceler-
ations or forces a limb can produce;

• the set of unique control commands that achieve the limits
of performance;

• the nullspace associated with a given submaximal output,
e.g., the set of muscle activations that produce a given sub-
maximal acceleration or force.

By knowing the structure of these bounded regions (i.e., fea-
sible sets of muscle activations, limb outputs, and nullspaces),
the modeler can explore the consequences of different families
of inputs and outputs such as the level of cocontraction, joint
loading, metabolic cost, etc. Methods to find these bounded re-
gions are well known in computational geometry [44], [45],
[156]. However, these methods risk failure if the problem is high
dimensional or nonlinear. In these cases, it is best to first use ma-
chine algorithms to “learn” the topology of the bounded regions,
and then use that knowledge to explore specific solutions.

1) Redundancy Poses a Challenge to Learning: We use again
our two-link arm model to illustrate a challenge in redundancy
for learning. Note, the redundancy could be eliminated by pro-
viding sufficiently many constraints. Here, however, we focus
on problems where such constraints are missing. In our model,
we want to learn the set of muscle activations that bring the
hand to a given equilibrium position. For simplicity, we model
muscles as springs (see Section II); thus, we control spring rest
lengths. The mapping from spring rest lengths onto hand po-
sition is unique. However, the inverse mapping is one-to-many
(Fig. 5). Moreover, we map a single hand position onto a non-
convex region.1 For such a mapping, function approximation
fails because it will average over the many possible solutions,
i.e., over the nonconvex region, to obtain a single output [157].
Applying this output to our arm model, however, does not bring

1A convex set contains all line segments between each pair of points in the
set. For example, a union of disjoint regions is nonconvex.
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Fig. 4. Illustration that an exploration in input space (here, torque) may not sample a desired output (acceleration). Sampling in input space is limited to the range
0.5—any practical setting requires limits of exploration.

Fig. 5. Mapping from spring resting lengths ( ) to hand positions ( ). Several redundant resting lengths are solutions for one desired hand position (red). The
graph on the left shows a two-dimensional projection of a cross section of the six-dimensional nullspace of spring resting lengths: and were set to constant
values; and were randomly drawn (within dashed box), and all values of and were projected onto the displayed plane. The original six-dimensional
nullspace in rest-length space is, therefore, nonconvex. Thus, the average of all rest-lengths solutions does not map onto the desired hand position.

the hand to the desired position (Fig. 5). Thus, a different ap-
proach is needed to learn this mapping. This mapping problem
could be addressed in the following ways.

• Instead of learning a mapping onto a point, we could learn
a mapping onto a probability distribution, and thus, accom-
modate the above-mentioned nonconvex nature of the so-
lution space. Diffusion networks address this task [157].

• Recurrent neural networks store training patterns as stable
states [158]. In our case, such a pattern could be a combi-
nation of muscle activation and hand position. If only part
of a pattern is specified (e.g, the hand position), the net-
work dynamics completes this pattern to obtain the com-
plement (here, the muscle activation). For fully connected
symmetric networks, the dynamics converge to a stable
pattern [158]. As an example for such an application, Cruse
and Steinkühler showed that the relaxation in a recurrent
neural network can be used to solve the inverse kinematics
of a redundant robot arm [159], [160].

• Finally, analogue to the use of recurrent neural networks,
we could—in a first step—learn a representation of the
manifold or distribution of the data points that contain
input and output, and—in a second step—use this learned
representation to compute a suitable mapping. Here, we
want to focus on this latter solution.

2) Learning the Structure of Data Sets: Unsupervised
Learning Methods: Unsupervised learning methods are de-
signed to find the structure in data sets and do not need pairs of
input and target patterns. Several methods exist for extracting

linear and nonlinear approximations to the distribution of data
points that will represent such a data structure. In this context,
the data set represents a manifold in a multidimensional space,
and learning the structure of this manifold is the goal.

Here, we will only briefly mention various linear and non-
linear methods—see references for more details. Methods for
finding linear subspaces that represent data distributions are
principal components analysis (PCA) [161], probabilistic PCA
[162], independent component analysis [163], and nonnegative
matrix factorization [164]. When applied to nonlinear distri-
butions, these linear methods may give misleading solutions
[165], [166].

Several methods exist to find the structure of nonlinear man-
ifolds in data: auto-associative neural networks [145], [167],
point-wise dimension estimation [166], self-organizing maps
(SOMs) [168]–[170], probabilistic SOM [171], [172], semidef-
inite embedding [173], locally linear embedding [174], Isomap
[175], Laplacian eigenmaps [176], stochastic neighbor embed-
ding [177], kernel PCA [178], [179], and mixtures of spatially
confined linear models (PCA or probabilistic PCA are com-
monly used as their linear models) [130], [150], [165], [180].

3) Going From the Structure of an Input–Output Data Set
to Creating a Functional Mapping: Once a representation has
been found, we need to construct a mapping from a specified
input to the corresponding output. This mapping could be ob-
tained as follows.

• An input pattern specifies a constrained space in the joint
space of input and output. To find output samples, this
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constrained space can be intersected with the learned rep-
resentation of the data distribution/manifold. One possi-
bility is to find the point on the constrained space that has
the smallest Euclidean distance to our manifold represen-
tation [150], [165], [172]. For mixtures of locally linear
models, efficient algorithms exist to find such a solution
[150], [165]. If the manifold representation intersects the
constrained space at several or infinitely many points, a so-
lution has to be chosen out of this set of intersections.

• Alternative to the minimum distance, we could define ar-
bitrary cost functions on the set of intersections and find a
solution accordingly. This path has not been fully exploited
and explored.

VI. APPLICATIONS OF CONTROL THEORY FOR

NEUROMUSCULAR MODELING

Control theory is a vast field of engineering where informa-
tion about a dynamical system (from internal sensors, outputs,
or predictions) is used to issue commands (corrective, antici-
patory, or steering) with the goal of achieving a particular per-
formance. We begin by giving a short overview of the uses of
classical and optimal control theories as they are now used in
the context of neuromuscular modeling. We then provide an
overview of alternative approaches such as hierarchical optimal
control, model predictive control, and hybrid optimal control.
Our presentation of each of these types of optimal control are
motivated by the characteristics of the dynamical systems found
in neuromuscular systems. Hierarchical optimal control is mo-
tivated by the high dimensionality of neuromuscular dynamics;
model predictive control is motivated by the need to impose
state and control constrains such as uni-directional muscle ac-
tivation (e.g., muscles can actively pull and resist tension, but
cannot push). Finally, hybrid optimal control is motivated by
the need to incorporate discontinuities and/or changes in the dy-
namics arising from making and breaking contact with objects
and the environment (e.g., as in locomotion, grasping and object
manipulation).

In the context of neuromuscular modeling, a dynamical
system is one where differential equations can describe the
evolution of the dynamical variables (called the state vector
denoted by ) and their response to the vector of control signals
(denoted by ). The reader is referred to any introductory text
in control theory such as [181] for details. The dynamics of
neuromuscular systems is generally nonlinear and they are
formulated by the following equations:

(2)

For the dynamics of a limb model (Fig. 1), is the state vector
of two angles and two angular velocity while are the controls
that correspond to the two applied joint torques. The control of
nonlinear systems is a problem with no general solution, and
the traditional approach is to linearize the nonlinear dynamics
around an operating point, or a sequence of operating points in
state and control space. In the linearized version of the problem,
the linear dynamics (3) are valid for small deviations from the

operating point. For the example of the limb model, the oper-
ating point can be a prespecified arm posture, or a sequence
of prespecified arm postures. The linearized dynamics have the
form

(3)

The matrix is the state transition matrix that defines how
the current state affects the derivative of the state (i.e., like
when the change in position of a pendulum along its arc defines
its velocity). is the control transition matrix that defines how
the control signals affect the state derivatives. The matrix is
the measurement matrix that defines how the state of the system
produces the output . In some cases, the control signals can
also act directly on the outputs via the matrix , which is
called the control output matrix. Control theory comes into the
picture when we apply a control signal to correct or guide the
evolution of the state variables.

With very few exceptions, the vast majority of neuromus-
cular modeling attempts to find the sequence of control gains

that will force the neuromuscular system to
execute a task—which in most cases is to track a prespecified
kinematic or kinetic trajectory in the time horizon .
Importantly, a valid sequence of control gains is de-
fined as meeting the constraints imposed by the prespecified tra-
jectories. The underlying control strategy is open loop. Obvi-
ously, any small disturbance or change in dynamics will cause
the controller to fail drive the system to the desired state since
control is open loop and therefore the controller is “blind” in
any state changes. We draw the analogy to inverse modeling
(see Section III) where an inverse Newtonian analysis is used
to find the muscle forces or joint torques that are compatible
with the measured kinematics and kinetics. Inaccuracies, sim-
plifications, and assumptions in the analysis invariably produces
solutions that, when “played forward,” do not produce stable be-
havior when the solutions are used to drive forward simulations.
Thus, most of the work in control of neuromuscular systems to
date has two dominant shortcomings:

1) Control problems are formulated as tracking problems and
need a prespecified trajectory in state space. This approach
can be very problematic for high-dimensional systems
where part of the state is hidden or only obtained by
approximation. For example, if the model includes muscle
activation-contract dynamics, then muscle activation be-
comes part of the state vector. Usually, EMG is used to
estimate muscle activation, but it is a poor predictor of the
actual activation state of the muscle (for a brief discus-
sion of limitations of EMG and references to follow, see
[182]). Therefore, even though the part of the state vector
obtained from measured limb kinematics and kinetics is
well defined, the part of the state vector related to muscle
activation is effectively hidden and must be approximated.

2) Control policies are open loop and apply only
to the time histories used to calculate them. Therefore, if
used to drive a forward simulation, they are independent of
the new time history of the state. In these conditions, the
stability of the neuromuscular system is not guaranteed,
even for small disturbances, inaccuracies or noise in the
dynamics.
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The remainder of this section is motivated by the need to
overcome these two shortcomings. We attempt to provide
an overview of techniques that have the potential to lead to
controls frameworks for high-dimensional nonlinear dynamical
systems with hidden states that produces stable closed-loop
feedback control laws.

A. Optimal Control

In the optimal control framework as described by [124],
[183], and [184], the goal is to control a dynamical system
while optimizing an objective function. In optimal control
theory, the controller has direct or indirect access to the state
variables (often estimated from sensors and/or predictions)
and output variables to be able to both implement a control
law and quantify the performance of the system (3). The objec-
tive function is an equation that quantifies how well a specified
task is achieved. In mathematical terms, a general optimal
control problem can be formulated as

(4)

subject to

(5)

(6)

where is the state of system (e.g., joint angles, ve-
locities, muscle activations), and are the control
signals (e.g., torques, muscle forces, neural commands). The
quantity corresponds to observations or outputs that
are functions of the state. The stochastic variables
and correspond to process and observation noise.
For neuromuscular systems, the process noise can be signal-de-
pendent while the proprioceptive sensory noise plays the role
of observation noise. The cost to minimize consists
of three terms. The quantity is the terminal cost that
is state-dependent (e.g., how well a target was reached); the
term is the state-dependent cost accumulated over the time
horizon (e.g., were large velocities needed to perform
the task?), and is the control-dependent cost accumu-
lated over the time horizon (e.g., how much control effort was
used to achieve the task). The control cost does not have to be
quadratic, however, quadratic is used mosly for computational
convenience. The term is the standard variable used for
the cost function and is the scalar value representing the
minimal value of the cost function, indicating that the task was
performed (locally or globally) optimally as per this formula-
tion of the problem and choice of cost function.

For the case of deterministic linear systems
, with quadratic state cost functions and

, and full state observation , the solution
to the optimal control problem can be found analytically and is
one of the more significant achievements of engineering theory
in the 20th century. The solution provides controls of the form

with feedback gains which guarantee
stability of the system while minimizing the objective function

. This is called the Linear Quadratic Regulator (LQR)
method and it is one of the most well-known and explored
control frameworks in control theory. Some examples of using
this approach in neuromuscular modeling are [185]–[187].

Under certain conditions, optimal control can be applied
to stochastic linear and nonlinear dynamical systems with
noise that can be either state- or control-dependent. For linear
stochastic systems , under
the presence of observation noise , optimal
stochastic filtering is required (Fig. 2). Kalman filtering (KF)
is a stochastic algorithm to estimate states of dynamical sys-
tems under the presence of process and observation noise.
For linear systems with Gaussian process and observation
noise, KF is the optimal estimator since it the minimum
variance unbiased estimator (MVUE) [188]. The intuition
behind KF is that, if is the current estimate of the state,
KF provides the Kalman gains that under the update law

guarantee to
reduce the variance

, where the term is the estimation error
defined as .

The full treatment of optimal control and estimation is the
so-called Linear Quadratic Guassian Regulator (LQG) control
scheme. The equations for the LQG are summarized below

(7)

(8)

(9)

(10)

(11)

Since the very first applications of optimal control, it has been
known that the stability of the estimation and control problem
affect the stability of the LQG controller. To see the connec-
tion between stability of estimation and control, and the overall
stability we need to combine both problems under one mathe-
matical formulation. It can been shown that [124], [184]

(12)

or

(13)

where the matrices and are appropriately defined.
The stability of the LQG controller depends on the eigen-

values of the state transition matrix . Since is lower trian-
gular, its eigenvalues are given by the eigenvalues of
and . In addition, the control gain stabilizes the ma-
trix while the Kalman gain stabilizes the matrix

.Therefore, the overall LQG controller is stable if and
only if the state and estimation dynamics are stable.

Another important characteristic of LQG for linear systems
is the separation principle. The separation principle states that
the optimal control and estimation problems are separated and,
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Fig. 6. Simulation results for our two-link arm model using an optimal feedback controller. The task is to move the two-link arm from the initial configuration
of to in the time horizon of 1 s and with 0 terminal velocity ( ). The lower left panel illustrates
the reduction of the cost function for every iteration of the ILQG algorithm. The algorithm convergences quickly (after about 15 iterations), and yields smooth
joint-space trajectories with close to bell-shaped velocity profiles.

therefore, the control gains are independent of the Kalman
gains. Finding the control gains requires using the backward
control Riccati equation, which does not depend on Kalman
gain , nor on the mean and covariance of the process and
observation noise. Similarly, computation of the Kaman gain
requires the use of the forward estimation Riccati equation,
which is not a function of the control gain nor of the weight
matrices in the objective function .

Importantly, when multiplicative noise with respect to the
control signals is considered, the separation principle breaks
down and the control gains are a function of the estimation gains
(Kalman gains). The stochastic optimal controller for a dynam-
ical system with control-dependent noise will only be active in
those dimensions of the state relevant to the task. If the controller
were active in all dimensions, it would necessarily be subop-
timal because control actions add more noise in the dynamics.

The use of stochastic optimal control theory as a conceptual
tool towards understanding neuromuscular behavior was pro-
posed in, for example, [189]–[191]. In that work, a stochastic
optimal control framework for systems with linear dynamics
and control-dependent noise was used to understand the vari-
ability profiles of reaching movements. The influential work
by [191] established the minimal intervention principle in the
context of optimal control. The minimal intervention principle
was developed based on the characteristics of stochastic optimal
controllers for systems with multiplicative noise in the control
signals.

The LQR and LQG optimal control methods have been
mostly tested on linear dynamical systems for modeling sen-

sorimotor behavior; e.g, in reaching tasks, linear models were
used to describe the kinematics of the hand trajectory [190],
[192]. In neuromuscular modeling, however, linear models
cannot capture the nonlinear behavior of muscles and multi-
body limbs. In [187], an Iterative Linear Quadratic Regulator
(ILQR) was first introduced for the optimal control of non-
linear neuromuscular models. The proposed method is based
on linearization of the dynamics. An interesting component
of this work that played an influential role in the studies on
optimal control methods for neuromuscular models was the
fact that there was no need for a prespecified desired trajectory
in state space. By contrast, most approaches for neuromuscular
optimization that use classical control theory (see Section VI)
require target time histories of limb kinematics, kinetics, and/or
muscle activity. In [193], the ILQR method was extended for
the case of nonlinear stochastic systems with state- and con-
trol-dependent noise. The proposed algorithm is the Iterative
Linear Quadratic Gaussian Regulator (iLQG). This extension
allows the use of stochastic nonlinear models for muscle force
as a function of fiber length and fiber velocity. Fig. 6 illustrates
the application of LQG to our arm model (Section II). Further
theoretical developments in [194] and [195] allowed the use
of an Extended Kalman Filter (EKF) for the case of sensory
feedback noise. The EKF is an extension of the Kalman filter
for nonlinear systems.

1) Hierarchical Control: The hierarchical optimal control
approach is motivated by the redundancy and the hierarchical
structure of neuromuscular systems. The hierarchical optimal
control framework is mentioned in, for example [196] and [197]
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for the case of a two link muscle driven arm with six muscles.
In [198], the complete treatment of the control of a 7DOF arm
with 14 muscles—two for each join—is presented.

In the hierarchical control framework, the dynamics of neu-
romuscular systems are distinguished into different levels. For
the case of arm [197], the dynamics can be distinguished in two
levels. The higher level dynamics includes the kinematics of end
effector such as position , velocity , and force . The low
level dynamics consists of the join angles and velocities and
as well as the muscle activation . The state space model of the
high level dynamics can be represented as

(14)

(15)

(16)

where is average hand mass, is the control in the higher
level, and is the force at the end effector. The parameters

and are a function of position ve-
locity and mass that correspond to some approximation error of
the high level dynamics. A cost function relative to a task is im-
posed and the optimal control problem in the higher level can
be defined as

(17)

subject to the equations of the kinematics of the end effector.
The optimal control in higher dynamics will provide the re-
quired input force—control . The low level dynamics are
defined by the forward dynamics of the arm and the muscle dy-
namics

(18)

(19)

(20)

The matrix is the inertia,
is the vector centipentral and coriolis force, and is the
gravitational force. The term is the ten-
sion of the muscle that depends on the levels of activation ,
the length and the velocity of the corresponding muscle. The
low level control is . The low level dynamics are related to high
level dynamics through the equations and ,
where is the Jacobian. The end effector forces are related
to torques produces by the muscles and the gravity according to
the equation . The analysis is simpli-
fied with zero gravity and therefore the end effector forces are
specified by

(21)

Under the assumption that differentiation of
the end effector force leads to

. Since , it
can be shown that , where is defined as

. The low level
optimization is formulated as

(22)

Subject to and with and
. The choice of cost function above is such that the

control energy of the controller in lower dynamics is minimized.
The main idea in the hierarchical optimal control problem

is to split the higher dimensional optimal control problem into
smaller optimization problems. For the case of the arm move-
ments, the higher optimization problem provides the control
forces in end effector space. These end-effector forces play the
role of the desired output for the low-level dynamics. The goal
of the optimization for low level dynamics is to find the optimal
muscle activation profiles that can deliver the desired end-ef-
fector. The optimal muscle activation is with respect to a min-
imum energy cost. Thus by starting from the higher level and
solving smaller optimization problems that specify the desired
output for the next lower level in the hierarchy, the hierarchical
optimal control approach addresses the high dimensionality in
neuromuscular structures. The dimensionality reduction and the
computational efficiency that are achieved with hierarchical op-
timal control come with the cost of suboptimality.

A recent development in stochastic optimal control intro-
duces a hierarchical control scheme applicable to a large family
of problems [199], [200]. The low level is a collection of feed-
back controllers which are optimal for different instances of
the task. The high-level controller then computes state-depen-
dent activations of these primitive controllers, and in this way
achieves optimal performance for new instances of the task.
When the new tasks belong to a nonlinear manifold spanned
by the primitive tasks, the hierarchical controller is exactly
optimal; otherwise, it is an approximation. An appealing feature
of this framework is that, once a controller is optimized for a
specific instance of the task, it can be added to the collection of
primitives and thereby extend the manifold of exactly solvable
tasks.

2) Hybrid Control: In tasks that involve contact with surfaces
such as locomotion, grasping, and object manipulation, the con-
trol problem becomes more difficult. From a control theoretic
standpoint, the challenges are due to changes in the dynamics
of the system when mechanical constraints are added or re-
moved, for example, when transitioning between the swing and
stance phases of gait, or during grasp acquisition. This change
in plant dynamics requires switching control laws (hence the
term “hybrid”). From the neuromuscular control point view, re-
cent experimental findings about muscle coordination during
finger tapping [201], [202] demonstrated a switch between mu-
tually incompatible control strategies: from the control of finger
motion before contact, to the control of well-directed isometric
force after contact. These experimental findings motivated the
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work by [203] to extend the ILQR framework for modeling con-
tact transition with the finger tip. For the motion phase of the
tapping task, the objective of the optimal controller is to find
the control law that minimizes the function

(23)

where and subject to
dynamics

(24)

The state contains the angles and velocities of the neu-
romuscular system. For the case of the index finger, the state

includes the kinematics of the metacarpoplalangeal (MCP),
proximal interphalangeal (PIP), and distal interphalangeal (DIP)
joins. Upon contact with the rigid surface, the optimal control
problem is formulated as

(25)

where and subject to
the constrained dynamics

(26)

where is the contact force between the finger tip and the con-
strain surface. The relation between the contact forces and the
Lagrange multipliers in the cost function is given by

, where position vector of the finger tip that satis-
fies the constraint during contact. The formulation for hy-
brid iLQR is rather general and it can be applied to a variety
of tasks that involve contact with surfaces and switching dy-
namics. It is also an elegant methodology since it provides the
optimal control gains during motion as well as during contact.
The main limitation of the method is that it requires an a priori
known switching time between the two control laws—instead of
making the switching time itself a parameter to optimize. It is an
open question whether or not optimal control for nonlinear sto-
chastic systems can incorporate the time of the switch as a vari-
able to optimize. In addition, further theoretical developments
are required for the hybrid optimal control of stochastic systems
with state and control multiplicative noise.

3) Model Predictive Control: The common characteristic in
all types of optimal control mentioned so far, is that the control
and estimation gains are computed off-line. In the model predic-
tive control framework, or Receding Horizon Control [204], the
control gains are calculated in real time. The objective of the
model predictive control framework is to find the control law
that minimizes the cost function

(27)

subject to dynamics: and to control and state con-
strains . In a predictive control model, the con-
trol gains are computed for the time window

. The first control is applied to the system and the opti-
mization is executed again to compute the new control gains

starting now from time . At time ,
only the control is applied and the optimization procedure
is executed again to find the gains .

The online computation of control laws in model predictive
control is a very attractive feature especially for tasks where on-
line decisions regarding the applied control law have to be made.
For the tasks of object manipulation, for example, it is possible
that online neural processing takes place to regulate and adapt
the applied forces. Another attractive feature of model predic-
tive control is that it incorporates state and control constrains.
The main assumption is that the process under control is slow
enough such that the optimization scheme can compute the con-
trol laws on-line.

It remains an open question whether model predictive control
is applicable to neuromuscular systems. Recent developments in
[205] and [206] allow the application of model predictive con-
trol to linear stochastic systems with state and control multi-
plicative noise. Further theoretical developments for nonlinear
stochastic systems with control- and state-dependent noise are
required so that the nonlinear stochastic muscle dynamics can
be considered.

B. Limitations of Optimal Control: A Step Towards Robust
Control

In spite of the recent and upcoming advances in the appli-
cation of optimal control theory to neuromuscular systems, ad-
ditional tools are required. The main limitation of the optimal
control framework is that it assumes almost perfect knowledge
of the dynamics of the system (the state transition matrix). We
use the qualifier “almost perfect” because the addition of sto-
chastic terms in the state space dynamics can serve as a way to
model unknown dynamics. However, the addition of random-
ness is an ad hoc and heuristic simple approach to modeling
unknown dynamics, especially in cases where these unknown
dynamics have a deterministic and highly nonlinear nature as is
the case in neuromuscular systems. This limitation of optimal
control motivated the birth and fast development of the general
framework of robust control theory in the 1970s (see commen-
tary below).

The influential work by Safonov and Athans [207] was the
first to investigate the robustness of LQG controllers. In addi-
tion, a compact and solid proof on the limitations of optimal
control and the lack of stability margins of LQG controllers is
the 1978 paper by Doyle [208]. To understand the reasoning for
the the lack of stability margins of LQG controllers for even
single input single output systems (SISO) it helps to rewrite the
formulation of the dynamical system as in (12). Namely, instead
of defining the state vector as , as in (12), we
consider the state vector , where is the es-
timated state. The overall dynamics can be written as follows:

(28)
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or in more compact form

(29)

where the matrices and are defined as

(30)

We can now follow the example in John Doyle 1978 for SISO
system with state space dynamics

(31)

and observations

(32)

where and are the process and observation noise with zero
mean and variance and , respectively. The
performance integral weights are and

(33)

It can be shown that the control and the Kalman gains are given
by the expressions

(34)

with and . The control gain
is scaled by a factor and, therefore, the actual control gain is

. This scaling factor is motivated by the lack of perfect
knowledge of the dynamics. For the case of perfect knowledge
of the dynamics, the actual control gain equals the nominal
control gain ( , nominal case). When unknown dy-
namics are present, the actual gain differs from the nominal
gain . Only the nominal control gain is known to the
filter. The matrix for the SISO system (31) is expressed as
follows:

(35)

Given the closed-loop state transition matrix , the necessary
condition for stability is that and

. When these conditions hold, the eigenvalues
of have negative real parts and, therefore, the overall system
(29) is stable. It is easy to see that for sufficient large and or
( and ) small perturbations in cause violation of the second
stability condition.

Commentary 5: The limitations of optimal control vis-à-vis
unknown dynamics are quite relevant to the study of sensori-
motor systems. For example, in psychophysical studies testing
whether optimal control (of the LQR variety) is used by subjects
during motor learning of arm movements [209], the inaccuracies
in the dynamics of the arm-world system are reasonably posited
to be “learned” by the nervous system via repeated trials. While
such learning can certainly take place in the neural system, the
iterative learning of the unknown dynamics is done heuristically
in the model and does not necessarily have a theoretical foun-
dation within the mathematics of optimal control (see supple-
mental material of that work). Thus a current challenge is to
model such neural learning within a controls framework that
seamlessly and rigorously accommodate the “learning” of the
unknown dynamics.

These shortcomings of optimal control are well known, and
have been addressed to a certain extent. Robust control ad-
dresses the goal of stability and performance under the presence
of disturbances and unknown dynamics. An introduction to
robust control would require an extensive discussion on control
concepts for frequency-based controller design and analysis of
dynamical systems; as well as an introduction to theorems and
lemmas critical to the development of robust control theory.
Space limitations do not allow such an introduction here, but
the reader is referred to [210] for a full treatment of robust
control theory.

C. Adaptive Control

Adaptive control is a perspective different from optimal con-
trol and robust control used in cases where the unknown dy-
namics are due to the existence of unknown parameters of the
plant. In an adaptive control scheme, a parameter estimator (or
an adaptive law) is responsible for identifying the unknown pa-
rameters while the control law is derived as if the parameters
were known.

The are two ways to combine the adaptive law and the control
law. In the first approach, the unknown parameters of the plant
are estimated online, and the control law is a function of these
estimated parameter values. Thus the control law is modified
whenever the estimates change. This is called indirect adaptive
control.

In direct adaptive control, the plant model is parametrized
according to the controller parameters. Therefore, even though
the source of uncertainty comes from the plant, the question re-
mains: what is the structure of the adaptive controller that can
control the uncertain plant under consideration? The structure
of the controller is parametrized and the learning/estimation
process of that parametrization does not require any interme-
diate step of identifying the parameters of the plant. There have
been a variety of applications of adaptive control in industry.
The reader can refer to [211] for an introduction and full treat-
ment of Adaptive Control schemes.
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VII. MONTE CARLO APPROACHES TO FEASIBLE MODEL

PREDICTIONS AND HYPOTHESIS TESTING

A. Background

As mentioned in Section I, neuromuscular models are
computational implementations of hypotheses about the consti-
tutive parts and the overall behavior of neuromuscular systems.
Models for neuromuscular function typically contain multiple
elements and their respective parameter values. As discussed in
Section V, some of these model elements and their parameter
values may be difficult to estimate or measure, describe from
first principles, and may vary naturally in the population.
Before accepting the result from a simulation, and therefore,
the test of a hypothesis, one must explain to the satisfaction
of the research community the differences that invariably
emerge between model predictions and experimental data and
intuition. These differences can be attributed to a variety of
sources ranging from the validity of the scientific hypothesis
being tested, to the choice of representation selected for each
constitutive element, parameter variability/uncertainty, or even
numerical implementation. The use of sensitivity analysis
(quantifying the effect of parameter variability on prediction
variability) and cross-validation (testing how well a model
replicates data not used during its development) are well-es-
tablished techniques in machine learning and in engineering
that that should be the standard of practice in neuromuscular
modeling.

More specifically, the conceptual framework of this section
revolves around defining the feasible predictions of a com-
putational model to compare and contrast across models and
against experimental data. The motivation, formulation, use,
and validation of a model invariably hinges on experimental
data—and only when experimental data are robustly replicated
by the model should the model be considered valid and reliable.
However, neuromuscular models are often designed and used
to produce individual predictions; and the sensitivity of their
predictions to variability and uncertainty in model structure and
parameters is not usually explored systematically. We consider
exploring the range of feasible predictions by a model to be
important for several reasons including:

• The range of feasible predictions of a model should ide-
ally mirror the distribution of experimental data. That is,
predictions should be centered on the distribution of ex-
perimental data (when the data are normally distributed),
or exhibit multimodal predictions (when the data are sim-
ilarly multimodal).

• Many of the debates in modeling arise from our inability
to compare across models and modeling approaches. That
is, “simple” versus “complex”; “forward” versus “inverse”;
“generic” versus “patient specific” models could perhaps
be reconciled if we found that their range of feasible pre-
dictions overlap.

• Our community is one that is united by our methods but
fragmented by our results. We all agree on the physics of
the world and musculoskeletal system, and the computa-
tional principles to simulate them, but the consequences of
our choices about modeling physiological and neural pro-

cesses are hard to reconcile if we cannot compare their re-
sulting ranges of feasible predictions.

• There exist numerous tools and approaches enabling
the computation and comparison of ranges of feasible
predictions that, in our opinion, remain unnecessarily
underutilized.

Monte Carlo approaches are a means to quantify the sensi-
tivity of numerical simulations to parameter variability [212]
that have been used in numerous fields. Some of the earlier
uses included Monte Carlo evaluations of orthopedic parame-
ters [56], [213]. More recently, these methods have also been
used in neuromuscular and musculoskeletal modeling for eval-
uating models of the shoulder [214], thumb [51], [215], knee
[216], [217], and populations of motor units [97]. A practical
impediment to the utility of Monte Carlo methods is compu-
tational power, which until recently proved critical but is in-
creasingly less so. Achieving convergence of Monte Carlo sim-
ulations of complex, high-dimensional models often requires a
large number of model iterations—often in the tens of thou-
sands at times. Being able to perform a large number of iter-
ations in a reasonable time requires that individual model iter-
ations be fast and/or exploit the fact that Monte Carlo methods
are “memory-less” and lend themselves to parallel computing.
In neuromuscular systems, each iteration may actually involve
a full dynamical simulation of behavior as in [97], or the solu-
tion of an optimization problem as in [51]. Such problems are
usually best done with well-optmized and efficiently compiled
computer languages like C. Performing these simuations in in-
terpreted computer languages or packages such as MATLAB
(Mathworks, Natick, MA), MSMS, or SIMM may be difficult.
This problem is partially addressed in MATLAB with the profile
and MEX (MATLAB EXecutable) functions. The profile func-
tion makes it possible to identify computational bottlenecks in
interpreted code that can compromise performance. The MEX
functionality of MATLAB allows bottleneck operations to be
coded in C and compiled for the processor in use, and then be
run as ordinary MATLAB functions. This procedure can main-
tain most of the researcher’s coding in an interpreted language
or package, while not sacrificing the computational performance
required for Monte Carlo simulations. The Monte Carlo method
iteratively simulates the model with stochastic variations in the
model parameters within physiologically or anatomically ten-
able ranges (Fig. 7).2 This approached is aimed at answering
the question: Is it possible that, given the chosen structure of my
model, it can replicate the observed data using parameter values
within reasonable ranges? For example, the ratio of upper to
lower arm lengths or relative strength across muscles in Fig. 1
can and does vary across individuals. We and others have done
such studies in the context of biomechanical structure and func-
tion [49], [51], [214], [218]. These approaches require experi-
mental work with enough subjects, or strong intuition about the
problem, to set the range of values of those parameters and the
statistical distribution within that range. That is, build a para-
metric (e.g., Gaussian, Gamma distributions) or nonparametric

2The name Monte Carlo is no accident: it was inspired by the analogy where
a gambler repeatedly plays a game of chance to evaluate their own “fitness” to
win money.
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Fig. 7. Monte Carlo approach to model evaluation and hypothesis testing. An experiment is performed that produces some data, from which a test statistic is
calculated. A computer model is coded that generates an output comparable to the statistics of the experimental data (or target test statistic). All parameters are
varied stochastically within their feasible range, and a distribution of possible test statistics are generated for that model. One can then determine whether there
exist sets of parameter values for the model that can replicate the distribution of the experimental data. If possible predictions of the model cannot replicate the
experimental data, the hypothesis encoded in the model is likely untrue and a new hypothesis needs to be developed and encoded. In addition, by investigating the
sensitivity of model predictions to specific subsets of parameters, the components of the model of particular importance can be identified.

descriptions (e.g., histogram) representation of the data. Thank-
fully, Monte Carlo methods work even if the details of those dis-
tributions are non known and must be assumed. In those cases,
it is much preferable to assume a uniform distribution than to
assume a Gaussian distribution [212]. Assuming Gaussian dis-
tributions is an overused and often incorrect practice because
they have tails to infinity, which musculoskeletal parameters
clearly do not, and truncating a Gaussian distribution to make
it physiologically realistic is not valid because proper statistical
sampling has to be done from a distribution with unit area. If
the distribution of the parameter values is known to be close
to Gaussian, then a symmetric Beta distribution can be used be-
cause it has fixed boundaries. Also, there are instances where pa-
rameters distributions are multimodal [51]. After identifying a
model output of interest (e.g., force magnitude, limb kinematics,
tendon excursion, etc.), the computer model is coded to iterate
over numerous runs to simulate that output.

How many iterations are enough? Monte Carlo models need
to be run to “convergence,” which is usually defined as the
number of iterations after which the mean and standard devia-
tion of the emerging distribution of the output ceases to change
by a given small percentage. See [49], [51] for examples.

Upon convergence, the details of the distribution of the test
statistic (i.e., mean, mode, dispersion, ranges, etc.) define the
set of feasible output predictions as per the specific design and
implementation of the model. This is also the set of feasible out-
comes of the hypothesis implemented by the model. If the exper-
imental data fall within this feasible range of predictions by the
model, then it is possible that the underlying hypothesis is cor-
rect. If the measured values of the test statistic do not overlap
with the feasible set of model predictions, then it is not possible
to accept the hypothesis as posed and implemented in the model
[51], [97], [218]. We say that is only “possible” because one
must scrutinize the set of parameter values that produce real-
istic outputs before reaching any conclusions because of Monte
Carlo methods assemble parameters values at random. This can
be unrealistic at least in some cases where, for example, the
upper arm is selected to be longer than the lower arm. One can,
and should, introduce any known covariance among parameters

to both reduce the number of truly independent parameters and
enforce realistic relationships among parameters.

To be fair, most modelers certainly perform “sanity checks”
and parameter sensitivity analyses on their models, which may
or may not be reported in the final manuscript. The concept of
safety margins and sanity checks is ingrained in engineering
practice. However, the full description of the feasible set of
model predictions is not often reported, which leaves the reader
wondering about the robustness of the hypothesis being tested.

The greatest risk when using the Monte Carlo approach is
that the parameter space is incompletely sampled, causing the
distribution of model-generated test statistics to not represent
the complete set of possible model outputs. For large numbers
of parameters (i.e., 15) Monte Carlo methods, like supervised
learning methods, fall prey to the curse of dimensionality
(Section V-A2). There are multiple approaches to mitigate
this obstacle. When the experiment can be modeled as a set
of linear inequalities of the form , where is a given
matrix, is a given vector, and is the vector to be solved
for, the complete set of possible solutions can be calculated by
tools in computational geometry (cdd software package [156]).
This “vertex enumeration” approach is the dual of the simplex
method [219] and was used to calculate the complete set of
muscle activation patterns for a given fingertip force [44]. If
the model cannot be described as linear inequalities, then the
number of samples in parameter space is increased gradually,
and a criteria for the convergence of the model-generated test
statistic distribution is applied [97]. In addition, if the model
has a rigorous analytical representation, it may be possible to
“map” statistical distributions through those equations—but if
that is possible one would likely not be recurring to numerical
methods in the first place. Alternatively, the state-of-the-art
computational approach is to use the Monte Carlo Markov
Chains [218], [220], [221], which starts random walks (each
of which is called a “chain”) from different locations in the
search space. If multiple chains converge to a location in the
search space, one has at least some evidence to assume that
the searching the entire parameter space will produce the same
results and the statistics of the converged region are a reason-
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Fig. 8. Example of Monte Carlo analysis of possible muscle activation patterns
for the Planar Arm Example. 100 000 muscle force vectors that produced 50%
maximal force in the forward direction were calculated, and then histograms
were made of the valid solutions in each muscle for each of two postures. No-
tice that in both postures, some muscles are necessary (zero force is not a valid
solution). Notice also that some muscles switch from being necessary in one
posture to redundant (zero force is an allowed solution) in other postures (e.g.,
muscle 5). A similar example of this approach is presented in [182].

able representation of the dispersion of the performance of the
system. To see two examples of the use of the Monte Carlo
Markov Chain method, and the reader is referred to [218] and
the supplemental material of [222] for details and uses of the
Markov Chain approach applied to neuromuscular models.

B. Example 1: Biomechanical Model Analysis

Hughes and An performed a Monte Carlo analysis on a planar
shoulder model to examine the effects of varying muscle mo-
ment arms on predictions of the muscle forces required to main-
tain posture [214]. The authors calculated both the average mo-
ment arms, as well as the moment arm covariance matrix, across
a sample of 22 cadaver specimens. The second-order statistics
(mean and standard deviation) of the moment arm data were
used to generate distributions of moment arms for all six mus-
cles examined: subscapularis, infraspinatus, supraspinatus, an-
terior deltoid, middle deltoid, and posterior deltoid. Sampling
randomly from these distributions of moment arms, the authors
predicted the necessary vector of muscle forces required to resist
gravity and maintain a particular posture by minimizing the total
squared muscle stress. This study found that muscle forces could
vary considerably given the observed moment arm variability.

Fig. 9. Monte Carlo analysis of the Fuglevand Model. (A) Each line shows the
force/force-variability relation generated by different parameter sets. (B) Each
line shows the EMG/force relation generated by the same parameter sets shown
in (A). (C) Relations found in (A) and (B) are evaluated by test statistics that
are regression slopes [log-log in the case of (A)]. Good fits to experimental data
are force/force-variability slopes of greater than 0.75 and EMG/force slopes of
less than 1.05; thus, very few parameter sets are able to reproduce experimental
data. Adapted from [97].

This study highlights the utility of Monte Carlo methods for rig-
orously analyzing variability in experimentally driven biome-
chanical models. In Fig. 8, we perform a similar Monte Carlo
analysis on the planar two-link arm shown in Fig. 1.

C. Example 2: Neuromuscular Model Analysis

A population-based approach to the study of muscle function
was developed by Fuglevand and colleagues and is based on
representing motor unit recruitment and rate coding [95]. The
Fuglevand Model predicts isometric force and corresponding
surface EMG given assumed excitatory drive and properties of
the motor unit pool. These properties are encoded as coupled
equations with multiple parameters, and include: the contractile
properties of the motor units; threshold, gain, and saturation
levels for motor unit firing; motor unit conduction velocity;
muscle geometry including cross-sectional area, number of
fibers, innervation number, and fiber length; electrical con-
ductivities of bone, muscle, subcutaneous tissue, and skin;
etc. This model of muscle has been used to both evaluate
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Fig. 10. Example of Monte Carlo hypothesis testing. (A) Illustration of two hypotheses and sources of noise. (B)–(D) Monte Carlo distributions of test statistics
(target-directedness) generated by the two models, as compared with the experimentally observed value. The synergistic hypothesis can only replicate the data
under specific conditions, and induces muscle force correlations that are unrealistic. Adapted from [231]. (A) Hypotheses and noise sources. (B) Both hypotheses
have Sig-Indep. Noise only. (C) Both hypotheses have Muscle SDN only. (D) Flexible hypothesis has only Muscle SD, synergistic hypothesis has Muscle SDN
and Synergy SDN equally. (E) Flexible hypothesis has only Muscle SDN, synergistic hypothesis has Synergy SDN ten times Muscle SDN.

experimental methods [223]–[225] and to corroborate scientific
hypotheses of muscle function [226]–[229]. Other models of
muscle have also been used in these kind of studies [230].
However, sensitivity analyses in these studies are typically
limited to variations in single parameters, with the other param-
eters held constant. Keenan and Valero-Cuevas used a Monte
Carlo approach to test whether sets of parameter values exist
such that the Fuglevand Model can replicate the fundamental

and well-established experimental relationships between force
and force variability, and between force and electromyograms
[97]. The numerical values for each of nine muscle and neural
parameters were drawn at random from uniform distributions
covering physiological ranges. Each forward dynamical sim-
ulation generated two relations: one between average force
and force variability, and the other between force and EMG
(Fig. 9). The outputs of the model were the slopes of those
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two relationships. The authors found that very few parameter
sets could produce test statistics approaching the experimental
values; typically, parameter sets that produced EMG-force
relations similar to those observed experimentally would also
produce unrealistic relations between average force and force
variability (Fig. 9). Using the Monte Carlo approach allowed a
thorough exploration of this parameter space, and the identifi-
cation of the key combination of parameters to which the model
is most sensitive. More importantly, that study suggests the
Fuglevand Model is able to approximate realistic muscle func-
tion (as per the two slopes) only when parameters are chosen
with extreme caution, especially neural properties. Therefore,
the most productive research direction to refine our working
hypotheses about populations of motor units is to improve our
understanding of the neural properties for the recruitment and
activation of populations of motor units.

D. Example 3: Hypothesis Testing in Neural Control of Motor
Systems

In other cases, a researcher may want to use one model repre-
senting a null hypothesis and another for an alternative hypoth-
esis, to determine if available data provide sufficient evidence to
reject the null hypothesis in favor of the alternative hypothesis.
The Monte Carlo framework described above is also well-suited
to this application. The approach is simple: generate test statistic
distributions for the desired output using both models, and de-
termine if one is implausible while the other is compatible with
experimental data. An example of this approach is provided
by Kutch et al., who used Monte Carlo simulation to deter-
mine if multidirectional force variability measurements from
the human index finger provided enough evidence to reject a
hypothesis of flexible muscle activation in favor of a hypoth-
esis of synergistic activation [231]. Models were coded for both
hypotheses, which included a number of unknown parameters
including how muscles were grouped into synergies, how av-
erage muscle force translated into muscle force variability, and
how muscle-level signal-dependent noise was correlated. A test
statistic was chosen, and called “target-directedness,” that repre-
sented the shape of the endpoint force covariance ellipse in spe-
cific directions of force exerted by the index finger. Target-di-
rectedness was simulated to convergence for both models for
randomly chosen parameters. It was found that parameter sets
could be found for the flexible activation hypothesis that could
replicate the data, but in general, no parameter sets could be
found for the synergistic activation hypothesis that replicate the
data (Fig. 10). The synergistic hypothesis could only replicate
the data if synergy-level noise was made unrealistically strong,
which would in turn induce unrealistic levels of correlation be-
tween muscle forces. This analysis provided rigorous evidence
that the flexible activation hypothesis should not be rejected in
favor of the synergistic activation hypothesis. Recent work at the
level of electromyograms during fingertip force production also
fails to support the synergistic activation hypothesis for finger
musculature [222].
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