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Abstract

We investigate the integration of visual and tactile sensory input for dynamic manipulation. Our experimental data and computational

modeling reveal that time-delays are as critical to task-optimal multisensory integration as sensorimotor noise. Our focus is a dynamic

manipulation task ‘‘at the edge of instability.’’ Mathematical bifurcation theory predicts that this system will exhibit well-classified low-

dimensional dynamics in this regime. The task was using the thumbpad to compress a slender spring prone to buckling as far as possible,

just shy of slipping. As expected from bifurcation theory, principal components analysis gives a projection of the data onto a low

dimensional subspace that captures 91–97% of its variance. In this subspace, we formulate a low-order model for the

brain+hand+spring dynamics based on known mechanical and neurophysiological properties of the system. By systematically

occluding vision and anesthetically blocking thumbpad sensation in 12 consenting subjects, we found that vision contributed to dynamic

manipulation only when thumbpad sensation was absent. The reduced ability of the model system to compress the spring with absent

sensory channels closely resembled the experimental results. Moreover, we found that the model reproduced the contextual usefulness of

vision only if we took account of time-delays. Our results shed light on critical features of dynamic manipulation distinct from those of

static pinch, as well as the mechanism likely responsible for loss of manual dexterity and increased reliance on vision when age or

neuromuscular disease increase noisiness and/or time-delays during sensorimotor integration.

r 2007 Published by Elsevier Ltd.
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1. Introduction

Dynamic sensorimotor behaviors are quintessentially
complex, nonlinear and high-dimensional, making it
challenging to gain insight into their underlying neural
control (Valero-Cuevas, 2005). For example, we handle
objects easily without looking at them, but rely on vision
when our fingers are numb. Revealing the mechanism
behind this contextual use of vision is also of clinical value,
since it can provide critical insight into why we drop
objects more frequently as we grow old. Using a novel
mechanics-based approach to experimentally and mathe-
matically characterize dynamic manipulation we give an
explanation for the contextual use of vision (Cole and
Abbs, 1988; Johansson et al., 1992; Häger-Ross and
e front matter r 2007 Published by Elsevier Ltd.
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Johansson, 1996; Cole et al., 1998; Augurelle et al., 2003)
in the framework of task-optimal multisensory integration
(Ernst and Bulthoff, 2004).
Most nonlinear dynamical systems exhibit low-dimen-

sional dynamics at the edge of instability according to
mathematical results from bifurcation theory (Guckenhei-
mer and Holmes, 1983). The center manifold theorem
states that the dynamics of high-dimensional systems at the
edge of instability reduces to a low dimensional normal
form on a center manifold (Guckenheimer and Holmes,
1983). Based on this insight, we designed an experiment
where compressing a slender spring using the thumbpad
(Fig. 1) brought the fused thumb+spring+nervous system
to the edge of instability (Valero-Cuevas, 2000; Valero-
Cuevas et al., 2003; Venkadesan et al., 2005). Motivated by
spring buckling mechanics (Timoshenko, 1961; El Naschie,
1990), we hypothesized that the dominant dynamics of the
fused thumb+spring+nervous system at the edge of
instability will resemble a subcritical pitchfork bifurcation.

www.elsevier.com/locate/jbiomech
dx.doi.org/10.1016/j.jbiomech.2007.01.022
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Fig. 1. Schematic of the experimental setup. A representative sample

compression is shown on the right, where a subject slowly compressed the

spring to minimize the volume of the audio feedback provided (not

shown), without letting the spring slip and maintained that compression

for 7 s before slowly releasing the spring. For the sake of clarity, we have

not shown the hand and arm restrains.
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We use our data to test the additional hypothesis that task-
optimal multisensory integration in the presence of both noise
and time-delays explains the contextual use of vision
depending on the availability/quality of digital sensors. The
time-delays of interest in the context of multisensory
integration are only those arising from sensory transduction,
nerve conduction and neural processing. Previous studies on
multisensory integration (Wolpert et al., 1995; van Beers
et al., 2002; Ernst and Bulthoff, 2004; Körding and Wolpert,
2004; Kuo, 2005; Sober and Sabes, 2005) revealed that the
relative utility of redundant sensory channels depends on
their respective noisiness. For example, (Wolpert et al., 1995)
applied Bayesian inference to study the effect of sensory noise
but ignored effects of time-delays. However, both noise and
time-delays are pervasive in the nervous system and affect
sensorimotor control (Collins and Deluca, 1994; Cabrera and
Milton, 2002). This suggests that the nervous system uses a
task-optimal multisensory integration strategy that combines
effects of noise and time-delays in each of vision, thumbpad
sensation and non-digital sensors (e.g., muscle spindles, golgi
tendon organ, and non-digital cutaneous afferents).

2. Methods

After giving written informed consent, nine males and three females

(19–40 years of age, mean ¼ 23 years) participated in our study that was

approved by the Cornell University Committee on Human Subjects. All

subjects were right-handed, healthy young adults with no known

impairments or recent injuries to their hand and had normal visual acuity

or normal with correction. They had no prior experience with this

experimental task.

2.1. Experimental setup

Subjects were asked to compress a slender helical spring prone to

buckling using just their thumbpad (Venkadesan et al., 2005) (Fig. 1). The

design specifications for the spring are—free length ¼ 76.2mm, mean

diameter ¼ 8.7mm, wire diameter ¼ 0.79mm, total coils ¼ 24, material:
music wire (#12201, Century Spring Corp., Los Angeles, CA), which we

mounted in polymer (ABS P400) endcaps. The top endcap was flat

(friction coefficient �0.5) with a small (0.1mm) conical projection,

precisely coincident with the cylindrical axis of the spring, providing a

tactile cue for its geometric center. We mounted the spring on a uniaxial

load cell (SML-25, Interface Inc., Scottsdale, AZ), and logged vertical

compressive force at 1000Hz using a 16-bit analog-to-digital data

acquisition system. We also recorded 3D location and orientation of the

spring’s endcap at 200Hz using a 4-camera motion capture system (Vicon

Peak, Lake Forest, CA; Fig. 1) that tracked the three reflective markers

attached to the top endcap. We did not use any digital filters on either the

force or the motion data for our analyses.

The thumb rested on the endcap with the distal phalanx horizontally

oriented, fingers curled around a vertical post and the forearm fixed using a

vacuum pillow (Versa Form, Sammons Preston Roylan, Bolingbrook, IL)

with the wrist placed in neutral flexion–extension/ad-abduction (Fig. 1)

and the elbow at 901 flexion. We did not fix the base of the thumb or the

wrist since non-digital mechanoreceptors could contribute to object

manipulation (Häger-Ross and Johansson, 1996). Subjects could view the

entire spring–thumb assembly from a self-selected angle and their palm

never touched the spring.

We provided audio feedback using a clearly audible 500Hz tone that

linearly decreased in volume as the vertical compressive spring force

increased. We calibrated this inverse relationship so that no subject made

the tone faint enough to be inaudible since the volume vanished only when

the compressive force exceeded 4N, which was not attained by any

subject.

2.2. Experimental protocol

We instructed subjects to, ‘‘Slowly compress the spring using only your

thumbpad to make the tone volume as faint as possible (i.e., maximize

vertical compressive spring force) without letting the spring slip. Once you

have reached the point where you cannot decrease the tone volume

without letting the spring slip, hold the compressive load so that the tone

volume, although now faint, remains constant and slowly release the

spring after 10 s. It does not matter if the spring bends or oscillates, it only

matters that the volume stays constant once you reach the minimum

attainable volume and that the spring does not slip.’’ Only trials with

loading/unloading rate less than 5N/s were considered ‘‘successful’’.

2.3. Metric of performance: F s

The mean compressive spring force during the sustained hold phase was

the metric of performance (Fs). The hold phase was ‘‘sustained’’ if the

coefficient of variation (COV) of the compressive spring force was less

than 5% for 7 s. We used three largest Fs values of ten attempts per

treatment condition per subject as repeated measures for our statistical

analyses. We provided over 1min rest after every five compressions.

2.4. Experiments to test for effects of training, loss of vision and

thumbpad sensation

The experiment was performed over 2 days. On day 1, subjects

performed 100 compressions of training and we measured their

performance before and after training with normal visual and thumbpad

sensibility. On day 2, we first measured performance with normal

thumbpad sensibility, both with and without vision. An experienced hand

surgeon then administered 5 cc of 1% Lidocaine solution on the ulnar and

radial sides of the base of the thumb (just below the metacarpophalangeal

(MCP) joint of the thumb, but away from the thenar eminence) to obtain a

digital nerve-block without affecting any musculature (and associated

sensors). Cutaneous sensation proximal to the thumb MCP joint was

unaffected (tested using the same procedure used below). The nerve-block

was considered effective when vision-occluded subjects could not detect a

10 g load randomly moved across or applied on their thumbpad using a
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pointed tip. The point-load was applied using a pair of forceps (weighing

10 g) that was lightly held at its base by the experimenter while the pointed

end rested on the subject’s skin surface to be tested for sensitivity. Note

that subjects could detect the small pointed projection at the center of the

spring’s endcap by pressing their thumbpad forcefully. We then measured

task performance after the loss of digital cutaneous sensation, both with

and without vision.

We measured maximum isometric force that subjects could produce in

two postures, namely key and opposition pinch postures (Valero-Cuevas

et al., 2003) using a pinch meter before the nerve block on both days. The

largest reading of three attempts was recorded as pinch strength. We gave

over 2min rest at the end of strength measurement and extra rest if asked

for.

2.5. Safety-margin of F s

To see if subjects reached a compressive force consistently shy of the

force at spring slip (safety-margin), we tested whether Fs or Fmax

(maximum compressive load) changed for successful vs. slipped trials.

We redefined Fs when the spring slipped by requiring only a 3 s hold for

being a ‘‘successful’’ trial, since slippage often occurred before 7 s elapsed.

2.6. Analysis of endcap rotation

To analyze 3D endcap rotation we calculated the unit normal vector to

the plane of the endcap and determined whether one principal component

could explain most of the endcap rotation. We then tested whether the

rotation projected onto its first principal component (yrange) varied with Fs

as predicted by the subcritical pitchfork bifurcation normal form (Eq. (1))

using a nonlinear least square regression. The central region around the

solid line at y ¼ 0 bounded by the dashed curves in Fig. 2 is the domain of

attraction, which narrows with increasing Fs, i.e., it is the predicted yrange
as the spring is compressed when the spring does not slip. We also

performed a linear regression of endcap rotation projected onto the second

principal component vs. Fs.
Fs
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Fig. 2. Subcritical pitchfork bifurcation diagram. The bifurcation diagram on

(dashed/dotted curves) equilibria for the thumb+spring+nervous system’s clos

which is a succinct description of the underlying deterministic (no time-delays

around y ¼ 0 (the endcap orientation we want to stabilize), in which the endca

value of Fs. If the endcap strays too far outside this region, then it will be rap

which is representative of a spring slip. The schematic of a buckled spring on
We chose endcap angle as the kinematic variable for our analyses

because of the typical spring profile observed during experiments (Fig. 2,

left). The spring was typically laterally displaced from the centerline

(allowed by task instructions—‘‘It does not matter if the spring bendsy’’),

but the endcap remained nearly horizontal for successful trials and rapidly

rotated away from horizontal for slipped trials. This suggested that endcap

angle best captured the relevant dynamics of active control.
2.7. Statistical analyses

The independent treatments were training and available sensory

modalities. The dependent variable for all our statistical analyses was Fs,

except for the ‘‘safety-margin’’ analyses, where Fmax was an additional

dependent variable. We had six treatments: (i) Day 1, pre-training, (ii) Day 1,

post-training, and (iii)–(vi) Day 2, four combinations of presence/absence

of vision/thumbpad sensation. We set a ¼ 0.025 as the threshold for

significance, since we performed two repeated-measures ANOVAs:

(i) effect of the above six treatments with planned comparisons as post

hoc tests, and (ii) effect of slip vs. no-slip for all six treatments. Subjects

were random factors for all ANOVAs.

We also performed a multiple regression analysis of Fs vs. key and

opposition pinch strength using an ANCOVA. Subjects were random

factors and the six treatments were fixed factors. Since a mixed factor

ANCOVA does not provide a model R2, we used a regular ANCOVA to

determine approximate model R2.

We verified necessary assumptions for the validity of each ANOVA/

ANCOVA, namely, normality and identical distribution of the residuals.

We used SAS (SAS, Cary, NC) for all statistical analyses.
2.8. Mathematical modeling of multisensory integration

We modeled the overall 1D dynamics of the closed-loop system as a

subcritical pitchfork bifurcation of the endcap angle (y) projected onto its
le stable/attracting equilibria

e equilibria (repelling) - edge of instability

able stable/attracting equilibria (spring slips)

0 0.5-0.5

θendcap in radians

Domain of attraction

StableUnstable Unstable

the right shows the loci of both stable (solid line) and unstable/undesirable

ed loop dynamics without noise or time-delays as the spring is compressed,

/noise) dynamics of our model. The region bounded by the dashed curves

p is attracted towards y ¼ 0 is the domain of attraction at any particular

idly attracted towards the points far out (dotted curves, close to 0.5 rad),

the left clarifies the physical meaning of the variables Fs and y.
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first principal component, given by (Fig. 2)

_y ¼ aðF s �KÞyþ by3 � gy5, (1)

where, a, b and g are scaling parameters, Fs represents compressive spring

force and K represents the maximum attainable compressive spring force

or equivalently, effective feedback gain.

We incorporated multisensory feedback using a simple proportional

controller with input a weighted sum of three sensory signals (Fig. 3,

Eq. (2)): thumbpad sensation, non-digital mechanoreceptors, and vision.

We added zero-mean Gaussian white noise (Nið0;s2i Þ; i ¼ 1, 2, 3) and a

constant time-delay (t1; t2; t3) to each sensory signal and assumed that all

sensors were unbiased (meanðyseni Þ ¼ y).
Human visual acuity is known to be at least 1min arc at a viewing

distance of 250mm (Liang and Westheimer, 1993; Saunders and Knill,

2004). Subjects’ heads were typically 100–170mm from the spring in our

experiment. Because the endcap radius was 40mm, the estimated standard

deviation for visual sensation was s3 ¼ 0.0009 rad. Estimated standard

deviation of thumbpad sensation based on reported tactile discrimination

ability (Wheat et al., 1995) was s1 ¼ 0.0007 rad. To account for the

reported unreliability of non-digital mechanoreceptors (Häger-Ross and

Johansson, 1996; Macefield and Johansson, 1996), we used s2 ¼ 0.003 rad

(10� the variance of vision). Since the greatest Fs load that subjects could

stabilize was E3N, we chose the proportional feedback constant K ¼ 3.3

(90% of 3.3E3). The spring slips only when the angle of the endcap with

respect to the horizontal exceeds the friction angle (�0.5 rad). We could

directly solve a/g and b/g so that the mean friction angle (dotted curve in

Fig. 2) was 0.5 and was never less than 0.4 (80% of the average) since there

are two unknowns (a/g, b/g) and two equations (mean and minimum of

friction angle).

We tuned g (time-scale, the only parameter we could not determine

from frictional or neurophysiological properties) so that for physiologi-

cally realistic time-delays and noise, the simulation (with time-delays and

noise) yielded Fs values within experimental range when both thumbpad

sensation and vision were occluded. The resulting model is given by the

following equations (Fig. 3):

dy
dt
¼ aF syðtÞ þ byðtÞ3 � gyðtÞ5

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Subcritical pitchfork bifurcation normal form equation

� aK ŷðt; t� t1; t� t2; t� t3Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Proportional feedback using estimated task�relevant parameter

ŷ ¼
X3

i¼1

oiðyðt� tiÞ þ siuiÞ; task�relevant parameter estimate

ui� Nið0; 1Þ; i ¼ 1; 2; 3;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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(3) vision. The mathematical model is a specific implementation of this block dia

loop dynamics of this system is modeled as a subcritical pitchfork bifurcation

branches since for the purpose of this study, only the sensory time-delays and
where, a ¼ 2.639, b ¼ 106.512, g ¼ 385, K ¼ 3.3 and the time-delays are,

t1 ¼ 65ms (Cole and Abbs, 1988; Johansson et al., 1992; Eliasson et al.,

1995; Kandel et al., 2000; Johansson and Birznieks, 2004), t2 ¼ 65–120ms

in 5ms increments to model the large variability in reported time-delay for

non-digital sensors (Cole and Abbs, 1988; Johansson et al., 1992; Eliasson

et al., 1995; Kandel et al., 2000; Johansson and Birznieks, 2004),

t3 ¼ 120ms (Prablanc and Martin, 1992; Paillard, 1996; van Beers et al.,

2002).

2.9. Numerical optimization

The objective function, namely, performance, was Fs, numerically

defined so that the endcap is stable (yo0.5 rad) for 80% (75%) of the

trials (‘‘success-rate’’) during the 7 s hold (‘‘survival-time’’). Using success-

rates and survival-times to define the metric of performance is necessary

for stochastic differential equations such as Eq. (2) (Cabrera and Milton,

2004). We performed an exhaustive search of all possible sensory weights

(2D optimization problem; supplementary notes) to find task-optimal

sensory weights. Additionally, we compared task-optimal sensory weights

against weights that minimize the effect of noise alone (as hypothesized by

Bayesian inference for static tasks) (Ernst and Bulthoff, 2004) using the

formula oi ¼ ð1=s2i Þ=
P

jð1=s
2
j Þ, where o are sensory weights and s2 are

the variances of each sensory modality. All simulations used the

MATLABs environment.

3. Results

Principal components analysis revealed that the experi-
mentally measured endcap rotation collapsed to 1D at the
edge of instability, and the stable domain of attraction
shrunk with increasing compressive spring force in close
resemblance to the subcritical pitchfork bifurca-
tion normal form equation (Fig. 4a and b). The first
principal component explained 94.5% of the variance in
3D motion of the unit normal vector (99.9% confidence
interval ¼ (91.2%, 96.6%)), i.e., rotation about one fixed
axis described almost 95% of endcap rotational dynamics.
The experimentally obtained relationship between range of
endcap rotation along the first principal axis vs. Fs

(Fig. 5a: solid curve, âestimate ¼ 0:0017, b̂estimate ¼ 0:11,
Kestimate ¼ 3:45, R2

¼ 0.32) agreed well with the me-
chanics-based (namely, frictional constraints) model
b + Spring

Actual output (θ
act

)

as time-delays (Δt) and

ensing and nerve conduction.

umbpad ,σ thumbpad

n-digital,σ non-digital

t vision,σ vision

es, namely: (1) thumbpad sensation, (2) non-digital mechanoreceptors, and

gram that uses simple proportional feedback control and the entire closed-

. Time-delays (Dt) and noise (s) are explicitly labeled only for the sensory

noise affect the relative usefulness of various modalities.
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Fig. 5. (a) The first principal component captures all relevant endcap rotational dynamics. The spatiotemporal dynamics of the normal form model were

indistinguishable from experimental measurements projected onto the first principal component. The best nonlinear least squares fit for the relationship

between range of endcap rotation vs. Fs along the first principal components is nearly identical to model prediction for a subcritical pitchfork bifurcation

(Fig. 3). The low R2 means that the system is very noisy. (b) The independence of the dynamics (range of endcap rotation) from Fs (slope indistinguishable

from 0) along the second principal component further supports our model rationale since it indicates that all relevant endcap rotational dynamics were

captured by the first principal component and the second component provides no additional information.
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prediction (Eq. (1), Fig. 5a: dashed curve, âmodel ¼ 0:0069,
b̂model ¼ 0:28, Kmodel ¼ 3:3). Further, the range of endcap
rotation along the second principal component showed no
dependence on Fs (Fig. 5b; slope ¼ 0, p ¼ 0.96, R2E0).
Experimentally, the occlusion of vision had a measurable
impact on performance only when thumbpad sensation
was also occluded (Fig. 6a). When thumbpad sensation
was lost, Fs always decreased (With vision : Fnormal

s �
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Fig. 6. (a) Box plots of experimental results of sensory occlusion. The horizontal bars inside the box plots is the median, the notches are the robust 95%

confidence interval of the median, the boxes are bounded by the 75th percentile and 25th percentile, the numeric values next to each box is the sample

mean, and the whiskers represent the entire range of the data. The expected contextual use of vision is found by comparing columns 1 vs. 2 and columns 3

vs. 4. The differences in Fs marked with a ‘�’ symbol are the only significant ones at the preset significance level of 0.025. (b) Results of simulations using

two alternate sensory weighting strategies. Only simulations with 65ms time-delay for non-digital sensors (‘� ’, ‘+’) and with 100ms time-delay for non-

digital sensors that best replicated experimental data (‘B’, ‘&’) are shown above. The task-optimal strategy (‘� ’, ‘B’) yields better performance (larger

Fs) than the noise-minimizing strategy (‘+’, ‘&’) demonstrating the effect of time-delays on multisensory integration. The 100ms-simulation (‘B’, ‘&’)

using a task-optimal strategy (‘� ’, ‘B’) best agreed with experimental data (cf. 3rd vs. 4th columns). Noise-minimizing sensory weights (‘+’, ‘&’),

however, yield unrealistic and non-robust results such as an increase in performance after visual occlusion over and above loss of thumbpad sensation

(again, cf. 3rd vs. 4th columns). Note that when both thumbpad sensation and vision are absent there is no multisensory integration required since only the

non-digital mechanoreceptors remain intact. The sensory weights used in the simulations are listed in Table 1.
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Table 1

Task-optimal and noise-minimizing sensory weights for all simulations

Sensory conditions No vision no ‘‘nerve-block’’ With vision no ‘‘nerve-block’’ With vision ‘‘nerve-blocked’’ No vision ‘‘nerve-blocked’’

Strategya TO NM TO NM TO NM TO ¼ NM

Simulations with tnon–digital ¼ 65ms

Digital (o1) 0.96 0.95 0.96 0.65 – – –

Non-digital (o2) 0.04 0.05 0.04 0.03 0.35 0.09 1

Visual (o3) – – 0 0.32 0.65 0.91 –

Simulations with tnon–digital ¼ 100ms

Digital (o1) 0.99 0.95 0.95 0.65 – – –

Non-digital (o2) 0.01 0.05 0 0.03 0.27 0.09 1

Visual (o3) – – 0.05 0.32 0.73 0.91 –

The columns of sensory weights in this table correspond to the columns in Fig. 6b.
aTO: task-optimal; NM: noise-minimizing.

Table 2

Statistical post hoc planned comparisons of Fs (sustained load) and Fmax (maximal load) for trials when the spring slipped vs. when the spring did not slip

Subject condition DF s ¼ F slip
s � Fno�slip

s (N) p-value DFmax ¼ F slip
max � Fno�slip

max (N) p-value

Normal 0.01 0.912 0.03 0.708

No vision 0.15 0.530 �0.07 0.688

Nerve-blocked 0.05 0.667 0.12 0.197

No vision, nerve-blocked �0.01 0.900 0.03 0.700

The above values are all for Day 2. These results indicate that subjects did not maintain a ‘‘safety margin’’ during the successful (i.e., no-slip) performance

of this dynamic manipulation task. The ANOVA across conditions, was significant with po0.0001.
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Fnumb
s ¼ 0:18N, p ¼ 0.021; Without vision : Fnormal

s �

Fnumb
s ¼ 0:57N, po0.0001; Fig. 6a). After visual occlusion

however, Fs remained unchanged when the thumbpad was
intact (Intact thumbpad : Fvision

s � Fblind
s ¼ �0:07N, p ¼

0.423), but decreased by a large amount when
the thumbpad was numb (Numb thumbpad : Fvision

s �

Fblind
s ¼ 0:31N, po0.0001).
Computationally (Eq. (2), Fig. 3), by using numerical

optimization, we found that this contextual use of vision
emerged for sensory weights (for thumbpad sensors, non-
digital sensors and vision) that maximized performance
(Fs), i.e., by accounting for both sensory noise and time-
delays (Fig. 6b, Table 1) despite large uncertainty in time-
delay for non-digital sensors (closest match to experimental
data when tnon�digital ¼ 100ms). In contrast, purely noise-
minimizing sensory weights (disregarding time-delays) led
to unrealistic results such as an improvement in perfor-
mance after loss of vision and thumbpad sensation (Fig. 6b
column 3 vs. 4 when tnon�digital ¼ 65ms).

Training had no effect on Fs on day 1
(Day 1 : Fpost�train

s � Fpre�train
s ¼ 0:08N, p ¼ 0.248). Perfor-

mance on day 2 was also not statistically different from
that on day 1 (numerically greater by 0.05N and lower by
0.03N than the start and end of day 1, respectively).

Subjects did not maintain any consistent ‘‘safety-
margin’’, indicating that they were truly at their sensor-
imotor limit when sustaining maximal compression of the
spring. There was no difference in Fs or Fmax between
successful trials vs. when the spring slipped for all four
sensory occlusion conditions (p40.530, p40.197, respec-
tively; Table 2).
The COV of pinch strength (mean ¼ 99.41N,

COV ¼ 13.8%) was almost three times that of Fs with
normal sensibility on day 2 (mean ¼ 2.99N, COV ¼ 5.2%,
o5% of pinch strength). Moreover, a multiple regression
of Fs for all sensory conditions on day 2 vs. static pinch
strength (key and opposition; p ¼ 0.969, and 0.338,
respectively, overall R2

¼ 0.66) was statistically non-
significant. The high R2 indicates that one can reliably
conclude that Fs was independent from strength.

4. Discussion

A mechanics-based low-order normal form equation
from bifurcation theory produced dynamics indistinguish-
able from experimental measurements at the edge of
instability in a dynamic manipulation task. Using this
normal form equation, we successfully developed a model
of multisensory integration which replicated the contextual
use of vision found in our sensory occlusion experiments.
The contextual use of vision was robust to neurophysio-
logically tenable uncertainty in the time-delay for non-
digital sensors only for a task-optimal multisensory
weighting strategy that accounted for both time-delays
and noise. However, a static Bayesian inference strategy
that accounted solely for noise did not possess this
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robustness. Thus, we revealed the effect of time-delays over
and above the known effects of noise on multisensory
integration. It is worth noting the ability of our nonlinear
low-order model to capture both the effects of sensory
occlusion and the spatiotemporal dynamics of the task.
Importantly, our model had only one free parameter (time-
scale for overall dynamics) and all other parameters were
obtained from basic frictional constraints and previously
reported neurophysiological data for sensory time-delays
and noise variances.

Our study critically extends our understanding of the
neural control of manipulation by indicating important
differences between static and dynamic grasp. First,
subjects did not maintain a detectable safety-margin when
compressing the spring, unlike static grasp (Cole and Abbs,
1988; Johansson et al., 1992; Eliasson et al., 1995; Cole et
al., 1998; Augurelle et al., 2003). Second, we found no
relationship between dynamical performance (Fs) and
pinch strength. The fact that our experimental paradigm
focuses on very low forces (Fso5% of pinch strength)
allows us to conclude that we are investigating the limit of
hand sensorimotor integration, independently of muscle
strength.

There are some limitations of this study that, while not
affecting the validity of our results, do open new directions
for future research. We argue that feedback control is used
for preventing slippage at the edge of instability in contrast
to a predictive forward/inverse dynamic model (Wolpert et
al., 1995; van der Kooij et al., 1999; Kuo, 2005) or a preset
thumbtip impedance (Burdet et al., 2001). When the
spring+thumb+nervous system is close to the edge of
instability, sensitivity to noise and other uncertainties
increases dramatically (Stein, 2003), thus rendering un-
likely, the use of time-delay compensation or predictive
control. Also, sensory occlusion severely affected perfor-
mance indicating that a preset (feedforward) thumbtip
impedance was not the dominant form of control. This
claim is further supported by preliminary evidence from a
separate study (Valero-Cuevas et al., 2006). Moreover, a
high-impedance strategy would be dependent on thumb
strength (Hogan, 1984), and would be destabilizing due to
signal-dependent noise in muscles (Harris and Wolpert,
1998). As with any modeling work, we cannot conclusively
prove that the nervous system indeed uses a task-optimal
strategy. Nevertheless, our results agree with and add
valuable insight to the existing body of evidence for
optimality principles in sensorimotor control (Harris and
Wolpert, 1998; Todorov, 2004).

Our results are compatible with other studies of multi-
sensory integration (Wolpert et al., 1995; Ernst and
Bulthoff, 2004; Körding and Wolpert, 2004) and precision
pinch (Cole and Abbs, 1988; Johansson et al., 1992;
Augurelle et al., 2003), but go beyond them to investigate
for the first time, multisensory integration during a
complex, nonlinear and dynamic manipulation task. Our
novel task—by virtue of being dynamic, unstable and
nonlinear, and exploiting the dimensional collapse at the
edge of instability—was able to reveal how both time-
delays and noise affect multisensory integration, unlike
past studies that used static task goals.
In summary, using mathematically predicted properties

of nonlinear dynamical systems we find that dynamic
manipulation at the edge of instability becomes mathema-
tically tractable without compromising the complexity of
the task or oversimplifying the analysis. We found that
time-delays affect multisensory integration in addition to
the previously known effects of noise and the contextual
use of vision arises naturally from task-optimal multi-
sensory integration. This work sheds light on the loss of
dexterity with aging—by providing a paradigm within
which to assess the different consequences of degradation
of tactile sensors vs. increased cortical processing (i.e.,
‘‘computational’’) time-delays (Cole et al., 1998) to the
efficacy of multisensory integration for dynamic manipula-
tion. Additionally, we found that the neural control of
dynamic manipulation detects and regulates incipient
instabilities such as an imminent slip. In conclusion, since
the dimensional collapse at the edge of instability is
ubiquitous in almost all nonlinear dynamical systems, we
can extend this paradigm to other sensorimotor systems.
Together with our simple, low-order mathematical model
based on bifurcation theory, our novel and simple
paradigm of pushing the combined body+world+nervous
system to an edge of instability is a powerful tool that
opens up research directions to reveal the nature of
sensorimotor control in development, ageing, disease and
treatment.
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Johansson, R.S., Häger-Ross, C., Backstrom, L., 1992. Somatosensory

control of precision grip during unpredictable pulling loads, 3.

Impairments during digital anesthesia. Experimental Brain Research

89 (1), 204–213.

Kandel, E.R., Schwartz, J.H., Jessell, T.M., 2000. Principles of Neural

Science. McGraw-Hill, Health Professions Division, New York.

Körding, K.P., Wolpert, D.M., 2004. Bayesian integration in sensor-

imotor learning. Nature 427 (6971), 244–247.

Kuo, A.D., 2005. An optimal state estimation model of sensory

integration in human postural balance. Journal of Neural Engineering

2 (3), S235–S249.

Liang, J., Westheimer, G., 1993. Method for measuring visual resolution

at the retinal level. Journal of the Optical Society of America A—

Optics Image Science and Vision 10 (8), 1691–1696.
Macefield, V.G., Johansson, R.S., 1996. Control of grip force during

restraint of an object held between finger and thumb: responses of

muscle and joint afferents from the digits. Experimental Brain

Research 108 (1), 172–184.

Paillard, J., 1996. Fast and slow feedback loops for the visual correction of

spatial errors in a pointing task: a reappraisal. Canadian Journal of

Physiology and Pharmacology 74 (4), 401–417.

Prablanc, C., Martin, O., 1992. Automatic-control during hand reaching

at undetected 2-dimensional target displacements. Journal of Neuro-

physiology 67 (2), 455–469.

Saunders, J.A., Knill, D.C., 2004. Visual feedback control of hand

movements. Journal of Neuroscience 24 (13), 3223–3234.

Sober, S.J., Sabes, P.N., 2005. Flexible strategies for sensory

integration during motor planning. Nature Neuroscience 8 (4),

490–497.

Stein, G., 2003. Respect the unstable. IEEE Control Systems Magazine 23

(4), 12–25.

Timoshenko, S., 1961. Theory of Elastic Stability. McGraw-Hill, New

York.

Todorov, E., 2004. Optimality principles in sensorimotor control. Nature

Neuroscience 7 (9), 907–915.

Valero-Cuevas, F.J., 2000. Device for developing and measuring grasping

force and grasping dexterity. United States Patent.

Valero-Cuevas, F.J., 2005. An integrative approach to the biomechanical

function and neuromuscular control of the fingers. Journal of

Biomechanics 38 (4), 673–684.

Valero-Cuevas, F.J., Smaby, N., Venkadesan, M., Peterson, M., Wright,

T., 2003. The strength-dexterity test as a measure of dynamic pinch

performance. Journal of Biomechanics 36 (2), 265–270.

Valero-Cuevas, F.J., Galván, A., Oliveira, M.E.d., Venkadesan, M.,
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Supplementary Notes

Manipulating the edge of instability

Madhusudhan Venkadesan John Guckenheimer
Francisco J. Valero-Cuevas

In this supplementary note, we provide details of the numerical optimiza-
tion used for finding task-optimal sensory weights. To achieve this, we first
mathematically define stability (i.e., the constraints) and the objective func-
tion (i.e., the goal) for our model. We then provide an alternate graphical
representation of the optimization problem and its results using a 2D ‘fitness
landscape’.

1 Metrics for stability: “Survival times” and

“Success rates”

We first define stability for the noisy, time-delayed model so that it agrees
with the experimental notion of stability, namely, a compression was success-
ful so long as it did not slip for a finite period of time. Stability in linear
and nonlinear deterministic dynamical systems is a well-defined notion, ei-
ther in the sense of asymptotic or Lyapunov stability (Doyle et al., 1992;
Ogata, 2002; Guckenheimer and Holmes, 1983). For example, defining sta-
bility in the local sense (near a specific state of the system) is easily done
for a hyperbolic fixed point1 if the system under consideration is described
either by ordinary differential equations (Doyle et al., 1992; Ogata, 2002;

1The term hyperbolic refers to the requirement that none of the eigenvalues of the
linearization near the fixed point of interest lie on the imaginary axis. In other words, the
system can be stable or unstable in different directions, but not marginally stable in any
direction.
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Guckenheimer and Holmes, 1983) or by delayed differential equations (i.e.,
systems with time-delay) (Kolmanovskii and Nosov, 1986; Kolmanovskii and
Myshkis, 1999; Engelborghs et al., 2000, 2002). However, when there is some
source of noise in the dynamic system, stability is often defined in terms of
stationary distributions, i.e., using steady-state distributions of time spent
in various parts of the phase space of the dynamical system. For some dy-
namical systems that are modeled using stochastic differential equations, the
stationary distribution can be analytically derived using the Fokker-Planck
equations (Soize, 1994). However, for most complex dynamical systems, the
true distributions are approximated using statistical histograms that are ob-
tained through large ensemble simulations of the given stochastic dynamic
system. For example, one could define stability for a noisy system based
on distributions of the time spent by trajectories of a stochastic system in
different parts of its phase space (Arnold, 1998). Numerically, this could be
calculated by simulating large ensembles of the noisy dynamic system and
thus obtaining histograms of time spent in different regions (if these distri-
butions converge to stationary distributions). Peaks in the distribution (i.e.,
“representative” locations) can then be called as “stable” points in the phase
space of the dynamical system.

However, in the context of our system, there is an alternate “natural”
definition of stability that arises from the task requirement for subjects in the
experiments. We called the experimental behavior as “stable” or “successful”
if the subjects could prevent the spring from slipping for a finite time period
(7s). This definition of “success” in our task naturally lends itself to “be
studied in the context of a survival, or first passage, time problem” (Cabrera
and Milton, 2004), terms that we define below.

1.1 Definitions of success rate and survival time

The first observation is that if a trajectory (time-series of θ – rotation
angle of the spring’s endcap; Figure 1, left) leaves the domain of attraction
(region enclosed by dashed red curves in Figure 1 on Page 4) and never
returns inside it during the 7s period (let us name it T ∗), then it almost
certainly reached one or the other undesirable stable fixed points (at θ ≈
0.5rad; solid red curves in Figure 1) and thus, the spring “slipped”. So, we
can define ‘success-rate’ (psuccess) as the probability that the time (texit) at
which the θ trajectory exits the domain of attraction (to never return again)

2



is greater than T ∗ (the desired duration of the hold phase, namely 7s).

texit = min {T ; such that θ(t > T ) /∈ [θ0 − δθ, θ0 + δθ]} (1)

psuccess = p(texit ≥ T ∗) (2)

where, δθ defines the domain of attraction and psuccess is the ‘success-rate’.
The time texit is called the ‘survival time’. Based on approximate estimates
(not shown) from experimental data that after training subjects slipped in
approximately 20% of the trials, we chose a nominal value of p∗ = 0.8 for
the success-rate to define a “successful compression” in our model. The
utilization of p∗ in our model will become clear when we define Fs below. For
experimental trials, Fs is the maximal sustained load for 7s. Nevertheless,
it is important to note that in our simulations we calculate psuccess by using
large ensembles of simulations and calculating the fraction of the ensemble
that are ‘stable’ (psuccess) in the sense that texit ≥ T ∗.

1.2 Definition of Fs in the model

For given sensory weights, the success rate (psuccess) depends on the value
of Fs. Symbolically, psuccess = psuccess(Fs)|(ω1,ω2,ω3), i.e., for given sensory
weights, psuccess is a well-defined function of Fs. Hence, we can define Fs for
a successful compression in our model as the solution to the ‘root finding’
problem,

psuccess(Fs)|(ω1,ω2,ω3) = p∗ (3)

Numerically, we implemented this root finding problem using an adapted
version of the Newton-Raphson method. Note that by defining Fs in this
manner, it is implicitly (through the definition of psuccess) an expected value,
i.e., a metric of average performance and not single-trial performance. We
have thus explained how Fs is defined. We will explain how to calculate
sensory weights (i.e., (ω1, ω2, ω3)) that maximize Fs in Section 2 below.

1.3 Numerical integration of stochastic delay differen-
tial equations

Numerical integration of the one-dimensional stochastic delay differential
equation (SDDE) was carried out using a simple Euler integration scheme
(Küchler and Platen, 2000). As shown by Küchler and Platen (2000), for the
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Figure 1: The loci of stable (solid green line) and unstable / undesirable
(red dashed / dotted curves) equilibria for the thumb + spring + nervous
system’s closed loop dynamics without noise or time-delays as the spring
is compressed. This figure is a succinct description of the underlying de-
terministic (no time-delays / noise) dynamics of the subcritical pitchfork
bifurcation’s normal form equation.
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case of additive noise, the Euler integration scheme has a strong order of con-
vergence 1.0. The term ‘strong order’ just refers to the fact that if the ‘true’
solution to the SDDE was known for a specific instance of the noisy processes
in the system, then, with smaller and smaller time-steps, the numerically in-
tegrated solution converges to the true solution. This is different from weakly
convergent numerical techniques, where the average of some function of the
solution converges to the ‘true’ value, but each individual solution might
itself not converge. We will not say more about numerical techniques for
integrating SDDEs since the paper by Küchler and Platen (2000) and the
references cited by them provide a good reference for numerical integration
of SDDEs.

2 Numerical optimization: sensory weights

that maximize Fs

We now outline the numerical optimization procedure used to compute
task-optimal sensory weights. There are only three sensory weights that need
to be found by our optimization routine that maximizes Fs. Given the addi-
tional constraint that the sum of the sensory weights is one, the optimization
problem reduces to a 2-parameter optimization problem, namely,

max
ω1,ω2,ω3

Fs such that
3∑

i=1

ωi = 1 and psuccess(Fs)|ω1,ω2,ω3 = 0.8 (4)

This is amenable to a global parameter search. We discretized the plane
defined by ω1 + ω2 + ω3 = 1 in the positive octant of the space of sensory
weights using a fine grid and numerically calculated Fs at each grid point.
Thus, we found task-optimal performance and sensory weights for every sen-
sory occlusion condition.

3 Sensory weights that minimize the effects

of noise alone

To quantify the impact of time-delays on sensory weighting, we per-
formed simulations using noise-minimizing sensory weights in addition to
task-optimal sensory weights (that emerge from the combined effect of noise
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and time-delays. Any deficit in performance (Fs) and deviation from exper-
imental measurements that arise from using sensory weights that minimize
the effects of noise alone can then be attributed to time-delays. The sensory
weights that minimize the effect of noise alone are obtained using Bayesian
inference for static tasks, i.e.,

ωi =
1/σ2

i∑
j

(
1/σ2

j

) (5)

where, σ2
i are the variances associated with each sensory channel.
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Figure 2: Results of the global optimization using the 65ms simulation. The
edges corresponding to the no vision and no thumbpad sensation conditions
are marked in the figure. Note how tactile sensation dominates the landscape
when it is available (dark red region). Keep in mind that the vertices of the
triangular planar surface of feasible sensory weights are the case when one
sensory channel is used exclusively.

4 Fitness landscape representation of simula-

tion results

The results of the global optimization are shown as contour plots for
both the 65ms simulation (Figure 2) and the 100ms simulation (Figure 3)
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Figure 3: Results of the global optimization using the 100ms simulation.
Note how the peak in Fs for the no thumbpad sensation condition shifts
slightly closer to the “vision corner” for the 100ms simulation compared to
the 65ms simulation (Figure 2).

as an alternate representation of the results presented in the main text to
clarify how the task-optimal sensory weights were found. The triangular
planar surface in the contour plots are the set of feasible sensory weights,
i.e., sensory weights that satisfy both the constraints ω1 + ω2 + ω3 = 1 and
ωi > 0 for i = 1, 2, 3. The color coding depicts Fs according to the definition
given in Equation (3) on Page 3 at each point on the plane.
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