PLREV:746

Available online at www.sciencedirect.com

ScienceDirect PHYSICS of LIFE
reviews)

ELSEVIER Physics of Life Reviews eee (e0ee) s0o—ooe

www.elsevier.com/locate/plrev

Comment

Transferring synergies from neuroscience to robotics
Comment on “Hand synergies: Integration of robotics

and neuroscience for understanding the control of biological
and artificial hands” by M. Santello et al.

Oliver Brock “*, Francisco Valero-Cuevas "

& Robotics and Biology Laboratory, Technische Universitiit Berlin, 10587 Berlin, Germany
b Department of Biomedical Engineering & Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA
90089, USA

Received 9 May 2016; accepted 10 May 2016

Communicated by L. Perlovsky

Keywords: Neuroscience; Robotics; Synergies; Hand; Grasping

1. Introduction

Our understanding of how organisms control their limbs, i.e. systems with multiple muscles and joints, has had
a profound and transformative impact on grasping and manipulation in robotics. Roboticists have struggled for a
long time (and still do) with the algorithmic complexities that arise from the combinatorial explosion associated with
the similarly high-dimensional problem of controlling robotic limbs. In the context of hands, this means that there
are many muscular and kinematic degrees of freedom that need to be controlled to produce a desired manipulation
behavior. Generating such control commands is provably difficult (e.g., as per the curse of dimensionality) even for
very simple systems [6]. It is therefore critical to understand how organisms produce physical behavior using their
complex anatomical limbs.

A compact characterization of relevant, low-dimensional control subspaces promises to greatly facilitate the repli-
cation of human manual capabilities in robotic hands. Several lines of research in neuroscience provided evidence
that organisms indeed learn to identify and use such low-dimensional subspaces for neural control of limb motions
and forces. Early work identified low-dimensional motor primitives in the spinal cord of vertebrates [17,18]. Other
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work discovered a low-dimensional organization of human movements [10,16,23,33]. These experimental descrip-
tions of dimensionality reduction of behavioral variables require only few basis functions, called synergies, that can
be combined to explain the majority of the observed data.

But the last few decades have also seen heated debates about the nature of synergies. We say concepts in the plural
because there are multiple definitions and interpretations of synergies. In the particular case of the neural control of
limb and hand function, it remains debatable whether or not the nervous system implements synergies for the purpose
of simplifying the dimensionality of the control problem [1,24,25,37,38]. Moreover, we have challenged the concept
of muscle redundancy itself—which then challenges the need for simplification of the control problem and the need
for synergies. The concept of muscle redundancy (having too many muscles or kinematic degrees of freedom) is
indeed paradoxical with evolutionary biology and clinical reality. Why would an evolutionary process encode, grow,
repair, control, etc., more muscles or joints than are strictly necessary? If the musculoskeletal system is redundant,
why does disability arise even from mild neurological or orthopedic conditions? The fact that limbs are driven by
musculotendons whose lengths are overdetermined (the rotation of a few joints sets the lengths and reflex responses
of all muscles) also holds clues about this. This raises the possibility that organisms have evolved to have only enough
degrees of freedom to be versatile while meeting the multiple spatio-temporal constraints of behavior in the real world
given the structure and capabilities of the neuromuscular system, as discussed in detail in [21,24,38].

2. Descriptive versus prescriptive synergies

The ongoing debates about synergies in the realm of neuroscience must not hamper roboticists in their efforts
to transfer and exploit the associated concepts in their field. But the challenges to the practicing roboticist include
the lack of absolute certainty inherent to the deductive nature of neuroscience research [39], and the breadth of the
neuroscience literature. Thus there is need to bring these different fields together in a way that helps both sides [38].
To facilitate this transfer in the context of synergies, it is important to distinguish between two possible interpretations
of the dimensionality reduction in behavior: synergies could either be descriptive or prescriptive [21,38].

The subspace (i.e., manifold) of feasible motor actions is defined by the combination of the mechanical capabilities
of the limb, the abilities and strategies of the controller, and the constraints (i.e., requirements) defining the task. Any
successful execution of a task must by definition inhabit that subspace. Conversely, it is obvious that a motor command
generated randomly will only by rare coincidence accomplish a desired task because it would need to have the good
luck of being part of that lower-dimensional manifold, which may or may not be linear. Moreover, adding more task
constraints defines a more particular control strategy as it further reduces the dimensionality of the subspace of all
possible control commands [21].

Descriptive synergies are derived from experimental data. They capture the observed lower-dimensional structure
of the subspace of feasible motor actions for a given task. Therefore, if we analyze behavioral variables (e.g. EMGs,
kinematic variables, etc.), it is to be expected that we will detect that, as a consequence of meeting the constraints of
the task, those variables will inhabit a low-dimensional manifold that describe the successful executions of the tasks.

By contrast, a prescriptive synergy is implemented by the controller to produce the task. It is an inherent property of
the control law, and the controller is only able to execute control commands obtained from the combination of available
synergies. A good example of this is the successful use of dynamic movement primitives for complex behavior in
robots [31].

It is difficult—if not impossible—for statistical inference and deductive reasoning to uniquely identify the strat-
egy used by a hidden controller (be it biological or robotic). Witness for example the challenges facing model-based
estimation, machine learning, and optimal control when identifying the cost functions used by organisms [39]. De-
scriptive synergies are easily observed in experimental research. But proving the existence of prescriptive synergies
of neural origins is much more difficult [25,37]—although there continue to be some recent efforts in that direction
[2,20].

When exploring the distinction between descriptive and prescriptive synergies, one must bear in mind data suggest-
ing that the nervous system may not have absolute, independent control over all muscles because of both anatomical
and neural constraints [32,40]. Importantly, the role of perception on motor control, and even independence of muscle
actions, is an important one that also requires further understanding [1,3,4,17,21,22,26,29,30,35].
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Fig. 1. Identical actuation signals can lead to different behaviors: Physical compliance (C) present in the hand, the object, and the environment.
Compliant physical interactions between the hand, the object, and the environment (triangle) differentiate a single actuation command (left) into
different behaviors (right).

3. What should roboticists copy?

Roboticists possess the luxury of being able to design and implement any prescriptive synergy they like—because
they design and implement the controller and the hand. But, as we will see, they should still worry about the distinction
between prescriptive and descriptive synergies.

Traditionally, roboticists have relied on robots in which every degree of freedom can be controlled independently.
Synergies, by their very nature, limit the controller to a lower-dimensional manifold, leading to reduced controllability,
functional limitations, and loss of generality and versatility.

The simplicity associated with prescriptive synergies has triggered what one might call a paradigm shift in robotic
manipulation [31,34], as also described in the paper we comment upon here. Carefully designed controllers on suitably
constructed hands naturally operate within a prescriptive, low-dimensional manifold, while still exhibiting highly
competent behavior [8,11,13,15]. These results are compelling roboticists to develop novel computational tools [8,28]
and under-actuated hands [5,8,11,13,27] to model and implement these synergies.

In synergy-based robotic systems, identical control commands can result in behavior that varies significantly. This
variation arises from compliant interactions among the hand, environment, and object [11] (see Fig. 1). This is both a
bug and a feature. A bug because it precludes repeatable function, but a feature because the intentional exploitation of
compliance can lead to robust and dexterous behavior, such as in-hand manipulation [15]. Furthermore, the compliant
interaction between hand, manipulandum, and the environment was shown to be an essential factor in human grasping
performance [ 14,19]. Compliance thus seems invariably linked to the notion of robustness of synergies and competent
hand behavior in the real world.

This discussion shows that compliance can differentiate the prescriptive synergies of the hand, leading to descrip-
tive synergies of observed behavior. In other words, behavior is generated using prescriptive synergies, but the power
of synergies arises when these prescriptive synergies are modulated in a task- and situation-specific way due to the
mechanical interactions between hand, object, and environment.

How then should roboticists find the appropriate prescriptive synergies for a particular task? This is difficult as
the observed behavior in humans (descriptive synergies) does not directly reveal the required control used by the
nervous system (prescriptive neural synergies, if they indeed exist). Defining task-relevant prescriptive synergies is
further complicated by the observation that their performance depends in important ways on the specific parameters
and context of the task.

Recent, and unpublished, results based on experiments presented elsewhere [14,19], point to the possibility that
both prescriptive and descriptive synergies observed in grasping behavior vary as a function of contact between the
hand, the manipulandum, and its support surface. For example, the prescriptive synergies used to actuate the hand
may differ when an object is grasped from a flat support surface, or when it is grasped while positioned against a
wall. The invoked prescriptive synergies may also differ when an object is picked up for use, or picked up to be
placed somewhere else. In these situations—even if the same prescriptive synergies were evoked—features in the
environment will lead to the differentiation of prescriptive synergies into observed behavior. Roboticists refer to these
features of the environment as environmental constraints [14]. These environmental constraints probably play an
important role in the design of prescriptive synergies.

All of this might imply that, to fully understand the behavior of the human hand and to replicate it on robots, we
have to consider all aspects of behavior at the same time, including the environment within which the behavior is
performed. We must understand how to design prescriptive synergies tailored to a particular task. These prescriptive
synergies, when modulated by compliance to object and task-relevant environmental constraints, should achieve the
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desired task-specific behavior. And we must also understand how these prescriptive synergies can be generated by a
combination of hand morphology and synergy-based control.

While we must consider all aspects of the task to design suitable descriptive synergies, we should probably not
consider all tasks at the same time. It is unlikely that a single set of “universal” synergies will yield desirable behavior
for all tasks and in all situations [36]. To identify useful synergies, therefore, it seems more fruitful to find use case
categories, sharing relevant aspects of manipulandum, task, and environmental constraints. Only by finding prescrip-
tive synergies tailored to a particular use case category can we be sure that the interaction between hand, object, and
environment modulates the prescriptive synergy into the desired behavior. Such task-specific prescriptive synergies
are then able to exhibit maximum robustness and versatility.

The endeavor of fully realizing synergy-driven manipulation in robotics will require that neuroscience and robotics
come together to find answers that are out of reach for the each of the disciplines alone. The distinctions between the
deductive efforts in neuroscience and the synthetic efforts in robotics are diminishing. If we are careful to take into
consideration the different languages, approaches, and goals of these different fields then, what is one of the most
fundamental aspects of human intelligence—the use of our hands—, may prove to be a fertile ground for the merging
of these two scientific approaches and disciplines.

Appendix A. Terminology

The notion of synergy has been defined in many different ways in the context of neuroscience. Importing these
concepts into robotics risks even greater confusion. We would therefore like to make our understanding of synergies
explicit so that readers may determine where our notions differs from theirs.

Underlying the following discussion is the assumption that synergies represent an approximation to a lower-
dimensional subspace (or manifold) that contains data recorded from a higher-dimensional space. One can make
various assumptions about the structure of the lower-dimensional manifold and these assumptions will determine the
computational tool one brings to bear to extract the approximation of the manifold from data. In most basic cases, the
computational tool is PCA and we restrict our discussion to this case. The area of (nonlinear) dimensionality reduction
offers a broad set of alternatives [9].

Referring to Fig. 1: Let d4 be the dimensionality of the actuation space A. In a tendon-driven hand, for exam-
ple, there might be d4 motor-driven tendons whose actuation can be combined to actuate the hand. The actuation
commands, rather than coming from A directly, might be chosen from a lower-dimensional subspace A, where the
dimensionality of A is d4 < d 4. For example, the first two tendons could always be actuated the same way, reducing
the dimensionality of the actuation space to d4 — 1. The dimensionality d4 is determined by the mechanics, whereas
dy is determined by the control. In the case that d4 = d4, roboticists say that the hand is fully actuated.

Assuming that d4 < d4, the lower-dimensional actuation space A can be obtained from a set of executed actu-
ation commands a; by a principal component analysis (PCA). The d principle components are called prescriptive
synergies. They form a basis for the actuation patters of the hand. The elements of this basis are combined linearly to
actuate the hand. These synergies are called prescriptive, because—once they are fixed—they define and limit the set
of all possible actuation patterns to A C A, prescribing a certain behavior of the hand.

We can make the same arguments for the behavioral space. Assume a hand has dp = 20 movable joints. The space
of all possible hand behaviors, B, therefore has dp dimensions. The observed behavior of the hand may again lie
in a lower-dimensional subspace, B, with dp < dp. It is even very likely that the observed behavior lies in such a
subspace, as the observed behavior must comply with the constraints imposed by the tasks from which the behavior
resulted.

From the observed behavior, we can determine the dg synergies by performing a PCA on experimental data. These
synergies, by construction, span the observed space B. They are called descriptive synergies, as they describe the
observed behavior of the hand. This behavior is the result of actuation commands (prescriptive synergies), possibly
modulated by the compliant interactions between hand, object, and environment (see Fig. 1). If, for example, d4 < dp,
roboticists would call the hand “under-actuated.”

In summary, both prescriptive and descriptive synergies simply approximate the lower dimensional-manifold con-
taining the observed data (actuation data and behavior data, respectively). Prescriptive synergies approximate the data
on the left side of Fig. 1 and descriptive synergies the data on the right side.
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The authors of the review we are commenting on have developed robotic notions of synergies [8]. These syn-
ergies describe a formalism to simulate and predict the resulting behavior caused by a particular actuation signal.
These “robotic synergies” have resulted from the import of descriptive synergies from neuroscience into robotics:
Santello et al. extracted descriptive synergies from human grasping data [16]. These synergies were imported into
robotics by designing hands that mechanically encode one or several of these synergies [7,8,12]. In other words,
the prescriptive synergies and the corresponding mechanical design of the hands were chosen such that the resulting
behavior matched the descriptive synergies observed in humans.

Three types of synergies have been introduced, each relying in principle on the same prescriptive synergies to
produce behavior [8]. They vary in what aspects of the triangle in Fig. 1 they consider in their prediction of behavior.
Geometric synergies predict the hand’s behavior from an actuation signal under the assumption that no other interac-
tion takes place: the triangle in Fig. 1 does not exist and only the mechanical properties of the hand are simulated. Soft
synergies include interactions between the hand and the object. The simulation computes the contact forces between
hand and object based on the difference between the geometric-synergy-behavior of the hand and the soft-synergy
behavior, which prevents the hand from penetrating the simulated object (as a result of considering hand/object in-
teractions). Soft synergies have been further extended into adaptive synergies [8], where the contact forces of the
soft synergies are balanced, leading to an adaptation of the hand’s shape and contact forces to the grasped object. All
of these synergies rely on a model of the hand and possibly an object to determine the behavior expected from an
actuation signal. Soft and adaptive synergies can also be used to control the behavior of hands by varying a parameter
to form linear variations of the actuation signal.

In our understanding, these three types of robotic synergies represent and implement three specific mappings from
actuation to behavior, and are not a description of the space of actuations or behaviors alone, as are prescriptive and
descriptive synergies. When discussing synergies at the intersection of neuroscience and robotics, we should therefore
carefully differentiate the use of these concepts.
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