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Subject-specific and generic musculoskeletal models are the computational instantiation of hypotheses,
and stochastic techniques help explore their validity. We present two such examples to explore the
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hypothesis of muscle redundancy. The first addresses the effect of anatomical variability on static force
capabilities for three individual cat hindlimbs, each with seven kinematic degrees of freedom (DoFs) and
31 muscles. We present novel methods to characterize the structure of the 31-dimensional set of feasible
muscle activations for static force production in every 3-D direction. We find that task requirements
strongly define the set of feasible muscle activations and limb forces, with few differences comparing
individual vs. species-average results. Moreover, muscle activity is not smoothly distributed across 3-D
directions. The second example explores parameter uncertainty during a flying disc throwing motion by
using a generic human arm with five DoFs and 17 muscles to predict muscle fiber velocities. We show
that the measured joint kinematics fully constrain the eccentric and concentric fiber velocities of all
muscles via their moment arms. Thus muscle activation for limb movements is likely not redundant:
there is little, if any, latitude in synchronizing alpha–gamma motoneuron excitation–inhibition for
muscles to adhere to the time-critical fiber velocities dictated by joint kinematics. Importantly, several
muscles inevitably exhibit fiber velocities higher than thought tenable, even for conservative throwing
speeds. These techniques and results, respectively, enable and compel us to continue to revise the
classical notion of muscle redundancy for increasingly more realistic models and tasks.

& 2015 Published by Elsevier Ltd.
1. Introduction

This invited paper has the dual purpose of being didactic about
computational methods to test neuromechanical hypotheses in
the context of high-dimensional subject-specific and generic
models, and applying these methods to explore the classical
notion of muscle redundancy, a central tenet in our field. This is
made possible by computational geometry and stochastic techni-
ques we have been developing to understand the interactions
among (i) model topology (the number and type of connectivity
among the elements of the model); (ii) parameters values (the
individual and specific numerical values assigned to each model
parameter); and (iii) the requirements of real-world tasks for
tory, Department of Biome-
ysical Therapy, University of
os Angeles, CA 90089, USA.
s).
tendon-driven biomechanical systems with numerous kinematic
degrees of freedom and muscles.

The notion of computational models as instantiations of spe-
cific hypotheses, the stochastic exploration of model capabilities to
test these hypotheses, and the relationship between generic vs.
subject-specific models have been addressed elsewhere (Keenan
and Valero-Cuevas, 2007; Rieffel et al., 2010; Valero-Cuevas et al.,
2007a, 2009a, 2007b). However, increasing the physiological rea-
lism and utility of these techniques requires extending them to
ever higher dimensions (i.e., larger numbers of muscles and
kinematic degrees-of-freedom, DoFs), and to real-world tasks
involving the production of static forces and fast motions—while
limiting computational cost. But working with ever-greater num-
bers of muscles and DoFs inevitably challenges our ability to
visualize the complex and high-dimensional structure of the set of
feasible muscle activation patterns. It also significantly challenges
our ability to find unique solutions (if they even exist) to these
computational problems, or defend their optimality/uniqueness.
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We have found these stochastic modeling techniques particu-
larly useful to test the classical notion of muscle redundancy,
which has often been called the central problem of motor control
(Bernstein, 1967). The classical notion of muscle redundancy is
thought to arise by virtue of having (many) more muscles than
DoFs. With many muscles acting upon the same number or fewer
joints, some argue that the central nervous system (CNS) must
solve an optimization problem to select and implement specific
muscle activation patterns from a theoretically infinite set of
possibilities (Prilutsky, 2000; Scott, 2004), while others argue that
near- or sub-optimal solutions are good enough (Loeb, 2012;
Valero-Cuevas et al., 2009b). If fewer muscles actuated a limb, the
arguments go, feasible forces and motions could still be produced
without significant need for such optimizations.

Many of us have argued that this classical interpretation of the
number of muscles in vertebrate limbs is paradoxical with respect
to evolutionary biology and the clinical reality of motor dysfunc-
tion: extant vertebrates tend to have many more muscles than
DoFs, even though it is energetically expensive to develop and
maintain muscle mass—and injury to even a few muscles can
cause dysfunction. Using the same argument of energetic effi-
ciency invoked for optimization in motor control—but at the scale
of evolutionary time—we, and others, have argued that we likely
have barely enough muscles for versatile real-world behavior
(Keenan et al., 2009; Kutch and Valero-Cuevas, 2011, 2012; Loeb,
2000; Talati et al., 2005). This view is closely aligned with the
computational neuroethology approach (Arbib, 1987; Beer, 1990;
Cliff, 1990) that argues that perhaps we need all our muscles
because of the sheer variety of tasks—each distinguished by the
type and number of constraints they must meet—over the course
of a day/week/lifespan. Put differently, if we have too many
muscles in our limbs, which ones would you like to donate or
paralyze? Therefore, it is important that our research into muscle
redundancy work toward reconciling these different views.

Still, for most tasks in healthy individuals, some redundancy is
bound to remain; regions of feasible activation solutions that are
not a single point will consist of a neighborhood or subspace that
naturally contains an infinite number of solutions (i.e., points). The
nervous system is still confronted with the need to choose a
specific solution to implement at any point in time; however, that
collection of feasible solutions remains highly structured due to
both the mechanics of the limb and the constraints of the task
Fig. 1. Bone lengths, joint axes of rotation, and moment arm matrix for the species avera
in blue, as per the right-hand-rule. (For interpretation of the references to color in this
(Bizzi and Cheung, 2013; Kutch and Valero-Cuevas, 2011, 2012;
Sohn et al., 2013; Tresch and Jarc, 2009; Valero-Cuevas et al., 1998).
The purpose of this work, therefore, is to begin to address the need
posed by us (Kutch and Valero-Cuevas, 2011, 2012; Valero-Cuevas
et al., 1998), and others (Loeb, 2000; Sohn et al., 2013; Tresch and
Jarc, 2009), to improve computational methods for understanding
and visualizing the dimensionality and structure of feasible solu-
tions sets for limbs with large numbers of muscles performing
tasks with realistic constraints. Here we do so for 3-D muscu-
loskeletal models of a cat hindlimb and a human arm with 31 and
17 muscles, respectively, using MATLAB (v2013b, The Mathworks,
Natick MA).
2. Cat hindlimb model: methods

The purpose of this cat hindlimb model is to present a novel
way to visualize the structure of the set of all feasible muscle
activations to produce maximal and submaximal static paw forces
in every 3-D direction. In addition, we compare solutions among
three subject-specific models to explore the effect of between-
subject anatomical variability on muscle activation. The models
consist of three feline (Felis catus) hindlimbs, each with 31 muscles
actuating 7 kinematic DoFs from the hip to the ankle. We used the
bone lengths and moment arms for the cat hindlimbs originally
presented by McKay and Ting. (2008), and modified by Sohn et al.
(2013), that were graciously shared with us by the authors. The
species average model for the cat hindlimb is shown in Fig. 1.

2.1. Feasible force and feasible activation sets for cat hindlimb model

As described in detail elsewhere (e.g., McKay et al., 2007;
Valero-Cuevas, 2009; Valero-Cuevas et al., 1998), a feasible force
set (FFS) describes the set of all static forces that can be produced
at the endpoint of a limb. Briefly, the feasible mechanical output of
the endpoint of a limb is 6-dimensional: 3 forces (the FFS) and
3 torques (the feasible output torque set)—which arises from the
fact that a rigid body (i.e., the endpoint of a limb) has six DoFs,
three displacements, and three rotations. Together they form the
6-dimensional feasible output wrench (Murray et al., 1994). In the
robotics literature (Miller et al., 2005), feasible force and torque
outputs are plotted separately as they have different units. Thus
ge cat hindlimb model, in cm. Positive values are shown in red and negative values
figure legend, the reader is referred to the web version of this article.)



Fig. 2. Left: The polygon of the 2-D feasible force set in the sagittal plane. The color-coded vectormapping of radial lines indicate the magnitude of the maximal feasible force
along that direction, then vectormapped onto the perimeter of the circle surrounding the FFS. The very thin lines emanating from the origin are the lines of action of each of
the 31 muscles. Center: the polyhedron of the 3-D FFS, again with the vectormapping of force magnitude values onto a circle in the sagittal plane. Right: The color-coded
vectormapping onto the surface of a sphere indicating the maximal feasible force in every direction in 3-D. Note the FFS is rather flat on the sagittal plane, but elongated
towards the posterior direction. All data for this figure are for the cat called Birdy in Sohn et al. (2013). For 3-D views see [URL: http://valerolab.org/supplemental/job2015/].
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the FFS can be at most 3-D, and is a subset of the feasible wrench
set. For the task of producing pure output force as in this model,
we enforce the constraint that the endpoint produces no output
torques (Valero-Cuevas et al., 1998). Thus the FFS is the complete
representation of the maximal mechanical output of the limb. For
limb models constrained to move on a plane, the FFS is a convex
2-D polygon (Fig. 2, Left). For models that can move in 3-D space,
the FFS is a convex 3-D polyhedron (Fig. 2, Center) with its origin
at the endpoint of the limb (Valero-Cuevas, 2009; Valero-Cuevas
et al., 1998).

Importantly, as described elsewhere (Kuo and Zajac, 1993;
McKay et al., 2007; Valero-Cuevas, 2009; Valero-Cuevas et al.,
1998), the FFS is produced by the feasible activation set (FAS)—the
set of all muscle activations that meet the constraints of the task.
For linear constraints as in this case, the FAS is a convex polytope
in n-dimensional space, where n is the number of independently
controlled muscles acting on the limb. The FAS is at the center of
studies of muscle redundancy because it contains an infinite
number of points. Sometimes this subspace is called the nullspace
of the task as any point in it can, by construction, meet its con-
straints (Chao and An, 1978). But it is nevertheless a highly
structured subset of n-dimensional space. A critical result of our
work is that we present a means to visualize and characterize the
FFS by examining one muscle at a time.

2.2. Vectormapping of the feasible force set

It is challenging to understand and visualize a 3-D FFS, as it is a
non-regular convex polyhedron (Fig. 2, Center). Likewise, those
difficulties are exacerbated for the FAS as it is also a high dimen-
sional polytope, with as many dimensions as there are muscles. As
mentioned in Section 1, it is critical to understand the relationship
between the FFS and FAS, as they lie at the heart of many debates
about muscle redundancy, muscle synergies, disability, rehabili-
tation, motor learning, etc. One approach to connect the structure
of the FFS and the FAS is by computing activation bounding boxes
(i.e., the extreme points in every dimension (Inouye et al., 2012;
Kutch and Valero-Cuevas, 2011; Sohn et al., 2013)). However, this
overestimates both their size and volume, and excludes the com-
plexity of their structure. Another technique is to find the largest
sphere the polytope can encase (Inouye et al., 2012), but this
underestimates their size and volume, and assumes a uniform
structure. We now propose an alternate method that helps us
visualize the structure of the FFS in a ‘vectormap’. After identifying
the maximum feasible force in a given direction (Fig. 2, Left), we
assign that value of force to a 3-D point, where color denotes the
force intensity. A spherical heatmap is formed with all of the
computed directions and respective maximum forces; Fig. 2
(Right) shows the vectormap representation of the FFS.

Traditionally, polyhedra like the FFS cannot be combined or
compared quantitatively because the vertices do not align across
different individual musculoskeletal models. As vectormaps are
composed of consistent unit vectors for force output (or muscle
activation, see Section 2.3), they can be averaged and compared.
For example, they can be compared across individuals of a species
to identify regions that have higher variability within a population.
The color on the surface of the sphere can then be used to
represent the mean or standard deviation of maximal output force
or muscle activation (Fig. 3).

2.3. Vectormapping of the feasible activation set

We present a way to visualize the structure of the FAS, a convex
polytope in n-dimensional space, on a muscle-by-muscle basis. For
each muscle we can generate activation vectormaps where color
represents its unique activation level for every point on the surface
of the FFS (Fig. 4). This is possible because any point on the surface
of the FFS (i.e., the maximal force in every direction) is generated
by a unique muscle activation pattern (Valero-Cuevas et al., 1998).
This unique activation pattern assigns the color to that point on
the vectormap of each muscle. In the case of the cat hindlimb
there are 31 muscles, and therefore, 31 vectormaps of unique
muscle activations.

Importantly, submaximal forces in each 3-D direction (i.e.,
points within the FFS) can be produced by an infinite number of
solutions (Chao and An, 1978; Valero-Cuevas et al., 1998). The
structure of those solutions can be approximated by the bounding
box approach in Kutch and Valero-Cuevas (2011) and Sohn et al.
(2013). We extend that prior work by creating vectormaps of the
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Fig. 3. Top: Vectormap of the average of maximal feasible force across all sampled
output vectors in three feline hindlimbs. Bottom: A vectormap displaying regions of
the feasible force space that have higher standard deviation across three cat hin-
dlimbs. Right: Color scale representing force in Newtons.
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lower and upper bounds of activation for each muscle, for all
directions in 3-D (Fig. 4).
3. Cat hindlimb model: results

3.1. Intra-species differences in the feasible force set

With one FFS per cat, we find that force capability distributions
for the three cats differ in specific 3-D directions. Fig. 3 shows
between-cat comparisons: a species average (top), and standard
deviation (bottom) plots across the three FFSs. We see that species
average and individual FFSs are of the same general shape (cf.
Fig. 2, Right and Fig. 3, Top) with maximal force magnitudes
remaining in the same general direction (towards the posterior
direction) and of similar magnitude (c. 60 N) as for the individual
cat in Fig. 2. However, the standard deviation among the FFSs of
the three cats shows important differences in the range of 20 N in
the same direction as the maximal magnitude. But in most other
3-D directions the differences remain below 5 N.

3.2. Structure of feasible activation sets

Fig. 4 shows what to our knowledge is the first portrayal of the
structure of the FAS for force production in every 3-D direction.
For the sake of brevity, we only show the results for three muscles.
The plots for all 31 muscles are available at [URL: http://valerolab.
org/supplemental/job2015/]. The vectormaps on the far right show
the unique level of activation for maximal feasible forces in all
directions. While in several 3-D directions the muscle activity
remains unchanged, we also see discontinuities where muscle
activity is not smoothly distributed across 3-D directions as, for
example, the ‘fingers’ of higher activations penetrating into areas
of lower activations for vastus lateralis.

To extend prior work (Kutch and Valero-Cuevas, 2011; Sohn et al.,
2013), we also found the lower and upper bound vectormaps for all
muscles for submaximal forces in all 3-D directions. This is the
bounding box approach in Kutch and Valero-Cuevas (2011) and Sohn
et al. (2013), but extended to every direction in 3-D. These plots
provide a detailed view of the structure of the 31-dimensional FAS
for different force magnitudes, viewing one muscle at a time. The
smaller vectormaps to the left in Fig. 4 show the lower and upper
bounds as one increases force magnitude in all directions in 10%
steps, starting at 50% of maximal force. The lower and upper bounds
naturally converge for maximal output, but they converge at differ-
ent rates across muscles and directions of force output—sometimes
towards the upper bound, and sometimes towards the lower bound.
These vectormaps of the FAS enable us to understand the rate at
which redundancy is ‘lost,’ or not for every direction of force pro-
duction. They also enable future studies where, say, the loss of the
soleus muscles, or its hypertonia, are simulated by driving its acti-
vation to the lower or upper bound, respectively, to visualize the
feasible range of compensations by other muscles.
4. Human arm model: methods

The purpose of this human arm model is to understand the
constraints imposed on time varying muscle activation during the
kinematics of a high-speed athletic movement. Specifically, our
model predicts muscle fiber lengths and velocities during a spe-
cific athletic activity—in this case throwing a flying disc with a
backhand motion, like throwing a Frisbees. A 5 DoF, 17 muscle
arm model of the right arm was modeled after (Hummel, 2003)
and consisted of three joints (shoulder, elbow, and wrist) articu-
lating three limb segments (upper arm, lower arm, and hand) with
lengths of 0.35 m, 0.27 m, and 0.11 m, respectively (Fig. 5). The
three DoFs at the shoulder included internal/external rotation,
abduction/adduction, and horizontal abduction/adduction, and the
DoF at both the elbow and wrist was flexion/extension. We note
that our simplified model does not consider all DoFs at the elbow
and wrist. This limitation affects the calculation of joint angles and
fiber velocities, but likely does not challenge our results as in some
cases fiber velocity would be somewhat lower, but also somewhat
higher. We added 17 muscles/muscle groups with resting fiber
length and moment arm data from various sources (Garner and
Pandy, 2003; Gonzalez et al., 1997; Holzbaur et al., 2005; Murray
et al., 2002). The moment arm data are shown in Fig. 5.

4.1. Kinematics of throwing a flying disc and resulting muscle fiber
velocities

The time-history of joint angles of the throwing motion was
also obtained from Hummel (2003). We considered the initiation
of forward motion, release, and follow-through portions of the
throw to last, conservatively, 450 ms; and approximated it as 45
unique postures at 10 ms time steps, as illustrated in Fig. 6. We
combined measured limb kinematics with moment arm values to
predict the instantaneous normalized muscle fiber velocity
throughout the throw (Fig. 5).

Consider a tendon-driven limb with n muscles (17 in this case)
and m joints (or DoFs, 5 in this case), and a limb posture defined by
joint angles m

T
1[ ]θ θ θ= … . The moment arm matrix R nmxθ( ) can be

defined for this tendon-driven system, having entries consisting of
the moment arms r i j,θ( ) : i m1, ,= … , j n1, ,= … , at the ith joint

and jth muscle (An et al., 1983):
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Fig. 4. Structure of the feasible activation set for three muscles. The large vectormaps on the far Right show their unique activation level for maximal force output in every
3-D direction. Because multiple activation levels can produce submaximal forces, the small vectormaps to the Left show the lower and upper bounds of those feasible
activation levels for force magnitudes (a) gradually increasing from 50% of maximal in every 3-D direction. Vectormaps for all muscles can be found at [URL: http://valerolab.
org/supplemental/job2015/].
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As per the right-hand-rule, r i j,θ( ) is positive when pulling jth

tendon induces a counterclockwise rotation at the ith joint, and
negative otherwise. A postural change is a rotation of joints from a

reference limb posture m
T

0 01 0[ ]θ θ θ= … to a new limb posture

m
T

1[ ]θ θ θ= … and is denoted m
T

0 1[ ]θ θ θ θ θΔ = − = Δ … Δ . This fully
determines the excursions sΔ of all n muscles (An et al., 1983),
where negative and positive excursion values correspond to
eccentric and concentric contractions, respectively.

In this case we obtain the over-determined system where the
changes of angles of a few variables (the joint angles) specify the
excursions of all the many muscles.
⎛
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To be clear, this is the very opposite of redundancy.
When the interval between postures is allotted a given amount

of time, the instantaneous velocity of the muscle fibers is

v
s
t 3= Δ

Δ ( )

Please note that the velocity of the muscle fibers is not
necessarily the velocity of the musculotendon. Muscle fiber pen-
nation angle and tendon elasticity can both contribute to this
(Zajac, 1989). For the sake of simplicity, and without loss of gen-
erality, we assume muscle fibers span the length of the whole
muscle and have a small pennation angle so that we can consider
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Fig. 5. Moment arm values for human arm model. The moment arms from the 17 muscles considered in this model and their associations with the five DoFs are illustrated,
in cm. The moment arms are grouped by DoF and are shown below the associated joint. Positive values are shown in red and negative values in blue. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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them to be equivalent. A recent modeling study (Elias et al., 2014)
also suggests that ‘paradoxical’ contractions—where the extreme
case of muscle fibers shortening while the musculotendon as a
whole is lengthening due to tendon stretch—are brief events
limited mostly to large eccentric contractions to reverse move-
ment direction. Due to these reasons, we assumed the velocities of
the muscle fibers and tendons were mostly equivalent during the
midsection of the uni-directional throwing motion we consider in
our analysis. As is customary, we calculated the normalized muscle
fiber length velocities by dividing fiber velocities by the resting
muscle fiber length (lo) of each muscle (Zajac, 1989).

v
v
l 4o

¯ =
( )

5. Human arm model: results

5.1. Muscle fiber velocities for flying disc throw

Fig. 7 shows the normalized muscle fiber velocities for all
muscles during a 450 ms flying disc throwing motion. Notice that
multiple muscles have normalized muscle fiber velocities
exceeding 75 fiber lengths/s (deep blue and deep red in Fig. 7
Top, respectively). Because these high velocities are considered to
be unrealistically fast (Hill, 1938; Zajac, 1989), we used Monte
Carlo simulations to explore the robustness of our findings (Fig. 7,
Bottom).

As is often done in musculoskeletal modeling (Valero-Cuevas
et al., 2009a), we explored the effect of modeling uncertainty by
iteratively running our model while sampling parameter values
from uniform distributions spanning 725% of the nominal
moment arm values. As the joint kinematics and segment lengths
come from direct measurements, our stochastic approach focused
on the uncertainty of moment arm values obtained from the lit-
erature as they may or may not be appropriate for the arm of the
subject who performed the flying disk throw. Note that we fixed
the duration of the motion to 450 ms because, although slow in
comparison to competitive athletes, it provides a conservative
estimate of muscle fiber velocities and thus a more reasonable and
defensible set of results. We guaranteed convergence of the Monte
Carlo simulation by testing the variability of the running mean of
normalized fiber velocity of the infraspinatus (Valero-Cuevas et al.,
2009a). This muscle experienced the largest lengthening velo-
cities, and as such, was at the greatest risk for injury. Only 12
iterations sufficed for the running mean of the maximal infra-
spinatus normalized fiber velocity to vary less than 2%. Running
the Monte Carlo simulation for more iterations unnecessarily
increases processing time without refining the results of maximal
fiber velocities for this task. The results of our Monte Carlo
simulation (Fig. 7, Bottom) provide confidence in the assertion that
the task of throwing a flying disk using a stroke that lasts 450 ms



Fig. 6. Top view of the 3-D human arm model. This figure illustrates the initiation
of forward motion through follow-through of the flying disc throw. The reference
posture is shown in black and the release point in the throw is shown in red. The
interpolated joint angles for the 45 postures describing this motion, obtained from
Hummel (2003), are shown in the bottom panel. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)

F.J. Valero-Cuevas et al. / Journal of Biomechanics 48 (2015) 2887–2896 2893
will induce multiple muscles to exhibit normalized fiber velocities
exceeding 75 fiber lengths per second.
6. Discussion

In this invited methods-driven paper, we present two examples
of computational methods to test neuromechanical hypotheses in
the context of subject-specific and generic models, and apply these
methods to explore different aspects of the classical notion of
muscle redundancy. In the first example, three individual models
of a cat hindlimb with 31 muscles allowed us to investigate the
intra-species variation in maximal force production. This was
made possible by novel computational and visualization techni-
ques to complement a computational geometry approach to the
control of tendon-driven limbs. The results presented in this
manuscript, and supplemental results online at [URL: http://valer
olab.org/supplemental/job2015/], allows us to, for the first time,
describe detailed features of intra-species differences in maximal
force production, and of the structure of the 31-dimensional fea-
sible set of muscle activation patterns for submaximal and max-
imal forces in all 3-D directions. In the second example, we used
stochastic Monte Carlo methods to demonstrate that the kine-
matics of the everyday recreational and sports task of throwing a
flying disc inevitably leads to unexpectedly fast eccentric and
concentric muscle fiber velocities. These two examples challenge
different aspects of the classical notion of muscle redundancy, and
lead to specific new testable hypotheses to move our field forward.

It is useful to first mention that the analytical support for the
perspective that musculature is not as redundant as we have come
to believe comes from examining the set of feasible muscle acti-
vations that gives rise to the set of feasible limb outputs (Kuo and
Zajac, 1993; Valero-Cuevas et al., 1998). This is the counterpart to
using an optimization approach to find a single unique and opti-
mal solution to a given task (Talati et al., 2005; Valero-Cuevas
et al., 1998). Rather, it seeks to find the set of all feasible muscle
activation strategies that, naturally and by construction, are a well-
defined region in the high-dimensional space formed by the
intersection of all operating mechanical constraints of the task,
given the anatomy of the limb. Therefore, the number of con-
straints that define the task is as important as the number of
muscles in the limb—where more muscles allow meeting a greater
variety and number of functional constraints (Keenan et al., 2009;
Loeb, 2000; Venkadesan and Valero-Cuevas, 2008).

An argument against the classical notion of muscle redundancy
is that the number of muscles in vertebrate limbs has evolved
under functional constraints of versatile real-world behavior
(Keenan et al., 2009; Kutch and Valero-Cuevas, 2011, 2012; Loeb,
2000; Talati et al., 2005; Valero-Cuevas et al., 1998). We can per-
form ‘complex’ tasks (complexity defined as satisfying many
constraints simultaneously or sequentially (Loeb, 2000)) because
we have many muscles—and muscle redundancy is most promi-
nently seen in laboratory tasks that are too simple, and not
equivalent to tasks in the natural environment (Cliff, 1990). This
view is compatible with the above reasoning that a task is defined
by the type and number of constraints that must be met. The
geometric approach to define feasible outputs and their associated
feasible neural inputs (FFS and FAS, respectively) provides a rig-
orous computational approach to the concept of muscle redun-
dancy. Thus muscle redundancy is really more a feature of the task
than of the limb (Keenan et al., 2009; Loeb, 2000; Venkadesan and
Valero-Cuevas, 2008).

6.1. Structure of the feasible activation and feasible force sets of the
cat hindlimb

We present the vectormap as an innovative way to visualize
and analyze the structure of FFS polyhedra and FAS polytopes
resulting from the interaction of limb biomechanics and task
constraints. This allows us not only to interpret individual feasible
sets, but also provide a coordinate system (i.e., the surface of the
sphere) to combine or compare feasible sets. This differs from
prior approaches that have compared their relative volume, shape,
or bounding box, as described above. Fig. 3 identifies the specific
3-D directions and regions of feasible force generation exhibiting
the highest variability across three individuals of a species. This
has applications to, for example, understanding how phenotypical
(i.e., anatomical) changes lead to behavioral changes in feasible
force and activation, on which evolutionary selection may act.

It is of critical interest to the field of neural control to under-
stand why extant vertebrates have ‘so many’ muscles—yet we
previously lacked means to visualize the structure of the set of
feasible muscle activations for a given task. The main difficulty is
that selecting a given muscle activation pattern necessitates
selecting a point from within the set of all feasible activations
determined by the mechanics of the limb and the constraints of
the task (Kutch and Valero-Cuevas, 2012; Tresch and Jarc, 2009;
Valero-Cuevas et al., 1998). As described above, prior work
approximated the structure of feasible activations for force pro-
duction in a given direction by their bounding box (Kutch and
Valero-Cuevas, 2011, 2012; Sohn et al., 2013). In Fig. 4 we present
how it is now possible to visualize the lower and upper bounds of
feasible levels of activation for each and every muscle when pro-
ducing submaximal force in every 3-D direction. It can be quite
striking that even for very near maximal activation (i.e., at 90%),
the range in between these upper and lower bounds can be
exceptionally wide, as in Fig. 4. This had been reported in a single
direction of force production by Sohn et al. (2013), but here we can
show the rate of convergence to the unique solution for maximal
force for every direction of force production. The wide (or narrow)
latitudes in allowable coordination patterns for submaximal force
seem to very clearly demonstrate that trying to find and justify a
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Fig. 7. Normalized instantaneous fiber velocities during the throw for the nominal model. Top: The muscles are listed on the y-axis and the 45 postures making up the throw
are shown on the x-axis. Excessive muscle velocities are shown in red (shortening) and blue (lengthening). Bottom: The same data are illustrated with individual traces for
each muscle that show the fiber velocity. Muscles controlling the shoulder, elbow, and wrist are illustrated in blue, red, and green, respectively. Instantaneous fiber velocity is
given on the y-axis and the postures during the throw are on the x-axis. Regions of the traces outside of the horizontal dashed lines indicate excessive muscle velocities. In
both figures, the release point of the throw is indicated with a vertical dashed line.

F.J. Valero-Cuevas et al. / Journal of Biomechanics 48 (2015) 2887–28962894
‘unique’ solution to these types of problems is highly dependent
on the task and the cost function chosen. Note that in other
muscles and/or directions this rate of loss of redundancy can
proceed at different rates, directly affecting the latitude the ner-
vous system has to select a given coordination strategy—and the
necessary correlations in activations among muscles (Kutch and
Valero-Cuevas, 2011, 2012).

The structure of the solution space, the latitude it affords, and
the necessary correlations in muscle activations are all at the root
of the study of muscle redundancy, muscle synergies, learning and
adaptation, uncontrolled manifolds, etc. Importantly, these vec-
tormaps of feasible activation ranges for submaximal forces
motivate EMG studies to understand whether and how vertebrates
actually make use of them (e.g. during learning and adaptation).
This ties into the spatiotemporal exploration–exploitation of the
null-space of a task. As discussed in detail elsewhere (Racz and
Valero-Cuevas (2013) and references therein), traversing the
solution manifold is likely an active spatio-temporal process
where the neural controller can choose to inhabit a particular
region or subset of the solution space to meet the requirements of
the task. Thus the nature of motor control may be more related to
exploring and learning the feasible set of activations, and using
memory and improvements via fast and slow gradients than the
current thinking emphasizing optimization to find unique solu-
tions. A subtle point is that muscle synergies will naturally be
detected from such explorations-exploitations of a well-structured
feasible activation space. Our hope is that these techniques may
help the evolution of this (Bizzi and Cheung, 2013; Kutch and
Valero-Cuevas, 2012; Tresch, 2007; Tresch and Jarc, 2009) and
other debates in motor control.

While questions remain about which muscles are necessary or
optional to produce submaximal force output for a given set of con-
straints and why (Sohn et al., 2013) they can only be answered as we
begin to add all spatio-temporal constraints (Dingwell et al., 2010;
Racz and Valero-Cuevas, 2013) for natural behavior in the real world
(Keenan et al., 2009; Loeb, 2000)—as opposed to tasks in the labora-
tory setting. But for now, we at least demonstrate that we have the
tools to visualize and compare changes in the structure of the FAS. In
fact, for the case of maximal force output for which the activation
levels are unique, we can already glean important lessons that moti-
vate testable hypotheses (Fig. 4, far Right).

An example that comes to mind looking at the three muscles
shown (and more available online) is that the interaction between
limb mechanics and task constraints leads to irregular and
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complex levels of activation across 3-D directions of force pro-
duction. This counters the widespread view that muscles are
engaged in a manner consistent with spatially smooth cosine
tuning functions (Todorov, 2002). Therefore, these tools begin to
address the need for computational tools pointed out in Bizzi and
Cheung (2013), Kutch and Valero-Cuevas (2012) and Sohn et al.
(2013) to characterize and explore the extent to which mechanical
considerations determine the neural control of numerous muscles.

6.2. Muscle activation for fast everyday recreational and sports tasks

The velocities of individual muscle fibers, and how they are
determined by the kinematics of a task, are a particular example of
task constraints that have often been overlooked. We find that the
common recreational task of throwing a flying disk (and reason-
ably other similar tasks such as throwing a ball, etc.) invariably
leads to muscle fiber velocities greater than c. 5 muscle fiber
lengths per second (Fig. 7). Such high concentric and eccentric
muscle fiber velocities are thought to incapacitate active force
production or lead to tearing injuries, respectively (Hill, 1938;
Zajac, 1989). We employed a process of elimination to system-
atically investigate our model and its parameters to give us con-
fidence in our interpretation of the results. Intuitively, we can
assume that the bone (segment lengths) and joint kinematics were
obtained experimentally and are physiologically reasonable. The
muscle fiber lengths and moment arms we considered in our
study were obtained from published data (Garner and Pandy,
2003; Gonzalez et al., 1997; Holzbaur et al., 2005; Murray et al.,
2002). Due to the between-subject variability, we applied a Monte
Carlo analysis to consider a range of moment arm values for each
muscle and still find high fiber velocities (Fig. 7, bottom). While we
do not show them, we find similar results in a Monte Carlo ana-
lysis of the muscle fiber lengths. Moreover, even though our model
is limited in that it did not include the acceleration and decel-
eration phases of the movement, adding them could only increase
muscle fiber velocities we report. Likewise, assuming a less con-
servative total time for the movement would only exacerbate the
high velocities we find. Despite this systematic Monte Carlo ana-
lysis, we still find muscle fiber velocities greater than 5 fiber
lengths per second. Thus we are compelled to challenge the tra-
ditional understanding of the force–velocity properties of muscles
and motivate future research in muscle mechanics: somehow,
such high fiber velocities are likely present in everyday tasks do
not lead a complete loss of force production capabilities in the
concentric phase, or injury in the eccentric phase. This is not the
first time we question the functional role of the force–velocity
properties of muscles for everyday tasks (Keenan et al., 2009).

Another fundamental result from these simulations is that they
emphasize the need to study the temporal structure of muscle acti-
vation in the context of muscle redundancy (Dingwell et al., 2010;
Racz and Valero-Cuevas, 2013). Consider Eq. (2) defining the over-
determined physical relationship between changes in joint angles
and tendon excursions that drive changes in muscle fiber lengths.
This relationship defines the obligatory correlations among tendon
excursions where a sequence of (a few) joint angles uniquely and
completely determines the excursions of all (numerous) musculo-
tendons. This is the opposite of muscle redundancy as there is a
single and unique set of tendon excursions that can satisfy the
kinematics of a given movement. This begs the question of how the
nervous system coordinates eccentric and concentric contractions to
produce such fast movements. If, for any reason, any muscle fails to
lengthen (i.e., contract eccentrically) to satisfy the rotations of the
joints it crosses, the desired motion will, at best, be disrupted, or at
worst, the limb will freeze.

What inhibits stretch reflexes to allow such coordinated
eccentric contractions? Alpha–gamma co-activation, reciprocal-
inhibition, and gating of spindle afferent information are some of
neural interactions thought to be necessary to modulate/inhibit
stretch reflexes (Pierrot-Desseilligny and Burke, 2005). Thus the
nervous system must issue neural commands, coordinated
throughout the entire duration of the movement, to (i) alpha-
motoneurons to produce the necessary joint torques as per the
standard force-sharing motor control problem (e.g., Chao and An,
1978; Prilutsky, 2000); (ii) coordinate reciprocal-inhibition of
alpha-motoneuron pools across shortening and lengthening
muscles (e.g., Hultborn, 2006); (iii) inhibit the stretch reflex in
muscles needing to undergo eccentric contractions (e.g., Zehr and
Stein, 1999); while (iv) satisfying the time constants of muscle
excitation–contraction dynamics (Zajac, 1989) to ensure the con-
tinuity of these neural commands as the motion progresses. This
compounding of multiple spatial and temporal constraints natu-
rally leads to a shrinking of the set of feasible motor commands for
natural movements (see above discussion and Keenan et al.
(2009)). In fact, clinicians have long been aware of how disorders
of reflexes or the neural circuits of ‘afferented muscles’ lead to
disruptions or failures of movements (for an overview see Sanger
et al. (2006) and Sanger et al. (2010)). We now propose that these
movement pathologies may in fact be a natural consequence of the
nervous system failing to meet the stringent temporal demands on
alpha–gamma neural drive for the eccentric and concentric con-
tractions essential to smooth limb movement. This again supports
the view that extant vertebrates have barely enough neural
degrees of freedom for versatile real-world behavior (Keenan et al.,
2009; Kutch and Valero-Cuevas, 2011, 2012; Loeb, 2000; Talati
et al., 2005) as the muscle activations to produce smooth move-
ments is likely not redundant, or at the very least not as redundant
as currently thought.

One last comment is on the over-determined nature of pro-
ducing the necessary muscle excursions for a limb movement. As
mentioned above, over-determined systems either have one
unique solution (if it exists) or no solution at all. When no solution
exists, a practical alternative is found by violating some or all
constraints as in the method of least squares for a system of
equations in which there are more equations than unknowns. This
may actually begin to explain why muscles and tendons have non-
trivial amounts of passive elasticity—to provide tolerance to errors
in the neural control of their excursions when eccentric and con-
centric contractions are not controlled accurately enough by the
CNS. From the engineering perspective, such elasticity complicates
control as it adds delays and internal actuator dynamics, and
reduces actuator bandwidth. But in the case of biological tendon-
driven limbs, this built-in tolerance to excursion errors may be a
critical compliment to, and enabler of, the neural control of
smooth movements.
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