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Wepresent Feasibility Theory, a conceptual and computational framework to unify today’s

theories of neuromuscular control. We begin by describing how the musculoskeletal

anatomy of the limb, the need to control individual tendons, and the physics of a

motor task uniquely specify the family of all valid muscle activations that accomplish

it (its ‘feasible activation space’). For our example of producing static force with a

finger driven by seven muscles, computational geometry characterizes—in a complete

way—the structure of feasible activation spaces as 3-dimensional polytopes embedded

in 7-D. The feasible activation space for a given task is the landscape where all

neuromuscular learning, control, and performance must occur. This approach unifies

current theories of neuromuscular control because the structure of feasible activation

spaces can be separately approximated as either low-dimensional basis functions

(synergies), high-dimensional joint probability distributions (Bayesian priors), or fitness

landscapes (to optimize cost functions).

Keywords: feasibility, neuromechanics, motor control, tendon-driven, dimensionality, synergies, optimization,

forces

1. INTRODUCTION

How the nervous system selects specific levels of muscle activations (i.e., a muscle activation
pattern) for a given motor task continues to be hotly debated. Some suggest the nervous system
either combines low-dimensional synergies (Dingwell et al., 2010; Kutch and Valero-Cuevas,
2012; Alessandro et al., 2013; Bizzi and Cheung, 2013; Rácz and Valero-Cuevas, 2013;
Steele et al., 2013, 2015), learns probabilistic representations of valid muscle activation
patterns (Körding and Wolpert, 2004; Sanger, 2011; Berniker et al., 2013; Kording, 2014), or
optimizes physiologically-tenable cost functions (Chao and An, 1978; Crowninshield and Brand,
1981; Prilutsky, 2000; Todorov and Jordan, 2002; Scott, 2004; Higginson et al., 2005). At the
core of this problem lies the nature of “feasible activation spaces,” and the computational
challenge of describing and understanding their high-dimensional structure (for an overview,
see Valero-Cuevas, 2015). A feasible activation space is the family of valid solutions (i.e., muscle
activation patterns) that meet themechanical constraints1 of a givenmotor task. Figure 1 illustrates
these neuromechanical interactions that define the feasible activation space for a particular task.

1Mechanical constraints is a formal way to call the physical demands, requirements, or characteristics of a given physical task.
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FIGURE 1 | Emergence and interpretation of feasible activation spaces for a particular motor task. The descending motor command for a given task is issued by the

motor cortex (a), which projects onto inter-neurons and alpha-motor neuron pools in the spinal cord (b). The combined drive to all alpha-motor neurons of a muscle

can be considered its total muscle activation level (a value between 0 and 1). If we consider that muscles can, to a large extent, be controlled independently and in

different ways, then the overall motor command can be conceptualized as a multi-dimensional muscle activation pattern (i.e., a point) in a high-dimensional muscle

activation space (Chao and An, 1978; Spoor, 1983; Kuo and Zajac, 1993; Valero-Cuevas et al., 1998; Todorov and Jordan, 2002) (c). For that muscle activation

pattern to be valid, it has to elicit muscle forces (d) capable of satisfying the mechanical constraints of the task—in this case defining a well-directed sub-maximal

fingertip force (e). Given the large number of muscles in vertebrates, there can be muscle redundancy: where a given task can be accomplished with a large number

of valid muscle activation patterns. We propose that our novel ability to characterize the high-dimensional structure of feasible activation spaces (i) allows to us to

compare, contrast, and reconcile today’s three dominant approaches to muscle redundancy in sensorimotor control (f–h).

The most the nervous system can do, therefore, is select and
apply a specific muscle activation pattern fromwithin the feasible
activation space. This is because muscle activation patterns
outside of this space are, by definition, inappropriate for the
task. In fact, the feasible activation space defines the landscape
upon which all neuromuscular learning and performance must
occur for that task. Studying neuromuscular control is, therefore,
equivalent to studying how the nervous system finds, explores,
inhabits, and exploits the contents and structure of feasible
activation spaces (Dingwell et al., 2010; Kutch and Valero-
Cuevas, 2012; Bizzi and Cheung, 2013; Rácz and Valero-Cuevas,
2013; Steele et al., 2013, 2015; Gallego et al., 2017).

But the “curse of dimensionality” (Bellman and Osborn, 1958;
Avis and Fukuda, 1992; Bellman, 2015) makes it computationally
challenging to calculate, describe, and understand the nature and
structure of high-dimensional feasible activation spaces (Chao
and An, 1978; Spoor, 1983; Kuo and Zajac, 1993; Scholz and
Schöner, 1999; Valero-Cuevas et al., 2009a; Dingwell et al.,
2010; Theodorou and Valero-Cuevas, 2010)—even for an isolated
human finger or cat leg generating everyday static forces (Kutch

and Valero-Cuevas, 2012; Sohn et al., 2013; Valero-Cuevas, 2015;
Valero-Cuevas et al., 2015b). This is due to the computational
complexity of algorithms to map the geometric details of objects
embedded in high dimensions (Smith, 1984; Lovász, 1999;
Fukuda, 2014).

Current theories of neuromuscular control2 are alternative
responses to overcome the curse of dimensionality in this context.
These alternative approaches, however, are seldom combined and
often the insights from one realm are not readily applicable to
the others. Here we emphasize how the mechanics of the body
and the physics of the task constitute the common ground for all
theories.

We now propose “Feasibility Theory,” which is a conceptual
framework to characterize feasible activation spaces in detail.
While prior work has described how to find such feasible
activation spaces for static force production (Valero-Cuevas et al.,
1998, 2015a; Venkadesan and Valero-Cuevas, 2008; Kutch and

2Neuromuscular control is variously referred to as, inter alia, neural, motor,

sensorimotor control.
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Valero-Cuevas, 2012;Marjaninejad andValero-Cuevas, 2019), we
now explain why the structure of a feasible activation space can
be approximated with low-dimensional synergies and probability
distribution functions, and can be associated withmultiple fitness
landscapes over which to optimize (Table 1).

2. METHODS

In the case of the seven muscles of the human index finger
producing static fingertip force, we show that the family
of feasible commands, the feasible activation space, is a
3-dimensional polytope embedded in 7-dimensional muscle
activation space (Valero-Cuevas et al., 1998). A “polytope” is the
formal name for bounded polyhedra in dimensions higher than
three. With 4 task constraints applied to 7 muscles, the result
is a 3-dimensional polytope embedded in the 7-dimensional
muscle activation space. By construction of anatomy, producing
static force with a fixed posture naturally leads to a relationship
between muscle forces and endpoint torques. The linear
constraint equations that define this relationship (and in
parallel the polytope that arises from the constraints) accurately
represent the set of feasible motor commands (Valero-Cuevas
et al., 1998; Sohn et al., 2013; Valero-Cuevas, 2015). Our
computational approach hinges on the efficient sampling and
complete representation of the geometric structure of high-
dimensional polytopes which fully characterizes the family of all
valid muscle activation patterns–each of which solves the same
task. By definition, this polytope is the null space of the task.

The methods to obtain feasible activation spaces for
“tendon-driven” limbs are described in detail in the
textbook Fundamentals of Neuromechanics and references
therein (Valero-Cuevas, 2015). This tendon-driven approach

explicitly and distinctly avoids the conceptual approach to
calculate net torques at each joint. Rather, it emphasizes studying
the individual actions of all muscles at all levels of analysis, from
their neural activation to their contributions to fingertip force.
We describe them briefly here.

Consider a tendon-driven limb, such as a finger, with n
independently controllable muscles, where we define the neural
command to eachmuscle as a positive value of activation between
0 (no activation) and 1 (maximal activation), where a value of
1 would produce the maximum possible tendon force for that
muscle. We do not differentiate between concentric or eccentric
contraction—we define muscle activation as the net static tendon
tension, normalized by the maximum tendon tension possible
by that muscle. We can then visualize the set of all feasible
neural commands (i.e., all possible muscle activation patterns)
as the points contained in a positive n-dimensional cube with
sides of length equal to 1. A specific muscle activation pattern
is a point (i.e., an n-dimensional vector a) in this n-dimensional
cube (Chao and An, 1978; Spoor, 1983; Kuo and Zajac, 1993;
Valero-Cuevas et al., 1998). Now consider a specific task, such
as producing a vector of static force with the fingertip, as when
holding an object. Clearly, not all muscle activation patterns
inside the n-dimensional cube can produce that desired static
fingertip force vector: bone lengths, kinematic degrees of freedon,
anatomical routing, posture, and muscle strength inequities
define the subset of points in the n-cube which produce a
fingertip force vector of a specific magnitude and direction. As
described in Chao and An (1978), Spoor (1983), Kuo and Zajac
(1993), Valero-Cuevas (2015) the musculoskeletal anatomy of the
limb, the need to control individual tendons, and the physics
of a motor task uniquely specify a polytope embedded in R

n

(i.e., the feasible activation space). This polytope contains the

TABLE 1 | Applicability and compatibility of Feasibility Theory with dominant theories of neuromuscular control.

Dimensionality Reduction PCA, NMF, etc. describe the general shape and structure of the feasible activation space. The resulting basis functions serve as

an approximation of the input-output relationship of the system (i.e., descriptive synergies).

Motor Primitives / Synergies

/ Modular Organization

If the basis functions mentioned above are of neural origin, they would be the means by which the nervous system inhabits the

feasible activation space and executes valid solutions (i.e., prescriptive synergies).

Uncontrolled Manifold (UCM)

Theory

The UCM Theory emphasizes that the temporal evolution of muscle activation patterns in the interior of the feasible activation

space need not be as tightly controlled as those at its boundaries. This is because moving between interior points has no impact

on the output as they constitute the null-space of the task (i.e., they are “goal-equivalent” as in Scholz and Schöner, 1999). In

contrast, Feasibility Theory describes details of the structure of the feasible activation space.

Exploration-Exploitation Heuristic and trial-and-error approaches can be used to find points within the Feasible Activation Space because it is a

needle-in-a-haystack problem. By definition, there is a small likelihood of finding a point on a low-dimensional manifold embedded

in a high-dimensional space (e.g., the volume of a line is zero). Thus, the families of valid solutions found are preferentially adopted

(e.g., as motor habits De Rugy et al., 2012). Such a heavily iterative approach is compatible with reinforcement

learning (Valero-Cuevas et al., 2009a), motor babbling (Touwen, 1976), the hundreds of thousands of steps children take when

learning to walk (Adolph et al., 2012), or the mass practice a patient needs for effective rehabilitation (Lang et al., 2009).

Probabilistic Neuromuscular

Control

If muscle activation patterns within the feasible activation space can be found (by any means), they can be combined to build

probability density functions (i.e., Bayesian priors). A likely valid action for a particular situation can then be selected via Bayes’

Theorem (e.g., Körding and Wolpert, 2004).

Optimization / Minimal Intervention

Principle/

Optimal Control

Every point in the feasible activation space is, by definition, valid. However, if a cost function is used to evaluate each point in it, the

feasible activation space is transformed into a fitness landscape. Optimization methods can then navigate this fitness landscape

to find local and global minima (e.g., Crowninshield and Brand, 1981; Anderson and Pandy, 2001; Todorov and Jordan, 2002).
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family of (potentially infinite) valid muscle activation patterns
that can produce this static force production task. However, these
valid muscle coordination patterns are not arbitrarily different
because, by construction, the geometric structure of the polytope
that contains them defines strict spatial correlations among
them (Kutch and Valero-Cuevas, 2012).

System of Linear Equations to Simulate
Static Force Production by a
Tendon-Driven System
Consider producing a vector of static force with the endpoint
of the limb in a given posture. The constraints that define
that task (i.e., the direction and magnitude of the force vector
at the endpoint) are linear equations (Valero-Cuevas, 2015)
that come from the mapping between neural activation of
individual muscles to static endpoint forces and torques the
limb can produce. This mapping is linearly modeled by the
equation
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, a ∈ [0, 1]n (1)

where H is the matrix of linear constraints defined by the
musculoskeletal anatomy of the limb (Valero-Cuevas et al.,
2015b), a is the input vector of nmuscle activations, and f ∈ R

m

is the m-dimensional limb output “wrench” (i.e., the forces and
torques the finger can produce at the endpoint).

The output wrench, w, is at most 6-dimensional (i.e., 3 forces
and 3 torques) depending on the number of kinematic degrees
of freedom of the limb, and usually m < n because limbs have
more muscles than kinematic degrees of freedom Valero-Cuevas
(2015). Muscles can only pull, so elements of a cannot be
negative, and are capped at 1 (i.e., 100% of maximal muscle
activation).

What are the muscle coordination patterns that produce a
given task? As explained in Valero-Cuevas (2015), the task of
producing a static fingertip force vector is defined by specifying
the desired values for the elements of the endpoint forces and
torques of w. Each value yields a constraint equation, which
in turn defines a hyperplane of dimension n − 1, and their
combination defines the task completely. The feasible activation
space of the task, if it is well posed (Chvatal, 1983), is defined by
the points a that lie within the n-cube and at the intersection of
all constraint hyperplanes.

Geometrically speaking, the feasible activation space is a
(n − m)-dimensional convex polytope P embedded in R

n that
contains all n-dimensional muscle coordination patterns (i.e.,
points a) that satisfy all constraints, and therefore can produce
the task. Increasing task specificity by adding more constraints
naturally decreases the dimensionality and changes the size and
shape of the feasible activation space (Kuo and Zajac, 1993; Sohn
et al., 2013; Inouye and Valero-Cuevas, 2016).

The Hit-and-Run Algorithm Uniformly
Samples From Feasible Activation Spaces
Calculating the geometric properties of convex polytopes in
high dimensions is computationally challenging. Taking the
generalized concept of an n-dimensional volume as an example of
a geometric property of interest, the exact volume computations
for n-dimensional polytopes is known to be tractable only in a
polynomial amount of time (i.e., #P-hard) (Dyer et al., 1989).
Currently available volume algorithms can only handle polytopes
embedded in small dimensions like 10 or slightly more (Büeler
et al., 2000). Studying vertebrate limbs in general, however, can
require including several dozen muscles, such as our studies
of a 17-muscle human arm and a 31-muscle cat hindlimb
model (Valero-Cuevas et al., 2015b); and other models have over
40muscles of the human lower limb (Arnold et al., 2010; Hamner
et al., 2010; Kutch and Valero-Cuevas, 2012; De Sapio et al.,
2014).

Similar difficulties arise when computing other geometric
properties such as the shape and aspect ratio of P in
high dimensions. We and others have described polytopes
P by their bounding box (i.e., the range of values in every
dimension) (Kutch and Valero-Cuevas, 2011; Sohn et al., 2013),
but that singularly overestimates the shape and volume of the
feasible activation space as discussed in Valero-Cuevas et al.
(2015b). Consider a 3-muscle system with only one constraint,
producing a 2-dimensional polygon as the feasible solution
space. The bounding box of the polygon has a volume—even
though a plane has zero volume—, and can be almost as large
as the positive unit cube itself. Similar problems arise in the
interpretation of the inscribed and circumscribed ball (Inouye
et al., 2014).

We applied the Hit-and-Run method to sample points from
the feasible activation space. We have presented a detailed
explanation of the Theory (In Chapter 9 of Valero-Cuevas,
2015), and have justified the utility of this method on tendon-
driven models of the index finger (Valero-Cuevas et al., 2015a).
This complete probabilistic method describes the structure of
feasible activation spaces P with a set of uniformly-at-random
muscle activation patterns that produce the same wrench. This
enables us to derive descriptive statistics, histograms, and point
densities of the set of valid muscle activation patterns a uniformly
sampled from the polytope. To do so, we use the Hit-and-Run
method.

This approach can scale up to ∼40 dimensions (i.e., limbs
with ∼40 independent muscles). This suffices to study extant
vertebrate limbs, and thus compare, contrast, combine—and
reconcile—today’s three dominant approaches to neuromuscular
control.

Example of a Tendon-Driven System

Realistic 3-D model of a 7-muscle human index finger
We applied this methodology to our published model of an
index finger for static fingertip force production. The model
is described in detail elsewhere (Valero-Cuevas et al., 2009a).
Briefly, the input to the model is a 7-D muscle activation pattern
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a, and the output is a 4-Dwrenchw (i.e., static forces and torques)
at the fingertip:

w = Ha (2)

H = J−TRFo,H ∈ R
4×7 (3)

where

a =
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aEDC
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aDI
aPI





















(4)

In Cartesian coordinates, the 4-D output wrench corresponds to
the anatomical directions shown in Figure 1e.

w =









fx
fy
fz
τx
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fradial
fdistal
fpalmar

τradial









(5)

The biomechanical modelH includes three serial links articulated
by four kinematic degrees of freedom (ad-abduction, flexion-
extension at the metacarpophalangeal joint, and flexion-
extension at the proximal and distal interphalangeal joints).
The action of each of the seven muscles (FDP: flexor digitorum
profundus, FDS: flexor digitorum superficialis, EIP: extensor
indicis proprius, EDC: extensor digitorum communis, LUM:
lumbrical, DI: dorsal interosseous, and PI: palmar interosseous) on
each joint to produce torque is given by the moment arm matrix
R ∈ R

4×7. Lastly, J ∈ R
4×4 and F0 ∈ R

7×7 are the Jacobian of the
fingertip with 4 kinematic degrees of freedom, and the diagonal
matrix containing the maximal strengths of the seven muscles,
respectively (Valero-Cuevas, 2000; Valero-Cuevas, 2015). The
finger posture was defined to be 0◦ ad-abduction and 45◦ flexion
at the metacarpophalangeal joint, and 45◦ and 10◦ flexion,
respectively, at the proximal and distal interphalangeal joints.

Feasible activation space for a static fingertip force task
Our goal is to find the family of all feasible muscle activation
patterns that can produce a given task. In particular, the task
we explored is producing various magnitudes of a submaximal
static force in the distal direction fdistal — in the absence of any
τradial, shown in Figure 1e. Therefore the feasible activation space
is a polytope P in 7-dimensional activation space that meets the
following four linear constraints in a (Valero-Cuevas et al., 1998;
Valero-Cuevas, 2000; Valero-Cuevas, 2015)

fradial = 0 (6)

fdistal = desired magnitude as % of maximal (7)

fpalmar = 0 (8)

τpalmar = 0 (9)

These four constraints on the static output of the finger yield
a 3-dimensional (i.e., 7 − 4 = 3) polytope P embedded in 7-
dimensional activation space. For details on how to create such
models, apply task constraints and find such polytopes via vertex
enumeration methods, (see Valero-Cuevas, 2015).

For the index finger model used in this paper, the published
maximal feasible force in the distal direction is 28.81 Newtons.
We defined the normalized desired distal task intensity as a value
ranging between 0 and 1, i.e., each submaximal force can be
produced by any of the points contained in its corresponding
feasible activation space. For the production of a maximal force,
the feasible activation space shrinks to a single point (Chao and
An, 1978; Chvatal, 1983; Spoor, 1983; Valero-Cuevas, 2000).

Analysis of Feasible Activation Spaces

Parallel coordinate visualization
For us to understand the structure of the feasible activation space,
we aim to visualize the data. If we had a simple model with only
three muscles (and one task force dimension), we could plot the
feasible activation space as a plane within a 3D cube, as illustrated
in Figure 2A. However, in our model, we have seven muscles. In
our 3D reality, we cannot create a 7D scatter plot to highlight how
muscle activation patterns are spatially located across the muscle
dimensions, so we must project the data in a different way.

Parallel coordinates are a common graphical approach to
visualize interactions among high-dimensional data (Krekel
et al., 2010; Bachynskyi et al., 2013). To build familiarity with
this visualization method, consider the results of a simple 3-
dimensional (3-muscle) toy example shown in Figure 2A. This
is the dimensionality of a finger with only 3 muscles, aiming to
create a unidimensional pressing force. We begin by drawing n
parallel vertical lines for each of the dimensions n (i.e., 3muscles).
With the axis limits of each line set between 0 and 1 (at the bottom
and top of the plot, respectively), each muscle activation pattern
(Figure 2A) is then represented by a zig-zag line that connects
to the coordinates between 0 and 1 on each axis, as shown in
Figure 2B. The blue zig-zag line that is connected at the top of
m1 in Figure 2B represents the muscle activation point equal to
(m1 = 0.8,m2 = 0.9,m3 = 0.4). You can see its corresponding
location in the 3D cube, mapped to the parallel coordinate zig-
zag line (the gray dotted line connects the two representations of
the muscle activation pattern).

Neural and metabolic cost functions
As mentioned in the Introduction, the field of neuromuscular
control has a long historical tradition of using optimization
to find muscle activation patterns that minimize effort,
which requires the (often contentious) definition of cost
functions (Chao and An, 1978; Crowninshield and Brand,
1981; Spoor, 1983; Prilutsky, 2000). Therefore, we used four
representative cost functions to calculate the relative fitness of
each of the muscle activation patterns sampled—in effect also
calculating the fitness landscape across all possible solutions. The
cost functions are defined at the level of neural effort (L1, and L2
norms, representing the normalized sum of descending neural α-
drive to the motor neuron pools); and at the level of metabolic
cost, thought to be approximated by neural drive weighted by the
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FIGURE 2 | Parallel coordinates characterize the high-dimensional structure of a feasible activation spaces. Consider four points (i.e., muscle activation patterns) from

the polygon that is a feasible activation space (A). The activation level for each muscle (i.e., the coordinates of each point) are sewn across three vertical parallel axes

(B). As is common when evaluating muscle coordination patterns, each point can also be assigned a cost as per an assumed cost function. The associated cost for

each muscle activation pattern can also be shown as an additional dimension. We show three representative cost functions (C). Activation levels are bound between 0

and 1, and costs are normalized to their respective observed ranges.

strength of each muscle (Lw1 and Lw2 norms) (Crowninshield and
Brand, 1981; Prilutsky, 2000).

To visualize the costs associated with each valid muscle
coordination pattern we simply added three vertical lines at
the far right of the parallel coordinates plot, one for each of
the three cost functions, as shown in Figure 2C. The variables
ai and F0i represent the activation of the ith muscle in a
given muscle activation pattern, and the maximal strength
of each muscle (Crowninshield and Brand, 1981; Prilutsky,
2000). Maximal muscle strengths are approximated by the
multiplying each muscle’s physiological cross-sectional area, in
cm2, by the maximal active muscle stress of mammalian muscle,
35 N/cm2 (Zajac, 1993). These four cost functions are but
four examples from the literature; an investigator is free to use
this visualization of the feasible activation space with any cost
function deemed relevant to their study.

Histograms of the activation level of each muscle across all

valid solutions
Muscle-by-muscle histograms are another straightforward way
to visualize the many points sampled from the convex polytope.
Histograms are particularly helpful because they illustrate the
structure of the space of all feasible activations, allowing us to see
which muscle activation patterns are on the edge of the space,
which solutions exist in the middle of the space, and how the
bounds of the space and the distribution change across different
tasks (in this case, as the task force increases). They visualize
the relative number of solutions (i.e., density of solutions) that
required a particular level of activation from a particular muscle
within its range of [0, 1]. In addition, the upper and lower bounds
of the histograms show, in fact, the size of the side of the
bounding box of the polytope in every dimension (i.e., for each
independently controlled muscle).

Dimensionality reduction
Investigators have repeatedly reported that electromyographical
signals (i.e, experimental estimates of muscle activation
patterns) tend to exhibit strong correlations with one
another. In these experimental descriptions of dimensionality

reduction of neuromuscular control only few independent
functions—sometimes called synergies—suffice to explain the
majority of the variability in the observed muscle activation
patterns (Krishnamoorthy et al., 2003; Dingwell et al., 2010;
Kutch and Valero-Cuevas, 2012; Alessandro et al., 2013; Bizzi and
Cheung, 2013; Steele et al., 2013, 2015). Principal components
analysis (PCA) is a widely used technique to extract these few
independent basis functions (correlation vectors called principal
components, PCs) from high-dimensional data (Clewley et al.,
2008). In this case, PCs are often called the experimental
representations of synergies of neural origin (Kutch and
Valero-Cuevas, 2012).

Therefore, we applied PCA to points (i.e., muscle coordination
patterns) sampled from the feasible activation space at each
force level. This provides the PCs that describe the correlations
among valid muscle activation patterns for a given task. For
example, the feasible activation space P in a 3-muscle system
with one constraint is a 2-dimensional polygon embedded in
3-dimensional activation space. Thus, applying PCA to points
sampled from the polygon will extract 2 synergies (i.e., 3-
dimensional correlation vectors PC1 and PC2) that wholly
explain the feasible activation space. By extension, in the
case of fingertip force production in Figure 1, the feasible
activation space is a 3-dimensional polytope embedded in the
7-dimensional activation space. PCA should also extract, by
construction, as many synergies as there are dimensions in the
feasible activation space. For static force production with the
index fingertip (i.e., 7 muscles and 4 constraints), we know that 3
principal components will describe 100% of the variance in points
sampled from the feasible activation space (i.e., 7-dimensional
correlation vectors PC1, PC2, and PC3).

Applying PCA to our data allows us to test whether and
how its results change when applied to feasible activation spaces
for different magnitudes of fingertip force. We applied PCA to
feasible activation spaces for fingertip task intensities ranging
from 0 to 90% of maximal. Specifically, we applied the prcomp
function in R, and specified that the calculation operates on
the covariance matrix of the raw data. We compare both
the variance explained by each PC and their loadings (e.g.,
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correlations among muscles) as the force level increases (Valero-
Cuevas et al., 2016). Lastly, we tested whether the dispersion
(i.e. the two central quartiles) and median of our PCA estimates
are sensitive to the number of points sampled from each
feasible activation space. This is important in practice because
experimental studies tend to record and analyze a practical
number (e.g., 10) of repetitions of the same motor task from a
given subject, and aggregate data from different subjects (Valero-
Cuevas and Santello, 2017). Although we have reported that
subjects tend to exhibit similar muscle activations for a given task
(Valero-Cuevas, 2000), performing dimensionality reduction on
such few trials and across multiple non-identical subjects (i.e.,
samples in Figure 5) may lead to imprecise (i.e., uncertain)
estimates of the synergies when sampling from high-dimensional
spaces.

3. RESULTS

We used our realistic index finger model to calculate the
feasible activation space for the task of producing static fingertip
force in the distal direction (see Figure 1). By showing how
this same space can be interpreted from three dominant
perspectives, we propose a conceptual paradigm to unify
today’s theories of neuromuscular control. The model contains
the contribution of each of the seven muscles of the finger
to the resultant static fingertip force vector (Valero-Cuevas,
2015). As described briefly in the Methods, all valid muscle
activation patterns to produce a given fingertip force vector
(i.e., all ways in which one can combine the actions of
the seven muscles to produce a given fingertip force vector)
are contained in a low-dimensional polytope embedded in
7-dimensional space. Hit-and-Run is a method for uniform
polytope sampling that collects thousands of muscle activation
patterns, which become a valid geometric approximation to
the structure of the feasible activation space (Valero-Cuevas
et al., 2015a). We examined how these feasible activation spaces
(and their alternative representations) change with increasing
task intensity (i.e., fingertip force magnitude, Figure 1e). In
particular, we studied task intensities between 0% (i.e., pure
co-contraction without output force) and 100% of maximal
static force (i.e., a unique solution Valero-Cuevas et al.,
1998).

Parallel Coordinate Visualization Naturally
Reveals the Structure of the Feasible
Activation Space
Parallel coordinate visualization effectively reveals correlations
that exist among the 1,000 valid muscle activation patterns for
each intensity of desired fingertip force, and activation pattern
cost, Figures 2, 3.

Parallel coordinate visualization provides deep insight into
the interactions among muscles that can produce a given
task. Because it allows interactive exploration of the feasible
activation space, one can restrict the activation level of any
one or multiple muscles to see the associated activation
levels of the remaining muscles (i.e., see a subsample of

the feasible activation set). Figure 4 shows how, for 80% of
task intensity, only 46% (i.e., 461

1,000 ) of all possible solutions
survive when we only keep solutions where EIP and EDC
are below 80% of maximal excitation. We chose to limit the
extensors, as they are both innervated by the radial nerve and
are susceptible to limitation from, for example, neuropathy or
stroke. This robustness-related system behavior is visible in
other muscle pairs via the interactive parallel coordinates plot.
We find that even a minor neural or muscle dysfunction can
disproportionally compromise the solution space—even for sub-
maximal forces. These results further challenge the definition of
muscle redundancy as discussed in detail in Kutch and Valero-
Cuevas (2011), Valero-Cuevas (2015), Marjaninejad and Valero-
Cuevas (2019), in that our description of redundancy may need
to incorporate the structure of the feasible activation space to best
describe how motor control can occur with perturbation to one
or more muscles.

While we know from experience that a limitation on one
muscle yields compensation from the others, Figure 4 explains
why, and how much to expect. All data used for Figure 4 are
for a task intensity of 80%. When we select only the lowest 5%
of L2 weighted costs (Figure 4, middle figure) there exist many
“near-optimal” solutions that are dramatically different (note the
broad ranges and criss-cross patterns in the second panel of in
Figure 4). This wide space exists in spite of this strong criterion.

Evaluating the slope of the lines connecting muscles enables
an intuitive understanding of inter-muscle correlations. The
Pearson product-moment correlation coefficients were 0.99,
−0.50, and −0.06 in the adjacent muscle pairs FDP—FDS,
LUM—DI, and EIP—EDC, respectively. The interactive parallel
coordinate visualization also allows for any pairwise comparison
by simply dragging and reordering the vertical axes. This is an
effective ad-hoc method to viewing the inter-muscle correlations
for exploratory data analysis.

Low-Dimensional Approximations to the
Feasible Activation Space
We applied Principal Component Analysis (PCA) to sampled
muscle activation patterns for 10 levels of task intensity. However,
to replicate the fact that experimental studies can only collect
a finite amount of data from each subject, we did this in an
iterative fashion as follows. We collected 10,000 points sampled
uniformly at random from each feasible activation space via
Hit-and-Run (Valero-Cuevas et al., 2015a). From these 10,000
points, we sampled 10, 100, and 1,000 points at random (to
simulate “experimental” sample sizes), and applied PCA to each
set of sampled points. For each of the sample sizes, we replicated
the sampling 100 times, producing a distribution of principal
component results, and thus, a distribution of variance-explained
metrics for PC1 (and the same for the other components). This
bootstrap analysis serves to inform how many samples one
must collect from a subject to get an effective set of principal
components. The H matrix was fixed across all replicates and
samples.

Figure 5 shows the box plots describing the variances
explained by the three principal components (PC1, PC2, and
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FIGURE 3 | Activation patterns of the seven muscles of the index finger across six intensities (magnitudes) of a fingertip force vector in the distal direction. The

connectivity across parallel coordinates visualizes the correlations among muscle activation patterns at different task intensities. At the extremes of 0 and 100% we

have, respectively, the coordination patterns that produce pure co-contraction and no fingertip force, and the one unique solution for maximal fingertip force

(Valero-Cuevas et al., 1998). In between, we see how the structure of the feasible activation spaces changes, and that much redundancy is lost rather late (at

intensities >80%, in agreement with Sohn et al., 2013). In blue are the activation values, and in red are normalized costs for four common cost functions in the

literature. For each task intensity, we produced 1,000 points that are uniformly distributed in the polytope via the Hit-and-Run method. The muscles are FDP: flexor

digitorum profundus, FDS: flexor digitorum superficialis, EIP: extensor indicis proprius, EDC: extensor digitorum communis, LUM: lumbrical, DI: dorsal interosseous,

PI: palmar interosseous. Color is used solely to differentiate muscle activations (blue) from cost values (red).

PC3) across task intensities. The third PC, PC3, explains the
remainder of the variance (13—15%) for the resulting 3-
dimensional polytope. Recall that the 4 task constraints (fradial,
fdistal, fpalmar , τpalmar) applied to 7 muscles yield a 3-dimensional
polytope embedded in the 7-dimensional muscle activation space
(Valero-Cuevas et al., 1998); as such, the sum of all three
PCs is exactly 100%. The supplemental website (linked in the
Data Availability Statement below) contains alternate versions of
Figure 6 with varying input transformations.

The box plots in Figure 5 quantify how different amounts of
data change the estimates of variance explained by a PC with
task intensity (c.f. labels a vs. b vs. c). We see this dispersion
is small in the center and right columns. Note that the ratio of
variance explained between PC1 and PC2 between 50 to 80% of
task intensity reveals changes in the aspect ratio of the feasible
activation space with task intensity.

Importantly, we observe how using experimentally realistic
sample sizes of 10 same-task repetitions per subject (the leftmost
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FIGURE 4 | Exploration of the feasible activation space for task intensity of 80%. Here we show three informative examples of constraints applied to the points

sampled from the feasible activation space (n=1,000; axes match those of Figure 3). With this interactive visualization, we can easily see how the size (i.e., number of

solutions) and characteristics of the family of valid muscle activation patterns change. For example, in the event of (Top) weakness of a group of muscles (54%

reduction), (Middle) selection of the lowest 5% of a given cost function (95% reduction), and (Bottom) enforcing the lowest 10% of cost range across multiple cost

functions (99.6% reduction). In all cases, the family of valid muscle activation patterns retains a wide range of activation levels for some muscles. While it is challenging

to understand the structure of the feasible activation space with a static plot of the parallel coordinates, interactively manipulating the muscle ranges on one or multiple

axes makes it very easy to view and describe how muscle activations change in the face of different constraints.

column in Figure 5) not only does not capture this change, but its
standard deviation is large enough to blur the notable differences
that are known to appear with larger (but experimentally
unrealistic) sample sizes. The impact of impoverishing the
number of independent samples fed to PCA reminds us that
inadequate amounts of data obfuscate the underlying changes in
the structure of the data analyzed (Figure 5).

There were also changes in the loadings of the PCs, especially
above 60% task intensity. While the ratio of variance explained
between PC1 and PC2 gives a sense of the aspect ratio of the
feasible activation space, the loadings of PC1 and PC2 speak to
its orientation (Valero-Cuevas, 2015; Valero-Cuevas et al., 2016).
Figure 6 shows how the loadings of PC vectors change across
labels a, b, and c, Figure 5. These loadings indicate that the
orientation of the feasible activation space in 7-dimensional space

changes mildly at forces <65% of the maximal task force, and
changes more dramatically with higher forces.

These changes we see in (i) the lower and upper bounds
of activations, (ii) the relative variance explained and (iii) the
loadings for all three PCs, demonstrate that the size, shape,
and orientation of the feasible activation space changes with
task intensity. The muscle activation distribution “between the
bounds” has profound implications for prior work which chiefly
examines the ultimate upper- and lower-bounds of activation
for tasks in different directions (Simpson et al., 2015; Valero-
Cuevas et al., 2015b). Moreover, detecting changes in these
high-dimensional structures is done in the best-case scenario,
as it exists in the absence of experimental noise, within- and
across-subject variability, and measurement error. As will be
elaborated in the Discussion, this implies that PCs (i.e., synergies)
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FIGURE 5 | Approximating the structure of feasible activation spaces via principal components analysis (PCA) is sensitive to both the task intensity and the amount of

input data used. Rows show the variance explained by the first (top) through third (bottom) principal components with increasing data points for a given replicate (left

to right). Hit-and-Run sampling provides the ground truth for the high-dimensional structure of the feasible activation set at each task intensity. Each box plot, across

all subplots, is formed from 100 metrics (replicates), where each metric is the PC variance explained for a replicate “subject” which performed the task n times (where

n is one of 10, 100, or 1000 task repetitions). We find that PCA approximations to this structure do not generalize across tasks intensities (i.e., the polytope changes

shape as redundancy is lost), and numbers of points. That is, > 100 muscle activation patterns should be collected from a given subject to confidently estimate the

real changes in variance explained as a function of task intensity. Compare points labeled a, b, c, corresponding to 11, 66, and 88% of task intensity, respectively.

are laborious to obtain experimentally, and even then do not
necessarily generalize across intensity levels.

Changes in the Probabilistic Structure of
the Feasible Activation Space With
Increasing Task Intensity, or How Muscle
Redundancy Is Lost
The maximal static fingertip force vector in a given direction
is produced by a single and unique combination of muscle
activations. In contrast, any sub-maximal magnitude of that same
vector is produced by an infinite number of solutions (Chao
and An, 1978; Spoor, 1983; Valero-Cuevas, 2000; Valero-Cuevas,
2015). Our analysis of feasible activation spaces at different task
intensities also allows us to characterize how this redundancy
changes, and is eventually lost. The histogram heatmaps in
Figure 7 illustrate the changes and shrinking of within-muscle
histograms (the space upon which probability density functions
must operate) of valid activation levels across task intensities,
converging to a single solution at maximal force output. These
surface plots show how the normalized histograms (of 1,000 valid
activation levels for each muscle at each intensity level) change at
each of 100 equally-spaced levels of task intensity between 0 and

1. Following a muscle’s column from bottom to top shows the
activation histograms converge, naturally, to a spike at the unique
value for maximal force production.

The low flat areas on the sides of each surface plot (e.g., clearly
visible for DI) represent muscle activation levels that are not
valid for that task intensity. That is, there exist no valid muscle
activation patterns that contain that muscle at that level, and thus
no points are found there.

These plots show within-muscle probability functions and the
rate of convergence to the unique solution for maximal force
output across muscles. This is in contrast with the parallel
coordinate plots in Figure 3 that shows the correlation across
muscles. Importantly, the histograms of activation levels for
each muscle need not be symmetric, nor have the same shape
(skewness and kurtosis) as the magnitude of the output force
increases. For some muscles, the convergence accelerates after
60 or 80% of task intensity (as in LUM and EIP), while others
converge monotonically along the entire progression (e.g., DI
and PI). The peaks (i.e., modes or most common values) of
each histogram at each task intensity represents the slice of
the polytope that has the largest relative volume along that
muscle’s dimension (i.e., greatest frequency of that level of
muscle activation across all valid solutions). Importantly, for
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FIGURE 6 | PCA loadings change with task intensity. For each of 1,000 task

intensities, we collected 1,000 muscle activation patterns from the feasible

activation space and performed PCA. The facet rows show the changes in PC

(Continued)

FIGURE 6 | loadings, which determine the direction of all PCs in

7-dimensional space. Note that the signs of the loadings depend on the

numerics of the PCA algorithm, and are subject to arbitrary flips in sign

(Clewley et al., 2008)—thus for clarity we plot them such that FDP’s loadings in

PC1 are positive at all task intensities. Dotted vertical lines connect loadings of

PC2 and PC3 in spite of flips in sign. A discontinuity here is not indicative of a

major change to the feasible activation space. It instead, is a result of how

PCA selects loadings. The shape of the activation space has tilted at these

points, thereby flipping the sign. Note that the values are the same before and

after the jump, less the sign. These loadings (i.e., synergies) change

systematically, as noted for representative task intensities a, b, c in Figure 5,

and more so after b. This reflects changes in the geometric structure of the

feasible activation space as redundancy is lost.

most muscles (FDP, FDS, EIP, EDC, and LUM), the mode is not
necessarily located at the same relative level of activation needed
for maximal force output—even when scaling it linearly with task
intensity. That is, the histogram at high levels of force is not
simply a shifted version of the histogram at low levels of force.
The histograms for DI are the exception, whose modes seem to
scale linearly with task intensity.

These histograms and the parallel coordinate visualizations
demonstrate that the probabilistic and correlation structure,
respectively, of feasible activation spaces, do not necessarily
generalize across task intensities. Nor can they be inferred from
their bounding boxes alone (i.e., upper and lower activation
bounds for eachmuscle). An immediate example is how, for most
task intensities, both EIP and LUM have similar lower and upper
bounds near 0 and 1, respectively—yet their distributions are
thoroughly distinct.

4. DISCUSSION

Summary
Feasibility Theory, as a conceptual and computational approach,
is a means to pierce the curse of dimensionality to establish
a physics-based ground truth for neuromuscular control.
This practical approach can now characterize—in an arguably
complete way—the space of all valid ways to activate multiple
muscles to produce a given task. This initial presentation is
limited to the case of static force production. Additional work
is needed to extend to sequences of tasks, as has been done
for optimization during gait analysis—where the dynamical
constraints during movement are applied in the context of static
optimization (Anderson and Pandy, 2001; Simpson et al., 2015).
But we can already say that feasible activation spaces are, in fact,
the high-dimensional landscapes upon which all neuromuscular
learning, control, and performance must occur. These landscapes
are predicated upon the strong experimental evidence for
linearity in tension-to-force transduction in cadaveric (Kutch
and Valero-Cuevas, 2011), live (Kamper et al., 2006), and
modeled (Synek and Pahr, 2016) studies. Therefore, they provide
an integrative and unifying perspective that demonstrates
how today’s dominant theories of neuromuscular control
are alternative approximations to feasible activation spaces
from optimization, synergistic, and probabilistic perspectives.
Feasibility Theory unifies these alternative approaches to motor
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FIGURE 7 | The within-muscle probabilistic structure of feasible muscle activation across 1,000 levels of fingertip force intensity. The cross-section of each density

plot is the 50-bin histogram of activation for each muscle, at that task intensity. The changes in the breadth and height for each muscle’s histogram reveal

muscle-specific changes in their probability distributions with task intensity. Height represents the percentage of solutions for that task. The axis going into the page

indicates increasing fingertip force intensity up to 100% of maximal. Color is used to provide perspective. It is interesting to note that, for example, both extensor and

flexor muscles are used to produce this “precision pinch” force. This is to be expected as the activity in the extensors is necessary to properly direct the fingertip force

vector (Valero-Cuevas and Hentz, 2002).

control in the sense that feasible activation spaces represent an
objective conceptual and computational common ground for
these theories.

Changes in the structure of the feasible activation space do
not imply a given control strategy. They merely establish the
bounds within which a species evolves a control policy for a
given body morphology. It is possible that the nervous system
operates within a very small subset of this space—which could be
described by different principal components and even probability
distribution functions. Feasibility Theory, however, allows us to
formally phrase and test such hypotheses.

The Value of a Cost Function
Optimization is the oldest computational approach to
finding valid muscle activation patterns that produce limb
function (e.g., Chao and An, 1978). While optimization is,
of course, a reasonable hypothesis to explore neuromuscular
control (Todorov and Jordan, 2002), some criticize it as a
mathematical abstraction that anthropomorphizes neurons
with the ability to choose, evaluate and follow cost functions
in high-dimensions (De Rugy et al., 2012; Loeb, 2012). There
is, nevertheless, an intimate relationship between optimization
and feasible activation spaces (Chvatal, 1983). Optimization
is analogous to finding the best solution in the dark—guided
by repeated small steps based on evaluations of cost- and
constraint-function. Computing the feasible activation space
is then a means to “turn on the lights” to see all possible valid
solutions independently of cost (Valero-Cuevas, 2015). Our

complete sampling of high-dimensional feasible activation
spaces (Smith, 1984; Lovász, 1999) allows us to compare and
contrast families of solutions as per alternative cost functions
instead of individual optimal solutions for a particular cost
function. Figure 3 demonstrates a complete description of
families of valid coordination patterns and their relationship
to alternative cost functions. Importantly, similar valid muscle
activation patterns can have dissimilar costs and vice versa.

Thus, Feasibility Theory allows us to compare, in detail,
alternative “cost landscapes” across the entire set of feasible
motor commands. By not having to insist on (or settle for)
individual optimal—or near-optimal—solutions, we now have
the same ability the nervous system has to explore, compare, and
contrast multiple valid (be they optimal or suboptimal) ways to
coordinate muscles. Importantly, the relationships among valid
muscle activation patterns emerge naturally from the physical
properties of the limb and definition of the task. This cost-
agnostic approach allows us to re-evaluate our assumptions
about what the nervous system cares—and does not care—about.
Lastly, this cost-agnostic approach also provides a powerful tool
for inverse optimization, i.e., uncovering latent cost functions
from data (Tsirakos et al., 1997). Our comparison across cost
functions using parallel coordinates is already a form of inverse
optimization.

Freedom Under Constraints
We have so far only used “hard” task constraints which must
be met exactly. However, Feasibility Theory also holds for soft
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constraints. For example, if a tendon-driven system is required
to produce a 3D force vector in general distal direction and
of a general magnitude (defined, say, as a sphere of 1.0 N
radius centered on the nominal force), then we can apply
these tolerances to the constraints defining the task. In effect,
Feasibility Theory allows us to study both soft and hard
constraints where the latitude of the accuracy of the task naturally
defines the precision with which muscle activation patterns must
be selected. One can define the task intensity to be, say, anywhere
between 50 and 60%, and study the concomitant increase in
options available to produce forces within that range. Thus, one
can characterize the changes in the feasible activation space as
the task constraints are relaxed or tightened. Similarly, adding
task constraints, such as the need to produce a particular stiffness
at the endpoint (Inouye and Valero-Cuevas, 2016), naturally
reduces the dimensionality of the feasible activation space.

How to Apply Feasibility Theory in an
Experiment
The most important input to this analysis is the relationship
betweenmuscles and the endpoint wrench.With this relationship
composed as the H matrix as in 1, and a desired wrench w,
Hit-and-Run can be used to produce parallel coordinate plots
and density histograms for static force production with vertebrate
limbs. For example, using a measure of muscle activation (such
as fine-wire EMG), an experimentalist can compare the muscle
activation pattern chosen by a research participant in comparison
to the full feasible activation space that could achieve the same
force, and see how those patterns change across fatigue, disability
of a muscle, or manipulation of the feedback. After a tendon-
transfer surgery, for example, the subject may initially inhabit
only a specific part of the feasible activation space to produce
a task, but must use feedback from the parallel coordinate plot
to find solutions which take less effort. In effect, visualizing the
entire feasible activation space could help us understand how
rehabilitation can be guided toward more advantageous local
minima (Towles et al., 2008).

In parallel, a scientist with a cost function to test on a model
can quickly identify how different cost function parameters can
affect the space of feasible activations, and see how specific
the global optima is, with respect to other muscle activation
patterns. Importantly, anthropometric differences affect the
shape of the feasible activation space, so those subject-specific
differences must be either incorporated or may be addressed
through sensitivity analysis (such as Monte-Carlo manipulation
of moment arm values, as in Valero-Cuevas et al., 2015b).

Extension to Dynamical Force Production
or Movement
Limbs are valuable for more than just their ability to produce
isometric forces. First, there is the extension to “non-static
isometric” force production (e.g., rotating a grasped object
with respect to gravity), which must contend with time-varying
muscle activation-contraction dynamics and target grasp wrench

(i.e., such that the object is always securely held against a time-
varying gravity vector Rácz et al., 2012). Joint angles, the end-
effector Jacobian, moment arm matrix, and vector of maximal
feasible contraction levels per muscle will vary nonlinearly, and
with kinematic redundancy as a possibility for a given endpoint
location, we can introduce multiple feasible activation spaces that
are capable of producing a given task force. Even a simple task
in the workspace likely exhibits redundancy at different levels of
abstraction, where redundancy is sourced from feasible activation
spaces and joint null spaces simultaneously.

As muscles exhibit state dependence, the ability of an animal
to produce precise dynamic forces is affected by the tendon
tensions from moment to moment. The inter-muscle dynamics
across a human index finger, for example, would necessarily
require a feasible activation trajectory—which may or may
not be representable by a convex hull. Applying Feasibility
Theory to non-static isometric force production may require
detailed investigation into the dynamics of musculoskeletal force
transduction. In parallel to the dynamics, non-convexities may
emerge from neural constraints or even nonlinearities and
hysteresis of muscle function.

Secondly, Feasibility Theory can be extended to address
dynamical behavior by applying it to a sequence of slices in
time. That is, a dynamical task can be equivalently analyzed as a
sequence of “slices” (Anderson and Pandy, 2001; Cianchetti and
Valero-Cuevas, 2009; Simpson et al., 2015; Trinler et al., 2018)—
where one can define a feasible activation space at each slice
to determine how the nervous system must change activation
patterns such that it is always implementing a valid solution
(Simpson et al., 2015). When strung together, these individual
spaces give rise to a “spatiotemporal tunnel”—the time-varying
extension of the feasible activation space (Figure 8).

Structure, Correlation, and Synergies
The physical properties of the limb and the definition of the task
together give rise to a low-dimensional structure of the feasible
activation space (Valero-Cuevas, 2015). Therefore, experimental
recordings of muscle activations during limb function will
exhibit a dimensionality that is smaller than the number of
muscles (Tresch and Jarc, 2009; Kutch and Valero-Cuevas, 2012;
Alessandro et al., 2013). Thus, applying PCA to the points
sampled from the feasible activation space will inevitably find
that few PCs can explain the variance in the data (Brock and
Valero-Cuevas, 2016).

Our application of PCA at increasing task intensities (i.e.,
as muscle redundancy is lost) allows us to demonstrate—for
the first time to our knowledge—several important features and
limitations of dimensionality reduction. For example, we see
that the aspect ratio (Figure 5) and orientation (Figure 6) of the
feasible activation spaces change as their size shrinks (Figure 7).
Thus, such descriptive synergies (Brock and Valero-Cuevas,
2016) extracted from limited experimental observations likely
do not generalize well across task intensities. Producing further
insights into the feasibility-synergy relationship necessitates
more objective metrics of the feasible activation space’s structure.

The intensity-dependent structure of feasible activation spaces
also has important consequences for motor control and learning.
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FIGURE 8 | Spatiotemporal Tunneling. A dynamical movement can be

decomposed into a sequence of slices in time, where each slice has a

corresponding feasible activation space. Strung together, the sequence of

feasible activation spaces form the “spatiotemporal tunnel” through which the

neuromuscular system must operate. In this 3-dimensional schematic

example, the black line represents one valid time-varying sequence of

activations for three muscles. Because this sequence exists within each

feasible activation space, it necessarily meets the constraints of the dynamical

task at each instant.

Producing force vectors at the endpoint of a finger or limb
with accurate magnitude and direction are critical for versatile
manipulation and locomotion (Valero-Cuevas et al., 1998;
Donelan et al., 2004; Cole, 2006). If a given synergy can
produce such accurate force vectors only for a given task
intensity (and thus inaccurate vectors at other intensities),
then the attractiveness of task-specific synergies to simplify the
neuromuscular control of the limb is reduced. Although we do
not present an analysis of task-irrelevant synergies, data from this
paper can be concatenated prior to PCA analysis to explore how
principal components vary across the entire distal task.

To compensate, the nervous system would need to learn,
recall, and implement intensity-specific synergies. Prior
experimental work has shown that the nervous system produces
accurate fingertip forces of different magnitudes by, instead,
likely scaling a remembered muscle activation pattern to produce
forces of different magnitudes (Valero-Cuevas, 2000), together
with full-dimensional error correction (Valero-Cuevas et al.,
2009b). The observation of higher forces yielding more variable
PC loadings indicates that lower dimensional substructures
could approximate low- and medium-level forces for a given
direction, motivating further analyses of PCA effectiveness
across task-intensity (and with NMF, for example).

Our results also show how experiments with realistically
moderate numbers of participants and test trials likely do not
contain sufficient information to produce robust estimates of

descriptive synergies across task intensities. As per the curse
of dimensionality, sampling uniformly at random from high-
dimensional spaces is exponentially difficult. Thus, even for this
anatomically complete 7-muscle finger model, PCA depends
strongly on the number of independent observations, such
as uncorrelated trials from one subject or different subjects.
Figure 5 shows that 100 to 1,000 such ideal data points from a
simulated “test subject” are needed to produce accurate estimates
of changes in the PCs with task intensity (c.f. labels a vs. b
vs. c). Future studies should explore how many experimental
data points are sufficient from a given subject when recording
from only a subset of the many (20+) muscles of human limbs
in the presence of experimental noise, inherent stochasticity
of EMG, and within- and between-subject variability. Some
studies have begun to ask subjects to explore different ways
to perform a given task (Kuxhaus et al., 2005; Berger and
d’Avella, 2014) (i.e., estimate the structure of the feasible
activation space), but in practice, such studies cannot likely
collect sufficient data uniformly at random to obtain accurate
estimates of the descriptive synergies (Kutch and Valero-Cuevas,
2012).

PCA is one of several methods to extract lower-dimensional
representations of motor patterns (d’Avella et al., 2003; Ting and
Macpherson, 2005; Clewley et al., 2008). Alternative techniques
do not impose orthonormality constraints or over-estimate the
real dimensionality of nonlinear underlying manifolds (Clewley
et al., 2008). Similarly, Non-Negative Matrix Factorization
(NMF) would not be subject to the flips in sign observed
in Figure 5 (Tresch et al., 2006). We noted that for a
given task intensity a muscle’s activation across the sampled
solutions can have different variance than the other muscles,
and these variances change as task intensity increases (and
the feasible activation space shrinks) (see the supplemental
website for the task-variance figure). While PCA helps us
uncover how these shapes change in this study, PCA can
be leveraged to uncover different intramuscular relationships
(e.g., analyzing the eigenvalue decomposition of the correlation
matrix, as opposed to using PCA on the covariance matrix).
Bootstrapping or data shuffling technique for sensitivity analysis
are also applicable to dimensionality reduction techniques
(Valero-Cuevas et al., 2016).

Feasibility Theory allows us to put dimensionality reduction
in perspective. First, as a natural consequence of the definition
of a task (i.e., the need to meet specific mechanical constraints).
And second, as an approximation to the structure of the latent
feasible activation space embedded in high-dimensions. While
our results suggest caution when interpreting synergies obtained
experimentally, we underscore that dimensionality reduction is,
nevertheless, a useful approach to capture the general geometric
properties of feasible activation spaces.

Toward Probabilistic Neuromuscular
Control
Our results are particularly empowering for the emerging
field of probabilistic neuromuscular control (Körding and
Wolpert, 2004; Sanger, 2011; Kording, 2014). Suppose that the
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nervous system uses some form of probabilistic or Bayesian
learning and control strategy. Such approach requires two
enabling—and biologically plausible—elements: trial-and-error
iterative exploration to build prior distributions, and memory-
based exploitation of the probability density functions used
to approximate the feasible activation spaces (Körding and
Wolpert, 2004). The parallel coordinate plots and histograms in
Figures 2, 7 provide, to our knowledge, the first complete (Smith,
1984; Lovász, 1999) characterization of such multi-dimensional
conditional motor control spaces for a realistic tendon-driven
system performing a well-defined task (i.e., activation of one
muscle is contingent upon the activations of the other muscles).
With a better understanding of the physical task, future studies
into optimal motor control can leverage the feasible activation
space to contextualize motor control policies, whether they
are experimentally-observed or theoretically predicted (Berniker
et al., 2013). As mentioned above, the muscle activation patterns
that the nervous systems actually use will necessarily be a subset
of these feasible activation spaces.

Feasibility Theory critically empowers the study of
fundamental aspects of probabilistic control. For example,
an organism can only execute so many trial-and-error iterations
during learning, likely too few to completely and exhaustively
sample the high-dimensional feasible space of interest. This
makes it much more likely that, by virtue of being more easily
found, an organism will find and preferentially exploit the
strong modes (i.e., narrow and high peaks in Figures 3, 4,
and 7) of the multi-dimensional probability density functions
than any other region of feasible activation spaces. Thus, first,
the maximal ranges of feasible activations described by the
bounding box (Sohn et al., 2013; Valero-Cuevas et al., 2015b)
may have little practical bearing on how those tasks are learned
and executed. And second, those same strong modes would
represent strong attractors to create and reinforce motor habits.
Habitual control has been proposed based on experimental
and empirical data as an alternative to a strict optimization
approach to neuromuscular control (De Rugy et al., 2012;
Fu et al., 2014). Our work now provides the computational
means to link habitual to probabilistic control in isometric force
production. This allows us to generate testable hypotheses of how
these motor habits are defined by the structure of the feasible
activation space, how easily they are learned by the organism,
and how difficult or easy it is to break out of them (Raphael et al.,
2010).

Motor function likely emerges from trial-and-error (Adolph
et al., 2012) or imitation (Oztop et al., 2006; Cattaneo and
Rizzolatti, 2009) to identify, remember and adopt easily-
found, good enough solutions in the feasible activation space—
independently of their cost. It is then possible to use some
heuristic approach to improve performance to transition to less
likely—but potentially “better” solutions as per some metric
relevant to the individual—subregions of the solutions space.
But this likely requires numerous iterations in practice, which
explains why few are experts at a given motor task, or why
rehabilitation is so difficult (Gladwell, 2008; Adolph et al., 2012;
Lohse et al., 2014).

Feasibility Theory as a Theory of Motor
Control
Feasibility Theory goes beyond Bayesian control by underscoring
how the physics of the body, and the properties of the
task are the arbiter that guides the biological process of
finding, exploring, inhabiting, and exploiting low-dimensional
solution spaces embedded in high-dimensions. Feasibility Theory
espouses heuristic local searches—driven by the memory of
likelihoods of different individual solutions—to create what
ultimately are useful, yet likely sub-optimal, motor habits. These
processes hinge on trial-and-error, memory, pattern recognition,
and reinforcement that come naturally to neural systems. Even
though Feasibility Theory is presented in the context of neural
control of the human hand, it applies to tendon-driven organisms
in general.

Importantly, organisms perform strict optimization or
synergy control at their peril. A feasible activation set is low-
dimensional because it loses one dimension with each functional
constraint that is being met (Valero-Cuevas et al., 1998; Inouye
and Valero-Cuevas, 2016). Thus, moving along such low-
dimensional spaces to find a new valid solution is equivalent to
moving along a line (which has zero volume) in 3-dimensional
space. Taking a step from any one valid point to another valid
point on the feasible space runs the risk of “falling off” and
failing at the task—a risk that is exponentially exacerbated in
higher-dimensions. Thus, searching for improvements in the
neighborhood of a known solution necessarily risk task failure
and potential injury. These are all arguments in support of
the evolutionary and developmentally useful strategy to use
good-enough control based on habit or sensorimotor memory
rather than optimization or synergy control (De Rugy et al., 2012;
Fu and Santello, 2012).

This line of thinking has consequences to neurorehabilitation.
Neurological conditions disrupt feasible activation spaces,
be it by affecting anatomy of the limb, muscle strength,
and independence with which muscles are controlled.
Functional recovery following the disruption, if not
destruction, of the landscape of valid muscle activation
patterns, requires re-learning existent or building new
probability density functions. Older adults suffering from
reduced perceptuo-motor learning rates are presented
an even more constrained feasibility space (Coats et al.,
2014).

A probabilistic landscape for neuromuscular function begins
to explain why neurorehabilitation in aging adults is so
difficult (e.g., Lohse et al., 2014; Hardwick et al., 2016)
and why motor learning in children takes thousands of
repetitions (Adolph et al., 2012). But it empowers us to
leverage knowledge of the families of feasible solutions to create
new rehabilitation strategies and testable hypotheses around
them.
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The datasets generated and analyzed for this study can
be found freely available (Git Repository Link), and at
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the supplemental website (Supplemental Site Link). We
designed a web-based parallel coordinate visualization
that lets users interactively limit muscles, select solutions,
and calculate effects on the feasible activation space from
each post-hoc constraint (Figure 4). Our companion site
includes ample documentation, code implementation
in Scala (with a comprehensive test suite), and all data
visualization code in R, including an overhead view of
Figure 7.
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