
Asymmetric Routings With Fewer Tendons Can Offer Both Flexible
Endpoint Stiffness Control and High Force-Production Capabilities in

Robotic Fingers

Joshua Inouye and Francisco J. Valero-Cuevas

Abstract— The force-production and passive stiffness capa-
bilities of fingers are two critical design specifications for
dexterous robotic hands. We used the link and joint kinematic
parameters of the 4-DOF DLR index finger to explore the
tradeoff between these two design specifications as a function of
the number, routing, stiffness, and strength of each tendon. Our
innovative computational approach allowed building the Pareto
front of optimized passive endpoint stiffness (measured by the
eccentricity of the endpoint stiffness ellipsoids) vs. maximal
force-production capabilities (measured by the size and shape of
the force polytope) for 1,200 randomly generated valid routings
with 5, 6, 7, or 8 tendons. Our results show that this parametric
optimization can increase realizable isotropic forces by up
to 80% compared to the default tendon tension distribution.
In addition, designs with 5 or 6 tendons can have endpoint
stiffness ellipsoids with optimized low eccentricities and with
force production capabilities comparable to designs with 7 or 8
tendons. Interestingly, we did not find a systematic tradeoff
between force-production and passive stiffness capabilities,
given a specific routing. However, the choice of number, routing
and strength of each tendon greatly affects force and passive
stiffness capabilities of robotic finger, which reveals the many
design opportunities afforded by tendon-driven manipulators
and offers insight into the anatomical features of the human
musculoskeletal system.

I. INTRODUCTION

Robotic fingers and hands have been designed for the
past few decades for the purposes of grasping and ma-
nipulation [1]–[5]. There are many factors involved in the
design decisions for these hands, but two important ones
are force-production capabilities and passive stiffness. The
fingers clearly must be able to generate sufficiently high
forces to perform a specific or general task. In addition,
the integration of passive stiffness control into the design
of robotic hands is important for preventing damage to
itself and its surroundings, enabling the ability to perform
highly dynamic tasks, and increasing the safety of interacting
humans [6]–[8].

Several studies have addressed the problem of identifying
the force-production (or more formally, wrench-production)
capabilities of both parallel and serial manipulators [9]–[16].
According to [11], ”The knowledge of maximum twist and
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wrench capabilities is an important tool for achieving the
optimum design of manipulators”. Two common approaches
to the problem of quantifying these capabilities are manipu-
lating force ellipsoids (which apply accurately only to torque-
driven systems) and force polytopes (also known as feasible
force sets, which apply exactly to tendon driven systems
[17]. From these force-production capabilities, a performance
metric can then be assigned based on the size and/or shape
of the ellipsoid or polytope.

For tendon-driven robotic fingers, one key design element
is the tendon routing, which defines the structure matrix, of
the finger. This structure matrix defines the torque and force
produced by the finger based on tensions of the tendons.
Certain studies have addressed the problem of designing a
structure matrix for isotropic force transmission characteris-
tics (i.e., ability to transmit forces equally in all directions
at the end effector) [18]–[23]. However, these studies have
not considered the distribution of maximal tensions across
tendons, which is certainly important in small, dexterous
hands where weight and size minimization are significant
priorities. Altering the maximal tendon tension distribution
in tendon-driven hands is known to have a significant effect
on force-production capabilities [24], [25]. Additionally, the
number of tendons used in the design is fundamental to
the design of the structure matrix, and using fewer tendons
“has the advantage of reducing the number of tendons
and actuators and therefore reduces the weight, size, and
complexity of the manipulator...” [18].

The importance of stiffness control of manipulators has
been widely recognized in the literature [4], [6]–[8], [26]–
[29]. Manipulators can have active or passive stiffness con-
trol, or a combination of both. Active stiffness control can
be programmed using a feedback control law [27], but is
limited by the control loop frequency, and a sudden impact
to the manipulator can cause damage to the robot or its
surroundings before the control loop is activated to absorb
the energy [4]. Thus, passive stiffness is also important,
especially in unstructured environments where unexpected
obstacles, objects, or humans may make contact with the ma-
nipulator. Passive stiffness control is typically implemented
by variable-stiffness actuators [6], [7], [30]–[34]. Synthesis
of endpoint stiffness for serial manipulators with adjustable
joint stiffnesses is studied in [35]. An extensive analysis of
the joint stiffness matrices for tendon-driven manipulators is
conducted in [34].

Therefore, it is clearly desirable to design a robotic



hand with both adequate passive stiffness and high force-
production capabilities. In addition, it can be beneficial to
design a finger with as few tendons as possible. Utilizing
computational methods and applying theoretical analyses, we
quantify the ability of 1,200 tendon routings to produce max-
imal isotropic forces and endpoint stiffness ellipsoids with
low eccentricity. This novel approach enables the systematic
exploration of the design space. For example, we show that
fewer tendons does not imply worse passive stiffness, but
designs with fewer tendons typically cannot produce as much
isotropic force as designs with more tendons. Tuning tendon
stiffnesses can lead to endpoint stiffness ellipsoids with
low eccentricity, and adjusting the distribution of maximal
tension across tendons can lead to large increases in isotropic
force-production capabilities. Our study demonstrates, to the
best of our knowledge, the first practical computational
exploration of the effect of tendon routing simultaneously
on these two characteristics.

II. METHODS

The minimal number of tendons required to fully control
all of the degrees of freedom (DOFs) of an n-joint robotic
finger is n + 1 [23]. Because tendons have unidirectional
actions (i.e., they can only pull), this minimal number of
tendons must also be routed judiciously [17]. A finger with
this many tendons employs what is called an “N+1” design.
The DLR finger and most anthropomorphic fingers have 4
DOFs (that do not use coupled joints), which means that
the minimal number of tendons for full controllability of the
finger is 5. However, many hands have been designed using
a “2N” design, which uses a number of tendons equal to
2 times the DOFs–with a pair of agonist-antagonist tendons
dedicated to each joint [1], [3], [4]. In general, increasing the
number of tendons beyond 2N is impractical or undesirable
for robotic fingers because of size constraints 1. In addition,
any number of tendons between N+1 and 2N may be used.
We carried out analyses on 4 categories of designs: having
5 (N+1), 6 (N+2), 7 (N+3), or 8 (2N) tendons.

The routing and moment arms of tendons in a finger are
critical, and can be mathematically described by an n ×m
structure matrix (also called a moment arm matrix) R, where
n is the number of DOFs of the finger and m is the number
of tendons. The entries ri,j are signed moment arm values
for the ith joint and jth tendon [37]. For simulation purposes,
we randomly selected 300 admissible structure matrices from
each of the tendon categories by randomizing the signs of
the non-zero entries and then checking for controllability
conditions 2 as described in [20]. This process is shown in
Fig. 1, with the non-zero entries represented by ‘#’. The
number of admissible structure matrices for all categories
combined is 222,208 (using a combinatoric search of the ‘#’
entries in Fig. 1 for each category). Therefore, evaluating all

1However, most vertebrate limbs have more than 2N muscles–which is a
subject of continual debate. See [17], [36]

2The basic idea behind the controllability conditions is that each joint
can be actuated independently in torque and motion, given that tendons can
only pull and not push.
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Fig. 1. Procedure for finding admissible structure matrices. N+1 structure
matrix shown.
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Fig. 2. Postures analyzed for each tendon routing. Link lengths and joint
diameters shown to scale (i.e., with kinematic parameters of the DLR hand).

of these designs is relatively intractable for our purposes and
we deemed that randomly selecting 300 from each category
for a total of 1,200 evaluated routings was sufficient to prove
the point of this study.

To compare and contrast the force-production and stiffness
capabilities of various finger designs, we identified a fitness
metric describing each aspect. We calculated these metrics
at 3 different postures for each of the 1,200 routings, and
averaged the metrics over the 3 postures, which are shown
in Fig. 2.

The fitness metric used for stiffness control was the ESE
(endpoint stiffness eccentricity) and the metric used for force
production was the MIV (maximal isotropic value). The
calculation of these metrics is described in the next sections.



A. Analysis and Synthesis of Stiffness

1) Joint Stiffness Adjustability: The endpoint Cartesian
stiffness matrix, Kend, relates the endpoint displacements
(from an equilibrium position), ~∂x, to endpoint forces, ~F , as
shown in the following equation:

~Fend = −Kend
~∂x (1)

The joint stiffness matrix, Kjoint, relates the joint dis-
placements (from an equilibrium position), ~∂θ, to joint
torques, ~τ , as shown in the following equation:

~τ = −Kjoint
~∂θ (2)

The endpoint stiffness matrix can be found from the joint
stiffness matrix using the following well-known equation
[38]–[42]:

Kend = J+T (Kjoint −
∂JT

~∂θ
~Ftip)J

+ (3)

where J is the posture-dependent Jacobian relating joint
angle velocities to endpoint velocities, J+ is the Moore-
Penrose pseudoinverse of J (if the manipulator is redundant,
as is the case in this study), and ~Ftip is the external force
vector on the tip of the finger. The joint stiffness matrix
for a tendon-driven finger may be found from the structure
matrix R and the diagonal tendon stiffness matrix Kt using
the following equation [43]:

Kjoint = RKtR
T (4)

For the purposes of this computational study, we assume
that the external force on the fingertip is zero. However,
similar computational studies could be conducted with an
external fingertip force. Combining Eqs. 3 and 4 with the
external force being zero, we get the endpoint stiffness matrix
as a function of tendon stiffnesses and tendon routing:

Kend = J+T (RKtR
T )J+ (5)

For the DLR index finger in an unloaded configuration
(Eq. 3 changes if there is a constant load applied to the
endpoint [43]), Kend is a 3 × 3 symmetric, positive semi-
definite matrix, Kjoint is a 4× 4 symmetric, positive semi-
definite matrix, J is a 3× 4 matrix, R is a 4×m matrix (m
is the number of tendons ranging from 5-8), and Kt is an
m×m diagonal matrix.

We can see clearly from Eq. 3 that the endpoint stiffness is
a function of joint stiffness, and that realizing a completely
arbitrary endpoint stiffness can be difficult in general due
to the multiplication by the Jacobian and the inversions
involved. Depending on the configuration, it may or may not
be possible to realize an arbitrary endpoint stiffness matrix
[35] because of the constraint that the joint stiffness matrix
must be positive definite. It can be noted that an arbitrary
3-D endpoint stiffness matrix involves 6 free parameters.
Therefore, if there are not at least 6 free parameters in the

Fig. 3. Reformulation of variables in Eq. 4 for use in Eq. 6. (•) denotes
element-by-element multiplication. Ri is the ith row of R. Joint stiffness
adjustability (JSA) is equal to rank(R̃).

joint stiffness matrix, it is not possible to realize an arbitrary
endpoint stiffness.

For the 4-DOF DLR finger, the joint stiffness matrix is
4 × 4, and so there are 10 free parameters. Reformulating
Eq. 4 enables quantification of the joint stiffness adjusta-
bility (JSA), which can be interpreted as the flexibility of
realizing a joint stiffness matrix for a specific routing when
tendon stiffness selection is arbitrary. The reformulation [34]
involves rearranging the independent parameters of the joint
stiffness matrix into a vector, which is then a linear function
of the tendon stiffness, also rearranged into a vector:

~Kjoint = R̃ ~Kt (6)

where ~Kjoint, R̃, and ~Kt are reformulated as shown in Fig.
3. (•) denotes element-by-element multiplication, and Ri is
the ith row of R. Note that ~Kjoint has length n(n + 1)/2
(where n is the number of DOFs of the finger), R̃ is an
n(n+ 1)/2×m matrix (where m is the number of tendons
of the finger), and ~Kt has length m, and all of its elements
must be positive. Mathematically, the rank of R̃ is the number
of free parameters of the joint stiffness matrix that can be
independently chosen. Of course, the tendon stiffnesses must
be positive, and the range of realizable joint stiffnesses is
constrained by a particular routing, but this is nevertheless
an estimation of the freedom in choosing an arbitrary joint
stiffness matrix [34], which in turn affects the freedom to
choose an arbitrary endpoint stiffness matrix. The rank of R̃
is the joint stiffness adjustability (JSA):

JSA = rank(R̃) (7)

Note again that this measure assumes that each tendon
stiffness can be independently chosen, regardless of tendon
tension.



2) Endpoint Stiffness Eccentricity: As suggested above,
higher JSA will, in general, translate to a larger set of
realizable endpoint stiffnesses. We quantify the ability of
a specific routing to realize an endpoint stiffness ellipsoid3

with low eccentricity by formulating the following optimiza-
tion problem:

minimize
Kt

κ(Kend)

subject to Kt ≥ 0

where κ(·) denotes the condition number: the ratio of the
largest to the smallest singular values of the matrix. It is a
measure of the eccentricity of the endpoint stiffness ellipsoid
[44]. We will call this the endpoint stiffness eccentricity, or
ESE.

ESE = κ(Kend) (8)

We implemented the above optimization in Matlab using
the ‘fmincon’ command. Condition number minimization is a
difficult problem in general [45]–[47]. It is quasi-convex over
the entries of the matrix, but the entries of the matrix are non-
convex functions of the elements of ~Kt in our problem due
to the matrix inversions. However, taking the best result from
5 random starting points in the positive unit hypercube (i.e.,
positive orthant) seemed to give good, repeatable results. The
optimized endpoint stiffness eccentricity, ESE*, quantifies
the eccentricity of the best-conditioned stiffness ellipsoid
that the optimization was able to find. It can be noted that
minimizing the eccentricity of the ellipsoid is equivalent
to maximizing its isotropy. A perfectly spherical stiffness
ellipsoid has a condition number of 1.

B. Analysis and Optimization of Force Polytopes

The feasible force set is the convex polytope of all forces
that can be exerted by the endpoint of a tendon-driven finger,
given a posture, tendon routing, and maximal tendon tensions
[10], [16], [24]. Any force vector outside of this 3-D set
(or 2-D set, for planar analyses) cannot be achieved by the
endpoint. A quality metric that can be assigned to this set
is known as the maximal isotropic value (MIV) [12]. It is
the radius of the largest ball, centered at the origin, that the
feasible force set can contain. A finger can exert at least that
many units of force in any direction.

To find the feasible force set, we first specify the posture
(which allows computation of the Jacobian J) and tendon
routing R of the finger. These matrices involve the following
relations:

ẋ = Jθ̇ (9)

~τ = R~T (10)

3The stiffness ellipsoid is formed by projecting a unit sphere from
differential displacements to differential endpoint forces using the linear
transformation Kend, as in Eq. 1. It assumes infinitesimal displacements
that have negligible effects on the Jacobian matrix. Large displacements will
not be as accurately represented by ellipsoids due to larger changes in the
Jacobian matrix.

where ẋ is the endpoint translational velocity vector, θ̇ is the
joint velocity vector, and ~T is the vector of tendon tensions.

We can use an activation vector, ~a, to represent the degree
to which a tendon is activated. Each element of ~a ranges
between 0 (no activation) and 1 (full activation). Further
discussion may be found in [48]. If we define Tmax as a
diagonal matrix of maximal tendon tensions, then we get the
following relation between activations and tendon tensions:

~T = Tmax~a (11)

If we combine Eqs. 10 and 11, then we get:

~τ = RTmax~a (12)

The feasible 3-D force set can be found from this feasible
torque set by intersecting the feasible torque set with the
linear subspace spanned by the columns of JT [49]. The
vertices of this reduced-dimensionality set can then be trans-
formed to vertices in endpoint force space:

~F = J+T~τ (13)

where J+T denotes the Moore-Penrose pseudoinverse of JT .
The convex hull of all of these vertices in force space is
a polytope and defines the feasible force set. We use the
Quickhull algorithm [50] implemented in the Qhull software
package to find the MIV.

Different routings and maximal tendon tensions both affect
the size and shape of the feasible torque set shown in Eq. 12,
which in turn affects the size and the shape of the feasible
force set. If we have a fixed routing and posture, then we
can change the feasible force set and MIV by varying the
maximal tendon tensions (given by diagonal matrix Tmax).
If we constrain the sum of the maximal tendon tensions to be
constant (a reasonable constraint due to the size and weight
constraints inherent in dexterous hands [24]), then we can
optimize the MIV using the following formulation:

maximize
F0

MIV = f(J,R, Tmax)

subject to Tmax ≥ 0,

trace(Tmax) = Tmax sum

where Tmax sum is a constant.
Evaluating the MIV given J , R, and Tmax is fairly

expensive computationally when compared with function
evaluations for the stiffness problem. Therefore, we utilized
a custom, greedy Markov-Chain Monte Carlo optimization
algorithm which was fairly effective at finding a local max-
imum within 300 iterations. We denote this maximum by
MIV*.

It is worth noting that MIV is a function of J , R, and
Tmax, while the ESE is a function of J , R, and Kt. There-
fore, changes in Tmax will not affect the ESE and changes in
Kt will not affect the MIV. However, the Jacobian matrix and
the routing have effects on both of these characteristics. This
study is focused mostly on the effects of routing on these two
characteristics. It can also be noted that with a torque-driven
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Fig. 4. Joint stiffness adjustability versus number of tendons, plotted for
all admissible routings. Mathematically, JSA is he the rank of R̃, which
is the number of free parameters of the joint stiffness matrix that can be
independently chosen.

manipulator, the analysis of force production and stiffness
synthesis becomes much less interesting, as there are very
few design parameters that can be altered compared with
the tendon-driven manipulator. Furthermore, torque-driven
manipulators are not able to utilize the advantages of tendon-
driven manipulators as stated in the introduction.

III. RESULTS

A. Joint Stiffness Adjustability

We were able to determine the JSA of all 222,208 ad-
missible tendon routings. The results are shown in Fig.
4. We see that designs with 5 or 6 tendons have a JSA
of 5, while designs with 7 or 8 tendons can have a JSA
of up to 7 (but never 8!). However, some designs with 8
tendons can only have a JSA of 4, which corresponds to
symmetric routings (a 2N design where the moment arms
of one tendon are the opposite sign and equal magnitude of
those from another tendon), as noted in [34]. A symmetric
routing which controls all of the degrees of freedom of an N-
DOF manipulator requires at least 2N tendons, so routings of
a 4-DOF finger with 5, 6, or 7 tendons cannot be symmetric.

B. Optimized Endpoint Stiffness Eccentricity vs. Maximal
Isotropic Value

For the 300 randomly-selected routings from each cate-
gory, we found the ESE* (optimized ESE) and the unopti-
mized MIV, shown in Fig. 5. The MIV was calculated with
all maximal tendon tensions being equal and the sum being
constant at 1000N. We did not optimize the MIV for every
design due to computational tractability considerations and
because it is not crucial for the purposes of this study. (See
below for some examples of optimized MIV).
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maximal isotropic value (MIV), averaged over the 3 postures. Note: only
524 out of 1,200 data points shown (all other designs had higher ESE* than
8 and lower MIV than 16). Large circles mark the averages of posture 1
(small squares), posture 2 (small triangles), and posture 3 (small diamonds)
for the routings shown in Fig. 6.

We see that, in general, the best routings with 7 or 8
tendons have a substantially higher (unoptimized) MIV than
the best routings with 5 or 6 tendons. However, routings with
fewer tendons are not less able to produce low ESE values.

C. Optimizing MIV for 3 Specific Routings

To demonstrate that optimization of MIV is possible, we
did optimize the MIV, in posture 2, for the three routings
marked with large circles in Fig. 5. Routing 1 is the one
with the highest unoptimized MIV, and it has 8 tendons.
Routing 2 was chosen as an N+1 design that had both
low average ESE* and high MIV compared with other N+1
designs. Routing 3 was chosen as a reference point, having
a mathematically even, symmetric moment arm matrix of a
2N design (the matrix values are only indicative of the sign
of the moment arm and not the magnitude):

RROUTING 3 =


1 −1 1 −1 1 −1 1 −1
0 0 1 −1 1 −1 1 −1
0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 1 −1


The optimization was able to improve the MIV in posture

2 from 21.2N to 26.0N for Routing 1 (a 23% increase),
from 8.68N to 15.6N for Routing 2 (an 80% increase),
and from 10.0N to 18.0N for Routing 3 (an 80% increase).
Fig. 6 shows the routings, unoptimized feasible force sets,
optimized feasible force sets, unoptimized endpoint stiffness
ellipsoids (with all tendons having equal stiffnesses), and
optimized endpoint stiffness ellipsoids. Two 3-D views are
shown of the feasible force sets. The optimized tendon
stiffness values shown are normalized so that the highest
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producing MIV*, in N. Note: all results shown are for posture 2 only, and values correspond with the small triangles in Fig. 5.

stiffness has a value of 1 (multiplying all the stiffnesses by
a scalar does not affect the condition number).

We see that routings 1 and 2 are able to produce very
low ESE* values, while Routing 3 is only able to produce
an ESE* of 6.37 (in posture 2). It can be noted that some
of the optimized tendon stiffnesses are 0, which may only
be realizable in practice with a direct drive DC motor
actuator (in which case also the motor inertia would not
necessarily allow for instantaneous extension of the tendon
with zero resistance). However, we feel that this is not
extremely important in our simulation results and general
conclusions, since this analysis and optimization could easily
be implemented with additional constraints (such as minimal
and maximal values for tendon stiffnesses).

We can also observe in Routing 1 that the two tendons
that only cross the first joint could be easily combined into
one tendon in strength and stiffness, resulting in a routing
with 7 tendons that has the exact same characteristics as the
routing shown with 8 tendons.

IV. DISCUSSION

The main purpose of this study was to demonstrate the
large effect of tendon routing, number, and properties on
force-production and stiffness realization capabilities. We
show that tendon routings with fewer than 2N tendons (which
are necessarily asymmetric) can have high force-production
capabilities as well as low eccentricity of endpoint stiff-
nesses.

Our optimization of the endpoint stiffness assumed that
it is desirable to produce nearly-isotropic endpoint stiffness,
as we assumed no knowledge about the task or potential
obstacles to the fingertip. In some practical cases, it may
be desirable to adjust the endpoint stiffness characteristics
asymmetrically according to the task or situation [6] to be
compliant in one direction and stiff in another. For example,
if the task is to push a button, guide a rod, etc, then it may
be beneficial to have high stiffness in the direction of force
application but low stiffness in the directions perpendicular
to the direction of force application. Any specific task re-



quirements could easily be incorporated into an optimization
routine.

For any practical application, the analyses used in this
study would need to take into account the actuation system,
and whether it incorporates non-linear or adjustable stiff-
nesses. The calculation of JSA and the optimization of ESE
and MIV in this study assume that the tendon stiffnesses can
be controlled independently of tendon tension and that the
stiffnesses are linear.

Even if the actuation scheme used in a physical system
does not allow for tendon stiffness control apart from tendon
tension, the analyses used here could be used to guide the
designation of spring constants for linear springs in series
with actuators (i.e., some tendons could use stiff springs and
others more compliant springs for a desired generic endpoint
stiffness). Non-linear springs [30] could be designed also
with varying properties among tendons (e.g., with different
elasticity constants and biases [34]).

While the MIV was used as the fitness metric for the
force-production capabilities, some hands or fingers may
only need strong flexing force for use in grasping and the
maximal extension force requirements may be low. In this
case, the distribution of maximal tendon tensions could be
adjusted or optimized according to grasping or other task
requirements [24], possibly significantly reducing the total
weight or volume of the actuation system when compared
with only using identical actuators for all tendons. Also, if
non-linear stiffnesses are used in series with actuators, then
the calculation of feasible force sets may need to be adjusted
to account for the fact that pre-tension (possibly very high)
will need to be applied to obtain a desired stiffness.

We only analyzed routings where the tendons routed
around every joint that they passed (i.e., that the structure
matrix is pseudo-triangular, as in [20]) and where all moment
arms were equal in magnitude for a particular joint. We
acknowledge that many of the routings that we analyzed may
not be realizable in practice. Routings can be designed where
tendons pass through the center of joints [33], or where
moment arms for different tendons on the same joint can
have different magnitudes. Varying moment arms can add
more potential flexibility to force-production and stiffness
characteristics, while on the other hand, practical design
considerations may preclude realization of some routings.
However, the analyses could be run on a set of practical
routings, spring stiffnesses, and maximal tendon tensions to
guide in the design process.

While we have analyzed the passive control of stiffness
and the bounds of force production in a finger, we have not
considered directly the consequences of finger design to ac-
tive control, which is of huge importance when constructing
a useful system. In addition, a physical system subject to
friction, estimation errors, actuator inconsistencies, and other
factors may mandate certain design constraints that we have
not analyzed.

Lastly, it is natural to compare our results to the number,
routing and strength of the musculotendons of the human
index finger. That index finger has 4 DOFs, and 7 tendons

(6 tendons for the middle and ring fingers) [16], [51].
Interestingly, that anatomy has fewer than 2N actuators and
exhibits cross-over tendons such as those seen in Routings
1 and 2. In addition, muscles have different strengths and
stiffnesses (muscles with longer tendons are naturally more
compliant). Future work will apply this analysis to the
anatomy of biological fingers.

In this study we have shown that there is a very wide range
of force-production and stiffness capabilities of different
tendon routings with varying numbers of tendons. We feel
that the methods presented here could be used to guide in
the design process for tendon-driven fingers, hands, or other
manipulators, to maximize force production for various tasks,
minimize the size and weight of the actuation system, and
design tendon stiffness characteristics to realize various joint
and endpoint stiffnesses. Furthermore, analysis of the human
musculoskeletal system from the perspective of stiffness
control and force-production simultaneously could elucidate
the advantages and disadvantages of its anatomical features.
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