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Abstract 35 

Voluntary control of force is always marked by some degree of error and unsteadiness.  Both neural and 36 

mechanical factors contribute to these fluctuations, but how they interact to produce them is poorly 37 

understood.  In this study, we identify and characterize a previously undescribed neuromechanical 38 

interaction where the dynamics of voluntary force production suffice to generate involuntary tremor.  39 

Specifically, participants were asked to produce isometric force with the index finger and use visual 40 

feedback to track a sinusoidal target spanning 5 to 9 % of each individual’s maximal voluntary force 41 

level. Force fluctuations and EMG activity over the flexor digitorum superficialis (FDS) muscle were 42 

recorded and their frequency content was analyzed as a function target phase.  Force variability in either 43 

the 1 to 5 or 6 to 15 Hz frequency ranges tended to be largest at the peaks and valleys of the target 44 

sinusoid. In those same periods, FDS EMG activity was synchronized with force fluctuations. We then 45 

constructed a physiologically-realistic computer simulation in which a muscle-tendon complex was set 46 

inside of a feedback-driven control loop.  Surprisingly, the model sufficed to produce phase-dependent 47 

modulation of tremor similar to that observed in humans. Further, the gain of afferent feedback from 48 

muscle spindles was critical for appropriately amplifying and shaping this tremor.  We suggest that the 49 

experimentally-induced tremor may represent the response of a viscoelastic muscle-tendon system to 50 

dynamic drive, and therefore does not fall into known categories of tremor generation, such as 51 

tremorogenic descending drive, stretch-reflex loop oscillations, motor unit behavior, or mechanical 52 

resonance.  Our findings motivate future efforts to understand tremor from a perspective that considers 53 

neuromechanical coupling within the context of closed-loop control.  The strategy of combining 54 

experimental recordings with physiologically-sound simulations will enable thorough exploration of 55 

neural and mechanical contributions to force control in health and disease.  56 
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 57 

Introduction 58 

It is well known that humans cannot produce a perfectly stable force.  Within the context of precise, 59 

goal-directed actions,  involuntary force fluctuations can reveal clinically relevant information about 60 

neuromuscular control in disorders such as dystonia (Chu and Sanger, 2009; Xia and Bush, 2007), 61 

Parkinson’s disease (Ko et al., 2015; Vaillancourt et al., 2001), bruxism (Laine et al., 2015b), and essential 62 

tremor (Héroux et al., 2010), among others.   In such tasks, the nature of force variability may be 63 

influenced by both central and peripheral components of sensorimotor integration. 64 

Unfortunately, the utility of measuring involuntary force fluctuations (i.e., tremor) within scientific or 65 

clinical settings has been limited due to the large and often ambiguous set of factors which can influence 66 

such measures.  In some cases, tremor may reflect a mechanical resonance whose frequency depends 67 

on the physical characteristics of the muscle/limb in question (Lakie et al., 2012; Vernooij et al., 2013).  68 

At the same time, tremor may stem from cycles of excitation around the stretch-reflex loop (Christakos 69 

et al., 2006; Erimaki and Christakos, 2008; Lippold, 1970; Young and Hagbarth, 1980).  The two 70 

mechanisms likely interact, since reflex activity is itself influenced by muscle/tendon compliance (Rack 71 

et al., 1983), limb loading (Joyce and Rack, 1974), contraction history (Gregory et al., 1998), and the 72 

temporal dynamics of force production (Xia et al., 2005).   73 

It is clear that the specific type and extent of neuromechanical coupling influencing performance of a 74 

given task is of key importance for understanding the generation of force variability.   Understanding the 75 

factors which influence dynamic force control is especially important given that this is the basis of 76 

manual dexterity during activities of daily living.  However, the neural and/or mechanical origins of 77 

unintended force variability are not always clear, particularly within the context of dynamic force 78 

control.  79 
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In this study, we investigated the relationship between voluntary force production and involuntary force 80 

variability in a group of healthy adults engaged in a dynamic, isometric force tracking task.  Given the 81 

various links between reflex activity, contraction dynamics, and tremor, our hypothesis was that 82 

involuntary force variability would depend upon voluntary contraction dynamics.  In order to better 83 

understand the potential sources of force variability within our experimental task, we used a 84 

physiologically-realistic computer simulation to determine the sufficiency of muscle-tendon mechanics 85 

and reflex pathways to reproduce our experimental results.  The simulation also allowed us to 86 

characterize the sensitivity of force variability to parameters such as reflex gain.  87 

The significance of our study is twofold.  First, we describe a novel source of tremor along with a method 88 

for its experimental induction, and strong evidence for its origin in musculotendon dynamics.  Second, 89 

the sensitivity of this tremor to both neural and mechanical factors within our simulation implies that 90 

simple force tracking tasks, such as describe here, may represent a novel approach to investigating 91 

peripheral components of sensorimotor integration in health and disease. 92 

 93 

Methods 94 

All procedures were approved by the institutional review board at the University of Southern California 95 

and all participants gave informed written consent prior to participation.  Ten healthy participants were 96 

recruited (4 female, 6 male, aged 23-31 years) to carry out force tracking experiments.   97 

Physiological data: 98 

Task 99 

Participants were seated approximately 1 m from a 17-inch computer monitor which displayed a 100 

sinusoidal target with a vertical range representing forces from 5 to 9 % of the maximum force that each 101 
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individual could exert with the index finger of their self-reported dominant hand (see Figure 1A).  Visual 102 

feedback of exerted force was provided in the form of a cursor which moved left to right across the 103 

computer screen for 40 s before looping back to the left.  Prior to recordings, participants practiced 104 

tracking several target cycles to become familiar with the task.  Each participant then tracked the 0.25 105 

Hz sinusoidal target for two 80 s trials separated by several minutes of rest.  A slow sinusoidal target is a 106 

rich behavior that is ideal for probing dynamic dependencies. For example, if tremor depended on force 107 

velocity, then tremor amplitudes would appear to follow the derivative of the target sinusoid (i.e., a 108 

cosine).  If one direction of force (increasing vs. decreasing) were tied to tremor amplitudes, then 109 

tremor amplitudes would be largest along either the rising or falling phase of the target sinusoid.  If the 110 

magnitude of force were most relevant, tremor amplitudes would essentially follow the target 111 

trajectory, being largest at the peaks and smallest at the valleys. 112 

As depicted in Figure 1A, a miniature single-axis force transducer was fixed to the top of a plastic 113 

cylinder and located under the tip of the finger.  Participants were asked to produce a downward force 114 

perpendicular to the force sensor, an action requiring contraction of the index finger slip of the flexor 115 

digitorum superficialis (FDS) muscle.  This particular muscle and joint action were chosen because 116 

flexion at the proximal interphalangeal (PIP) joint is necessary for manipulation activities of daily living, 117 

and because this straightforward mechanical action is well suited for simulation. 118 

Force and EMG Measurements 119 

Surface EMG recordings were made over the distal portion of the index finger slip of the FDS muscle 120 

using an active bipolar electrode (Biometrics Ltd, Newport, UK) grounded at the wrist.  Confirmation of 121 

correct electrode positioning was accomplished via palpation of the distal muscle belly (~7 cm proximal 122 

to the crease of the wrist, on the ulnar side) during index finger flexion, as well as observation of 123 

ongoing EMG signals during PIP joint flexion/extension and during our isometric task. The EMG signals 124 
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were acquired at 1000 samples per second using a Biometrics DataLog system and associated software.  125 

The measurement of force, and the display of visual feedback to participants, was accomplished using 126 

custom MATLAB (The MathWorks, Natick, MA, USA) scripts to acquire force signals from a miniature 127 

load cell (ELB4-10, Measurement Specialties, Hampton, VA, USA) using a USB-DAQ (National 128 

Instruments, Austin TX, USA).  The data acquisition unit sent a synchronization pulse to the biometrics 129 

system at the start of each recording.  The data were analyzed offline using custom MATLAB scripts.   130 

Data analysis 131 

Conversion of sinusoidal force to instantaneous phase  132 

To uncover the slow, voluntary force associated with the intended target trajectory, the force produced 133 

by each participant was low-pass filtered at 0.5 Hz.  Using the Hilbert transform, the instantaneous 134 

phase of this tracking force was calculated and expressed in degrees (0 to 360°) over the course of each 135 

target cycle.  This conversion was useful since instantaneous phase holds information about the actual 136 

dynamics of force production at a given time, regardless of tracking error.  Although tracking error was 137 

not a focus of this investigation, it was still important to eliminate poorly tracked target cycles.  Target 138 

cycles in which the absolute tracking error exceeded 4% of a participant’s maximum voluntary 139 

contraction (MVC) level at any time point were excluded from all further analysis.   140 

Calculation of instantaneous tremor amplitude  141 

To quantify the presence of involuntary force fluctuations, the sinusoidal force trajectories produced by 142 

each participant were filtered into two different frequency bands.  143 

 First, we investigated the presence and magnitude of force fluctuations at high frequencies (> 6 Hz), 144 

which cover the frequency range of physiological tremor  (Burne et al., 1984; Christakos et al., 2006; 145 

Elble and Randall, 1976; Lippold, 1970).  These force fluctuations were extracted by band-pass-filtering 146 
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the force produced by each individual between 6 and 15 Hz (zero-phase, 4th order Butterworth filter).  147 

Beyond about 15 Hz, the amplitude of force fluctuations are essentially negligible due to the low-pass 148 

filtering effects of tissue (finger pad, tendon) and muscle.  149 

Second, we quantified slow (1 to 5 Hz) force fluctuations.  Generally, slow fluctuations in force stem 150 

from changes in the overall drive to motor neurons (Allum et al., 1978; De Luca et al., 1982; Miall et al., 151 

1993; Slifkin et al., 2000; Squeri et al., 2010).  These slow fluctuations do include voluntary correction of 152 

tracking errors, but our analysis focused on fluctuations that were consistently present at particular 153 

phases of the target cycle, and therefore reflect an involuntary process.  To extract these fluctuations, 154 

we used a 1 to 5 Hz band-pass-filter (zero phase, 4th order Butterworth filter).  155 

An example of band-pass filtered force traces in relation to the target sinusoid is depicted in Figure 1A 156 

(right) 157 

Calculation of tremor modulation as a function of tracking phase 158 

As described above, the tracking force produced over time by each participant was converted to a trace 159 

of instantaneous phase angles where each complete target cycle was represented as a progression from 160 

0 to 360°. Each cycle was then divided into 36 phase-bins (each representing 10°).  Again, it should be 161 

noted that all analyses are based on the temporal dynamics of the force produced by the participants 162 

and not on the displayed target.  This renders any positive or negative tracking lags irrelevant (although 163 

they would be minimal given the highly feed-forward nature of this type of task (Erimaki et al., 2013)).  164 

To examine the relationship between tracking phase and force variability, we first converted each band-165 

pass filtered force signal into an instantaneous amplitude signal by rectification and smoothing with a 166 

200 ms Gaussian window.  The magnitude of the resulting smoothed/rectified signal also serves as a 167 

simple estimation of instantaneous variance within the specified frequency band, given the equivalence 168 

between total signal power (in frequency domain) and total signal variance (in time domain) (i.e., 169 
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Parseval's theorem).  We then found the sum of the filtered/rectified force values associated with each 170 

phase interval, and divided each by the integral of the filtered/rectified force trace.  This procedure gives 171 

the relative proportion of total force variability (within the specified frequency band) associated with 172 

each 10° phase interval of the target cycle.   173 

Under the null hypothesis, the proportion of force variability in each phase bin does not depend on the 174 

phase progression of the target cycle.  Thus each 10° phase bin would be expected to show about 2.8% 175 

(100% / 36 bins) of the total force variance.  To test the null hypothesis, we compared our recorded 176 

proportions to a phase-randomized distribution generated directly from the recorded data (i.e., shuffled 177 

versions of our own data).  We constructed these shuffled distributions of proportion values by 178 

randomly selecting a different 10° phase bin in each tracked target cycle, and then calculating the 179 

proportion of total force variability, as previously described.  The process was repeated 5,000 times, 180 

creating a distribution of shuffled proportion values which allowed us to determine a 95% confidence 181 

interval.  Proportions falling outside of this interval would then represent statistically significant 182 

deviations from chance level.  Our use of a Monte-Carlo method provides a direct, conservative, and 183 

assumption-free statistical analysis.  Similar methods are often used in neuroscience, where analysis of 184 

real vs. shuffled/randomized neural activity is common (Laine et al., 2012; Perkel et al., 1967; Rivlin-185 

Etzion et al., 2006; Tam et al., 1988; Türker et al., 1996).  In our case, alternative methods such as testing 186 

for differences between individual phase bins, would be ill-suited for identifying the timing of tremor 187 

modulation with respect to the target phase, and would also not account for the fact that the 188 

proportion within each phase bin is not strictly an independent measurement. 189 

The above methodology was applied to individual participants.  To evaluate the population as a whole, 190 

the proportions for each phase bin were averaged across individuals.  As a statistical evaluation, we 191 

calculated, for each phase bin, the number of individuals whose tremor proportion fell above or below 192 

the 95 % confidence interval.  For any given phase bin, a 5% error rate might be expected.  Since our 193 
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analysis included 10 individuals, it could be expected that at least one may have exceeded the 194 

confidence level purely by chance.  However, the binomial probability that two of ten individuals should 195 

show a (false positive) significance at the 95% confidence level is 0.015.  For this reason, our population 196 

significance level was set to 0.015, or 2 out of 10 individuals, for our consistency analysis. 197 

In addition to analyzing the proportion of force variance in each phase interval, we also calculated the 198 

cross-cycle average tremor amplitude in each phase interval.  This analysis yielded an amplitude profile 199 

for each individual (and frequency band), similar to the proportion profiles described above.  We then 200 

recorded the maximum and minimum values observed in the amplitude profile of each individual, 201 

regardless of the particular phase at which these values were found.  This allowed us to evaluate the 202 

actual extent of tremor amplitude modulation, uncoupled from any particular pattern of tremor 203 

modulation across target phases.   204 

Force to EMG coherence across target phases 205 

Coherence is a frequency-domain measure of synchronization (primarily phase-locking) between signals, 206 

and is bounded between 0 (no correlation between signals) and 1 (perfect linear correlation).  207 

Coherence between rectified EMG activity and force is useful for identifying the frequency content of 208 

force-relevant neural drive to muscles, since action potential shapes/sizes and other recording artifacts 209 

only influence the EMG spectrum, but would not be synchronized with force.  In addition, coherence 210 

between FDS activity and force tremor provides validation that our simulation of a dynamically activated 211 

FDS muscle is appropriate for exploring the potential origins of recorded force fluctuations. 212 

To calculate EMG to force coherence, the force and EMG signals were concatenated across all trials from 213 

all subjects to form two long signals.  These signals were then converted to time-frequency-214 

representations (TFRs) via wavelet analysis.  We chose a wavelet approach so that we could precisely 215 

determine which frequencies of force were synchronized with EMG, and at what times.  The technique 216 
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is common where temporal variation of spectral power or synchronization is of interest (e.g., 217 

(Siemionow et al., 2010; Tscharner et al., 2011) . This was accomplished through convolution of each 218 

original signal x(t) with a Gaussian-windowed complex sinusoid (a Morlet wavelet), the duration of 219 

which was set to span 3 cycles of each frequency (f) from 1 to 20 Hz.  The process can be expressed by 220 

the following formula:  221 

𝑇𝐹𝑅(𝑡, 𝑓) = ∫ 𝑥(𝑡)
1

𝜎√2𝜋
𝑒−

(𝑡 − τ)2

2𝜎2
𝑒−𝑗2𝜋𝑓(𝑡−τ) 𝑑𝑡 222 

where the standard deviation (𝜎) of the Gaussian window is set to 3/(2πf).  The force trace (band-pass 223 

filtered between 1 and 20 Hz) as well as the EMG activity (rectified, normalized per subject to have unit 224 

variance) were thus converted to complex-valued time-frequency-representations (herein defined as 225 

TFR_Force and TFR_EMG, respectively).  The spectral power of each signal can be calculated as follows: 226 

Power_Force (t, f) = TFR_Force (t, f) • conj (TFR_Force (t, f)) 227 

Power_EMG (t, f) = TFR_EMG (t, f) • conj (TFR_EMG (t, f)) 228 

Where conj refers to the complex conjugate. 229 

Likewise, the time-frequency cross-spectrum can then be defined as: 230 

TFR_cspec (t, f) = TFR_Force (t, f) • conj (TFR_EMG (t, f)) 231 

The time course of coherence can then be calculated per frequency as: 232 

TFR_Coherence (f) = 
| TFR_cspec(f)∗W |^2 

(Power_Force(f)∗W) • (Power_EMG(f)∗W) 
 233 

Where the term *W represents convolution of the indicated time series with a rectangular window (W), 234 

the duration of which was set per frequency to be 7/f.  The multiplication and division in the above 235 

equation are simply element-by-element operations on the time series data.   236 
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Prior to further analysis, coherence values were normalized using Fisher’s r-to-z transform Fz = 237 

atanh(√C) where C is the coherence at a given time-frequency point (Benignus, 1969) .   238 

Because of the short time scales involved in the calculation of wavelet coherence, it is best to recast 239 

coherence values as a statistical deviation from chance level.  Here, the chance level was derived 240 

empirically by recalculating the time-frequency coherence after reversing the concatenated EMG signal 241 

in time.  This causes EMG signals from one participant to be tested for coherence with force traces 242 

produced by a different participant, and completely misaligns the signals with respect to the phase 243 

progression of the sinusoidal target. The actual coherence values for each frequency were then 244 

converted to standard Z-scores with respect to the distribution of coherence values obtained from the 245 

‘fake’ time series.  This method helps to emphasize any synchronization which varies significantly across 246 

target phases.  Values greater than 1.65 (the one-sided 95% confidence level for a Z-test) indicate that 247 

the time-localized coherence between EMG and force was greater than expected by chance at a given 248 

phase and frequency.  249 

Simulations: 250 

Closed-loop control overview 251 

We used a computational model of an afferented muscle to study the dependence of tremor on the 252 

dynamics of force production. A schematic diagram of the feedback-driven control loop is shown in 253 

Figure 1B.  Briefly, a Hill-type muscle-tendon model was driven by a neural activation signal to produce 254 

force under isometric conditions.  The simulation was intended to approximate the action of the FDS 255 

muscle in our experimental data.  The muscle-tendon model describes changes in force as well as the 256 

magnitude and rate of associated changes in the length of the muscle fascicle and tendon, accounting 257 

for their viscoelastic properties.  Our simulation includes two spinal proprioceptive systems; the muscle 258 
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spindle and the Golgi tendon organ.  Upon muscle fiber lengthening, the muscle spindle sends excitatory 259 

feedback through primary (Ia) and secondary (II) afferent fibers proportional to eccentric changes in 260 

muscle fiber length and velocity; while Golgi tendon organs send inhibitory feedback (Ib) proportional to 261 

the force in the tendon.  A tracking controller, whose operation includes conduction and synaptic delays 262 

appropriate for a transcortical loop (Lourenço et al., 2006; Pruszynski et al., 2011; Sohn et al., 2015), 263 

sends a command signal (C) to the ‘spinal cord’ which is corrected at each time step according to the 264 

difference between the target force level and the actual force output from the muscle. This tracking 265 

control signal simply ensured that the afferented muscle-tendon model could follow the target force 266 

trajectory, and is not intended to model a specific neural pathway, or to recreate human visuomotor or 267 

voluntary tracking behaviors.  Signals from the tracking controller, muscle spindle, and Golgi tendon 268 

organ, are integrated at the ‘spinal cord‘ to generate the α-motoneuron drive to the lumped-parameter 269 

muscle model. This neural drive (ND) at each ms (t) can be expressed in the following form: 270 

ND (t) = Ia (t-15) + II (t-25) – Ib (t-17) + C (t) 271 

The output of the tracking controller (C) is calculated as: 272 

C (t) = C (t-1) + k • (Target (t) - F (t-35)) 273 

where F is the force on the tendon and k is a constant.  Note that the above represents a simple 274 

‘iterative learning control’ (ILC) scheme (Wang et al., 2009).   275 

To translate the neural drive into force, the signal was delayed by an additional 22 ms before reaching 276 

the muscle fibers to account for conduction time along efferent fibers.  At the muscle, the signal was 277 

passed through an ‘activation filter’ which shapes the signal to account for calcium dynamics in 278 

physiological muscle.  Finally, the muscle-tendon model converts this muscle activation signal to the 279 
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force output of the tendon.  In this simulation, the delays for each pathway have been matched to 280 

physiological recordings from humans and reflex latencies from the FDS muscle in particular (Lourenço 281 

et al., 2006). 282 

The muscle model, muscle spindle, and Golgi tendon organ elements of this control loop have been 283 

published previously by various groups and will be described and referenced individually below.  284 

Control loop elements: 285 

Muscle model 286 

Our Hill-type muscle-tendon model and its mathematical derivation were adopted from previous 287 

literature (Brown et al., 1996; He et al., 1991). The schematic diagram of this muscle-tendon model is 288 

presented in Figure 1B. The muscle fascicle consists of a mass (M), two passive elastic elements (PE in 289 

figure 1B), a viscous element (B) and a contractile element (Fm), which is connected with a pennation 290 

angle (α) to a series elastic element (SE) representing tendon and aponeurousis.  291 

The contractile element generates muscle force as a fraction of the maximal force that the muscle is 292 

capable of producing. This is defined as the product of its physiological cross-sectional area and a 293 

constant factor (45 N/cm2) (Holzbaur et al., 2005).  Two parallel elastic elements characterize passive 294 

behaviors of muscle fascicles. The first (nonlinear) spring acts against stretch of muscle fascicle, while 295 

the second (linear) spring resists compression (Brown et al., 1996).  The series elastic element (SE) 296 

shown in Figure 1B is a lumped non-linear spring model of tendon and aponeurosis. The force produced 297 

by this element in relation to the length of the  tendon has been implemented as in (Brown et al., 1996).  298 

The contraction dynamics within the muscle-tendon unit are modeled as a second-order differential 299 

equation (He et al., 1991).    300 
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Taking the above factors into account, the output force function (F) can be summarized as follows 301 

F (t) = MA (t) • FL (t) • FV (t) + F_PE1 (t) + F_PE2 (t) + (B • v(t)) + (a (t) • M) 302 

Where MA is the muscle activation (the output of the activation filter), FL is the force-length function, 303 

FV is the force-velocity function, F_PE1 and F_PE2 are the forces produced by the two elastic passive 304 

elements in the model, v(t) and a(t) are the velocity and acceleration of muscle fiber contraction, and 305 

the muscle mass (M) and viscosity (B) are constants.  306 

Because the force produced by human participants ranged from 5 to 9% of maximal effort, we applied 307 

the same forces to the simulated FDS muscle.  Given our focus on understanding the general nature of 308 

tremor modulation by dynamic force production, it was not necessary to calculate the precise, isolated 309 

contribution of the FDS muscle to the generation of index finger force in our experimental task.  To 310 

simulate the FDS muscle, architectural parameters were set (table 1) according to published anatomical 311 

data (Holzbaur et al., 2005; Lieber et al., 1991). For our purposes, the muscle fibers of the FDS muscle 312 

associated with the tendon acting on PIP joint of the index finger were combined into a single belly for 313 

simplicity. 314 

Table 1: Architectural parameters of the slip to the index finger of the flexor digitorum superficialis (FDS) 315 
muscle.  316 

Mass (g) 12 

Optimal fascicle length (cm) 8.4 

Resting fascicle length (cm) 6.8 

Tendon slack length (cm) 27.5 

Pennation angle (˚) 6 

Cross-sectional area per head (cm2) 1.7 

 317 
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Muscle spindle model  318 

The muscle spindle model employed in this study is adapted from (Mileusnic and Loeb, 2006). This 319 

computational model was chosen because it is both physiologically realistic and, at the same time, is 320 

immediately compatible with the inputs and outputs of the other elements within our control loop. The 321 

model comprises three types of intrafusal fibers, namely, the bag1, bag2, and chain fibers, all of which 322 

are modeled as a second-order mechanical system (a mass, a viscous element, and parallel and series 323 

elastic elements), similar to a Hill-type muscle-tendon model. Each of the intrafusal fibers receives input 324 

describing the muscle fascicle length, velocity, and acceleration, as well as a fiber-type-specific fusimotor 325 

activation signal (dynamic or static).  In this study, fusimotor activation was set to be constant during 326 

each simulation run. The fusimotor gains tested were 75, 150 and 350.  Functionally, these are arbitrary 327 

units, but can be expressed conceptually as pulses per second.  We chose to define our baseline value as 328 

75, since this is near the previously published value of 70 (Mileusnic and Loeb, 2006), and we varied that 329 

parameter because fusimotor drive is known to depend upon task and individual psychology (Hospod et 330 

al., 2007; Ribot et al., 1986; Ribot-Ciscar et al., 2000, 2009).  Because fusimotor drive is modified by the 331 

nature of the task independently of (and even without) α-motoneuron firing (neural drive, in our 332 

model), we chose not to assume obligatory α-γ coactivation.  It is true that mechanisms other than 333 

fusimotor drive may change the effective gain of afferent activity (e.g. presynaptic inhibition).  Here, 334 

variation in fusimotor drive is not only a likely physiological occurrence, but also serves to more 335 

generally represent the overall gain of spindle feedback to motor neurons.  For integration with the 336 

feedback control loop, the final outputs of the spindle model were normalized to fall between 0 and 1. 337 

Golgi tendon organ model 338 

The Golgi tendon organ (GTO) model was adopted from (Elias et al., 2014). This GTO model presents the 339 

overall behavior of a population of Ib fibers. It was placed in series with tendon, so that it receives 340 
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tendon force as an input. The force was then converted into Ib fiber output. The transfer function 341 

described in  (Elias et al., 2014) was implemented using the c2d function in MATLAB. The Ib fiber output 342 

was scaled between 0 and 1, as was carried out for the spindle outputs.   343 

Activation filter 344 

The activation filter adjusts the neural drive signal to account for the effects of calcium dynamics 345 

(release and reuptake) on cross-bridge formation, as described in (Song et al., 2008).  The resulting 346 

muscle activation signal (MA in Figure 1B) is the ‘effective’ drive delivered to the muscle model.  347 

Simulation analysis 348 

Force tracking was simulated for 128 s with new values for each output parameter derived every ms.  To 349 

be certain that only consistent, steady-state behavior was analyzed, only the last 30 cycles were used for 350 

analysis.  The muscle forces produced by the simulation were analyzed in the same way as the 351 

experimentally recorded force tremor, providing a direct comparison.  352 

Results 353 

Tremor during force tracking 354 

The phase of voluntary force modulation influenced both low (1 to 5 Hz) and high (6 to 15 Hz) frequency 355 

bands of involuntary tremor.  For reference, the top panels of Figure 2A & B show the target isometric 356 

force sinusoid, which spanned from 5 to 9% of each individual’s maximum voluntary force level.   The 357 

panels immediately below the target in Figure 2A and B show the proportion of total tremor variance 358 

associated with each phase of the target sinusoid. The proportion of total force variance accumulated in 359 

each 10° phase bin is shown for low (A, upper trace) and high (B, upper trace) frequency bands.  Each 360 

plot represents a grand average over all 10 participants, who together tracked a total of 357 target 361 
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cycles.  The largest tremor in either frequency band was observed at the beginning of the rising phase of 362 

the target.  A second time period of increased tremor amplitude appeared at or slightly after the peak of 363 

the target cycle, mainly for high frequency tremor. The dashed line indicates the proportion of variance 364 

to be expected in each phase bin if force variability were evenly distributed over all phase bins. 365 

Below these average tremor profiles are the cross-participant standard deviations associated with the 366 

mean proportions in the traces above.  Variance across participants was highest at the base of the target 367 

sinusoid, where bursts of tremor (e.g. Figure 1) were often observed. The bottom panels of Figures 2A & 368 

B depict the number of participants (out of 10 total) whose tremor profiles showed statistically larger 369 

(above 0 line) or smaller (below 0 line) proportions in each phase bin than expected by chance (as 370 

determined by a Monte-Carlo test, as previously described). The shaded region marks the number of 371 

participants that may have been expected to show significant effects by chance.  That is, histogram 372 

counts exceeding the upper limits of the shaded range represent a consistent amplification of tremor 373 

occurred across the population of participants.  Histogram counts below the 0 line are caused by the 374 

high proportions observed in other phase bins and do not represent suppression of tremor, which was 375 

never observed.  Again, column A shows results for 1 to 5 Hz force fluctuations and column B shows 376 

results for 6 to 15 Hz force fluctuations.  For both frequency bands, a significant population effect was 377 

observed at the beginning of the rising phase of the target sinusoid, and at the beginning of the falling 378 

phase.   379 

EMG to force coherence 380 

To confirm that the cross-cycle modulation of force variability was also reflected in the activation of the 381 

FDS muscle, we calculated EMG-to-force coherence.  Using wavelet coherence, we were able to examine 382 

the coupling between signals at each frequency, and at each phase of the target cycle. The statistical 383 

magnitude of coherence (z-score with respect chance-level) shown in Figure 3 for each time-frequency 384 

Provisional



18 
 

pixel was calculated from the full data set (all 357 tracked cycles).  Pixels with values greater than 1.65 385 

can be considered as significant at the 95% confidence level. 386 

Importantly, the coupling between EMG and force signals closely resembles the phase progression of 387 

force tremor amplitudes, and reflects the same frequency profile. The phase-related modulation of 388 

coherence demonstrates temporal variation in synchronization between signals, which would be 389 

expected if the frequency content of neural drive depended on the phase progression of the tracking 390 

action.   391 

Actual tremor amplitudes during force tracking 392 

Although our study is primarily focused on the modulation pattern of normalized tremor amplitudes as a 393 

function of voluntary force dynamics, it is also important to address actual tremor amplitudes, and the 394 

extent of amplitude modulation across target phases.  Since the pattern of tremor modulation could 395 

vary across individuals (described below), we chose to record the maximum, minimum, and Δ amplitude 396 

(max-min).  The latter was important for better comparability with our simulation results, since our 397 

simulation does not contain noise or ongoing physiological tremor, both of which are typically present in 398 

human participants.   In general, we found tremor amplitudes fluctuated by a factor of about 2 over the 399 

course of a target cycle.  Figure 4 shows the mean and cross-participant SD for each measure. 400 

Tremor modulation across different individuals 401 

Although the phase-dependent modulation of force variability shown in Figure 2 was representative of 402 

the population overall, tremor profiles did vary across individuals.  Figure 5A-D depicts the tremor 403 

proportion profiles for high and low frequency bands in 4 individuals whose profiles differed from each 404 

other.  Overall, most participants showed some degree of increased tremor (in either frequency band) at 405 

the peaks and/or valleys of the target sinusoid.  The modulation of tremor amplitudes in these 406 

individuals, shown in the bar graphs at the bottom of each column, indicate that 1-5 Hz tremor 407 
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amplitude was consistently higher than 6-15 Hz tremor amplitude, but the ratio could vary across 408 

individuals.   409 

 410 

Simulation results 411 

By embedding a modeled FDS muscle within a feedback-driven control loop, we were able to simulate 412 

the force tracking experiment carried out by human participants.  Surprisingly, this simple model of an 413 

afferented FDS muscle sufficed to produce much the same pattern of tremor modulation in relation to 414 

the 0.25 Hz sinusoid as seen in Figures 2 and 5.  Figure 6A-C shows the modulation of tremor obtained 415 

when the simulation was run using low, medium, and high fusimotor drive.  Adjusting the fusimotor 416 

drive, and thus, the gain of afferent feedback from the muscle spindle, could produce variation in 417 

simulation results similar to the type of variation observed across different subjects (e.g. compare Figure 418 

5A with Figure 6A, or Figure 5C with Figure 6C).  Force fluctuations near the valley of the sinusoidal 419 

target were present in all cases, although the fluctuations occurring at the peak of the sinusoid was 420 

reduced as the afferent gain was increased.   As with the experimental data, the rising and falling phases 421 

of the target sinusoid did not appear to be associated with consistent changes in tremor activity.  At the 422 

bottom of each column in Figure 6 are bar graphs showing the average extent of amplitude modulation.  423 

Since the minimum amplitude was nearly 0 in all cases, these bars also represent the average maximum 424 

amplitude across phases as well.  Of particular importance is the fact that increasing fusimotor gain 425 

resulted in a doubling (B) and tripling (C) of high frequency tremor amplitudes, as compared with the 426 

low fusimotor drive condition (A).  Low frequency tremor did not appear to be consistently influenced, 427 

but if anything, was actually reduced in amplitude as fusimotor drive was increased.  It should be noted 428 

that the amplitudes measured from our simulation should not be expected to precisely match those 429 

recorded experimentally.  Of greater importance is the relative relationship between high and low 430 
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frequency tremor amplitudes, and how they vary across individuals or simulation parameters.  That said, 431 

our simulated amplitudes appear to be smaller than those recorded experimentally by a factor of about 432 

10, which is reasonable considering the highly reduced/simplified nature of the model and the absence 433 

of any noise. 434 

We also ran the simulation after eliminating various elements of the control loop.  Figure 7 shows the 435 

resulting tremor modulation pattern when the simulation was run completely feedforward (A), using 436 

only feedback from the controller (B), using only the controller and Golgi tendon organ feedback (C), 437 

and using only the controller and spindle feedback (D).  Where spindle feedback is present, the 438 

fusimotor drive was set to 75 (as in Figure 6A).  An increase in 6 to 15 Hz fluctuations occurred roughly 439 

at the peak and valley of the target sinusoid regardless of the feedback utilized in the control loop. 440 

However, the precise shape, timing, and magnitude of these fluctuations were altered by the type of 441 

feedback utilized.  Inclusion of spindle feedback (Figure 7D) was necessary to produce realistic tremor 442 

variance patterns (compared with Figures 2 and 5) at the initiation of the rising phase of the target 443 

sinusoid.   Also it is worth noting that tremor amplitudes (bar graphs at bottom of Figure 7) were 444 

drastically reduced in the absence of spindle feedback roughly by a factor of 10 for 1-5 Hz tremor and by 445 

a factor of about 50 for 6-15 Hz tremor.  These observations are well aligned with previous findings 446 

where reduction of afferent feedback was associated with reduced/eliminated physiological tremor 447 

(Erimaki and Christakos, 2008; Halliday and Redfearn, 1958; Sanes, 1985).  Tremor modulation was in 448 

general particularly sensitive to spindle feedback, since increasing its effective gain through fusimotor 449 

drive (Figure 6B & C) or removing spindle feedback entirely (Figure 7A-C) both influence the overall 450 

shape, timing, and amplitude of tremor fluctuations.  This occurred even though the largest change in 451 

muscle fascicle length was only about 1.1 mm.  Interestingly, removal of Golgi tendon organ feedback 452 

had minimal effect (Figure 7D compared with 6A).  453 

 454 
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Discussion 455 

In this study, we show that involuntary tremor can arise simply from the dynamic viscoelastic response 456 

of afferented muscles during voluntary production of isometric force. We characterized this tremor in 457 

two frequency bands as healthy adults performed a sinusoidal force tracking task. Furthermore, we 458 

simulated the spontaneous emergence of tremor from purely peripheral mechanisms using a 459 

computational closed-loop model comprised of well accepted musculotendon, spindle, and Golgi tendon 460 

organ computational modules.  Our results extend the current understanding of how force variability 461 

arises independently of central mechanisms during production of isometric force.  Importantly, our 462 

results suggest that simple force tracking tasks may provide a clinically and scientifically relevant 463 

window into the neural and mechanical factors which generate involuntary tremor. 464 

 Although tremor is not often attributed to the specific dynamics of voluntary force production, several 465 

investigations have suggested the existence, and potential importance, of such an interaction.  For 466 

example, muscle stretch been suggested to play a role in tremor modulation during dynamic force 467 

production. Specifically, declining isometric force is associated with at least some small degree of muscle 468 

fiber lengthening, towards resting state (Ito et al., 1998).  Compared with shortening contractions, 469 

lengthening contractions are associated with increased force variability (Christou and Carlton, 2002) and 470 

increased motor unit coherence within the physiological tremor range (Semmler et al., 2002).   However, 471 

it does not appear that muscle fiber lengthening, or associated spindle activity, could explain our results, 472 

since we would have expected a systematic and consistent increase in tremor during the descending 473 

phases of our sinusoidal target trajectory.   474 

Similarly, in the production of bite force, 7 to 10 Hz jaw tremor is reduced in slowly increasing force 475 

ramps compared with constant or slowly decreasing force (Sowman et al., 2008).  In the present study, a 476 

simple relation between force direction (increasing or decreasing) and finger tremor was not observed, 477 
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likely due to differences in the physiology of bite vs. grip force control.  Jaw tremor in the 7 to 10 Hz 478 

range depends upon the activity of periodontal mechanoreceptors (Sowman et al., 2006), and different 479 

bite-force dynamics may have led to different levels of dental intrusion (Schoo et al., 1983), and 480 

presumably adaptation of the periodontal mechanoreceptors (Sowman et al., 2008).  Accordingly, both 481 

the dynamics of bite-force production and afferent feedback are important considerations when 482 

comparing healthy adults to those who suffer from bruxism (Laine et al., 2015b).  While jaw tremor may 483 

depend on specific mechanical properties of the gums and their interaction with periodontal 484 

mechanoreceptors, these studies do demonstrate that tremor modulation can stem from afferent 485 

responses to dynamic force.   486 

Stretch-reflex amplitudes have, in fact, been reported to change during the production of sinusoidal 487 

forces.  For example, rhythmic (sinusoidal) pen-squeezing has been shown to produce stretch-reflex 488 

modulation in the FDS muscle (Xia et al., 2005).  This is important in the context of the present study 489 

because oscillations of excitation around the stretch reflex loop are considered to be one of the major 490 

contributors to physiological tremor  (Christakos et al., 2006; Erimaki and Christakos, 2008; Lippold, 491 

1970; Young and Hagbarth, 1980).  In the study of Xia et al. 2005 (Xia et al., 2005), it was observed that 492 

stretch-reflex amplitudes were roughly modulated in a sinusoidal fashion such that increased reflex 493 

amplitudes were associated with higher background FDS EMG levels.  A similar conclusion was reached 494 

by (Stanislaus and Burne, 2009)), who reported a consistent relationship between stretch-reflex gain and 495 

overall contraction level regardless of force dynamics.  If a similar sinusoidal modulation of reflex gain 496 

were responsible for tremor modulation in our study, we should have observed a sinusoidal modulation 497 

of tremor amplitude, which was not the case.     498 

Few tasks involve only one muscle, as thus, it is possible that some tremors stem from an interaction 499 

among co-activated muscles.  Due to the simplicity of our task and the posture of the hand, it is likely 500 

that any co-activated muscles were also co-modulated synergistically during tracking.  It has been shown 501 
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that synergistic muscles may share neural drive over a wide range of frequencies (Laine et al., 2015a).  502 

Moreover, we have shown that changes in the magnitude of an isometric fingertip force are likely 503 

produced by a simple scaling of a same muscle coordination pattern (Valero-Cuevas, 2000), while others 504 

have shown that isometric force magnitude does not influence the frequency content of shared neural 505 

drive among muscles of the hand (Poston et al., 2010).   In addition to the potential for shared 506 

descending drive, neighboring co-activated muscles would likely show temporally-coordinated afferent 507 

activity and reflex responses as well.  At the very least, it seems that the effects of slow sinusoidal 508 

contractions on musculotendon dynamics would be similar across all co-activated muscles, leading them 509 

to tremor at the same time relative to the slow voluntary action.   510 

During voluntary force production, tremor may also stem from the recruitment, de-recruitment, and 511 

firing rates motor units.  For example, the force level at which motor units are recruited can be lower 512 

than the force level at which they are de-recruited (De Luca et al., 1982), and due to the activation of 513 

persistent inward currents, the magnitude of neural drive needed to recruit a motor unit is often higher 514 

than the drive at which the same unit is de-recruited (Gorassini et al., 2002).   Therefore, the population 515 

of motor units which generate a given force is partly determined by the recent contraction history of the 516 

muscle.   Motor unit activity, especially the twitches of motor units near threshold, may contribute to 517 

isometric force tremor (McAuley and Marsden, 2000).  The relevance of such mechanisms to the present 518 

study is not clear, but we can speculate that the contribution would be minimal, given the sufficiency of 519 

our simulation (which does not include firing motor units, their intrinsic properties, or any source of 520 

signal-dependent noise) to replicate the experimentally-observed tremor modulation.  We would, 521 

however, assume that simulated tremor amplitudes would more closely match those observed 522 

experimentally if signal-dependent noise and/or intrinsic motor unit properties were included in our 523 

closed-loop system.  This is a topic which certainly merits future investigation. 524 
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It is of course possible, even likely, that many of the above mentioned sources of force variability were 525 

still present to some degree in our study, but were not very consistent across participants or across 526 

target cycles.  In that sense, they may explain some of the variation in tremor profiles observed across 527 

participants.  Similarly, the degree to which any differences in muscle/tendon strength, size, and 528 

compliance across individuals would have influenced our results remains a topic for future investigation.  529 

We can speculate, however, that tendon strain magnitudes would likely be important, given that the 530 

dynamics of muscle stretch influence spindle output, which had the largest influence on tremor in the 531 

present study.  The fact that our model could at least partly replicate cross-subject variation in tremor 532 

modulation through manipulation of fusimotor gains, which would be expected to vary across 533 

individuals (Hospod et al., 2007; Ribot et al., 1986; Ribot-Ciscar et al., 2000, 2009), adds validity to our 534 

simulation results and helps to mitigate concerns about its simplifications/ assumptions.  While it is 535 

beyond the scope of this study to precisely match the tremor profiles of every individual, or to 536 

exhaustively test the influence of all possible parameters, our results should serve as an important proof 537 

of principle upon which to base future investigation. 538 

Despite the many possible sources of tremor within our task, it is clear that the dominant phase-539 

dependent source of tremor was peripheral neuromechanical coupling, rooted in the viscoelastic 540 

properties of muscle and tendon. While smooth tracking is initially disrupted as a mechanical 541 

consequence of musculotendon dynamics, the spindle reflex system plays an important role in 542 

determining the overall magnitude and timing of the resulting tremor.   543 

Our results, therefore, motivate and justify the development of similar experimental paradigms for 544 

scientific and clinical applications. For example, we propose that the tremor induced by slow voluntary 545 

force modulation may provide a simple measure of reflex integrity, providing an alternative to direct, yet 546 

time-consuming and often uncomfortable, perturbations of nerves or tendons. Further, it may be that 547 

characteristic patterns of tremor modulation would emerge within the context of spasticity, dystonia, or 548 
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within conditions such as Parkinson’s disease or essential tremor.  As a means of probing peripheral 549 

neuromechanical coupling, the type of tremor described in this study may hold potential as a tool for 550 

understanding and assessing dysfunctional sensorimotor control in those with congenital or 551 

developmental disorders, or in those with acquired dysfunction due to trauma or disease.  Finally, 552 

neuromechanical coupling may contribute mechanistically to the maintenance or amplification of 553 

pathological tremor.  While we did not test the effects of inserting a descending tremor-frequency input 554 

into our simulation, such investigation may be informative, and perhaps even suggest novel avenues for 555 

clinical intervention.   556 

 557 
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 560 

Figure Captions 561 

Figure 1:  Experimental task and simulation 562 

Participants were asked to produce isometric force against a small load cell with the tip of the index 563 

finger (A).  Using feedback of their applied force, participants tracked a 0.25 Hz sinusoid during 80 s 564 

trials.  The range of the target sinusoid was 5 to 9 % of each individual’s maximum voluntary contraction 565 

(MVC) force.  An example of the recorded force from one participant is depicted to the right (top trace).  566 

Below, the same force trace has been filtered into 2 different bands, a 1 to 5 Hz band which captures 567 

slow tremor and tracking error (middle), and a  6 to 15 Hz band which reveals physiological tremor and 568 

fast twitches (bottom trace).  In this example, both high and low frequency force fluctuations appear to 569 
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depend upon the phase of the tracked sinusoid.  Panel B depicts the implementation of a control loop 570 

used to simulate the tracking experiment above.  At the ‘spinal cord’, three sources of input are 571 

summated.  The first two sources are proprioceptive signals from the muscle spindle (via group Ia and II 572 

afferents), and Golgi tendon organ (via Ib afferents) models, which provide positive and negative 573 

feedback to the ‘spinal cord’, respectively.  The third input is a tracking signal sent from a supraspinal 574 

controller.  This ‘tracking controller’ sends an output (C) which is continually updated according to the 575 

difference between the target and the force (F) produced by the muscle (see text for details).  From the 576 

‘spinal cord’, a neural drive (ND) signal is sent to a Hill-type muscle model via an ‘activation filter’ which 577 

further shapes the neural drive to account for calcium dynamics within physiological muscle.  The 578 

filtered muscle activation (MA) signal sent from the ‘activation filter’ generates contraction (Fm), 579 

accounting for physical properties of the muscle-tendon complex, such as a series and parallel elastic 580 

element (SE and PE), mass (M), viscocity (B), and pennation angle (alpha).  The delays and sign 581 

associated with each feedback loop are also depicted. 582 

Figure 2: Phase-dependent modulation of tremor amplitude 583 

The amplitude of force variability within the 1 to 5 and 6 to 15 Hz frequency bands depended upon the 584 

phase of the target cycle (shown at the top of each column, for reference).  The first data panel of 2A 585 

(left column) shows the mean proportion of total force variability (within the 1 to 5 Hz band) observed in 586 

each 10° phase bin, calculated over all participants.  The same panel of the right column (B) shows this 587 

analysis for 6 to 15 Hz force fluctuations. The horizontal dashed line in each figure represents the 588 

proportion expected per bin if tremor amplitude were constant across target phases.  The 1 to 5 Hz 589 

frequency band shows a clear peak at the initiation of the rising phase of the target sinusoid.  A similar 590 

profile was observed for 6 to 15 Hz force fluctuations, but with a more pronounced tremor amplification 591 

at the peak of the target sinusoid.  Below these grand averages are depicted the cross-participant 592 

standard deviation for each phase bin.  The cross-participant variability is generally highest at the valley 593 
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of the target sinusoid, when bursts of high amplitude tremor were more likely to occur (as can be seen 594 

in Figure 1A).  The bottom panels are histograms which depict the number of individuals (out of 10), 595 

whose tremor profiles deviated significantly from chance level at each phase-bin, as determined by a 596 

Monte-Carlo test (see text for details).  In these histograms, counts above the 0 line record the number 597 

of individuals who displayed greater than chance-level proportions.  Counts below 0 indicate the 598 

number of individuals showing lower tremor than expected by chance at each phase.  Note that these 599 

‘less than chance’ histogram counts are an effect of other phases showing high proportions of tremor, 600 

and do not indicate suppression of ongoing tremor, which was never observed.  Histogram counts 601 

exceeding the shaded region indicate that significant effects at a given phase were more consistent 602 

across individuals than could have occurred by chance (according to a binomial test).  The histograms 603 

show that the modulation of tremor by target phase was fairly consistent across individuals.   The 604 

arrows on each histogram (A & B bottom), emphasize that tremor was most often larger than expected 605 

at the peaks and valleys of the target sinusoid, for both frequency bands. 606 

Figure 3: EMG to Force Coherence 607 

To confirm a correlation between force fluctuations and muscle activity, coherence between FDS EMG 608 

activity and force was analyzed as a function of target-phase (x axis) and frequency (y-axis).   The 609 

statistical magnitude of coherence (z-score with respect chance-level) is represented by the color of 610 

each pixel.  Values greater than 1.65 indicate statistically greater coupling than expected by chance.  611 

Each phase-frequency pixel represents the average coherence observed at that specific pixel, calculated 612 

over 357 tracked target cycles.  The pattern of coupling is similar to the behavior of force fluctuations (as 613 

shown in Figure 2).  This plot confirms that FDS activity corresponds with phase-dependent force 614 

fluctuations. 615 

Figure 4: Tremor modulation amplitude 616 
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For each participant, the average cross-cycle tremor amplitude was calculated for each phase of the 617 

target sinusoid.  The resulting amplitude profile was characterized (for both 1-5 and 6-15 Hz frequency 618 

bands) in terms of the maximum tremor amplitude, the minimum amplitude, and the difference 619 

between the two, which indexes the average amplitude modulation across one target cycle.  The cross-620 

participant mean amplitudes for each feature (regardless of the precise phase at which they occurred 621 

for each individual) are depicted by the red (low frequency) and blue (high frequency) bars.  The error 622 

bars show the cross-participant standard deviations for these features.  For both frequencies, there was 623 

a nearly two-fold modulation of tremor amplitude across a target cycle, on average. 624 

Figure 5: Phase-dependent tremor modulation varies across individuals 625 

Tremor profiles were often variable across individual participants.  Panels A-D depict the dependence of 626 

high frequency (bottom traces) and low frequency (top traces) force variability on target phase. Panels 627 

A-D represent profiles from 4 individuals.  The shaded regions show the 95% confidence interval, as 628 

derived by a Monte-Carlo test.  Tremor in either frequency range tended to be largest at the initiation of 629 

the rising phase of the target sinusoid and/or at the peak of the target sinusoid.  At the bottom of each 630 

column, the average cross-cycle amplitude modulation (maximum-minimum amplitude) is plotted for 631 

the 1-5 and 6-15 Hz frequency bands.   632 

Figure 6: Phase-dependent force tremor in simulation 633 

The simulated FDS muscle activity produced target-phase dependent tremor, as observed in human 634 

participants (Figures 2 & 5).  Panels A-C show the proportion of within-band force variability observed at 635 

each 10° phase bin when the simulation was run using different levels of fusimotor drive: low (A), 636 

medium (B), and high (C).  As before, the top traces show 1 to 5 Hz force variability and the lower traces 637 

show 6 to 15 Hz force variability.  Alteration of fusimotor drive in this simulation was able to alter the 638 

phase-dependent modulation of tremor in both frequency bands.  At the bottom of each column, the 639 
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average extent of cross-cycle amplitude modulation is depicted, as in Figure 5.  While changes in 640 

fusimotor drive did somewhat alter the extent of low-frequency tremor amplitude modulation, the 641 

effects were greatest on the 6-15 Hz tremor, which roughly tripled as fusimotor drive was increased 642 

from low to high.  Also, the relationship between high and low frequency amplitude modulation is 643 

similar to that observed in the experimental data (Figures 4 and 5, bottom). 644 

Figure 7:  Simulation results after removing sources of feedback control 645 

Each panel (A-D) depicts the results of the simulation after removing elements of the control loop.  646 

Panel A depicts the tremor modulation profile that emerged when the simulation was run completely 647 

feedforward, with no feedback.  Panel B depicts the results when using the controller output, but no 648 

neural feedback.  Panel C shows the tremor modulation occurring when Gogli tendon organ feedback 649 

was added to the controller, while Panel D shows the tremor profile that emerged when only controller 650 

and spindle feedback were used.  The baseline condition (before removal of feedback) was the same as 651 

in Figure 5A.  Removal of the Golgi tendon organ feedback had minimal influence on the overall shape 652 

and timing of force fluctuations (compare Figure 5A with 6D).  In contrast, elimination of spindle 653 

feedback not only reduced the magnitude of force tremor, but also influenced the general shape and 654 

timing of tremor modulation (Figure 6A-C), particularly at the initiation of the rising phase of the target 655 

sinusoid.  Shown at the bottom of each column are bar graphs depicting the average tremor amplitude 656 

modulation for each frequency band (as in Figures 5 & 6).  The addition of spindle feedback (D) to the 657 

model was the only condition which greatly modified tremor amplitudes.  Note the change of scale for 658 

the bar graph in D as compared with A-C.  While low frequency tremor modulation was increased by 659 

roughly a factor of 10 with the addition of spindle feedback, the high frequency tremor increased by 660 

about a factor of 50, with respect to any other condition. 661 

 662 
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