Kevin G. Keenan and Francisco J. Valer o-Cuevas
J Neurophysiol 98:1581-1590, 2007. First published Jul 5, 2007; doi:10.1152/jn.00577.2007

You might find this additional information useful...

This article cites 66 articles, 34 of which you can access free at:
http://jn.physiol ogy.org/cgi/content/full/98/3/1581#BIBL

Updated information and services including high-resolution figures, can be found at:
http://jn.physiol ogy.org/cgi/content/full/98/3/1581

Additional material and information about Journal of Neurophysiology can be found at:
http://www.the-aps.org/publications/jn

Thisinformation is current as of April 1, 2008 .

Journal of Neurophysiology publishes original articles on the function of the nervous system. It is published 12 times a year
(monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2005 by the
American Physiological Society. ISSN: 0022-3077, ESSN: 1522-1598. Visit our website at http://www.the-aps.org/.

8002 ‘T |udy uo Bio ABojoisAyd-ul woly papeojumoq



http://jn.physiology.org/cgi/content/full/98/3/1581#BIBL
http://jn.physiology.org/cgi/content/full/98/3/1581
http://www.the-aps.org/publications/jn
http://www.the-aps.org/
http://jn.physiology.org

J Neurophysiol 98: 1581-1590, 2007.
First published July 5, 2007; doi:10.1152/jn.00577.2007.

Experimentally Valid Predictions of Muscle Force and EMG in Models of

Motor-Unit Function Are Most Sensitive to Neural Properties

Kevin G. Keenan'? and Francisco J. Valero-Cuevas’*>

'Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York; and *Department of Biokinesiology &

Physical Therapy, and >Department of Biomedical Engineering, University of Southern California, Los Angeles, California

Submitted 22 May 2007; accepted in final form 4 July 2007

Keenan KG, Valero-Cuevas FJ. Experimentally valid predictions of
muscle force and EMG in models of motor-unit function are most
sensitive to neural properties. J Neurophysiol 98: 1581-1590, 2007.
First published July 5, 2007; doi:10.1152/jn.00577.2007. Computa-
tional models of motor-unit populations are the objective implemen-
tations of the hypothesized mechanisms by which neural and muscle
properties give rise to electromyograms (EMGs) and force. However,
the variability/uncertainty of the parameters used in these models—
and how they affect predictions—confounds assessing these hypoth-
esized mechanisms. We perform a large-scale computational sensitiv-
ity analysis on the state-of-the-art computational model of surface
EMG, force, and force variability by combining a comprehensive
review of published experimental data with Monte Carlo simulations.
To exhaustively explore model performance and robustness, we ran
numerous iterative simulations each using a random set of values for
nine commonly measured motor neuron and muscle parameters.
Parameter values were sampled across their reported experimental
ranges. Convergence after 439 simulations found that only 3 simula-
tions met our two fitness criteria: approximating the well-established
experimental relations for the scaling of EMG amplitude and force
variability with mean force. An additional 424 simulations preferen-
tially sampling the neighborhood of those 3 valid simulations con-
verged to reveal 65 additional sets of parameter values for which the
model predictions approximate the experimentally known relations.
We find the model is not sensitive to muscle properties but very
sensitive to several motor neuron properties—especially peak dis-
charge rates and recruitment ranges. Therefore to advance our under-
standing of EMG and muscle force, it is critical to evaluate the
hypothesized neural mechanisms as implemented in today’s state-of-
the-art models of motor unit function. We discuss experimental and
analytical avenues to do so as well as new features that may be added
in future implementations of motor-unit models to improve their
experimental validity.

INTRODUCTION

Computational models of motor-unit populations are, by
definition, the objective implementations of the mechanisms by
which neural and muscle properties are hypothesized to give
rise to electromyograms (EMGs) and force. Unlike regression-
based inferences, these so-called forward or predictive models
(Baker and Lemon 1998; Fuglevand et al. 1993) are causal in
that they use mathematical equations that simulate the flow of
events from neural command to electromagnetic signals re-
corded at the electrodes or forces produced at the tendons. The
degree to which a model is able to replicate well-established
experimental relations is a test of how well those equations
reflect the underlying mechanisms and a test of our hypotheses

of neuromuscular function. Thus the rigorous study of how to
make these models as experimentally valid as possible is
critical to improve both our understanding of neuromuscular
function, and our ability to use EMGs to confidently infer
command signals and forces in the neuromuscular system.

Briefly, the EMG signal is the sum of motor-unit potentials
detected by electrodes and is the most common experimental
means to estimate the neural drive to a muscle (Lacquaniti and
Soechting 1982; Schieber 1995; Thoroughman and Shadmehr
1999; Valero-Cuevas et al. 1998) and muscle force (Inman et
al. 1952; Milner-Brown and Stein 1975). Because many factors
influence the EMG signal (Basmajian and De Luca 1985), most
researchers agree that it has important limitations (Day and
Hulliger 2001; Farina et al. 2004a). Due to these limitations
and the current absence of other approaches to examine inter-
actions of entire motor-unit populations, computational models
are fast becoming the dominant means to establish the mech-
anisms relating EMG to muscle force and neural drive (Baker
and Lemon 1998; Fuglevand et al. 1993; Stegeman et al. 2000).
Structure-based EMG models (reviewed in McGill 2004,
Stegeman et al. 2000) use motor units as their fundamental
building blocks and promise to indicate how to best use EMG
to estimate muscle force and the neural drive to muscle in a
behaving animal.

Critically assessing these computational models of motor
units is relevant and urgent because in the absence of other
computational means, these models are routinely used to study
and debate the effects of motor neuron and muscle parameter
values on muscle function. Some current debates center on
peak discharge rates of motor units (Connelly et al. 1999;
Enoka and Fuglevand 2001; Johns and Fuglevand 2004),
recruitment ranges (De Luca et al. 1982; Moritz et al. 2005),
number of motor units (Hamilton et al. 2004; Heckman and
Enoka 2004), and range in innervation numbers (Enoka and
Fuglevand 2001). However, the variability and uncertainty of
the parameters used in these models confounds assessing how
realistic they are. Given the excessive computational cost
needed to model the behavior of an entire motor-unit pool,
typically requiring millions of calculations, simulations have
previously been restricted to examining the influence of inde-
pendent changes in single parameters on single outputs (Jones
et al. 2002; Keenan et al. 2005; Zhou and Rymer 2004).
Validation efforts to date have not addressed multivariate
interactions, the potential confound of an inappropriate model
structure (Valero-Cuevas 2005), intra- and inter-subject vari-
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ability in motor-unit properties (Feinstein et al. 1955), nor the
fact that many properties across an entire population of motor
units are largely unknown (Enoka and Fuglevand 2001).

We use multivariate Monte Carlo simulations to exhaus-
tively and simultaneously explore the sensitivity of model
predictions to uncertainty and variability in nine of the most
commonly investigated motor-unit parameters. Motor-unit
models should, at the very least replicate known relationships
among force, force variability, and EMG amplitude and be
robust to parameter variability across experimentally identified
ranges for motor neuron and muscle properties. It is well
documented that both EMG amplitude and force variability
scale with mean force level (Bigland-Ritchie 1981; Enoka et al.
2003; Jones et al. 2002; Milner-Brown and Stein 1975). This
study examined the ability of the most popular motor-unit
model to replicate experimental EMG/force and force/force-
variability relations in the presence of variability and uncer-
tainty in parameter values. A preliminary account of part of
these findings has been published in abstract form (Keenan and
Valero-Cuevas 2006).

METHODS

We used Monte Carlo simulations to test the ability of the most
popular motor-unit model available (Fuglevand et al. 1993) to ro-
bustly predict well-established relations among EMG, force, and force
variability when changing the values for motor neuron and muscle
parameter values across experimentally identified ranges. Our com-
puter simulations are based on the forward model of recruitment of a
population of motor units and production of muscle force (Fuglevand
et al. 1993) with the addition of an EMG model (Farina and Merletti
2001) that simulated the surface EMG with a planar volume conductor
with muscle, fat, and skin tissues. Motor-unit potentials and the EMG
signal were computed at 4,096 sample/s and muscle force at 500
sample/s. Monte Carlo methods, as their name implies, use exhaustive
repeated simulations where the specific value of each free model
parameter is assigned by random chance from a preassigned range,
and the output is computed (Santos and Valero-Cuevas 2006; Valero-
Cuevas et al. 2003). Each iteration consists of a simulation that uses
one given set of values for the free parameters (see details in the
following text). On convergence the results are in the form of the
range and variability in the output in response to changes in the
parameter values—which is a rigorous evaluation of the robustness
and realism of the structure of the model in relation to the variability/
uncertainty in parameter values. “Convergence” in Monte Carlo
simulations has the specific meaning that the number of simulations
performed has sufficed to produce stable estimates of the statistical
parameters of the output distributions. Importantly, convergence cer-
tifies that further iterations are no longer useful because they would
not alter the results. Thus converged Monte Carlo simulations are a
computationally rigorous means to thoroughly explore large parame-
ter spaces (Santos and Valero-Cuevas 2006; Valero-Cuevas et al.
2003). The model and Monte Carlo iterations are implemented in
Matlab version 7.0 (The Mathworks, Natick, MA).

As described in the extensive literature using this model (Jones et
al. 2002; Keenan et al. 2006a; Yao et al. 2000) each iteration of our
Monte Carlo simulations comprised six main sequential steps: I)
determining the recruitment and discharge times of a population of
motor neurons in response to the level of excitatory drive (we used 6
levels for each Monte Carlo simulation); 2) generating motor-unit
potentials from a given number, location, and conduction velocities of
the muscle fibers for each motor unit; 3) simulating the surface EMG
by summing the trains of motor-unit potentials; 4) generating twitch
forces from the given number of muscle fibers for each motor unit; 5)
implementing the sigmoidal relation between motor-unit force and
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discharge rate frequency as a function of the instantaneous discharge
rate and contraction time of the unit; and 6) simulating muscle force
by summing motor-unit forces. On convergence, the cumulative
results from the Monte Carlo simulations provide statistical distribu-
tions of average full-wave rectified EMG amplitudes, and the mean
and SD of force that result from the reported variability and measure-
ment uncertainty in motor-unit parameters (Table 1).

Because the original equations (Farina et al. 2004b; Fuglevand et al.
1993) and our implementation (Keenan et al. 2005, 2006a,b) of the
model have previously been published, the following section will only
review key components of the model and focus on our novel Monte
Carlo implementation.

Motor neuron pool model

The distributions of properties across the motor-unit pool were
based on the size principle (Henneman 1957), and these included
innervation number, twitch force, recruitment threshold, motor-unit
territory, and conduction velocity of motor-unit potentials. The total
number of motor neurons in the pool varied from 150-500 and the
number of muscle fibers from 50,000-250,000 (Table 1).

Activation of the motor-unit pool is modeled as a ramp-and-hold
function, with a 1-s ramp increase in excitation to a constant level for
10 s. Excitation ranges from O to 1, with maximal excitation defined
as the level of activation necessary to bring the last recruited motor
neuron to its assigned peak discharge rate. The distribution of recruit-
ment thresholds for the motor neurons is represented as an exponential
function with many low-threshold neurons and progressively fewer
high-threshold neurons. The range over which recruitment occurs
varies from =30 to 80% of maximal excitation (Table 1), consistent
with the wide range found experimentally (De Luca et al. 1982;
Moritz et al. 2005). Each motor unit began discharging at 8 pulse/s
(pps) once excitation exceeded the assigned recruitment threshold for
that unit, and discharge rates increase linearly with increases in
excitation. The interspike interval for motor-unit discharge is modeled
as a random process with a Gaussian probability distribution function,
with the coefficient of variation [CV = 100 X (SD/mean) %] of the
interspike intervals fixed for all motor units at 20%. The influence of
the correlated discharge among motor units (synchronization) was not
investigated as it has minimal influence on normalized EMG ampli-
tudes (Keenan et al. 2005; Zhou and Rymer 2004).

High-threshold motor neurons have been reported to obtain either
higher (Gydikov and Kosarov 1974; Moritz et al. 2005), lower (De
Luca et al. 1982), or similar (Erim et al. 1996) peak discharge rates
with respect to low-threshold motor neurons. Given that evidence for
only one discharge rate strategy has not been clearly established in
vivo, peak discharge rates are assigned for the first- and last-recruited
motor neuron independently and are drawn from a uniform distribu-
tion that varied from 25 to 50 pps (Table 1).

TABLE 1.
they varied

Model parameters and the ranges over which

Properties Parameters Ranges
Motor neuron 1) Number of motor neurons 150-500
2) Range in innervation numbers 1-100
3) Recruitment range Up to 30-80% maximal
excitation

Peak discharge rate:
4) First recruited neuron
5) Last recruited neuron
6) Number of fibers

25-50 pulses per second
25-50 pulses per second

Muscle 50,000-250,000

7) Fiber length 4-16 cm
8) Mean conduction velocity 3—4 m/s
9) Conduction velocity spread 0-0.5 m/s (SD)
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Muscle force generation model

Motor unit twitch force is modeled as the impulse response of a
critically damped, second-order system (Milner-Brown et al. 1973a).
A large number of units produce small forces, whereas relatively few
units generated large forces. Twitch force is modeled as directly
proportional to the number of fibers assigned to each motor neuron
(innervation number), and the range in innervation numbers, calcu-
lated by dividing the innervation number of the last-recruited motor
unit by the first-recruited motor unit, varies from 1 to 100X (Table 1).
Variation in the range in innervation numbers, and thus twitch forces
in the model, is simulated because experimental reports using glyco-
gen depletion techniques find ranges <2X, whereas estimates of
ranges in innervation numbers using twitch and tetanic motor-unit
forces, which are highly correlated with innervation number (Bodine
et al. 1987; Kanda and Hashizume 1992), can extend =100X (re-
viewed in Enoka and Fuglevand 2001). Innervation numbers increase
exponentially from the smallest to the largest motor unit. There is an
inverse relation between twitch force and twitch contraction time. The
first- and last-recruited unit are assigned a twitch contraction time to
peak of 90 and 30 ms, respectively. All motor units follow the
established sigmoidal relation between motor-unit force and motor-
unit discharge rate (Bigland and Lippold 1954; Fuglevand et al. 1993;
Kernell et al. 1983). Total force of the muscle is calculated as the
linear summation of all the individual motor-unit forces.

Surface EMG simulations

The planar volume conductor consists of an isotropic fat (3-mm
thick) and skin layer (1-mm thick), and an anisotropic muscle layer.
Each tissue layer is homogeneous and the conductivity properties of
each layer are similar to those reported by Farina et al. (2004b). The
cross-section of the muscle is simulated as circular with a radius
proportional to the assigned number of muscle fibers (Table 1).
Average fiber length varies from 4 to 16 cm (Table 1), and the center
of the innervation zones is located at 50% of the length of the fibers
and in the same transverse location within the volume conductor. The
end-plate and insertion of each fiber into the tendons varies randomly
(uniform distribution) over a range of 5 mm. The electrodes are
simulated as circular (4-mm diam) and arranged in bipolar pairs
(10-mm interelectrode distance) along the direction of the muscle
fibers. The electrodes are located halfway between the innervation
zone and the distal tendon and are placed directly over the center of
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the muscle in the radial direction. The simulation of the intracellular
action potential is based on the analytical description of Rosenfalk
(1969). Motor units have mean muscle fiber conduction velocities that
vary from 3 to 4 m/s and have a spread (SD) that varies from 0.0 to
0.5 m/s (Farina et al. 2000) (Table 1), with the smallest motor units
assigned the slowest conduction velocities (Andreassen and Arendt-
Nielsen 1987). The motor-unit potential comprises the sum of the
action potentials of the muscle fibers belonging to the motor unit and
the surface EMG is simulated by summing the trains of motor-unit
potentials.

The distribution of the motor units within the muscle (Johnson et al.
1973; Milner-Brown and Stein 1975) is determined by randomly
selecting the x-y coordinates corresponding to the center of each
motor-unit territory within the circular cross-section of the muscle.
The fibers of a motor unit are randomly scattered in the motor-unit
territory (Stilberg and Antoni 1980) with a density of 20 fibers/mm?
(Armstrong et al. 1988) and interdigitated with fibers belonging to
many other units. The territories of the largest motor units, therefore
are greater than those of the smallest motor units (Bodine et al. 1988).
To restrict the distribution of the fibers of a motor unit (Bodine et al.
1988; Stalberg and Antoni 1980), motor-unit territories are modeled
as circular (Buchthal et al. 1959). The radius of the motor-unit
territory is based on the density of 20 fibers/mm?” and the assigned
innervation number of the motor unit. However, when a portion of the
motor-unit territory is constrained by the muscle boundary, the radius
of the territory of the unit is augmented to accommodate the required
number of motor-unit fibers within the new territory while maintain-
ing fiber density.

Monte Carlo simulations

We investigated how changes in five motor neuron and four muscle
parameter values (Table 1) affect the predicted relations among EMG,
force, and force variability. These nine parameters are specifically
chosen because they are intensively investigated in animal and human
experiments and also because the influence of these properties on
EMG and force production is the focus of the majority of studies using
motor-unit models (e.g., Fuglevand et al. 1993; Jones et al. 2002;
Keenan et al. 2005). Three muscle properties (mean and variability in
motor-unit conduction velocities, and fiber length) were varied to
specifically test their influence on the surface EMG. The Monte Carlo
approach is demonstrated in Fig. 1 for the generation of the surface

Output

EMG amplitude

Anatomical factors distributions

Excitation levels

We began a multi-stage validation of a state-of-the-art computational model of normalized electromyographic (EMG) amplitude by performing Monte

Carlo simulations to determine the sensitivity of predicted EMG amplitude to 5 motor neuron and 4 muscle properties (Table 1). Iterative simulations sampled
different random combinations of property values across the full activation range. For each iteration, an activation pattern, representing the recruitment and rate
coding of a population of motor units (e.g., 150), is computed based on the parameter values chosen from prior distributions. Surface-detected motor-unit
potentials are generated for the given anatomical factors and detection scheme (details in METHODS), and the surface EMG is formed by summing the trains of
motor-unit potentials at 6 excitation levels. Model outputs are in the form of EMG amplitude distributions. To exhaustively search the parameter space, 1,095
iterations were performed to satisfy convergence criteria (<2% change in running mean and coefficient of variation of EMG amplitude for the last 20+ % of
the iterations). The same procedure was used to simulate force and force variability. MU, motor-unit label; pps, pulse/s.
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EMG with a population of 150 motor units. For each Monte Carlo
iteration, we defined a set of parameter values by sampling at random
from uniform distributions for each of the nine parameters bounded by
the experimental range of values commonly reported for each (Table
1). For each iteration, an activation pattern (motor-unit recruitment
and discharge rates) was simulated at six levels of excitation (arrows
in Fig. 1) based on the motor neuron property values drawn. For the
anatomical factors previously described in METHODS (Fig. 1), and the
motor neuron and muscle properties drawn for each iteration, motor-
unit potentials are generated for each motor unit, and an EMG signal
is simulated at each excitation level by summing all trains of motor-
unit potentials. The same Monte Carlo approach is used to simulate
muscle force.

Data analysis

Force and full-wave rectifitd EMG are averaged over a 10-s
window during constant excitation, and force variability is quantified
as the SD of the detrended force. Convergence was declared when
there was <2% change in the running mean and coefficient of
variation of EMG amplitude and force for the last 20+% of the
simulations (Santos and Valero-Cuevas 2006; Valero-Cuevas et al.
2003). Note that each Monte Carlo iteration itself required conver-
gence at every one of the six levels of excitation.

Because EMG is influenced by the distribution of motor-unit
territories within the muscle, published simulations generally involve
an arbitrary number (e.g., 20) of random motor-unit locations (Farina
et al. 2002; Lowery et al. 2003), while holding all other parameters
fixed (e.g., discharge patterns, conduction velocities, and number of
fibers for each motor unit). To ensure that this variability did not affect
our results, EMGs within each Monte Carlo iteration were also
computed iteratively with randomly located motor-unit territories
until EMG amplitudes also met the 2% convergence criteria. On
average, 107 such iterations sufficed.

Two fitness criteria were chosen to indicate a reasonable match
between simulated and experimental EMG/force and force/force-
variability relations. These relations were determined by regression
analysis done in MATLAB. First, force variability is known to scale
with mean force (Enoka et al. 1999; Moritz et al. 2005; Slifkin and
Newell 2000), and Jones and Wolpert (2002) reported that the mean
slope of the log-log regression line between SD and mean force was
1.05. We chose a slope >0.75 and <1.25 to indicate a log-log linear
(slope = 1) scaling consistent with signal-dependent noise (Harris and
Wolpert 1998). And second, EMG amplitude is known to scale with
force (Bigland-Ritchie 1981; Inman et al. 1952; Milner-Brown and
Stein 1975), with the EMG/force relation described as either linear or
nonlinear—with EMG increasing less rapidly than force at moderate
contraction levels. We chose a slope in the regression line between
EMG and force of <1.05 as a liberal estimate of a match with
experimental observations so as to not over-constrain the model
output a priori. To calculate EMG/force relations, EMG and force
were normalized with respect to their values at maximal excitation for
each Monte Carlo iteration. Convergence was assessed using output
distributions of EMG amplitude (Fig. 1) and force, instead of using
output distributions of the EMG/force and force/force-variability
slopes. This resulted in a more rigorous sampling of the parameter
space because more than twice as many Monte Carlo iterations were
necessary to satisfy the convergence criteria on the former than on the
later output distributions.

On convergence, we identified the iterations that met the experi-
mental fitness criteria and analyzed two aspects of their associated sets
of parameter values. First, we established and compared the ranges of
values of each model parameter for which the model produces
experimentally valid simulations. This explicitly identifies the param-
eters to which the model is most sensitive. Second, we rank ordered
these sets of valid parameter values based on how well they met the
experimental fitness criteria. This provides specific sets of parameter
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values for others to run experimentally valid simulations with differ-
ent fitness emphases.

RESULTS

The initial Monte Carlo simulations converged after 439
iterations, but only three simulations approximate the experi-
mental relations for force/force-variability and EMG/force.
Figure 2 shows the 439 Monte Carlo iterations plotted against
the required experimental relations in force/force-variability
and EMG/force. Horizontal and vertical dashed lines indicate
boundaries for the fitness criteria representing an approximate
match with experimental data (Fig. 2C), with quadrant IV
containing those iterations that match both relations. In gen-
eral, the model showed a predominant nonlinear scaling of
force variability (Fig. 24, green) and EMG (Fig. 2B, red) with
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FIG. 2. The motor-unit model could only replicate well-established exper-
imental EMG/force and force/force-variability relations for 3 of 439 Monte
Carlo iterations. The relation between mean force and the SD of force (A) and
EMG (B) is shown for 439 Monte Carlo iterations. Two criteria (- - -, C) were
used to compare the model results with experimental findings: a near linear
increase in force variability with mean force (regression line slope >0.75), and
a near linear or less than linear EMG/force relation (regression line slope
<1.05). Monte Carlo iterations that satisfied the criterion for EMG/force
relations are in green, force/force-variability relations are in red, both relations
are in black, and neither relation are in gray. Of 439 Monte Carlo iterations,
only 3 satisfied both criteria (A—C - quadrant IV, black). The nominal fitness
point (1,1), which represents the linear scaling (slope = 1) of force variability
and EMG amplitude with mean force, is provided for reference.
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mean force across 6 excitation levels, in contradiction to what
is observed experimentally. Only 3 of the 439 Monte Carlo
iterations resulted in an approximate match with experimental
relations (Fig. 2, black). Histograms for the nine motor neuron
and muscles properties are depicted in Fig. 3 for the parameter
values that lead to an approximate match with experimental
findings.

We found a tendency toward a tradeoff between fitness
criteria where satisfying one fitness criterion was negatively
associated with satisfying the other. Specifically, the slopes of
the EMG/force relations were analyzed as a function of the
slopes of the force/force-variability relations (Fig. 2C) with a
first-order regression model, and the two were slightly posi-
tively correlated (r = 0.38, P < 0.05). This suggests that using
a set of parameters that replicate experimental EMG-force
relations tended not to replicate the force/force-variability
relations. In fact, close inspection of the valid parameter sets
suggests that satisfying each fitness criterion involved prefer-
entially sampling from different regions of the parameter
space. For example, parameter values for peak discharge rate
of the last recruited motor neuron that resulted in valid force/
force-variability relations were always <35 pps, while fewer
values <35 pps resulted in valid EMG/force relations (Fig. 4).

We performed a second set of Monte Carlo simulations, now
preferentially sampling from the parameter ranges identified in
Fig. 3, to better characterize the subset of the parameter space
that might lead to simulations compatible with experimental
data. Specifically for this second set of simulations, the prob-
ability of selection from the truncated range bounded by
observations in Fig. 3 was 0.8, whereas the probability of
sampling from the remaining portion of the range was 0.2 (Fig.
3, gray region). Convergence was met after 424 iterations for
the second set of simulations (Fig. 5), and 65 iterations met our
fitness criteria. Figure 6 depicts force/force-variability (A) and
EMG/force relations (B) for those 65 valid iterations.

Examination of the histograms for the parameter sets (Fig. 7)
from the second set of simulations (seen in Figs. 5 and 6) show
that the model is not robust to parameter variability and is most
sensitive to motor neuron properties. This lack of robustness

Motor Neuron Properties
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FIG. 4. Histograms for the peak discharge rate of the last recruited neuron
show the parameter values that satisfy the criteria representing a match with
experimental EMG/force (green) or force/force-variability (red) relations.
Identifying the intersection for both sets of parameter values, satisfying both
criteria necessarily involves sampling from a narrow subset of all feasible
parameter values. This is demonstrated in Fig. 3 from the histogram for the
peak discharge rate of the last recruited neuron that satisfies both fitness
criteria.

and greater sensitivity is made evident by the fact that three of
the nine histograms cover <50% of the experimentally-iden-
tified ranges, and all three are motor neuron properties (Fig. 7).
Specifically, the parameter sets that met with our experimental
fitness criteria required peak discharge rates for the first- and
last-recruited motor neuron to be <33 pulses/s, and recruit-
ment ranges to be >60% maximal excitation. In contrast, each
muscle property could vary across its full range and still
produce valid EMG/force and force/force-variability relations.
In addition, a final Monte Carlo simulation injecting small
uniformly distributed perturbations (£5%) to the best param-
eter set (i.e., that most closely approximated the linear scaling
of EMG and force variability with force) led to valid solutions
for 132 iterations, after converging with 232 iterations (only
56.9% success rate). That best parameter set (Fig. 5, blue
asterisk) was selected from the 863 simulations shown in Figs.
2 and 5. The inset in Fig. 5 depicts the fitness for those 232
iterations.
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FIG. 5. By preferentially sampling from the parameter ranges identified in
the Ist set of simulations (Fig. 3), the motor-unit model replicated EMG/force
and force/force-variability relations for 65 of 424 Monte Carlo iterations.
Convergence criteria were met after 424 iterations, although only 65 iterations
(~15%) satisfied both fitness criteria (quadrant IV, black). After a total of 863
simulations, no trials reproduced the nominal fitness point (1,1). The best
parameter set (i.e., that most closely approximated the linear scaling of EMG
and force variability with force) is shown with a blue asterisk. Inset: results for
a final set of Monte Carlo simulations, which involved small perturbations
(£5%) to the values for that best parameter set. After converging with 232
iterations, 132 were valid solutions (56.9% success rate).

Table 2 presents the 50 parameter sets from all 1,095 (i.e.,
439 + 424 + 232) Monte Carlo iterations that best approxi-
mate experimental findings, ranked in order of their proximity
to the nominal fitness point (1,1), which is the reproduction of
the commonly reported linear scaling (slope = 1) of force
variability and EMG amplitude with mean force. As the slopes
of simulated EMG/force relations were always >1 while sat-
isfying both fitness criteria (Figs. 2C and 5), it was not possible
to assess experimentally observed nonlinear (slope <1) EMG/
force relations.

DISCUSSION

Most importantly, our work systematically evaluates the
mechanisms by which neural and muscle properties are hy-
pothesized to give rise to EMG and force. The equations in the
model are, in their essence, the objective implementation of
these hypotheses. Finding that the model is most sensitive to
neural properties indicates that to advance our understanding of
EMG and muscle force, it is critical to evaluate and potentially
revise the equations representing the neural mechanisms in this
popular model. As discussed in the following text in detail, it
is likely critical to re-evaluate how recruitment ranges and peak
discharge rates affect EMG and muscle force. In addition, we
find that the model, as implemented in today’s literature, tends
to trade-off between the two well-established experimental
relations we used as validation criteria: the EMG/force and
force/force-variability relations. Nevertheless, we found pa-
rameter sets for which the model approximates both these
experimental relations. We begin by discussing limitations and
finish by suggesting experimental and computational means to
improve our understanding and representation of neural mech-
anisms in the model, as well as additional features that may be
added to the model, to make it as experimentally valid as
possible.

K. G. KEENAN AND F. J. VALERO-CUEVAS

Our results should be interpreted with respect to the limita-
tions of the modeling approach, which we nevertheless believe
do not affect the validity of our conclusions. All Monte Carlo
simulations are limited by assuming parameter independence,
resulting in parameter sets and output distributions that may be
broader than are likely to exist in reality. However, when there
is a lack of experimental evidence describing whether and how
the free parameters co-vary (Table 1), it is necessary to assume
parameter independence to obtain an unbiased sense of all
possible model outputs. Additionally, this first large-scale
computational study did not vary all possible parameters in the
model because the number of simulations to convergence
grows exponentially with the number of free parameters.
Rather we focused on those parameters that are most com-
monly investigated and segregate into intuitively neural versus
muscle properties. The other possible parameters were retained
as fixed to values most commonly used in the literature
(Fuglevand et al. 1993; Keenan et al. 2005). Our results now
enable and guide the future exploration of the hypotheses
implemented in the model by the systematic expansion of the
number of free parameters to determine if a better match with
experimental data are possible. As stated in the preceding text,
the choice of our fitness criteria was motivated by a desire to
approximate the well-established experimental relations for the
scaling of EMG amplitude and force variability with mean
force. A limitation of our fitness criteria could be that the slope
of the force/force-variability relationship on a log-log scale
tends to mitigate the impact of force variability at low activa-
tion levels (Laidlaw et al. 2000). Future studies could certainly

A 103

SD of Force (au)

vy
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EMG (% maximum)

0 26 4b 66 86 160
Force (% maximum)

FIG. 6. The ability of the motor-unit model to match experimental EMG/
force and force/force-variability relations is shown. The motor-unit model
replicated EMG/force and force/force-variability relations for 65 of 424 Monte
Carlo iterations. Note the near linear scaling of force variability (fop) and EMG
(bottom) with mean force, and the inability of the model to replicate the less
than linear increase in EMG with force commonly reported. Au, arbitrary units.
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refine or change fitness criteria. Last, alternative motor-unit
model structures have been reported (e.g., simulating the syn-
aptic inputs onto the motor neuron pool) (Baker and Lemon
1998; Lowery and Erim 2005). However, those models likely
share similar hypothesized mechanisms and may therefore be
susceptible to similar limitations as those presented here.
Nonetheless future work can perform similarly thorough ex-
ploration of their parameter spaces.

The dominant sensitivity of the model to motor neuron
parameter values indicates the equations representing neural
function may require refinement. This conclusion is reached
using two lines of reasoning. First, when the model is most
sensitive to a few parameters (i.e., defined here as spanning a
narrow range of values for a group of valid simulations, Fig. 7),
it means that the equations using those parameters are most
critical to producing those valid solutions.' In this case, we find
that the equations using parameters associated with neural
properties of the motor-unit populations are most influential to
model fitness. Second, the model, as implemented in the
literature, needs refinement because it does not produce simu-
lations whose fitness is comfortably within the experimentally
established ranges for any combination of parameter values
[i.e., the distribution of valid simulations (Fig. 5) does not
include the nominal fitness point (1,1)]. The reason this can be
concluded is that a converged Monte Carlo simulation indi-
cates that further sampling of the parameter space will not
produce qualitatively different results (Santos and Valero-
Cuevas 2006; Valero-Cuevas 2005); thus the nominal fitness
point (1,1) will not be the mode of the distribution of valid
simulations even if the model is run for an infinite number of
iterations. Furthermore, while satisfying both fitness criteria,
EMG amplitude was never less than force at intermediate
levels of activation (Fig. 6B) as is sometimes observed exper-
imentally (Bigland-Ritchie 1981; Lawrence and De Luca
1983). Therefore the model warrants improvement, and this
improvement may be brought about at this point by refining the

! The converse is also true: when a larger range of values is used to produce
valid solutions, it means that the equations using those parameters are less
critical to producing valid solutions.

Mean conduction velocity (m/s)

3.6 3.8 4 cruited neuron were >33 pps and recruit-

ment was complete by 64% maximal excita-
tion. Upper and lower bounds for valid pa-
rameter ranges are shown (- - -).

0.3 0.4 0.5

Conduction velocity spread (SD)

equations in the model representing the neural mechanisms of
motor-unit function.

The narrow ranges of valid motor neuron parameter values
(Fig. 7), which resulted in part by the trade-off between
EMG/force and force/force-variability relations (Fig. 2C), are
difficult to reconcile with current debates in the literature over
those parameters. Specifically, peak discharge rates for the first
and last recruited motor unit had to be <33 pps, and the range
over which recruitment occurred had to be >65% maximal
excitation to reproduce experimentally valid solutions. In con-
trast, experimental studies report peak discharge rates =50 pps
(Bellemare et al. 1983; Kamen et al. 1995) and recruitment
complete by <50% maximal force (De Luca et al. 1982;
Milner-Brown et al. 1973b). Also, the need to preferentially
sample different parameter values (e.g., peak discharge rates—
Fig. 4) to independently satisfy each fitness criterion must
necessarily be an inherent artifact of the model’s structure.
This disparity between parameter values necessary for the
model to approximate realistic simulations versus parameter
values known to exist experimentally likely limits the utility
this model structure to study muscle function when assuming
peak discharge rates =35 pps (Jones et al. 2002; Zhou and
Rymer 2004) and recruitment ranges <50% maximal excita-
tion (Fuglevand et al. 1993; Keenan et al. 2005). However,
having identified these narrow parameter ranges is particularly
useful because they identify which aspects of the model struc-
ture (i.e., equations hypothesized to represent neural mecha-
nisms of motor-unit function) would benefit most from sys-
tematic evaluation. For example, peak discharge rates define
maximum excitation in the model (see METHODS), determine
motor-unit recruitment and discharge rate at each level of
activation, and establish when discharge rates saturate with
increases in activation of the motor-unit pool.

Importantly, our exhaustive search of the nine-dimensional
parameter space using 1,095 Monte Carlo iterations did iden-
tify sets of parameter values that resulted in an acceptable
match with the experimental observations describing EMG/
force and force/force-variability relations (Figs. 2C and 5,
quadrant IV, Table 2). Although experiments and motor-unit
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TABLE 2.  Parameter sets for the 50 experimentally valid simulations that best matched EMG/force and force/force-variability relations

Parameter Values

sl 1 2 4 5 6 7 8 9
ope Force/ Slope
Trial Force-SD EMG/force nMN rIN PDRI1 PDRn nMF FL CV CVSD
1 0.768 1.015 383 48.3 79.4 28.5 29.8 70182 5.88 3.28 0.079
2 0.847 1.017 398 52.7 717.5 26.6 28.6 69983 5.68 3.35 0.079
3 0.828 1.017 384 51.4 717.3 26.7 29.1 71609 5.57 3.31 0.078
4 0.833 1.018 383 50.4 79.7 26.6 30.3 71285 5.90 3.31 0.082
5 0.761 1.021 382 50.2 78.8 28.7 29.8 72221 5.79 3.37 0.080
6 0.760 1.021 383 49.6 79.9 29.1 30.0 69322 6.07 3.31 0.081
7 0.773 1.021 372 52.6 79.2 28.0 30.0 74469 5.67 343 0.080
8 0.610 1.022 364 46.3 79.6 27.5 30.0 69068 5.99 3.44 0.084
9 0.789 1.022 379 50.2 77.8 27.1 29.0 69510 5.62 342 0.085
10 0.773 1.022 399 52.4 77.7 28.9 29.2 68328 5.98 3.40 0.079
11 0.773 1.022 369 48.6 78.7 28.2 29.2 73174 5.75 3.29 0.083
12 0.760 1.022 366 49.1 75.0 28.2 29.6 68180 5.66 3.20 0.083
13 0.773 1.022 398 51.5 75.2 28.0 30.8 71894 5.89 3.32 0.084
14 0.824 1.023 369 51.7 80.0 29.0 28.8 72490 6.05 3.46 0.079
15 0.770 1.023 377 50.1 76.3 29.3 30.1 70595 5.82 3.25 0.082
16 0.762 1.023 368 48.2 79.3 29.2 29.2 72185 5.97 3.35 0.084
17 0.775 1.024 364 50.0 80.0 27.9 30.6 71114 5.59 3.46 0.085
18 0.755 1.024 388 47.9 75.3 28.9 30.7 68065 6.13 3.49 0.078
19 0.795 1.025 365 49.1 78.8 26.6 29.0 69736 5.81 3.50 0.085
20 0.780 1.025 385 49.6 79.5 27.5 30.7 72428 5.90 3.24 0.079
21 0.800 1.025 372 47.7 75.2 27.6 28.7 71694 5.90 3.29 0.082
22 0.771 1.025 398 50.6 79.1 27.3 31.2 69369 5.87 3.51 0.081
23 0.805 1.026 376 49.6 79.3 26.8 28.6 70611 6.01 3.28 0.084
24 0.759 1.025 376 48.3 80.0 27.8 30.8 73371 6.09 342 0.085
25 0.774 1.025 395 48.0 79.2 28.6 29.8 72277 5.86 3.31 0.080
26 0.791 1.026 378 50.8 78.0 27.1 31.1 70251 6.02 342 0.083
27 0.791 1.026 379 50.5 75.3 29.2 30.6 69763 5.92 345 0.081
28 0.754 1.025 370 49.8 79.4 27.0 29.3 73230 5.61 3.25 0.082
29 0.801 1.026 381 50.2 78.7 28.0 29.9 71487 5.87 3.36 0.081
30 0.756 1.026 375 52.7 78.8 27.2 28.7 71045 6.05 3.31 0.081
31 0.795 1.026 397 48.0 76.6 29.2 30.9 68766 6.14 3.27 0.085
32 0.807 1.027 400 51.9 79.3 27.7 28.8 74095 5.98 3.40 0.082
33 0.787 1.027 373 52.4 79.4 29.1 29.1 70561 5.76 341 0.078
34 0.800 1.027 383 49.6 76.0 27.7 31.0 70467 5.99 3.32 0.085
35 0.756 1.026 387 51.9 77.7 29.3 31.0 68402 5.77 3.30 0.080
36 0.761 1.027 395 51.1 78.0 27.5 30.7 73661 5.99 3.25 0.085
37 0.786 1.027 368 51.7 79.4 29.4 29.6 73884 5.85 3.40 0.083
38 0.763 1.027 386 50.6 76.5 28.2 29.4 72401 6.07 342 0.081
39 0.779 1.027 365 48.8 76.9 27.3 29.9 73962 5.84 3.35 0.084
40 0.750 1.027 368 47.8 75.5 27.6 28.4 69499 5.99 3.49 0.082
41 0.778 1.028 340 56.1 77.4 26.5 29.2 69320 7.28 3.49 0.109
42 0.782 1.028 366 50.8 79.7 29.0 30.8 68753 5.96 3.42 0.085
43 0.797 1.028 395 50.1 79.3 28.2 30.7 68397 5.86 342 0.081
44 0.772 1.028 394 48.2 78.7 27.4 29.9 73106 5.71 3.20 0.085
45 0.807 1.028 379 52.1 79.2 28.2 29.6 72839 5.68 3.52 0.079
46 0.782 1.028 383 50.6 79.9 27.4 30.3 68523 6.15 3.47 0.082
47 0.769 1.028 398 48.3 75.3 28.1 29.4 69946 6.15 3.38 0.078
48 0.802 1.029 381 60.6 78.5 27.0 27.4 69998 6.48 3.56 0.344
49 0.771 1.028 389 48.6 78.4 29.1 28.7 68568 5.94 3.51 0.084
50 0.830 1.029 386 51.8 79.8 27.1 28.7 73572 5.78 3.33 0.084

Values are ranked by relative distance to the nominal fitness point (1,1). Relative distances are Euclidean distances after normalizing for differences in scales
between the axes. EMG, electromyography; SD, standard deviation. nMU, number of motor neurons; rIN, range in innervation numbers; Rr, recruitment range;
PDRI, peak discharge rate 1* recruited neuron; PDRn, peak discharge rate last recruited neuron; nMF, number of muscle fibers; FL, fiber length; CV, mean

conduction velocity; CVSD, conduction velocity spread.

models have consistently characterized relations between both
force and force variability (Jones et al. 2002; Laidlaw et al.
2000; Moritz et al. 2005) and EMG (Bigland-Ritchie 1981;
Inman et al. 1952; Milner-Brown and Stein 1975), to our
knowledge no previous study has evaluated motor-unit models
by comparing their predictions against both of these well-
established relations. For example, previous univariate ap-
proaches addressed which factors influence force/force-vari-

ability relations, including: discharge rate variability (Moritz et
al. 2005), range in twitch amplitudes (Jones et al. 2002), and
number of motor units (Hamilton et al. 2004). In addition,
previous univariate approaches addressed which factors influ-
ence EMG/force relations, including motor-unit synchroniza-
tion (Yao et al. 2000), electrical and mechanical properties at
the individual motor-unit level (Zhou and Rymer 2004), am-
plitude cancellation (Day and Hulliger 2001; Keenan et al.
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2005), and recruitment range and peak discharge rates (Fugl-
evand et al. 1993; Milner-Brown and Stein 1975). By perform-
ing an exhaustive multivariate analysis that compared modeled
and experimental EMG/force and force/force-variability rela-
tions, we obtain a true indication of the capabilities of this
model structure as implemented in today’s literature. A list of
50 valid parameter sets is provided in Table 2, rank ordered by
their proximity to the nominal fitness point (1,1). Given the
current model structure, these values can be used as starting
points to reproduce functionally realistic experimental data. As
with many complex models, however, caution is warranted
because the fitness of the model lacks robustness to experi-
mentally realistic parameter variability. Simulations in the
vicinity of these parameter sets are not guaranteed to be as
experimentally valid (e.g., Fig. 5, inset).

This study suggests specific computational means to im-
prove our understanding and representation of the mechanisms
of motor-unit function. The results suggest reevaluating the
gain functions describing the scaling of motor-unit discharge
rate with excitation and the scaling of motor-unit force with
discharge rate because both gain functions are influenced by
peak discharge rates and recruitment ranges. The first gain
function in the model assumes a linear scaling of motor-unit
discharge rate with increased excitation (Kernell 1965;
Schwindt and Calvin 1972), although important nonlinearities
are known to exist (Hultborn et al. 2003; Kernell 1965). The
second gain function assumes a sigmoid relation between
motor-unit force and discharge rate (Rack and Westbury 1969),
normalized to the contractile properties of the motor unit
(Kernell et al. 1983), though motor-unit force and contraction
time are not always correlated (Bigland-Ritchie et al. 1998).
Moreover there is likely substantial context-dependent vari-
ability in the scaling described by both gain functions across
motor units, which has not been implemented in the model.
Also additional features not previously implemented in the
model could be included to test whether its experimental
validity improves. First, excitatory drive is not constant (as
commonly modeled) but may vary systematically with increas-
ing contraction intensity, for example, due to signal-dependent
noise (Harris and Wolpert 1998). Thus an increase in variabil-
ity of excitatory drive with increasing contraction intensity
may attenuate the unrealistic drop-off found in variability of
force at high force levels (Fig. 2A). Second, there may be a
preferential distribution of low-threshold motor units deep
in some muscles, inferred from the finding that slow, oxi-
dative muscle fibers are more densely represented distant
from the skin in some human muscles (Johnson et al. 1973;
Lexell et al. 1983; cf. Edgerton et al. 1975). Thus at low
levels of excitation, more active muscle fibers may be
situated deeper in the muscle and thereby contribute less to
the surface-detected EMG signal, potentially attenuating the
unrealistic increase in EMG at low-to-moderate levels of
force (Fig. 2B).

This work suggests iterations between modeling and exper-
imental work will improve our understanding of the mecha-
nisms of muscle function. For example, the feasibility of
isolating a small number of axons from the motor neuron pool
to a muscle in situ has been demonstrated (Day and Hulliger
2001; Perreault et al. 2003). This holds the promise of allowing
the delivery of known activation patterns (e.g., specific recruit-
ment and rate coding schemes) simulating voluntary contrac-
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tions to validate the modeled gain functions for the generation
of EMG and muscle force. In addition, alternative “muscle
outputs” can be used as fitness criteria depending on the
features of muscle function being investigated, such as power
spectral densities. The present study is therefore an example of
how computational modeling of neuromuscular systems could
direct future experimental work to better understand the mech-
anisms that give rise to muscle function and EMG.
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