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Morphological communication:
exploiting coupled dynamics in a
complex mechanical structure to

achieve locomotion
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Traditional engineering approaches strive to avoid, or actively suppress, nonlinear dynamic
coupling among components. Biological systems, in contrast, are often rife with these
dynamics. Could there be, in some cases, a benefit to high degrees of dynamical coupling?
Here we present a distributed robotic control scheme inspired by the biological phenomenon
of tensegrity-based mechanotransduction. This emergence of morphology-as-information-
conduit or ‘morphological communication’, enabled by time-sensitive spiking neural
networks, presents a new paradigm for the decentralized control of large, coupled, modular
systems. These results significantly bolster, both in magnitude and in form, the idea of
morphological computation in robotic control. Furthermore, they lend further credence to
ideas of embodied anatomical computation in biological systems, on scales ranging from
cellular structures up to the tendinous networks of the human hand.
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1. INTRODUCTION

Traditional engineering approaches strive to avoid, or
actively suppress, nonlinear dynamic coupling among
components. Especially near resonant frequencies,
these couplings tend to produce undesirable vibrations
and oscillations that are difficult to predict and may
sometimes be catastrophic. A variety of passive and
active damping techniques have been developed to
diminish these effects across many fields ranging from
robotics to structural engineering.

Biological systems, in contrast, are often rife with
complex dynamics. Consider, for instance, the principle
of tensegrity, which can be found at many scales of
life, ranging from the cellular cytoskeleton (Wang
et al. 2001) and the structure of proteins (Ingber
1998) to the tendinous network of the human hand
(Valero-Cuevas et al. 2007). At every scale, these sys-
tems contain the type of coupled mechanical and
dynamical linkages which are so assiduously avoided
in engineering design. Could there be, in some cases,
a benefit to this dynamical coupling?

Here we demonstrate how a highly complex mechan-
ical system can learn to exploit its dynamical coupling
as an advantage. In particular, inspired by examples
of tensegrity-based mechanotransduction in nature
(Parker & Ingber 2007; Valero-Cuevas et al. 2007), we
construct a highly connected and irregularly shaped
tensegrity structure which is able to use the coupling
imposed by pre-stress stability as an emergent
orrespondence (rieffelj@union.edu).
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‘data bus’ for communication between independent
strut modules. This coordination is facilitated by
spiking neural networks which are capable of tuning
time-sensitive responses to match the particular
dynamics of the structures.

This novel demonstration of the emergence of
‘morphological communication’ presents a new para-
digm for the decentralized control of large, coupled,
modular systems. Furthermore, these results lend
credence to the idea of embodied anatomical
computation in biological systems.
1.1. Morphological computation in biology and
robotics

The relationship between morphology and control in
biology is a richly studied and fascinating topic.
Recent research on the tendinous network of the
human hand indicates that the system performs
‘anatomical computation’ in the researchers’ words by
distributing and switching the tension inputs of the
tendon network in order to differentially affect torque at
the finger tips. It is conjectured that ‘outsourcing’ the
computation into the mechanics of the structure allows
related neural pathways to devote their resources to
higher level tasks (Valero-Cuevas et al. 2007). Similar
phenomena have been shown in the physiology of
wallabies, whose gaits remain remarkably consistent
when switching from level to inclined hopping (Biewener
et al. 2004), guinea fowl, who exhibit remarkable
passive dynamic stability when encountering a sudden
This journal is q 2009 The Royal Society
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drop (Daley & Biewener 2006), and cockroaches, in which
muscles within the same muscle group behave alternately
as motor and brake (Ahn & Full 2002). Pfeifer and
co-workers (Iida & Pfeifer 2006; Pfeifer & Bongard
2006; Pfeifer et al. 2007) coined the term ‘morphological
computation’ to describe this class of effect. Blickhan
has similarly used the phrase ‘intelligence by mechanics’
(Blickhan et al. 2007).

We are particularly interested in what we call
‘morphological communication’ in which morphology,
physical forces and displacement all act as a non-neural
conduit of information, rather than being used to trans-
mit mechanical properties such as power or balance, as in
the more general case of morphological computation.
Examples of morphological communication can be
found throughout biology, such as in the mechanotrans-
duction of the ear (Mammano & Nobli 1993), heart
tissue (Parker & Ingber 2007) and with the the neuro-
mechanical modelling of salamander gaits (Ijspeert
et al. 2007). Morphological communication is closely
related to biomechanical passive dynamics (Collins
et al. 2005), but more specific in the sense that it is
understood to explicitly transmit information, rather
than simply add dynamic stability to a system.

It is important to clarify that, although it is undeni-
ably the principles of mechanics that cause these
functional interactions, there is a strong reason to
believe that they likely evolved in response to brain–
body coevolution. Namely, that there is (in engineering
terminology) a functional advantage for the brain–
body system to ‘outsource’ features of control and
information transfer to a ‘complex’ anatomy. This
is different from simply changing the segment lengths
in a limb to grant force or velocity-production capabilities,
or evolving the geometry and mass of a system to
favour specific limit cycles for passive dynamic
function—those would be examples of evolutionary
anatomical adaptations, but not necessarily of brain–
body coevolution for improved control or information
transfer.

Biological morphological computation has served as
inspiration for robotic control in several recent works.
Iida & Pfeifer (2006) explored how the body dynamics
of a quadruped robot can be exploited for sensing.
Paul et al. (2006) showed how the pre-stress stability
of tensegrity robots adds to the robustness of evolved
gaits. Watanabe & Ishiguro (2008) demonstrated how
inducing long distance mechanical coupling in a snake
robot improves its ability to learning a crawling motion.

In contrast to this earlier work, the results which we
present in this paper arise from a significantly more
complex morphology with profoundly more degrees of
freedom. In this domain, morphological computation
is not just desired, but essential. We illustrate the
tight coupling between our evolved controllers and the
system’s dynamics in two ways. Firstly, we demonstrate
how, when the timing of the gait and the dynamics of
the structure are subtly changed, locomotion varies
both quantitatively and qualitatively—not just in
terms of robustness (Paul 2006) or stability (Iida
2006), but through drastically new gaits. Secondly,
and uniquely, we clearly illustrate the emergence of
dynamical interactions as a means of communication
J. R. Soc. Interface (2010)
by observing the coupled behaviour of independent
neural network controllers within the structure.
2. TENSEGRITY CONTROL AND
LOCOMOTION

It is worth examining the qualities of tensegrity structures
which make them an intriguing and challenging platform
for robotics. The word tensegrity, a concatenation of ten-
sile integrity,was coinedbyBuckminsterFuller todescribe
structures popularized by the sculptor Kenneth Snelson in
1948 (Fuller 1975). A tensegrity structure is a self-
supporting structure consisting of a set of disjoint rigid
elements (struts) whose endpoints are connected by a set
of continuous tensile elements (strings), and which main-
tains its shape due to the self-stressed equilibrium
imposed by compression of struts and tension of strings
(Wang 1998). Such structures are pre-stress stable, in the
sense that in equilibrium each rigid element is under
pure compression and each tensile element is under pure
tension. The structure therefore has a tendency to
return to its stable configuration after being subjected to
any moderate temporary perturbation (Connelly &
Back 1998). This pre-stress stability imposes a significant
degree of dynamical coupling to the system, in the sense
that any local perturbation of a rod causes a redistribution
of forces throughout the structure, and a corresponding
re-alignment of the struts. Although a qualitative
measure, the degree of coupling can be understood to
scale with the total number of pre-stressed connections
in a tensegrity, as well as the total number of struts.

These properties provide high strength-to-weight
ratio and resilience, and make tensegrity structures
highly prized in engineering and architecture. Tensegr-
ity can be found in a variety of everyday structures,
ranging from free-standing camping tents to the geode-
sic domes of sports stadiums. Tensegrity structures are
becoming increasingly appealing as a medium for smart
structures and soft robotics (Sultan 1999; Tibert 2002;
Motro 2003; Matsuda & Murata 2006), consequently,
recent attention has been paid to their control and
manipulation.

Unfortunately, these qualities which make tensegri-
ties so attractive carry with them complex nonlinear
dynamics, even for relatively small tensegrity structures
(Skelton et al. 2001), and as a result, active control is
needed to dampen the vibrational modes of relatively
modest structures. In almost all cases, deformation and
control are achieved by changing the rest lengths of the
tensile elements, for instance by attaching strings to a
reeled servo motor. In this manner, Chan et al. (2004)
have been able to demonstrate both active vibration
damping and open-loop control of simple structures.
Efforts such as these, however, seek to minimize and con-
trol the complex dynamics of tensegrity structures, and
no effective model exists for the control of the complex
dynamics of relatively large tensegrity structures.

More recently, Paul et al. (2006) demonstrated an
ability to produce static and dynamic gaits for 3- and
4-bar tensegrity robots via evolutionary optimization,
and implemented these gaits on a physical robot.
Related work demonstrated how the overall stability



Figure 1. A complex and highly dynamically coupled 15-bar
tensegrity structure. High degrees of dynamical coupling is a
systemic quality of tensegrity structures.
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of these structures results in beneficial resilience and
redundancy of control mechanisms (Paul et al. 2005).
Although these gaits did not seek to suppress the dyna-
mical properties of the structures, and the evolved gaits
contained dynamical aspects, the complexity of the
structures was relatively low, and the solution relied
upon a centralized and open-loop controller.

Rather than attempting to scale these control schemes
to arbitrarily large and complex structures, our interest
lies in harnessing and exploiting these very same
dynamics. We are particularly interested in methods of
controlling large, and irregular tensegrity structures—
those with much higher degrees of dynamical coupling
and complexity than the regular towers of Chan et al.
(2004) and the minimal structures of Paul (2006).

As a nominal reference structure in which to test our
ideas we have chosen the tensegrity in figure 1, which
contains 15 rods and 78 strings. This structure is of par-
ticular interest because it belongs to a class of tensegrity
towers generated by a single generative map L-system
which can be scaled, with a degree of patterned simi-
larity, to towers with more than 50 rods, as shown in
figure 2 (Rieffel et al. 2008).

Such a large and complex structure stymies conven-
tional methods of tensegrity control, and calls for a new
paradigm in the control of large, dynamically coupled
systems.

2.1. Challenges of tensegrity robotics

Constructing robots from tensegrities is a double-edged
sword. On the one hand the homogeneity of the rigid
elements allows for a high degree of modularity: each
rod can contain identical sets of sensors and actuators.
On the other hand, any solution which relies upon cen-
tralized control of the robot faces a crucial problem:
that of communication between modules. As the
number of modules increases, the lines of communi-
cation (quite literally) increase, bringing both the
challenge of coordination and the risk of tangles.

Consider, for instance, the tensegrity shown in
figure 1. Even with a single sensor and actuator at
each end of each bar, a centralized controller would
need to synthesize, and coordinate the actions of,
30 sensors and 30 controllers.

We implement a simpler alternative to the problem of
control and locomotion by doing away with the notion of
explicit intermodular communication completely, in
favour of a more decentralized emergent behaviour
(Ishiguro et al. 2006; Watanabe & Ishiguro 2008). In our
model we consider each rod of the tensegrity to be a
simple module with a small controller only capable of sen-
singandaffecting the tensionona single string at each end.
Wedemonstrate how locomotion can emerge byexploiting
the dynamic coupling of these otherwise autonomous ten-
segrity modules. In a sense, the body of the robot becomes
an ad hoc network for communication between modules.
3. A MODULAR FRAMEWORK FOR
TENSEGRITY ROBOTICS

This work stems out of our efforts at creating innovative
tensegrity-based robots. Tensegrities are a compelling,
J. R. Soc. Interface (2010)
if challenging, platform for robotics. One particularly
desirable feature is their collapsibility: by relaxing
their strings, tensegrity robots can be quickly and
easily packed into a small volume for transit, and
then quickly re-deployed via string re-tightening.

Of particular appeal is the highly modular nature of
tensegrities, allowing for a significant amount of versa-
tility and reuse: the struts in a 4-bar robot are identical
to those in a 16-bar robot. In our design each strut
module consists of a rigid tube with a single servo
motor mounted at each end. While, in principle, mul-
tiple strings could be actuated by multiple servos at
each end, we have chosen to keep the design simple
by limiting actuation on each end to a single string.
Figure 3 shows a photograph of a representative
tensegrity robot that contains four strut modules.
3.1. Capturing time-sensitive dynamics with
spiking neural networks

Since our aim is to embody most of the complexity of a
gait within the dynamics of the structure itself, our
interest is in a relatively simple controller, such as an
artificial neural network (ANN). Unfortunately, con-
ventional ANNs have a critical weakness in this
application: they are unable to fine-tune their timing.
Consequently, conventional neural networks within
each module would require individual hand-tuning in
order to find a firing rate at or near the resonant
frequency of the structure, and any change in the under-
lying structure would require re-tuning of the network
timing.

In order to add time sensitivity to our structure, we
use a variant of ANNs called spiking neural networks
(SNNs). SNNs were developed to model more continu-
ous processes: both inputs and outputs are
represented as single-value spikes (as opposed to the
sigmoid outputs of a conventional ANN; Maass &
Bishop 1999). Instead of a sigmoid function, every
SNN node contains a simple persistent counter with
adjustable offset and limit. At every time step, an
SNN node sums its weighted inputs with the current
counter value, and if the sum surpasses the limit the
node fires a single ‘spike’ to its output; otherwise the
contents of the counter are decremented by a fixed
decay rate, and persist until the next time step. This
ability to fine-tune timing has proven particularly
useful in time-sensitive robotics control tasks
(Di Paolo 2003).



Figure 2. A family of tensegrity towers produced by the same
grammar as the tower in figure 1. As the number of iterations
of the grammar increases, the tower grows from 10 bars to 20,
30, 40 and 50, repeating the same pattern of twisting bars as it
grows.

Figure 3. A tensegrity robot consisting of four strut modules
and 16 strings. The strut modules consist of servo motors
connected by clear plastic tubes which contain batteries
and wiring.
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Each strut module contains a single SNN with two
inputs, corresponding to the tension sensed at the
single actuated string on each end, two hidden nodes
and two outputs. At every simulation time step, each
module measures its inputs and feeds them through
the SNN. SNN output spikes are then converted into
string actuations by measuring the duty cycle of
network spikes. Any spike rate above 30 per cent
over a 100-step period is considered ‘active’, and
the corresponding string is pulled by halving its rest
length.
3.2. Simulation of tensegrity robots

The representative 15-bar tensegrity shown in figure 1
was reproduced within the Open Dynamics Engine
(ODE) Simulation environment, the widely used
open-source physics engine which provides high-
performance simulations of three-dimensional rigid body
dynamics.

Rigid elements were represented as solid capped
cylinders of fixed length, uniform mass distribution
and a length-to-radius ratio of 24 : 1. Tensile elements
were represented as spring forces acting upon the cylin-
der ends. A given string si with length Li, rest length L0
J. R. Soc. Interface (2010)
and spring constant K produces a force F̂i :

F̂ i ¼ K�ðL̂i � L̂0Þ if L̂i . L̂0

0 if L̂i � L̂0:

�

Dynamic and static friction between the struts and
the ground is assumed to be infinite and isotropic, cor-
responding to a rough surface such as carpet. The
choice of parameters without our simulation allows us
to realistically model the complex dynamics which
underly pre-stress tensegrity structures. As we discuss
in §5, aware of the ‘reality gap’, we did not fine-
tune the dynamics of the model to perfectly match
the physical system. The source code for this tense-
grity simulator is available for download at the
author’s website.
3.3. Evolving controllers for locomotion

Using this framework, we were able to evolve the
weights within the separate SNNs such that the struc-
ture as a whole was able to locomote. Each
experiment consisted of a population of 150 individuals
initialized with random SNN weights evolved over the
course of 1000 generations.

With only 30 actuators available (one at the end of
each strut module), and a choice of 78 strings to
actuate, we chose to evolve both the unique weights of
the SNN within each strut module, and also which par-
ticular string at each end to actuate. Genotypes of
individuals within the population therefore encoded
two values. The first contained 180 floating point
numbers corresponding to the collective weights of all
15 strut module controllers within the structure.
The second consisted of a pairing of actuated strings
with strut endpoints. A single point mutation could
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therefore either change a weight within the SNN or
change which string was actuated at a particular
endpoint.

Individuals were evaluated within our simulated
environment by measuring the travel of the centre of
mass over the course of 20 000 simulator time steps.
Members of the population were then ranked by
their fitness, and the bottom scoring half of the popu-
lation culled. Seventy-five new individuals were then
created as offspring of the remaining population via
fitness proportional selection of which 30 per cent
offspring were produced with two-parent crossover,
and the remainder with single-point single-parent
mutation.

Figure 4 contains snapshots of the movement of one
successfully evolved individual over the course of its
locomotion. The path of the red sphere above the struc-
ture tracks the centre of mass of the structure
(vertically displaced for visualization).
time = ~15 000 steps

time = ~20 000 steps

Figure 4. Snapshots of the motion of an evolved gait over
20 000 time steps.
3.4. A dynamically coupled evolved gait

Since our claim is that the evolved gaits are harnessing
the coupled dynamics of the system, we must make
efforts to differentiate the results from a quasi-static
gait. In a purely quasi-static gait, the movement of
the structure and its dynamics are sufficiently
decoupled that it can be considered to be stable and
consistent over a wide range of speeds. Consequently,
neither doubling nor halving the speed of the gait
should have a significant effect upon the motion.
Consider, for instance, a bicycle wheel which,
modulo friction, will travel the same distance over five
revolutions regardless of the specific angular velocity.

By contrast, in a more dynamic gait, such as a child
on a pogo stick, the movement of the system is tightly
coupled to its dynamics, and subtle changes in the
timing of the gait should have considerable effects on
the overall behaviour.

We can therefore qualitatively measure the coupling
between evolved gait and system dynamics by observing
the behaviour of the structure when the speed of the
gait is adjusted by maintaining the system dynamics.
Gait ‘macros’ were produced by recording the string
actuations caused by the SNNs of an evolved individual
over the course of a typical 20 000 time-step run. These
gaits were then replayed at speeds ranging from 10 per
cent of the normal, evolved rate up to 1000 per cent.
Distances covered by the centre of mass over the
course of the gait were then observed. The total
number of simulation steps was adjusted upwards or
downwards accordingly to fit the fixed number of gait
cycles.

Figure 5 compares the path of the structure’s centre
of mass on the horizontal plane over the course of a
fixed number of gait cycles for three evolved gaits.
Left hand figures contain slower gait speeds and right
hand figures contain faster speeds. As is evident, both
the distance travelled and the path traversed vary
significantly under varying speeds.

The degree to which the gaits vary is both signifi-
cant and surprising, and reveals the deep coupling
between the particular evolved gait and the system
J. R. Soc. Interface (2010)
dynamics. Consider the shift when Gait 1 varies from
one-third to one-fourth of the normal evolved rate:
the direction of travel shifts 908. The remaining gaits
also demonstrate significant shifts in trajectory under
slower speeds. In general, faster gait speeds by com-
parison tended to exhibit more pathological changes.
In several of the analyses of faster speeds, particularly
for Gait 2 and Gait 3, the behaviour of the robot
changes so much that the robot collapses onto its
side, at which point motion effectively ceases. (It
is worth noting that in several cases the robot appears
to travel further under slower gait speeds than at the
normal speed. This is largely due to the fact that the
total amount of simulator time in which the gait is
observed had to be increased in order to fit a full
fixed gait cycle. At this time scale, factors such as
the momentum of the structure play a larger role in
the overall motion of the robot. If the graphs were nor-
malized for a fixed number of simulation steps rather
than for a fixed gait cycle, these slower gaits would
of course travel much less far.)
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These figures demonstrate a significant behavioural
diversity in response to subtle changes in timing,
which arises through the interplay between the actua-
tor forces and the intrinsic dynamics of the system.
J. R. Soc. Interface (2010)
These serve only to show however that the gait is
exploiting the dynamics of the system—in the following
section we explore the emergence of morphological
communication in the evolved controllers.
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3.5. Morphological communication via
dynamic coupling

An equally compelling result is the emergence of
de facto communication between independent module
networks via the dynamical coupling of the modules.
To demonstrate this phenomenon, during locomotion
we disable the output of a single module network and
observe changes in behaviour in other module networks.
Communication between networks can be measured by
the degree to which the behaviour of one network
affects distal networks.

Figure 6 demonstrates two such examples of this
phenomenon. In the first example, suppressing the
output of one module network causes a distal network
also to cease activity, and re-enabling the first network
also re-enables the second. In the second example, sup-
pressing the output of the first network significantly
increases the firing frequency of the second network,
and re-enabling the first network results in resumption
of the secondary network’s original frequency.

Both these are compelling demonstrations of how
individual networks can affect the behaviour of distal
networks through their shared dynamical coupling. In
essence, the morphology is acting as a data bus for
communication between module networks.
4. DISCUSSION

In approaching the control of tensegrity systems, the
conventional engineering approach has been to mitigate
and attenuate the complex coupled dynamics and
vibrational modes which the structures exhibit. Natu-
rally, as the size and scale of these tensegrity systems
increase, and as their regularity decreases, the task of
control becomes exceptionally difficult. The tensegrity
system we have explored in this work is of a scale and
complexity which renders it largely unsuitable for
control through conventional means.

Rather than abandon the use of these large, complex,
irregular tensegrity structures for novel engineering
purposes, for which there is no lack of demand, we
have demonstrated how to harness, rather than
mitigate, their complex dynamics. By using control
schema which are able to discover and exploit the par-
ticular dynamics of the structure—in our case SNN—
the structure at large becomes, at once, both data bus
(distributing information between modules via their
coupled dynamics) and powerful actuator (taking
advantage of inherent oscillations in order to achieve
locomotion). In other words, the morphology of
the robot is performing both computation and
communication.
4.1. Morphological communication as a
paradigm for robotic control

These results present a new method of scalably control-
ling increasingly complex dynamical mechanical
systems such as tensegrity-based robots. We have
shown that morphological communication can emerge
when a suitable dynamically complex system is married
with a suitable responsive control scheme, one capable
J. R. Soc. Interface (2010)
of tuning itself to the system’s dynamics. In the case
of our tensegrity work, the complex dynamics are pro-
vided by the pre-stress stability which is fundamental
to tensegrities, and the time-sensitive control is
provided by a collection of independent SNNs.

Several incredibly compelling new questions stem
from this work as well. To begin with, more concrete
and quantitative means of measuring and analysing
morphological communication must be developed.
Armed with these, we should be able to make a careful
study of how morphological communication scales with
the complexity of the system being controlled. Are,
for instance, 40-bar tensegrity structures any more
capable of this phenomenon, or are 10-bar systems
any less capable? Beyond tensegrities, what other com-
plex mechanical systems might lend themselves to
morphological communication?

We must also acknowledge that this harnessing of
complexity comes at a cost: as observed in figure 5,
the systems controlled by our evolved spiking networks
are operating at the very edge of control, and are finely
tuned to the specific dynamics of their environment. In
many cases the evolved controllers seem to have discov-
ered how to walk a ‘tight rope’ of sorts, in that subtle
variations in timing can have drastic (and deleterious)
effects upon locomotion. Although, on the one hand
this would suggest that the evolved gaits do not lend
themselves to applications that require a high degree
of robustness or stability, it is a compelling thought
that somewhat more complex controllers could be
evolved which are able to explicitly exploit this
behavioural diversity for the purposes of control, for
instance by making the robot turn simply by changing
the gait frequency.

One final challenge in leveraging these results lies in
the ‘reality gap’ between simulated and physical systems.
Dynamical effects such as those our solutions exploit are
notoriously difficult to model with high fidelity. There
are two possible and promising approaches to resolving
this challenge in order to create physically embodied
robots capable of similar feats of mechanism-as-mind.
The first lies in dispensing with the simulator entirely
and evolving dynamic gaits in situ using embodied evol-
utionary techniques—such approaches can be slow, but
have shown considerable promise (Hornby et al. 2000;
Zykov et al. 2004). The second possibility lies in continu-
ous self-modelling approaches which seek to coevolve
robotic gaits alongside an emerging self-model (Bongard
et al. 2006).
4.2. Biomechanics and morphological
computation

As well as providing a compelling new paradigm for
robotic locomotion, these ideas lend credence to the
existence of ‘mechanism as mind’ in the biological
realm. This should be of particular relevance to the bio-
mechanics of systems which contain similar mechanical
complexities. For instance, given the preponderance of
tensegrity-like mechanisms at all scales of biology, the
results we have provided offer a compelling new feature
of these systems—namely the ability to transmit and
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receive information via pre-stress stability in order to
coordinate action across distal points in the structure.

More broadly, consider the biomechanics of soft-
bodied invertebrates such as the Manduca sexta caterpil-
lar. Although awell-studied model species, the particular
mechanics of Manduca locomotion and control remain
poorly understood. The caterpillar achieves remarkable
control and flexibility despite the fact that each of its seg-
ments contains relatively few motoneurons (one, or
maximally two per muscle, with approximately
70 muscles per segment), and no inhibitory motor units
(Taylor & Truman 1974; Levine & Truman 1985).
Studies of the properties of the organism’s muscles indi-
cate a high degree of nonlinearity, pseudo-elasticity and
strain-rate dependency (Dorfmann et al. 2007; Woods
et al. 2008). It is conjectured that, much like the tendo-
nous networks in the human hand, the complex and
coupled dynamics caused by the interaction of hydro-
statics, an elastic body wall and nonlinear muscular
behaviour are all harnessed and exploited by the
organism (via morphological computation) to achieve
locomotion in spite of their sparse neural architecture
(Trimmer 2008).
5. CONCLUSION

These results demonstrate how the coupled dynamical
properties of a complex mechanical system can be
exploited for benefit rather than ‘engineered away’. Simul-
taneously, they lend insight into why biological systems
often contain the kind of complex coupled dynamics
that are so often assiduously avoided in engineering. It
J. R. Soc. Interface (2010)
has been conjectured that biological systems which
appear under-actuated or under-controlled—such as the
tendinous network of the human hand and the body of
the Manduca sexta—are able to achieve complex behav-
iour through ‘mechanism as mind’, that is, through the
outsourcing of complex control tasks away from the
neural directly into the structural mechanics. Here we
have demonstrated how such morphological computation
can occur in complex mechanical systems, and lend
credence to similar phenomena in biological systems.
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or the NIH. This work was also supported by the US DCI
Postdoctoral Research Fellowship Program under award
NMA501-03-1-2013. The authors would like to thank Ryan
J. Stuk for his effort in designing and assembling the
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