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1 Introduction

Autonomous learning of in-hand manipulation is a lit-
mus test for bioinspired robots and Al algorithms [1]. Cur-
rently, several groups have shown it is possible to use the
fingers of a simulated or robotic hand to rotate an object [2].
However, that work was done with the object resting on
the upward-facing palm and the object did not have to be
held against gravity. Here we extend that work by exploring
the role of the reward function used on the ability to learn
a combined in-hand manipulation task against gravity. In
particular, the task was to autonomously learn to lift a ball
against gravity while spinning it against a torsional spring.
Our question was to see if the algorithm would learn best
by being rewarded for lifting the object, vs. by being re-
warded for both lifting and spinning. We found that, some-
what counterintuitively, being rewarded for both features of
the task are necessary for learning. We discuss why we be-
lieve that exploring how to spin the ball (a more “complex”
task) was in fact critical to learning how to lift the ball (a
“simpler” task).

2 Methods

Our agent is a 3-fingered bio-inspired hand with the two-
joint, three-servo motor fingers simulated in the MuJoCo
physics environment [3]. We also use MuJoCo’s built-in
features to record contact force magnitude (1D) (‘touch’) on
the fingertips of all three fingers [2,3]. “Touch’ sensor sites
at the soft finger tips provide a nonnegative scalar-value in-
dicating the cumulative normal contact forces on the sensor
area. The friction coefficient for dynamically generated con-
tact pairs is also specified for all fingertips (a.k.a. soft con-
tact with friction) [3]. The in-hand manipulation task was
rewarded for (i) lifting and holding a ball against gravity
(Figure 1) while (ii) spinning it about a floating horizontal
axis (Figure 2).

We used the end-to-end Proximal Policy Optimization
(PPO) autonomous learning algorithm as per the PPO1
implementation from OpenAl’s stable baselines repository
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Figure 1: The three-fingered hand in the MuJoCo environ-
ment.
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Figure 2: The three-fingered hand in the MuJoCo environ-
ment, holding a ball against gravity and rotating it about the
Y axis (The small green dot on the ball is a point of rotation).

with MultiLayer Perceptron (MLP) Artificial Neural Net-
work (ANN) as for the actor-critic map. We ran the training
in independent Monte Carlo runs for the task, each simulat-
ing 2.77 hours of training. Each Monte Carlo run had 1,000
training episodes lasting 10s (sampled at 0.01s).

The simulated hand consists of a palm and 3 identical
servo-driven fingers: two adjacent fingers (analogous to the
‘middle’ and ‘index’ fingers) and one opposing them (analo-
gous to the ‘thumb’) (Figure 1). Each finger consists of two
joints. The size of the palm and length-ratio of each ‘pha-
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Figure 3: Results for lifting the ball beyond the rest posi-
tion of 32 mm when only lifting is rewarded using the PPO
algorithm. We show the histograms from 5 independent 10s
Monte Carlo runs, each with 1e6 samples (i.e., time points).

lanx’ was based on the human hand ratios [4,5]. The fingers
do not have an abduction-adduction degree of freedom at
their base and can only flex or extend at the two joints. The
sensory sites are only used on the internal side (i.e., the ‘pads
of the fingertips’) of the distal phalanx of each finger.

We use a ball with friction as our experimental object
in the task (see Figure 1). The ball has a mass of 5 gr and
it has a total of 3-degrees of freedom (DoF): 2 translational
DoFs ( X and Z) and 1 rotational DoF along the Y -axis with
a built-in damping with 0.0005Ns/m damping coefficient.

3 Result

In Figure 3, the reward is 100% for lifting the ball
against gravity and 0% for spinning the ball. In Figure 4 the
reward is now 60% for lifting and 40% for spinning. The
histograms show the height of the ball for each independent
Monte Carlo run (lasting 2.77 hours with 1e6 samples of
0.01 s. See Methods). The target height of the center of
the ball was 60mm while the resting height of the center of
the ball on the ground is 34mm (the radius of the ball). The
task is learnable only when the reward includes both lifting
and spinning (Figure 4). Any heights below 34 mm indicate
penetration of the ground by the ball in this elastic medium.

4 Discussion and Conclusions

Our results suggest the implicit emergence of curriculum
learning on the basis of random exploration of the full dy-
namics of the task. That is, while lifting the ball seems like
a “simpler” task, it does not seem to be possible before the
system “understands” the dynamics of manipulation. By re-
warding (and therefore encouraging) exploration of the full
dynamics of manipulation (i.e., the grasp matrix of the sys-
tem [6]), the implicit model being built approximates full
rank and is therefore more useful. This is also perhaps anal-
ogous to the concepts of observability and persistence of ex-
citation in control theory [7].
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Figure 4: Results for lifting the ball beyond the rest position
of 32 mm when both lifting and spinning are rewarded using
the PPO algorithm (£5). We show 5 independent Monte
Carlo runs.

In the context of Machine Learning, a human usually
specifies a curriculum to be followed by the agent where
prior knowledge provides a rank ordering of the functional
components of the task based on assumed complexity. In
our case, we did not specify such rank ordering as the agent
learned autonomously without human intervention. In retro-
spect, one would have thought that lifting the ball by learn-
ing form closure is “simpler” than lifting and spinning the
ball which requires force closure [1, 6]. However, we find
that exploring how to spin the ball (a more “complex” task)
seems to be, in fact, critical to learning how to lift the ball (a
“simpler” task).

By demonstrating the natural emergence of learning for
grasp and manipulation in biorobotic systems, we shed light
on the implicit sensorimotor processes [8] in biological sys-
tems that may grant humans unparalleled dexterity.
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