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Abstract

Robots will become ubiquitously useful only when they can learn how to perform dif-

ferent tasks in an autonomous, data-efficient, and generalizable (across different body

structures or environments) way. Biological systems, especially vertebrates, set a great

example: they learn how to perform multiple tasks after a relatively short and sparse

trial-and-error process even if their bodies are particularly difficult to control.

Vertebrate bodies are hard to control (at least from the engineering perspective) be-

cause they have musculotendon-based actuation that makes them simultaneously nonlin-

ear, under-determined and over-determined. However, this anatomy provides very im-

portant benefits such as the ability to have the center of the mass closer to the main body.

Tendon-driven actuation plays an important role in the enviable functional versatility that

vertebrates possess.

It is possible to improve on the current state of robotics by finding inspiration from

useful mechanisms in both anatomy and controls in vertebrates. Namely, robots can
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and should benefit from the principles of tendon-driven structures to efficiently and au-

tonomously learn how to control their bodies using sparse sampling, modular and hi-

erarchical control structures and artificial neural networks that map sensory inputs to

actuation signals.

In this dissertation, I have provided a new approach that enables robots to start learn-

ing without an explicit model of their body or the environment (and therefore do not need

to bridge the Sim-to-Real gap), learn from limited-experience, and adapt on the fly. This

approach enables model-agnostic autonomy in robots as they can learn on the spot di-

rectly from interactions with the physics of the world, while equipping them with many

of the benefits that tendon-driven anatomies provide.
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Chapter 1

Introduction

1.1 Current state-of-the-art in robotics and its limitations

We would like robots to participate in everyday tasks in the same environments and

settings that we humans live and interact in. However most robots are currently limited

to specific tasks and structured environments. Although many useful robots work in

numerous instances these days, they are mostly limited to tasks with repetitive routines,

structured environments, or predictable situations.

This is because most of the current robots are limited in both their learning and adap-

tation capabilities as well as their physical structures. The goal of robots being able to

contribute to everyday tasks and work side-by-side with humans will be achievable when

(i) they are able to learn and adapt quickly (i.e., in a data-efficient way) and can gener-

alize to tasks and situations that they have not been exposed to (or have a minimal prior

about) and (ii) they perform in a safe and energy efficient way.
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Most of the current machine learning algorithms that deal with such autonomous

learning depend on large amounts of data (e.g., supervised-learning), extensive trial-

and-error processes (e.g., reinforcement learning), or a comprehensive understanding

encoded in an accurate model of the system or the environment [81, 4, 65, 109, 113, 83,

93, 36, 22, 9, 67, 58].

Although these methods can yield impressive individual results in simulation or struc-

tured environments, they fail to generalize in unstructured real-world applications—

where accessing large databases or performing extensive trial-and-error processes is

usually not feasible in a short amount of time, and carries high risk and opportunity

costs [90, 72, 42]. Autonomous learning systems also need to be robust to changes in

their own structure, or errors in their modelling parameters. They must learn how to

control themselves even when there is no model, or the model is not accurate or has been

thoroughly changed (damage, payloads, wear and tear, etc.) [9, 72, 90, 91, 89].

Moreover, for a system to be able to contribute in everyday tasks that incorporate

unmodeled situations and uncertainty, being able to generalize to new situations and

adapt on the fly is a critical factor [89, 116]. Therefore, model-agnostic data-efficient

learning algorithms that can adapt on the fly are of exceptional importance to make it

feasible for robots to contribute to real-world challenges in unstructured environments.

Robots that use tendon-driven structures are a particular case of high interest. They

will allow us to study and consider future generations of biologically inspired robots

because they can provide unique kinematic capabilities, energetic efficiency, and safety
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benefits [148, 92]. Tendon-driven systems are flexible in their design as they can have

multiple actuators and different tendon routings. Different tendon routings can produce

different moment arm values across joints, which in turn can create trade-offs between

the endpoint forces and velocities[148, 87, 86, 92]. Moreover, flexibility in actuator

placement that acts at a distance via tendons is another benefit that tendon-driven systems

provide. Thanks to this feature, actuators can be moved toward the center of mass and be

placed at the locations that do not experience much movement. This increases the agility

and energy efficiency of the system as it is faced with smaller inertia in its moving parts

(i.e., the limbs). Moreover, thanks to the low inertia on the moving parts, tendon-driven

systems would be a safer choice for robots that work next to humans. By using elastic

tendons or backdrivable motors, tendon-driven systems can also be more forgiving when

making or breaking contact with objects and the environment and therefore simplify

control and pose less of a risk to humans near them.

Tendon-driven systems, however, are known to be particularly difficult to model and

control as their control is simultaneously under- and over-determined. The production

of net joint torques can be under-determined (more muscle than joints) if the torque at

a single joint is determined by all the tendons crossing that joint (even when interaction

torques are ignored). The control of tendon excursions can be over-determined because

the angles of a single joint determine the excursions of all tendons crossing it. [148, 92].

Clearly, tendon-driven robots can–and are predominantly designed–to have only two

tendons per joint. But this is simply a way to implement direct rotational actuation (the
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equivalent of having a dedicated rotational motor at each joint). However, we are in-

terested in utilizing the added benefits that more elaborate tendon routing strategies can

provide [148, 92]. Moreover, we are interested in how Nature can–and predominantly

has–evolved systems with different muscle-to-joint ratios (i.e., from a few more to many

more muscles than joints) and complex tendon routing strategies. We can then use the

lessons learned from those biological architectures and control approaches to endow en-

gineered robots with the enviable versatility of animals.

1.2 Contributions of the current work to the field

The limitations and needs mentioned in the previous section are the reason why this thesis

is focused on an algorithm that can learn quickly (i.e., be data-efficient) on an arbitrary

body (tendon-driven or not) and be able to generalize to new situations and adapt on the

fly, without a need to be pre-trained in simulation or having access to a detailed kinematic

model (i.e., be model-agnostic) and can work in tendon-driven structures (i.e, apply to

bio-robotics).

At its core, the General-to-Particular (G2P) algorithm that I demonstrate first explores

the general relationship between the actuators and system kinematics through sparse

sampling and then creates an initial mapping to be applied to a particular task—similar

to play(a combination of apparently random play followed by goal-driven practice) in

the development and learning in animals including humans. Next, for any given task, the

algorithm will continually collect new task-specific data, combine it with the data it has
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collected so far, and refine its mapping using the concatenated database. We have tested

the G2P algorithm in a real-world physical tendon-driven system and it has shown that

it can learn to perform functional tasks within minutes—compared to hours, days and

months worth of data needed by other state-of-the-art algorithms [132, 4, 100, 153, 137,

31].

1.3 Consequences of this work

This work moves us one step closer to achieve the enviable learning and adaptation ca-

pabilities seen in biological systems, as well as their exceptional agility and energy ef-

ficiency [90, 89, 148, 92, 17, 94, 61]. The proposed model-agnostic approach enables

learning using little or no information on the kinematic model of the system. This is par-

ticularly important for complex structures such as non-rigid robots (soft robotics, tendon-

driven systems, hybrid soft-hard robots, etc.) where it is very difficult to model and sim-

ulate the system. Moreover, this model-agnostic approach can also enable autonomous

design to be a part of the robotic co-evolution of controller and body, and therefore allow

robots to autonomously change and optimize their ‘anatomy’ and control architecture

simultaneously. In addition, the proposed data-efficient learning approach and on-the-fly

adaptation enables learning in the ‘Real-World’ without extensive (and expensive) trial-

and-error processes which will pave the way for robots to be used in unpredictable and

unstructured environments such as search-and-rescue in unknown environments or after

natural disasters, and planetary exploration. In addition, the fact that this approach can
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work with tendon-driven systems and elastic elements enables the emergence of energy

efficient and agile biologically-inspired or totally innovative robotic anatomies.

The following five chapters forming this dissertation are organised as follows: In

Chapter 2, a complete over-view of tendon-driven systems is provided along with a

deeper insight into their benefits and challenges using both mathematical formulation

and computational models. Chapter 3 introduces the G2P algorithm, which enables au-

tonomous learning in tendon-driven systems using limited-experience and show cases

its effectiveness in controlling a 3-tendon, 2-joint physical limb to produce functional

movements. Chapter 4 evaluates the G2P algorithm in the presence of parallel elastic

element and shows how it can work with, and even exploit, the passive characteristics

of the system’s physics to accelerate learning and enhance performance. Chapter 5 pro-

vides a closed-loop approach to utilize kinematic feedback to further improve movement

accuracy even in the presence of changes in the task. Lastly, Chapter 6 expands the G2P

algorithm to a complete quadruped (in simulation) and studies the forward and back-

ward generalizability across a set of task and the effects of tactile sensory on its lifelong

learning capabilities without catastrophic forgetting. Chapters 2-5 are fully or partially

published in [92], [90], [91], and [89], respectively.

1.4 Limitations of this work

We have only studied robots whose limbs have 2 joints and 3 tendons (N+1 design;

minimum number of muscles needed to control N joints). However, the scalability of this
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approach to systems with more muscles, joints, and kinematic layouts is an interesting

question that should be addressed in future work.

Moreover, here we mainly focused in kinematic control and did not go deeply into

higher-level learning, nor into different approaches to combine these meta- and higher-

level learning approaches with the proposed G2P algorithm. We studied how our ap-

proach can be combined with reinforcement learning in a hierarchical fashion to perform

the functional task of propelling a treadmill ( 3). Exploring other hierarchical learning

architectures and approaches that can address more complicated tasks—and study per-

formance across a wider set of different tasks—is another interesting research topic that

can be addressed in future work. In addition, here we studied the adaptability of the

system to different dynamical complexities but did not study how it can detect and adapt

to major changes in the body (e.g., caused by damage) which can also be the aim for a

potential future investigation.

Furthermore, we have mainly used a simple multi-layer perception Artificial Neural

Network (ANN). Studying different ANN structures can lead to increased performance

and data-efficiency. This can be especially interesting for the quadruped design when

there are more options on how to develop the ANN structure (e.g., an independent ANN

for each leg, a single ANN for all legs, or a hybrid approach where ANNs are mainly

independent but they would be connected in some levels). Nature seems to implement

various levels of connectivity among local and global networks in its hierarchical and

distributed architectures [88, 41, 39, 96, 60, 147], which we should explore in the future.
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Lastly, although we tested our approach in both simulation and hardware, we have

limited the quadruped studied here to simulation only, for now. Having the quadruped

system in hardware would be an important next step (on which we are working) to test

the full potential of this approach and study its real-world performance.
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Chapter 2

Should anthropomorphic systems be“redundant”?

Ali Marjaninejad1, Francisco J. Valero-Cuevas,1,2

1Department of Biomedical Engineering, University of Southern California, Los An-

geles, CA, USA

2Division of Biokinesiology and Physical Therapy, University of Southern California,

Los Angeles, CA, USA

2.1 Chapter summary

In this chapter, we explore the conceptual design and implementation of muscle redun-

dancy and kinematic redundancy for anthropomorphic robots from three perspectives: (i)

The control of tendon-driven systems, (ii) How the number of muscles define functional

capabilities, and (iii) How too few synergies can be detrimental to functional versatility.
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Historically, roboticists prefer either rotational actuators located at each joint (i.e., rota-

tional degree-of-freedom, DOF), or few linear actuators (i.e., two dedicated “muscles”

per joint) for tendon-driven robots. In contrast, biological limbs have evolved to in-

clude “too many” muscles [148], which are thought to unnecessarily complicate their

anatomy and control. The question, then, is why has evolution converged on these ap-

parently under-determined (or ‘redundant’) solutions? If we really have extra muscles,

then which muscle would you give up? By taking a formal mathematical approach to the

control of tendons—which is the actual problem that confronts the nervous system—we

have proposed a resolution to this apparent paradox by proposing that vertebrates may

have, in fact, barely enough muscles to meet the numerous physical constraints for eco-

logical functions (as opposed to simple laboratory tasks) [148, 78]. This approach can be

called Feasibility Theory, which describes how the anatomy of the system, and the con-

straints defining the task define the set of feasible actions the system can produce. The

role of the (neural or engineered) controller is then, to find ways to use the mechanical

capabilities of the combined controller-plant system to the fullest [148].

Similarly, the effective mechanical design of a robotic limb, at a minimum, requires con-

trollability (i.e., enough control degrees of freedom, or muscles) to produce arbitrary

forces and movements (i.e., changes of state [112]). Force and movement capabilities

have distinct governing equations and are, in fact, in competition with one another (e.g.,

a see-saw demonstrates, as per the Law of Conservation of Energy, how producing higher
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forces is associated with lower velocities and vice versa). Therefore, we explored the po-

tential evolutionary pressures that may have shaped vertebrate limbs by evaluating how

the number of muscles affects the competing demands to produce endpoint forces and

velocities.

A related concept that cuts across biological and robotic systems is the idea that the

kinematics and kinetics of a wide variety of actions exhibit a low-dimensional structure

that can be approximated with a few principal components (sometimes called descriptive

synergies [10, 130]). This has been taken to mean that a few degrees of freedom suffice

to produce versatile behavior in the real world. However, the fine behavioral details that

distinguish different actions are, by definition, not captured by the commonalities among

them. Thus, versatility in the real world likely depends on recognizing and executing

fine distinctions among actions; which implies that more degrees of freedom of control

are critical for true functional versatility.

These three independent arguments support the perspective that creating anthropomor-

phic systems requires apparently redundant structures, because only then can they truly

execute a wide variety of real-world tasks. In addition, we also present an open-access

MATLAB toolbox that allows users from different backgrounds to explore these con-

cepts in detail. We believe this new perspective will improve the conceptualization, un-

derstanding, and design of anthropomorphic systems.
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2.1.0.1 Author Contribution

A. M. has designed experiments, wrote the code, run simulations and written the first

draft of the manuscript. F.V-C. has provided guidance and feedback to the manuscript

and during each step of the experiment design and interpreting the results.

2.2 Mechanical and neural foundations of Feasibility Theory

In this section, we provide fundamental concepts required to study neuromechanical sys-

tems, which will set fundamentals for the following sections of this chapter. We begin

with limb kinematics, providing a common conceptual language to muscle mechanics.

Next, we introduce motor control and feasible movements of tendon driven limbs to show

how tendon-driven systems are in fact over-determined. Due to the inherent properties

of biological muscles, the nervous system is likely not as redundant as when considering

the force control problem in isolation. Moreover, we have described how different task

constraints (i.e., the mechanical definition of the task) naturally limit feasible actions.

Thus, each additional muscle adds an additional control DOF—and therefore the ability

to meet more simultaneous functional constraints and produce a wider variety of tasks—

which is the origin of versatility. Many of the materials and concepts of this section are

summarized or first introduced in [148].
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2.2.1 Limb kinematics and limb mechanics

We first start with limb kinematics, which characterize the motions and positions of rigid

bodies, regardless of the forces which produce them. In this chapter, in order to simplify

the governing equations, we consider limbs as rigid bodies. Subsequently, we introduce

equations for limb mechanics which involve limb kinematics as well as the forces and

torques that interact with the limb.

2.2.1.1 Limb kinematics

We first define a limb as a set of connected links and hinges. The endpoint of a multi-

joint limb is defined by the homogeneous transformation matrix Tend point
base . Tend point

base can

also be written as the multiplication of the DOF transformation matrices:

T end point
base = T N

0 = T 1
0 T 2

1 · · ·T N−1
N−2 T N

N−1 (2.1)

where each transformation matrix is defined as:

T j
i =


R j

i pi, j

0 0 0 1

 (2.2)

In the above equation, R j
i represents the rotation matrix and pi, j represents the dis-

placement for each DOF [148]. A schematic representation of the system for Eq. 2.1 is
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plotted in Fig. 2.1. Furthermore, the forward kinematic model (also known as the geo-

metric model), G(q), for a planar system (in two-dimensional space) is defined as follows

(given that a rigid body on the plane has three degrees of freedom defining its location

and orientation):

G(q) =


displacementinthedirectiono f i0

isplacementinthedirectiono f j0

rotationaboutthek0axis

=


x

y

α

 (2.3)
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Figure 2.1: A schematic representation of a simple multi-link system. (Reproduced, with
permission, from [148])

For non-planar limbs, displacement in the direction of k0, rotation about the i0, and

rotation about the j0, will also need to be included in G(q) [148]. The endpoint velocities

are obtained by differentiating G(q) with respect to time:
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Ġ(q) =
dG(q)

dt
=

∂G(q)
∂q

dq
dt

=
∂G(q)

∂q
q̇ =


ẋ

ẏ

α̇

 (2.4)

We call ∂G(q)
∂q as the Jacobian matrix. For a limb with N degrees of freedom, it is defined

as:

∂G(q)
∂q

= J(q) =


∂Gx(q)

∂q1

∂Gx(q)
∂q2

· · · ∂Gx(q)
∂qN

∂Gy(q)
∂q1

∂Gy(q)
∂q2

· · · ∂Gy(q)
∂qN

∂Gα (q)
∂q1

∂Gα (q)
∂q2

· · · ∂Gα (q)
∂qN

 (2.5)

2.2.1.2 Limb mechanics

As mentioned earlier, limb mechanics involve limb kinematics as well as the forces and

torques the limb can produce. In this section, we will explain how to relate joint torques

to endpoint forces using limb kinematics. Let’s begin by defining the internal and exter-

nal work for the two DOF systems shown on Fig. 2.2 as:

Externalwork = f ·∆x (2.6)

Internalwork = τ ·∆q (2.7)
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where f and ∆x are scalar values representing endpoint force and endpoint velocity, while

τ and ∆q are torque and joint angle rotation vectors. Please note that, depending on the

kinematic DOFs of the system, the endpoint can also produce a torque (τend point), whose

external work would be it times the rotation of the endpoint. For the sake of simplicity,

here we present the derivation only considering endpoint forces. Following with Eq. 2.7

and Eq. 2.8, from the conservation of energy law, we have:

x

yΔq
1

Δx

Figure 2.2: An illustration of the geometric relationship between the endpoint displace-
ment (∆x) and the rotation of the first joint (∆q1 in a 2-DOF limb). (Reproduced, with
permission, from [148])

f.∆x = τ.∆q (2.8)

Changing the dot product in Eq. 2.8 to its equivalent inner product while substituting ∆

for both x and q with derivatives, we have:

fT ẋ = τ
T q̇ (2.9)
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Using Eqs. 2.4 and 2.5, we rewrite Eq. 2.8 as:

fTJ(q)q̇ = τ
T q̇ (2.10)

Eliminating q̇ from both sides of the equation leads to Eqs. 2.11 and 2.12, which define

the relationship between the joint torques and endpoint forces.

fTJ(q) = τ
T (2.11)

fT = J(q)−1
τ

T (2.12)

Extensions of this concept for 3-dimensional space with detailed examples are provided

in [148].

2.2.1.3 Tendon-driven limb mechanics

Most robotic limbs are driven by either rotational or linear actuators that drive each kine-

matic DOF [148]. In the robotics literature, the so-called torque-driven formulation as-

sumes symmetric actuators. That is, equal torque capabilities in both clockwise and

counterclockwise directions.

In the so-called tendon-driven systems, actuators are connected to the limbs using

strings, cables, or tendons. It is clear that these actuators can only pull (and not push)
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on the tendons, thus the can only drive the DOF in one direction. Therefore, each DOF

requires, on average, more than one actuator and symmetry of actuation is not guaran-

teed. In addition, tendon-driven systems are flexible because the routing of their tendon

can allow one actuator to drive more than one DOF—and therefore impose correlations

in actuation across DOFs [43, 111]. Moreover, the moment arms (i.e., minimal perpen-

dicular distance between the tendon path and the center of rotation of the DOF) can be

arbitrarily set within and across tendons and DOFs.

This flexibility of actuation that can be “built into” the morphology of the design,

compared to torque-driven systems, introduces unique flexibility and challenges to their

construction and control. To some, this means that tendon-driven systems are unneces-

sarily difficult to build and control. However, we and others also argue that they have

much to offer [111, 75, 64, 32, 51, 53, 85]. Using tendons to apply torque to the DOFs,

as opposed to having actuators directly apply torque, makes tendon-driven systems ca-

pable of remote actuation. This means that the designer can place the actuator far from

the joint itself. Although making the system harder to control, flexible tendon routing

can provide much more versatility and preferentially larger feasible end-point forces and

velocities in directions of interest.
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2.2.1.4 Tendon actuation

To explore how tendons create torque in tendon driven systems, see Fig 2.3. This simpli-

fied model illustrates a planar, one-joint limb using one muscle. The torque at the joint

of this model is equivalent to the cross-product of the force and moment arm r:

τ = r× fm = ‖r‖ ‖ fm‖ sin(α) (2.13)

where × represents the cross-product, fm represents the muscle force, and α represents

the angle between the force and the moment arm.

muscle force

m
o
m

e
n
t

a
rm

(a) (b)

Figure 2.3: Schematic representation of a planar, two joint limb with only one muscle
(a) and its equivalent simplified model (b).

As mentioned earlier, in tendon-driven systems, one actuator can exert torque in mul-

tiple DOFs. Here, we are going to study an example of such while introducing the

moment arm matrix. We begin by illustrating the relationship between the torque vector
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(here, a vector of length two, representing the two DOFs) and muscle force vector for the

two-joint planar limb shown in Fig. 2.4:

r
1

r
2

r
4

r
3m

1

m2

m
3

m
4

DOF 2DOF 1

Figure 2.4: A sample two-joint limb with four muscles. (Reproduced, with permission,
from [148])



τ1

τ2

...

τM


M×1

= R(q)M×N



f1

f2

...

fN


N×1

(2.14)

where R(q) represents the moment arm matrix, which maps the muscle forces to the joint

torques. In example illustrated in Fig. 2.4, the moment arm matrix R(q) is defined as:

R(q) =

 −r1 −r1 r2 r2

−r3 r4 −r3 r4

 (2.15)
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By convention, each entry in the moment arm matrix on the ith row and jth column

will be the coefficient which transforms the force induced by the ith muscle to the torque

exerted at the jth joint (as seen in Eq. 2.9). The positive value of an element in this matrix

means that counterclockwise (positive) torque will be applied when tension is applied to

the tendon through muscle contraction (applying concentric force).

In order to relate muscle excursions to joint movements in the model shown above,

we produce a set of equations. Again, by convention, we consider counterclockwise

rotations as positive rotations. Following the conventions we have mentioned so far, a

positive joint rotation with a positive moment arm induces a shortening in the length

of its muscle and tendons and vice versa. Therefore, the set of equations relating joint

angles and muscle excursions for the example provided in Fig. 2.4 will be as follows:



∂S1

∂S2

∂S3

∂S4


4×1

=



r1 r3

r1 r4

−r2 r3

−r2 r4


4×2

 ∂q1

∂q2


2×1

(2.16)

Using Eq. 2.9, we can rewrite Eq. 2.10 in the general case with M joints and N muscles

as:
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

∂S1

∂S2

...

∂SN


N×1

= (−RM×N)
T



∂q1

∂q2

...

∂qN


M×1

(2.17)

Taking a closer look at Eq. 2.14 and Eq. 2.17, we see a very important distinction.

Equation 2.14 is under-determined, meaning that there is more than one solution in the

force space to achieve the desired set of torques. This is one of the main reasons that

neuromuscular systems are thought to be redundant. However, looking at Eq. 2.17, we

notice that this equation is over-determined, meaning there is, at maximum, only one set

of values for the joint angles fulfilling this set of equations [148, 43, 150]. In other words,

you cannot contract and shorten a specific muscle without having changes in the lengths

of other muscles connecting to or passing through the same joint. It illustrates that our

nervous system must consider a complex variety of constraints when pulling a tendon.

Failure in fulfilling the requirements of this complex control problem, especially failure

in relaxing muscles that are being lengthened as a result of joint rotations, might disrupt

movement or injure muscles or tendons [43, 126]. Note that this over-determined case

only arises when treating limbs as tendon-driven systems. This is one of the important,

yet mostly overlooked aspects of robotics today.
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2.2.2 Motor control of tendon driven limbs and Feasibility Theory

In this section, we describe the tendon-driven system that the nervous system faces. First,

we present a conceptual framework where one can think of neural commands as being

a high-dimensional activation vector that is mapped into lower-dimensional “spaces”,

that capture its transformation into endpoint forces. Next, we describe Feasibility The-

ory, which defines how different constraints can limit the feasible activations in different

spaces (activation, muscle force, torque, and end-point force spaces). If we are looking

for a versatile system to deal with day to day activities, then a larger number of DOFs

are required as constraints are added.

2.2.2.1 Motor control of tendon driven limbs

Although the nervous system activates muscles through the recruitment of motor neurons

and modulation of their firing rates, we can, without loss of generality, simplify the prob-

lem by assigning a value between 0 and 1 to the activation level of each muscle, where

0 represents complete inactivation and 1 represents maximal activation. The activation

vector α is described as Eq. 2.18 for an N muscle system:

α =



α1

α2

...

αN


, 0≤ αi ≤ 1 f or i = 1, . . . , N (2.18)
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where αi is the activation value for the ith muscle. Now the set of the generated muscle

forces at a particular moment and at a particular activation level can be defined as:

fm = F0(lm,vm)α (2.19)

where F0 is the diagonal matrix. Each element on the main diagonal of this matrix will

represent the maximum force that the corresponding muscle can exert. These diagonal

values depend on many factors such as muscle architecture, pennation angle, physiolog-

ical cross-sectional area, as well as the fiber length (lm) and velocity (vm) of the muscle

at every time point. Now, we rewrite Eq. 2.14 by substituting the force vector from Eq.

2.19, which leads to the following equation:

τM×1 = R(qM×N)F0(lm,vm)N×N αN×1 (2.20)

Eq. 2.20 shows that the control of joint torques in tendon-driven limbs is an under-

determined set of equations. However, adding a cost function which needs to be mini-

mized (e.g. the total sum of the activation values), will force this set of equations to have

fewer possible solutions (or even just one).

Considering the fact that maximum muscle force values (the diagonal values on the

F0 matrix) are also functions of muscle length and velocity, we see that discovering the
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activation values which result in a desired set of joint torques (Eq. 2.20) is difficult.

In fact, it will apply constraints to the solutions that the nervous system can produce.

We discuss the effects of these constraints in greater detail in the following sub-section,

which explains how our nervous system faces a much more complex control problem

than initially hypothesized in the literature [54].

Reconsidering the set of tendon excursions, we can rewrite Eq. 2.17 in terms of the

muscle length vector, lm, and muscle velocity vector, vm (Eq. 2.21 and Eq. 2.22).

(δ lm)N×1 = (−RM×N)
T

δqM×1 (2.21)

(vm)N×1 = (−RM×N)
T q̇M×1 (2.22)

These last two sets of equations illustrate how control of tendon excursions is an over-

determined problem (i.e. there is, at most, only one set of solutions for it). Therefore,

our nervous system faces a biomechanical limitation [148].

2.2.2.2 Feasibility Theory: Defining feasible sets of actions in tendon-driven limbs

In this section, we first explore how a neural activation vector is mapped into the torque

space and the effect of different biomechanical parameters on this mapping. Next, we

demonstrate how functional constraints can limit the feasible action spaces, therefore

making it harder for the controller to find a solution within these spaces [54].
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Let’s assume we have three muscles, representing their activation values as a1 to a3.

A rectangular cuboid can be used as a visual representation of these activations. This

cuboid is shown in Fig. 2.5a. The corresponding muscle force vector is determined

by Eq. 2.19 and represented in Fig. 5b. Now, let’s say we have a two DOF joint.

This assumption means that our feasible muscle force set (Fig. 2.5b), which is a three-

dimensional cuboid, will be mapped into the two-dimensional feasible torque space. The

amount of torque generated at each joint is determined by Eq. 2.20. The feasible torque

set for this example is shown in Fig. 2.5c. We utilize the appropriate Jacobean matrix,

mapping this feasible torque set to the feasible end-point force set using Eq. 2.12. The

feasible force set for this example is shown in Fig. 2.5d. Looking at the different parts

of Fig. 2.5 we can see the contributions of having extra muscles in each of these feasible

action spaces.

For the example in Fig. 2.5, let’s now assume that there is a functional constraint.

This may include a certain constraint on the magnitude of the force in one axis in the

end-point force space, or a certain torque in the torque space, etc. Since the torque or the

end-point force spaces are two-dimensional in this example, these constraints can only

be points or lines in these spaces. However, when we track them back into the muscle

activation space (or muscle force space), they can be points, lines, or planes (or hyper-

planes in more than three dimensional spaces) since all the transformations are linear.

Say we have defined a constraint whose representation in the muscle activation space is a

plane (i.e. the constraint plane). The new feasible activation set now is the intersection of
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the feasible activation set, without any constraints, with this constraint plane. This new

feasible activation set is shown in Fig. 2.6a. If more constraints are added, the feasible

muscle activation set will lose even more dimensions and might become a line, a point, or

an empty set (Fig. 2.6b-d). This shows that while creating a specific amount of end-point

force or torque in a joint can be an under-determined problem, functional constraints and

feasible action spaces (as well as the mapping functions between these spaces) can limit

the abilities of our neuromechanical system to a great extent [148, 54]. Therefore, the

control problem which the nervous system faces is a very complicated one.

This suggests that having extra muscles is not redundant, but is a necessary require-

ment for versatility. Extra sets of muscles will increase the DOF of the system while

enabling the nervous system to find solutions for different sets of problems we face daily.

2.3 An evolutionary fitness approach to the relationship

between the number of muscles and versatility

Throughout the years, many have wondered why the anatomy of vertebrates has evolved

to include a seemingly redundant number of muscles. Here we show how extra muscles

can enhance mechanical versatility using an evolutionary approach while clarifying why

muscle redundancy is not a comprehensive belief. We begin our study by observing

how our biomechanical tendon-driven model performs a set of specified kinetic tasks

while changing the number of muscles. We study the optimal number of muscles with
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Figure 2.5: The representation of the feasible actions in different spaces for the toy
example discussed in the text. (a) the feasible set of activations. (b) the feasible set
of muscle forces. (c) the feasible set of joint torques. (d) the feasible set of end-point
forces. (Reprinted, with permission, from [148])

three main fitness functions. Namely, the Effectiveness, Agility, and Phenotypical cost.

During all tasks, the goal was to apply maximum force in a specific direction. We found

the optimal activation values as a function of task restraints using a linear optimization

algorithm.

2.3.1 Background

Muscle redundancy has been discussed extensively ever since the earliest neuromuscular

studies. Evolution from the earliest ape species, Nakalipithecus nakayamai, to modern
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(a)

(d)

(b)

(c)

Figure 2.6: The effects of adding functional constraints on the feasible actions’ spaces.
More and more constraints are applied as we move from (a) to (d). (Reproduced, with
permission, from [148])

Homo Sapiens, exemplifies the growth and development of muscles, enabling our species

to perform multiple tasks. There are certain questions that resurface each time someone

tries to explore this field. Why do we have so many muscles despite the limited degrees

of freedom in our limbs or fingers? Why do we have that specific number of muscles?

What are the costs and benefits of having this set of muscles?

In this section, we explore answers to these questions with an evolutionary fitness

approach. We study how extra sets of muscles affect Effectiveness, Agility, and Pheno-

typical cost (we will describe each later in this section). In addition to this, we explore

how decreasing the number of muscles affects performance in different tasks. In this

study, we have used a 2-DOF arm model with three different muscle sets.
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2.3.2 Method

We first explain our model and assumptions. Next, we describe the simulated tasks

used in this study. Finally, we introduce our fitness functions for each of the elements

mentioned earlier as well as the Overall Fitness, which is the weighted linear combination

of all the individual fitness functions. Note that we use the term “fitness” in the general

sense where it is not necessarily tied to a single specific cost function. Rather, fitness in

the biological sense indicates the ability to meet current multi-dimensional requirements

and perform well in a given environment. For the sake of simplicity, we define fitness

as the ability to meet a compound cost function—but other cost functions may also be

suitable depending on the functional goals at hand.

2.3.2.1 Model

We begin with a simplified model of the human arm with a two DOF planar structure.

One can also generalize this model to other body parts with similar structure e.g. fingers.

We select four postures based on common tasks performed by the arm, as shown in Fig.

2.7. Each posture was held static while force was maximized in four directions: upward,

downward, frontward, and backward.

Three muscle sets were designed to compare the effects of varying the number of

muscles. These muscle sets, shown in Fig. 2.8, were designed with the intent of recre-

ating a model with a realistic set of arm muscles (although this model is constrained

to two-dimensional space) as well as models with fewer or more muscles than a real
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arm. Across muscle sets, the number of muscles was decreased while keeping the same

original routing configuration of the previous muscle set. This was done to compare the

effects of decreasing or increasing the number of muscles only. The moment arms were

estimated with reference to [148].

We selected 3, 7, and 14 as the number of muscles which are the minimum number of

muscles for a 2-DOF system, the real number of muscles in a human arm and two times

of the number of muscles in a human arm, respectively. In the Monte Carlo analysis, the

moment arm values were varied by ±20% over 100 simulations to test the sensitivity of

the results to these values.

Model assumptions In this study, all muscle lengths and maximum muscle forces were

assumed to be equal enabling us to address only a specific set of questions. We study how

the number of muscles affects a specific set of outputs in the absence of other variables.

Also, muscle forces were assumed to be independent from muscle lengths or muscle

velocities.

2.3.2.2 Cost formulation

Here we describe the performance metrics studied. First, we define the Average Energy

as the summed square of muscle activation values, divided by the number of muscles.

Although muscle activation is a neural action, it will be proportional to physical muscle

activity (and therefore requires energy) since we assumed that all muscles have equal
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maximum force values. Average Energy shows how hard muscles pull on average to

perform the task. The Average Energy will be as defined in the quadratic Eq. 2.23.

Average Energy =
1
N

N

∑
i=1

α
2
i (2.23)

where αi is the activation of the ith muscle (between 0 and 1) and N is the number of

muscles [19, 15].

Posture 1          θ
1
: -π/6 θ

2
: π/3

Posture 3          θ
1
: π/4 θ

2
: π/6

Posture 2          θ
1
: -π/2 θ

2
: π/2

Posture 4          θ
1
: -π/4 θ

2
: π/6

θ
1

θ
1

θ
1

θ
1

θ
2

θ
2

θ
2

θ
2

Figure 2.7: Four different postures used for simulations. These postures were inspired
by day to day activities.
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Although Average Energy shows the total amount of energy used to perform a task,

it is not the best way to calculate Effectiveness since the maximum force output of a

task is also very important. Therefore, we define Effectiveness as the maximum output

force divided by the Average Energy. Note that Effectiveness is distinct from efficiency

as we are using it to reflect overall ability after normalizing for energy consumption.

Phenotypical cost (see below) already considers metabolism.

E f f ectiveness =
maximal f orce
Average Energy

(2.24)

We know that there is a limit on how fast a muscle can contract (the maximum speed

for muscle excursion). We define “Agility” for each joint as the maximum rate of change

in the joint (regardless of the direction), assuming that the muscle excursions for all

muscles have the same upper limit. This is similar to the concept of manipulability,

which considers the transformation of joint angular velocities into endpoint velocities as

per the Jacobian of the limb [156]. Therefore, Agility for each joint is defined as:

Agility =
dq
ds

= maxi j(abs(
1
rT

i j
)) (2.25)

where i is the muscle index, ri is the corresponding moment arm value, max stands for

maximum, and abs stands for absolute value. Please note that to maximize the dq
ds , rT

i j
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cannot be equal to zero, since this would mean that the muscle is not connected to the

intended joint.

Lastly, the “Phenotypical” cost is related to the number of muscles due to the na-

ture of muscle packaging [76]. In particular, the Phenotypical cost can consider both

the cross-sectional area and volume of muscles and muscle groups. Therefore, we ex-

plored this value using the square and the cube of the number of muscles (Overall Fit-

ness A and Overall Fitness B, respectively). The quadratic version preferentially con-

siders metabolic and phenotypical costs associated with muscle stress and physiolog-

ical cross-sectional area [157]; whereas the cubic version attempts to further penalize

the complexity of vascularizing, repairing, maintaining, packaging and controlling more

muscles [76].

To compute the fitness of alternative embodiments for a multi-muscle limb, we com-

pute Overall Fitness as shown below. It is the weighted sum of the above-mentioned

elements:

Overall Fitness = w1×E f f ectivenessN +w2(
AgilityN,1 +AgilityN,2

2
)

−w3×Phenotypical cost

(2.26)

where E f f ectivenessN and Phenotypical costN , are the normalized (between 0 to 1)

Effectiveness and Phenotypical Cost, respectively. AgilityN, k is the normalized Agility
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in the kth joint while w1, w2, and w3 are weights for E f f ectivenessN , average AgilityN, k

(averaged over k) and the Phenotypical CostN respectively.

We used linear programming [16] to find the solutions in the activation space for the

constrained problem of maximizing the force in only the specified direction in each task.

2.3.3 Results

Figures 2.9 and 2.10 respectively demonstrate Average Energy and Effectiveness as a

function of number of muscles for each posture. In addition, Agility was plotted as a

function of number of muscles for each joint (Fig. 2.11). We then performed Monte

Carlo analysis to determine the sensitivity of the results to the assumed values for the

moment arm matrix. The results follow the same pattern regardless of the variation in

values for the moment arm matrix, demonstrating that this analysis is generalizable to a

large variation in moment arm values.

Our results show that increasing the number of muscles increases Effectiveness and

Agility. However, it is clear that more muscles also have more Phenotypical cost. This is

why we believe that there is a “sweet spot” for an optimal number of muscles, based on

how much weight each of these goals have in an anthropomorphic system. These weights

are set during evolution to find the optimal number of muscles to be as versatile as possi-

ble, while maintaining a reasonable Phenotypical cost. That is where the Overall Fitness,

introduced in the methods section (Eq. 2.26), will be useful. The Overall Fitness plays

a pivotal role by combining the weighted effect of each element and providing a single
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measure that needs to be optimized. Again, while adding extra muscles will increase

Effectiveness (Fig. 2.10) and Agility (Fig. 11), it will also increase the Phenotypical

cost. Therefore, for each system, the number of muscles for which this Overall Fitness

is minimized is the optimal muscle number for that system.

By changing the weights in the Overall Fitness function, we can easily find the set of

weights where 7 muscles (the real number of muscles in a human arm) are the optimal

choice. As described before, these weights can be interpreted as the relative importance

of each goal (Effectiveness, Agility, and low Phenotypical cost) to vertebrates, from an

evolutionary point of view. By setting w1, w2, and w3 to 4, 1, and 4 respectively, we have

Fig. 2.12, which shows that the optimal number of muscles is 7.

Please note that there are many combinations of weights that can lead to a specific

number of muscles. Similarly, any choice of cost function in the literature can be a matter

of choice and preference [125]. We chose three fitness functions (Effectiveness, Agility

and Phenotypical cost) to reflect the multi-dimensional nature of functional fitness. This,

in fact, is best addressed as multi-objective optimization that allows espousing any one

to the exclusion of others. This confronts us with the fact that any cost function is, in

essence, a reflection of the multiple fitness criteria that may have been achieved, are being

pursued, or are even changing in the environment. Thus, a change in environment, goals

and life habits, over time, may naturally change the number and/or routing of muscles

in a given anthropomorphic system. In addition, although the general patterns between
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simulations and real systems match, it is important to keep in mind the simplifications

that were made, when comparing results from simulations to physiological recordings.

2.4 Does a minority of the variance contain a majority

of information?

In this section, we explore the risks of assuming that a low-dimensional approximation

suffices to capture the versatility of anthropomorphic systems. We have shown that,

although a few Principal Components (PCs) can explain most of the variance in a specific

movement or a set of gestures, the remaining variance can in fact contain critical details.

This highlights that the reduction of DOF will come at the cost of versatility. Therefore,

the fact that a few PCs capture a most of variance does not mean that anthropomorphic

systems should be low-dimensional.

The problem of face recognition serves as a useful analogy. Human faces all share

common features, e.g. we generally have two eyes, two ears; and the general placement

of the mouth, nose, eyes and ears follows a specific pattern. However, we can recognize

a particular face from among many only due to its small differences compared to the

others. Similarly, when talking about hand gestures, postures and functions, the details

can become very important to a specific task.
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2.4.1 Background

It is known that different sets of motor actions share many commonalities. For example,

a linear combination of a small set of basis vectors in a set of movements can explain

large amounts of variance for each movement pattern in the set [71]. It is also true for

static postures, which means a linear combination of a few basis vectors can explain large

amounts of variance in a multi-DOF system; like a human hand [134]. Unfortunately,

this is often over-interpreted as a sign that we have more than enough DOF, or as a sign

of redundancy in anthropomorphic systems.

We have used principal component analysis (PCA) to extract the principal compo-

nents (PCs) in a set of hand gestures and shown that although the first few PCs will ex-

plain a large amount of variance, all the details that make differentiating between these

different movements or postures possible are present in the higher PCs. That is, although

higher PCs explain less variance and are generally smaller in amplitude, they are the

most important in making postures different from one another. Therefore, these extra

DOF are the main contributors to versatility in anthropomorphic systems.

In this section, we further demonstrate this concept with a special focus on hand

gestures. We simulate five different hand gestures, comparing and contrasting their rep-

resentations in the joint angle space (19 joints). We also apply PCA to the joint angle

data of these three gestures and demonstrate the effects of utilizing only the first two PCs

as compared to all PCs involved.
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2.4.2 Method

Grasping gestures of the hand are historically categorized into two main sets: “precision

grasp” and “power grasp” [106]. In the former, the thumb and one or more of the re-

maining fingers will contact the object or apply force in opposition to each other. In the

latter, the object will be grasped such that the palm of the hand comes into contact with

it [59].

To model our distinct hand gestures, we used MuJoCo, a physics engine which pro-

vides accurate simulations for applications including robotics and biomechanics [146].

Five different hand gestures were modeled; two power grasps, two precision grasps, and

a non-practical posture which we refer to as the Claw gesture. These five gestures are

represented in Fig 13.

In both power grasps, the fingers opposing the thumb follow similar flexion/extension

patterns in their joints. The main difference between power grasps 1 and 2 are the finger

abduction values. Index, middle, ring, and pinky fingers have more space between them

in power grasp 2 as compared to the power grasp 1. In precision grasp 1, only the index

finger opposes the thumb while the other fingers are flexed. In precision grasp 2, the

middle finger also opposes the thumb while the other fingers are less flexed. In the Claw

gesture, index and ring group together with middle and pinky fingers respectively, and

are opposing the thumb.

We extract 19 different joint angles for these three gestures from MuJoCo. These

angles are namely Wrist PRO, Wrist UDEV, Wrist FLEX, Thumb ABD, Thumb MCP,
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Thumb PIP, Thumb DIP, Index ABD, Index MCP, Index PIP, Index DIP, Middle MCP,

Middle PIP, Middle DIP, Ring ABD, Ring MCP, Ring PIP, Ring DIP, Pinky ABD, Pinky

MCP, Pinky PIP, and Pinky DIP. We then apply PCA (similar to [134]) and compare

joint angles of all five gestures before and after applying dimensionality reduction. In

the reduced dimension case, we map only the first two PCs back to the joint angle space.

We also calculate the Pearson’s correlation coefficient for each pair of gestures in the

joint angle space for before and after dimensionality reduction. The Pearson’s correlation

coefficient of two different gestures in the joint angle space is defined as follows:

Corri, j =
∑

19
k=1(anglei,k−anglei)(angle j,k−angle j)√

∑
19
k=1(anglei,k−anglei)

2
√

∑
19
k=1(angle j,k−angle j)

2
(2.27)

where Corri, j stands for the Pearson’s correlation coefficient between the ith and the jth

gestures and anglei, j represents the angle in the kth joint of the ith posture. Moreover,

anglex represents the sample average of xth gesture and is defined as:

anglei =
1

19

19

∑
k=1

anglei,k (2.28)

In addition, to show the correlations for all five pairs (with and without dimensional-

ity reduction), we created a five by five matrix in which the color of the element on the ith
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row and jth column represents the Pearson’s correlation coefficient between the ith and

the jth gesture in the joint angle space. This correlation matrix is defined as follows:

C =


Corr1,1 · · · Corr1, j

... . . . ...

Corri,1 · · · Corri, j

 (2.29)

2.4.3 Results

The joint angle representation of the hand gestures shown in Fig. 13 are illustrated in Fig.

2.14a. We apply PCA (as explained in the method section) to filter out the most common

component for the five gestures. 91.40% of the variance is explained by the first two PCs.

The resulting joint angle space representation for the first two PCs is shown in Fig. 14b.

As can be seen in Fig. 2.14, with only considering the first two PCs, power grasp

1 and power grasp 2 have grouped together. The same pattern is observed with preci-

sion grasp 1 and precision grasp 2. This was within our expectations since by saving

the first two PCs, we are ignoring the smaller differences and paying attention to the

commonalities.

Fig. 2.15 shows the correlation values for the two cases studied on Fig. 2.14 colored

boxes in the matrix shown in Fig. 2.15(a) represent the correlation coefficient between

the joint angle representation vectors of different gestures. Fig. 2.15(b) represents the
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same measure for the case with each gesture only being represented by their first two PCs.

Comparing Fig. 2.15(a) and 2.15(b), we can make three very important observations.

First, in Fig. 2.15(b), gestures are clustered into three main groups; namely, Power

grasp, Precision grasp, and the Claw. These clusters are represented as red squares in

Fig. 2.15(b). This shows that by keeping only the first two PCs, the intra-group correla-

tion values have increased i.e. intra-group dissimilarities have decreased. Furthermore,

all group members have lost their distinctions in the reduced dimension space to some

extent.

Second, the correlation between gestures in power grasp and gestures in precision

grasp groups (inter-class similarity) have become smaller and nearly converged to the

same value for any pair of gestures from these two groups. This is illustrated as the dark

and light blue lines on the intersections of the power grasp and precision grasp clusters

in Fig 2.15(b). This is significant because in the reduced dimension space, dissimilarity

values between any of the power grasp gestures with any of the precision grasp gestures

are almost the same. This means that distinguishing different gestures from each other is

much more difficult in the reduced dimension space.

Third, the Claw gesture is much more closely correlated to other gestures in the

reduced dimensional space. This is mostly observed between the correlation values of

the Claw and power grasp 2, and also between the Claw and precision grasp 2.
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This, again, makes an accurate distinction between the different gestures more challeng-

ing. This was observed even though the Claw gesture is a non-practical gesture, which is

unlikely to be used in day to day activities.

2.5 Chapter conclusions and future work

In this chapter, we took three different approaches to address the question: “Should

anthropomorphic systems be redundant?”

In the first section, we presented the classical approach to muscle redundancy for joint

torque and endpoint force production in tendon-driven systems. The notion of muscle

redundancy holds that there are many ways in which tendon-driven anthropomorphic

systems can activate muscles to generate the desired net torques at each joint [19, 15].

However, we underscore that tendon-driven systems are, in fact, over-determined from

the perspective of tendon excursions [148, 43, 150]. That is, the lengths and velocities of

all muscles crossing a joint, or set of joints, are determined by the rotations at those joints.

From a mechanical perspective, this means that a given limb movement defines a unique

set of tendon excursions and velocities. Muscles that shorten during the movement can,

in principle, go slack (but then they do not contribute to torque production). However,

muscles that lengthen during the movement must do so as specified by the joint rotations.

This poses a practical problem in the case where motors are not backdrivable or muscles

have stretch reflexes: any muscle that does not lengthen appropriately will disrupt the

movement. Therefore, the controller (be it neural or engineered) seeking to produce
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smooth and accurate movement in a tendon-driven system is not necessarily confronted

with a redundant system, as is typically assumed. Rather, it must excite muscles to

produce the necessary time history of joint torques while allowing muscles to lengthen

in the precise way needed. This perspective is not new. Sherrington emphasized the

importance of inhibition as a central requirement for the production of movement over

100 years ago [139, 140]. We therefore propose that it is critical for researchers today

to pursue a neo-Sherringtonian research direction to understand the robotic and neural

control of movement.

The fact that moving smoothly and accurately is neither a redundant, simple, nor a

forgiving control problem for tendon-driven systems poses several critical research di-

rections. For example, why does such behavior take years to perfect during typical devel-

opment in humans (and still not fully available in robot), and why is it so susceptible to

developmental and neurological conditions? We propose that the over-determined nature

of muscle excursions makes the problem of producing smooth and accurate movements

unforgiving to even small errors in development and neurological conditions, which re-

quires further study [148, 43, 150].

In addition, there is emerging evidence that cardinal features of healthy force and

movement variability (which are often considered to have cortical origins) can arise nat-

urally as a consequence of the neural control of afferented muscles (i.e., where regulating
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reflex gains is critical) [73, 56, 104]. This opens new research directions to begin to ex-

plain, from a purely spinal and peripheral perspective, the clinical presentation of at least

some types of tremor in neurological conditions.

The second approach described some aspects of Feasibility Theory, which helps us

understand how the anatomy of the plant, and the mechanical constraints that define the

task, determine the dimensionality and structure of its feasible activation set (i.e., the

family of all feasible commands that can accomplish the task). Such feasible activation

sets are well-structured, low-dimensional subspaces embedded in the high-dimensional

space of muscle activations. Thus, future research should focus on how the controllers

of anthropomorphic systems can explore, identify, exploit, and remember those feasible

activation sets. After all, the most any neural or engineered controller can do is explore

and exploit the capabilities of the tendon-driven system as a whole [148].

Another important aspect of Feasibility Theory is that the number of independently-

controllable muscles also determines the number of independent task constraints that

tendon-driven systems can satisfy [148, 54]. Thus, adding and having more (appropri-

ately placed) muscles may, in fact, be the critical enabler of ecological (i.e., real-world)

function. That is, more muscles enable performing more complex tasks—where com-

plexity is taken to mean the need to meet more task constraints simultaneously. Thus, it

is important to investigate how ecological tasks necessitate having more muscles than are

apparently necessary when studying “simpler” experimental tasks [78]. This implies that

failure to control all muscles independently (as is common in, say, stroke) will reduce
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functional capabilities because independent muscle control is necessary to meet the mul-

tiple requirements of ecological tasks. Thus, “redundant” systems with many muscles

(or control DOFs in general) are functionally desirable.

Importantly, these findings also motivate further research on the advantages and dis-

advantages of muscle synergies (where several muscles are activated in a correlated man-

ner, effectively reducing the number of independent control DOFs). Given that imple-

menting muscle synergies can be an effective way to control robots [133]—and assess

limb movement [145]—exploring the relationship between the number of independent

control DOFs and functional versatility requires further study [51, 10, 71, 151].

The second section also approached the classical problem of muscle redundancy from

the perspective of multi-objective optimization. That is, tackling simultaneous and inde-

pendent functional goals. As an example, we explored three: maximal end-point force,

maximal joint angular velocities, and the Phenotypical cost of having additional mus-

cles. We showed how an anthropomorphic system can adapt to consider all three goals to

arrive at a most desirable number of muscles (yet sub-optimal with respect to individual

cost functions). Moreover, this desirable number of muscles is a function of the relative

weighing across goals. We find that more muscles allow the limb to be better at multiple

goals. Moreover, this study underscored how a change in environment, goals, and life

habits may, over time, naturally change the number and/or routing of muscles in a given

anthropomorphic system, and vice versa.
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The third and last section highlights our final approach to the question: “Should an-

thropomorphic systems be redundant?” We first showed how, in agreement with [134],

more than 90% of the variance in different hand gestures studied here can be explained

with only two principal components. However, disregarding the remaining PCs will nat-

urally make it more difficult to distinguish and/or implement each gesture. This example

highlights a little-appreciated—in our opinion—consequence in dimensionality reduc-

tion: that it will make it very difficult to distinguish similar hand gestures with different

functional roles as per well-known grasp taxonomies [28]. For example, a power grasp

with the thumb abducted serves to oppose the fingertips. If the thumb is slightly ad-

ducted, it can press against the side of the fingers to roll an object with high precision

(see Figure 3 in [28]). Thus, although the higher PCs explain ever-decreasing per-

centages of variance, they nevertheless have important functional consequences. This

is in agreement with recent findings in the field of soft robotics. Such studies show

how small amounts of passive deformation, provided by non-stiff materials, can signif-

icantly increase the functional capabilities, robustness, and versatility of under-actuated

hands [10, 21, 12]. Therefore, finding that some PCs that explain relatively little vari-

ance does not necessarily mean that the system has unnecessary DOFs or is functionally

redundant.

MATLAB toolbox All the simulations demonstrated in this chapter were performed

using a custom Neuromechanics toolbox written in MATLAB. This toolbox is available

at github.com/marjanin/Neuromechanics-Toolbox and at ValeroLab.org.
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Figure 2.13: 3D model of the five different hand gestures studied in this section. (a)
Power grip 1. (b) Power grip 2. (c) Precision grip 1. (d) Precision grip 2. (e) The Claw
gesture.
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(a) (b)

Figure 2.14: Spider plot representations of the 19 joint angles (a) Without dimensionality
reduction. (b) With only the first two PCs.
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mensionality reduction. (b) With only the first two PCs.
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3.1 Chapter summary

Robots will become ubiquitously useful only when they can use few attempts to teach

themselves to perform different tasks, even with complex bodies and in dynamical en-

vironments. Vertebrates, in fact, use sparse trial-and-error to learn multiple tasks de-

spite their intricate tendon-driven anatomies—which are particularly hard to control be-

cause they are simultaneously nonlinear, under-determined, and over-determined. We

demonstrate—for the first time in simulation and hardware—how a model-free, open-

loop approach allows few-shot autonomous learning to produce effective movements in

a 3-tendon 2-joint limb. We use a short period of motor babbling (to create an initial

inverse map) followed by building functional habits by reinforcing high-reward behavior

and refinements of the inverse map in a movement’s neighborhood. This biologically-

plausible algorithm, which we call G2P (General-to-Particular), can potentially enable

quick, robust and versatile adaptation in robots as well as shed light on the foundations

of the enviable functional versatility of organisms.

3.1.0.1 Author Contribution

A.M. led the development of the G2P algorithm, D.U.-M. led the construction of the

robotic limb, B.C. led the data acquisition and analysis. F.V-C. provided general direction

for the project. All persons designated as authors qualify for authorship, and all those

who qualify for authorship are listed. All authors also contributed to the conception and

design of the work, and writing of the manuscript.
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3.2 Introduction

Today’s successful control algorithms for robots often require a combination of accu-

rate models of the physical system, task, and/or the environment or expert demonstra-

tion of the task; as well as expert knowledge to adjust parameters or extensive inter-

actions with the environment [81, 3, 65, 109, 113, 83, 93, 36, 22, 9, 67, 58]. Even

then, many rely heavily on error corrections via real-time state observation or error feed-

back [65, 109, 36, 22, 143, 84, 33, 69, 131, 123, 47, 25]. Moreover, some prefer to

focus on simulated behavior of simplified systems and environments or limit the phys-

ical system to simple scenarios (e.g. only kinematical control) [93, 33, 69, 128, 117,

24, 7, 105, 86, 127, 136]. Although advances in machine learning demonstrate that RL

agents can achieve human-like performance in complicated tasks (e.g., video games),

or can find optimal strategies for mechanical tasks using evolutionary algorithms, those

studies are limited to computer simulations due to the numerous attempts needed for

the algorithm to converge[100, 132, 153]. In addition, some researchers seek to ap-

ply biologically-plausible principles from anatomy and neuroscience to develop versa-

tile robots and learning strategies [65, 83, 93, 131, 47, 7, 105, 97, 118, 82]. In particular,

there is need to develop feed-forward, model-free approaches that learn using limited

interactions with the environment (i.e., “few-shot” learning [129]), which could imbue

robots with the enviable versatility, adaptability, resilience, and speed of vertebrates dur-

ing everyday tasks [109, 9, 38, 6, 50]. This work presents a combination of hardware and

software advances (in contrast to much current work in robot learning which is done in
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simulations only) that demonstrate how a model-free, open-loop approach allows few-

shot autonomous learning to produce effective movements in a 3-tendon 2-joint limb.

Moreover, our approach (Figures 3.3.1 and 3.3.1) is biologically-plausible at two lev-

els: First, we use motor babbling—as do young vertebrates [29, 1]—to learn the general

capabilities of the physical systems (also called “plant” in control theory); followed by

reinforcement of high-reward behavior and refinements that are particular to the task

(i.e., General-to-Particular, or G2P). And second, we use tendons to generate torque at

each joints (Figure 3.3.1 and Supplementary Fig. 3.3.1) to replicate the general prob-

lem biological nervous systems face when controlling limbs [148] (which makes for a

simultaneously over-and under-determined control problem, see Methods) that may lead

to a class of robots with unique advantages in design, versatility, and performance [92].

This work also contributes to computational neuroscience by providing a biologically-

and developmentally-tenable learning strategy for anatomically-plausible limbs (Supple-

mentary Discussion).

3.3 Results

We show that the G2P algorithm can autonomously learn to propel a treadmill (while

supported by a carriage) without closed-loop error sensing, or an explicit model of the

dynamics of the tendon-driven limb or the environment (e.g., limb inertia, contact dy-

namics, or expected reward). We also show that execution of multiple attempts can itself
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lead to improvement in performance on account of a refined inverse map in the neighbor-

hood of the movement. Such cost-agnostic improvements serve as a proof-of-principle

of a biologically-tenable mechanism that benefits from familiarity with the task, rather

than teleological optimization, or even error-driven corrections.

3.3.1 Results for cyclical movements to propel the treadmill

A given run begins with a 5-minute motor babbling session where the time-history of a

pseudo-random control sequence (a 3-D time-varying vector of step changes of current

to each motor) is fed to the limb while its kinematics (joint angles, angular velocities

and angular accelerations) are measured by encoders at each joint (Fig. 3.3.1 shows an

overview of G2P). An Artificial Neural Network (ANN) then uses these motor babbling

data to create an initial inverse map from 6-dimensional kinematics to 3-dimensional

control sequence. A movement to propel the treadmill is parameterized by a closed

orbit in 2-dimensional joint-angle space that interpolates between the “feature vector”

of 10 evenly-distributed points (Fig. 3.3.1c). For a given cycle duration of 1s, this

defines the 6-dimensional limb kinematics: joint angles, angular velocities and angular

accelerations for each of the two joints; see Methods for details). Next, 20 replicates

of these kinematics are fed through the initial inverse map (lower-level control) which

produces 20 cycles of a control sequence (Fig. 3.3.1c). Those control sequences are

delivered to the robotic limb to produce 20 cycles. The reward for that attempt is a scalar

value representing the distance the treadmill was propelled backward, in millimeters
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(mm), as in forward locomotion. Reward for each attempt is provided to the system in a

discrete way (only after the attempt—20 cycles—is over).

A sequence of attempts (Fig. 3.3.1) within each run of the G2P algorithm (Fig.

3.3.1) uses the initial inverse map to start the exploration phase: the ten free parame-

ters of the feature vector are changed at random and the resulting dynamics are sent to

refine the inverse map. The resulting control sequence is fed to the motors to produce

limb movement until the treadmill reward crosses a threshold of performance set to 64

mm (empirically selected to lead to clearly observable propulsion). Thereafter, the ex-

ploitation phase of G2P begins: we use policy-based Reinforcement Learning (RL) with

stochastic policy search in which the feature vector is sampled from a 10-dimensional

Multivariate Gaussian distribution. The mean vector of this Gaussian distribution is the

best feature vector (i.e., that yielded the highest reward so far), and its standard deviation

(SD) values shrink as the reward increases (see Methods). Feature vectors sampled from

this Gaussian are used in subsequent attempts. Those that produce higher reward serve

as the new best feature vector (see Methods for more detail). This process resembles

an evolutionary algorithm and is similar to cross-entropy optimization method with the

distinction than here we just use one candidate solution (as opposed to a population of

solutions) and the SD is a function of the reward (as opposed to SD of the sub-population

with highest rewards). Each time a control sequence is applied (in either the exploration

or exploitation phase), the resulting kinematics are recorded, appended to the babbling

data and any prior attempts, and included in the next refinement of the inverse map (Fig.
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Figure 3.1: The G2P algorithm - Every run of the algorithm begins with (a) time-varying
babbling control sequences (activations A0 that run through the electric motors) that gen-
erate five minutes of random motor babbling (P0). These input-output data are used to
create an inverse (output-input) map ANN0 from limb kinematics to control sequences.
(b) Reinforcement learning begins by varying the ten free parameters of the feature vector
(FK) defining a cyclical movement. These movements can, in principle, propel the tread-
mill. ANN0 maps each candidate desired kinematics ( ˆ(PK)) into activation sequences
(AK) which will run the treadmill (PK being resulting kinematics) and yield reward (RK).
An attempt (K being the attempt counter) is when an activation sequence is repeated
twenty times and used to produce twenty steps worth of kinematic data. These kinematic
data are further processed and concatenated with all prior data to refine the inverse map
into ANNK . The total treadmill propulsion, if any, is the reward for that attempt. The
policy remembers only the best reward so far, and the task dynamics which generated
it. If a new best is found, the memory will be replaced. (c) If the new reward exceeds
the best so far (RB), the policy updates its memory of the best feature vector so far (FB)
and continues its search in the increasingly smaller neighborhood of that feature vector
by sending the resulting kinematics to the ANN. But note that data from all attempts
(whether they improve on the best so far or not) are used to refine the inverse map. Fig.
3.3.1 describes data processing for each run.
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3.3.1b). That is, every interaction with the physical system is used in the next attempted

refinement of the inverse map. This is analogous to trial-to-trial experiential adaptation

during biological motor learning40.

Fig. 3.3.1a shows the reward for each sequential attempt for 15 independent runs

labeled A—O. These color-coded stair-step lines show the best reward achieved thus far.

Our system was able to cross the exploration-exploitation threshold in a median of 24

attempts, and the subsequent exploitation phase showed median reward improvement of

45.5mm with a final reward median of 188mm (best run performance was 426.9mm).

Simulation results for the corresponding test are shown on Supplementary Fig. 3.3.1.

Fig. 3.3.1b shows that the system is able to learn families of related solutions (i.e., a

motor habit), and that—for each such family—high rewards can be achieved with both

high and low power consumption. This shows that energy minimization is not an emer-

gent property in this biologically-plausible system or learning strategy. However, if de-

sired, an energy optimization term could be appended to the reward to yield this property.

3.3.2 Results for free cyclical movements in air

The utility of familiarity with a task to produce incremental improvements (by increas-

ing the precision of inverse map) cannot be directly interpreted from the results in Fig.

3.3.1. This is because the reinforcement learning algorithm might, by itself, find a fea-

ture vector that yields high reward even with an imprecise inverse map. However, in

many applications, such as tracking a desired trajectory (a form of imitation), precision
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Figure 3.2: A run of the G2P algorithm in detail for the reward-driven treadmill task -
(a) Evolution of reward across the exploration and exploitation phases. The exploration
phase begins by using the initial inverse map ANN0 (Fig. 3.3.1) to attempt to produce
the cyclical movement defined by the first feature vector selected from a random uniform
distribution. The predicted control sequence is applied to the motors to produce twenty
cycles of movement that yield a particular treadmill reward (orange dot) and continues
to be changed until a feature vector is found that yields a reward above the exploration-
exploitation threshold (dotted line). It then transitions to the exploitation phase where
the feature vectors of the subsequent 15 attempts are sampled from a 10-dimensional
Gaussian distribution centered on the best feature vector so far. Motor babbling and se-
quential task-specific refinements of the inverse map: (b) Distribution of the proximal
and distal joint data from motor babbling (enlarged in Figure 3.4.2) and subsequent at-
tempts (color coded). (c) Babbling data (shown schematically as a blue bar) were used
to generate the initial inverse map (ANN0), and (d) concatenated with data from each
attempt to continually refine the inverse map (ANN1, ANN2, . . . ).
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Figure 3.3: Planar robotic tendon-driven limb - (a) General overview of the physical
system 1. Motor-joint carriage 2. Motor ventilation 3. Shaft collars 4. Joints (proximal
and distal) 5. Passive hinged foot. 6. Treadmill 7. Direction of positive reward 8. Linear
bearings on carriage (locked at a particular height during testing) 9. Treadmill belt 10.
Treadmill drum encoder. (b) Fully supported system 11. Frame 12. Absolute encoders
on proximal and distal joints 13. Ground. (c) Tendon routing 14. Three tendons driven
by motors M0, M1 and M2. (d) System actuation. Motor M1 drives only the proximal
joint ccw, while M0 and M2 drive both joints (M0 drives the proximal joint cw, and the
distal joint ccw, while M2 drives both joints cw). 15. Tendon channel.
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Figure 3.4: The treadmill task results - (a) Treadmill reward accrued in each of fifteen
independent runs, labeled A—O: All runs crossed the exploration-exploitation threshold
of 64 mm of treadmill propulsion (median of exploration attempts: 15). All runs showed
improvement, where the median number of attempts needed to reach the best reward of
each run was 24. (b) Reward vs. energy consumption (Mean power of an attempt): We
plot all attempts from runs which garnered a reward above the exploration-exploitation
threshold on the reward vs. energy consumption plane. We can then find the convex hull
representing them as a family of similar solutions, or a motor habit. For each polygon,
the peak reward (large dot) and the reward from the first attempt to cross the threshold
(triangle) are shown. We detect no right-to-left trend indicating that energy consumption
was spontaneously reduced as performance improved. Conversely, higher reward did not
always require higher energy consumption even though more external work was being
done to propel the treadmill the furthest.
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of this inverse map is crucial. We, therefore, performed two trajectory-tracking tasks in

air (with no explicit reward or real-time feedback) to evaluate the performance of G2P in

refining the inverse map during task-specific explorations for a given cyclical trajectory

as well as the generalizability of these refinements on unseen cyclical trajectories.

(A) Free cyclical movement in air for a single trajectory

The limb was suspended ‘in the air’ without making contact with the treadmill

while, as before, the initial inverse map was extracted from five minutes of motor

babbling data. For each run, this initial inverse map (ANN0) was incrementally

refined with data from each of five attempts, regardless of its tracking error over

the course of the attempt. Figures 5(a-i) show reduction of the Mean Square Error

(MSE) with respect to the attempt number for one sample run. Figures (A)(a-ii,-

iv). show the time history of actual achieved vs. desired joint angles for those same

five attempts (see Supplementary Fig. 3.3.1a-b for the simulation result of the cor-

responding test). Supplementary Fig. 3.3.1 also shows the boxplots of the number

of iterations for babbling and the following 4 refinements over 50 replicates using

data recorded from the physical system during this task.

(B) Generalizability of learned free cyclical movements in air

Although we have demonstrated how repeated exposure to a same task improves

performance of that task (A. above and (A)(a)), this does not speak to the general-

ization of a given inverse map to the execution of other unseen trajectories. Here,

we followed motor babbling with serial refinements over thirty randomly selected
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Figure 3.5: A run of the G2P algorithm in detail for the tracking of free cyclical move-
ments - (a) Improvements in performance resulting from 5 attempts at producing a target
cyclical movement defined by a given feature vector: (a-i) Boxplots of Mean Square Er-
ror (MSE). (a-ii to a-iv). Desired vs. actual joint kinematics. (b) Test of generalization
of refined model over unseen trajectories a, b,. . . , ad (see text): (b-i) MSE of the 30 test
trajectories executed using either an unrefined inverse map (only babble-trained, color
bars) or refined inverse map (sequentially over 30 other training trajectories, gray bars).
(b-ii) Histogram of percent difference in MSE for the results in (b-i) for each of the 30
unseen test trajectories.
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trajectories (features sampled from a uniform distribution within 0.2-0.8 range).

The trained inverse map was then “fixed” and evaluated for its MSE accuracy on

30 additional unseen random (same random distribution) trajectories (the test set)

without further refinement. Fig.(A)(b-i,-ii) show that this refined inverse map per-

formed better on the test set. This strongly suggests that refining a map with spe-

cific examples improves performance on a variety of test tasks and does not over-fit

to its training set. As such, the refined map captures well the complex mechanics

of the tendon-driven double-pendulum limb to produce dynamical cyclical move-

ments. This is very important since it means G2P can learn from every experience

and generalize it to similar tasks (see Supplementary Fig. 3.3.1c for the simulation

result of the corresponding test). The fact that we stack all data (babbling and ev-

ery new experience) to refine the ANN enables the system to improve performance

for other related tasks without forgetting the old ones (see Methods).

3.3.3 Robustness to Perturbation

In a variant of test A. above (after babbling and 10 refinement attempts), we struck the

limb with a metal rod once the system was moving at steady state. This blunt pertur-

bation pushed the limb away from its cyclical movement, but then the system returns to

its steady state behavior after ∼ 1 cycle (see Supplementary Video 2). Poincaré return

maps and stability analysis for these perturbation tests are available in the supplementary

information (see Supplementary Figures (A) and 3.4.2).
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3.3.4 Point-to-point and more complex non-cyclical movements

For the point-to-point tests, the system starts at an initial posture and then performs ramp-

and-hold transitions to each of 5 different positions in the joint angles space. For the

complex, non-periodic task, the system is instructed to follow a non-periodic trajectory

for each joint. Each of these trajectories consist of smooth and ramp-and-hold move-

ments (both in-phase and out-of-phase) of each joint (although the other joint might be

moving). This is particularly challenging because two of the tendons cross both joints, so

isolated movement of one joint requires coordination across all tendons. Supplementary

Video 2 shows an instance of each of these tests. The system (which operates open-

loop) reasonably performed both tasks. Supplementary Figure 7 provides these results.

Although the system’s performance for arbitrary and more complex movements needs

to be further investigated, these results serve as encouraging proof-of-principle that ex-

tends the utility of the G2P algorithm beyond cyclical movements—the focus of this first

investigation.

3.4 Discussion

The G2P algorithm produced two important results in the context of the challenging task

of few-shot learning of feedforward and robust production of a cyclical movement of a

tendon-driven system. This brings novel possibilities to robotics in general as it shows
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that a few-shot approach to autonomous learning can lead to effective and generaliz-

able control of complex limbs for movements and, by extension, a new generation of

biologically-plausible robots for locomotion, manipulation, swimming and flight. Given

its biologically-tenable features, G2P can ultimately also enable the control of neuromor-

phic systems (e.g., [95]) to help explain the versatility of neuromuscular systems.

3.4.1 How does G2P relate to the field?

The G2P algorithm’s main contribution is that it combines developmentally- and biologically-

plausible approaches in both hardware and software to autonomously learn to create

functional habits that produce effective feedforward behavior—where familiarity rein-

forces habits without claim to uniqueness nor global optimality. Moreover, it does so,

based on a data-driven approach that uses few-shots (i.e., limited experience) seeded by

motor babbling. Importantly, it does so in the physical world for a biologically-plausible

tendon-driven limb for complex dynamical tasks with and without intermittent contact,

and not just in simulation. We now discuss how this novel integrative approach compares

and contrasts with other work in machine learning, reinforcement learning and control

theory.

We used a model-free approach because precise prior knowledge of the system and

the environment is not usually available for dynamical tasks in the physical world [109,

36, 9, 38, 6]. This is also the case for systems that rely on experts to manually tune

system parameters, select the appropriate hyper-parameters or provide demonstrations
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of the task [109, 83, 93, 36, 67, 84]. Without such knowledge, the system often needs to

execute numerous iterations in the real-world, simulation (real-time or off-line) or both

to converge on adequate performance which can make the learning process costly [3,

9, 58, 127, 136, 100, 132, 153]. Therefore, data-driven model-free systems that do not

rely on prior knowledge and can learn with minimal experience are needed [9, 38, 6].

A common approach in robotics today is a compromise: use models of a system to first

develop controllers in simulation (e.g., [81, 3, 68]), and then deploy them in physical

systems (often known as transfer learning).

Although feedback can play an essential role in control; be it biological or engineer-

ing, whenever possible, feedforward systems are preferable. It is especially the case

where real-time computation is not available, the state cannot be observed reliably, or

when delays are large compared to the dynamics of the task [9]. Thus, real-time feedback

system can be costly for engineered and biological systems [109]. Alternatively, feedfor-

ward control using precise inverse maps can be used to minimize reliance on feedback.

Therefore, an efficient system should only utilize feedback when necessary. In fact, this

is even the case in biological systems where, for example, movement-related sensory

feedback is not necessarily needed for humans to learn to execute a motor skill [50].

Adequate performance in the physical world is a desirable property for any controller,

as it demonstrates its robustness to the full set of dynamics and disturbances. Successful

control of tendon-driven limbs in real-world physics is a challenging test of learning and

control strategies [3, 131, 86, 148, 92]. Roboticists find such anatomies particularly hard
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to control because they are simultaneously nonlinear, under-determined (many tendon

tensions combine to produce few net joint torques), and over-determined (few joint ro-

tations define how many tendons need to be reeled-in/payed-out) [148, 92]. Some have

successfully controlled such tendon-driven systems in the real world using feedback con-

trol of fingers18 and manipulation [3]. Others have used simulations to produce simple

tasks (hopping/point-to-point movements via manual tuning of parameters [93]). Our

work is a real-world demonstration of autonomous learning for feedforward control of

dynamic cyclical and discrete tasks in a tendon-driven system via few-shot learning and

minimal prior knowledge.

3.4.2 Familiarity reinforces habits

Motor babbling creates an initial general map, from which a control sequence for a par-

ticular movement is extracted. This initial prediction serves as a “belief” about the rela-

tionship between body/environment, and an appropriate control strategy. This prediction

is used for the first attempt that, while imperfect, does produce additional sensory data

in the neighborhood of a particular task. These data are subsequently leveraged toward

refinement of the inverse map, which then leads to an emergent improvement in perfor-

mance and reinforcement of useful beliefs.

Importantly, the details of a given valid solution are idiosyncratic and determined

by the first randomly-found control sequence that crossed the exploration-exploitation

threshold of performance (Fig. 3.3.1). Hence all subsequent attempts that produce
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experience-based refinements are dependent on that seed (much like a Markov process).

This solution and its subsequent refinements, in fact, are a family of related solutions

can be called a “motor habit” that is adopted and reinforced even though it has no claim

to uniqueness nor global optimality [57]. Biologically speaking, vertebrates also ex-

hibit idiosyncrasies in their motor behavior, which is why it is easy to recognize health

states, sexual fitness, identify individuals by the details of their individual movement and

speech habits, and even tell their styles and moods. A subtle but important distinction

is that these emergent motor habits are not necessarily local minima in the traditional

sense. They are good enough solutions that were reinforced by familiarity with a partic-

ular way of behaving. There is evidence that such multiplicity of sub-optimal, yet useful,

set points for the gains in spinal circuitry for discrete and cyclical movements45. Those

authors argue that it is evolutionary advantageous for vertebrates to inherit a body that

is easy to learn to control by adopting idiosyncratic, yet useful, motor habits created and

reinforced by an individual’s own limited experience, without consideration of global

optimality [57]. G2P uses a similar learning strategy.

Fig. (A)(a) also demonstrates familiarity as an enabler of learning, where we tested

the ability of to produce free cyclical movements in air, without contact with the tread-

mill—and hence without explicit reward. The performance of a particular free cyclical

movement improves simply on the basis of repeated attempts. This represents, essen-

tially, the cementing of a motor habit on the basis of experience in the neighborhood of
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the particular movement. Fig. 3.4.2 further shows 15 cycles of a particular free move-

ment in the interior of the joint angle space, even though is the most poorly explored

region during babbling. Importantly, familiarity with the neighborhood of a task need

not lead to overfitting that is only locally useful. Our cross-validation experiments in Fig.

(A)(b) show familiarity with one’s motion capabilities for some tasks seems to inform

the execution of other tasks. Note that the absence of a reward or penalty for particular

joint angles allowed the emergent solution to contain a portion where the distal joint is

at its limit of range of motion. This, however, need not be detrimental to behavior. For

example, human walking often has the knee locked in full extension right before heel

strike.

3.4.3 Task reward vs. energetic cost

Studying whether energetic efficiency during locomotion is an emergent property, or

must be actively enforced, is a longstanding question in motor control [79, 18, 66]. The

results in Fig. 3.3.1b are particularly interesting because they show that energy mini-

mization is not an emergent property in this system [30]. Fig 3.3.1a shows the sequence

of attempts from each run. Each family of attempts that perform above the exploration-

exploitation threshold (plotted with the polygonal convex hull that includes them; Fig.

3.3.1b) can be narrow or wide from the perspective of energetic cost (horizontal axis),

but nowhere do we see a general trend towards energy minimization within families (i.e.,

none of the convex hulls are shaped diagonally towards the top left). Conversely, one
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Figure 3.6: Distribution of joint angles visited during motor babbling vs. those used to
produce a free cyclical movement in air - Motor babbling is done under no supervision,
and in this tendon-driven double-pendulum primarily results in movements that rapidly
fly towards the extremes of the ranges of motion of each joint (84.3% lie in the shaded
within 5% of the joint limits (black lines).]). In contrast, the desired movement trajec-
tories require exploitation of the relatively unexplored internal region of the joint angle
space (orange points are 15 repeated cycles of a given cyclical movement).
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could have expected that movements that caused more propulsion would be more ener-

getically costly as they do more mechanical work against the treadmill, yet we also do

not see such a consistent trend diagonally towards the top right. This is not to say that the

high-level controller can add energy minimization as an element of the cost—although it

may jeopardize the ability of the limb to apply mechanical work to the treadmill. Energy

consumption may be necessary to regulate dynamic tendon shortening and lengthening

(i.e., internal strain energy) to produce proper kinematics—a consequence of the simul-

taneously over- and under-determined nature of tendon-driven limbs [148].

3.4.4 Limitations, opportunities, and future directions

For organisms, as for machines, there exists a trade-off between improving performance

via practice as each attempt carries the risk of injury, fatigue, and wear of tissues (e.g.

blisters, inflammation of tendons, stress fractures)—in addition to energy expenditure

and opportunity cost (i.e., spending time refining one task precludes learning a different

one in a zero-sum lifespan). The G2P algorithm is designed to yield reasonable—if

suboptimal— performance with limited data and no real-time feedback, but where the

system continues to learn from each execution of the task. But it is also amenable to

goal-driven refinements as each solution can serve as a starting point for subsequent

optimization or improvements via feedback-driven corrections (PID, Recurrent Neural

Networks, etc.).
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Our fundamental motivation is to replicate how biological systems learn to move in

a well-enough fashion when they must also limit the number of attempts using their own

bodies. Our biologically-plausible system, in both its algorithmic and physical imple-

mentation, can also provide insight into tenable biological mechanisms that enable ver-

tebrates to learn to use their bodies while mitigating the risks of injury and overuse—and

yet successfully engage in natural selection and predator-prey interactions—which are

the Darwinian arbiters in evolutionary success. The ingredients and steps of G2P are

all biologically-tenable (i.e., trial-and-error, memory-based pattern recognition, Hebbian

learning, experience-based adaptation [148]), and allow us to move away from the rea-

sonable, yet arguably anthropocentric and teleological, concepts dominating computa-

tional neuroscience such as cost functions, optimality, gradients, dimensionality reduc-

tion, etc. [1, 148, 92, 57]. While those computational concepts emphasizing optimality

are good metaphors, it has been difficult to pin down how one would be able to actu-

ally demonstrate their presence and implementation in biological systems45. In contrast,

G2P can be credibly implementable in biological systems. Our own future direction is

to demonstrate its implementation as a neuromorphic neuromechanical system, as we

have done for other sensorimotor processes [95] as well as developing and modulating

the features of more complicated behavior (such as locomotion) by adding some other

hyperparameters to control features such as step-frequency, stride-size, etc.
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3.5 Materials and Methods

In this section, we first introduce the control problem by describing the governing dy-

namics. Next, we go deeper into our learning and control algorithm (software). Finally,

we finish this section by providing insight into the physical design of our physical system.

3.5.1 System dynamics

Equ. 3.1 defines the relationship between the joint kinematics and the applied torques of

the limb [131] (forward model):

q̈ =−I(q)−1C(q, q̇)+Bq̇+ I(q)−1T (3.1)

where q ∈ R2×1, q̇ ∈ R2×1, and q̈ ∈ R2×1 are joint angle vector and its first and sec-

ond derivatives, respectively, I ∈ R2×2, C(q, q̇) ∈ R2×1 is Coriolis and centripetal forces

matrix, B(q̇) ∈ R2×2 is the joint friction matrix, and T ∈ R2×1 is the applied joint torque

vector. The musculotendon forces (here, cables pulled by the motors) are then related to

the applied joint torques vector as described in Equ. 3.2:

T = M(q)F0a (3.2)

where M(q) ∈ R2×3 is the moment arm matrix, F0 is a 3×3 diagonal matrix with the

maximal force values that can be exerted by each actuator and α ∈R3×1 is the normalized
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actuation value of each actuator [148, 92]. Please note this is an under-determined system

(3 input force values generate two torques) where there is redundancy in the production

of net joint torques at each instant. However, because the system is driven by tendons

that can pull but not push (and not driven by torque motors coupled directly to the joints,

as is common in robotics), joint rotations also depend on the ability of the controller

to pay out and reel-in tendon as needed, else the movement can be disrupted or the

system be non-controllable, respectively (this is why we use back-drivable brushless DC

motors and maintain tension in the tendons at all times). As such, these tendon-driven

systems present the challenge of being simultaneously under-and over-determined [148,

92]. The presence of constant tension in the tendons and friction in the joints (which can

be heard in our video, see Supplementary Video 1) help stabilize the system but also add

a deadband for control of subtle movements.

The goal of the inverse map is to find the actuation values vector (a) for any given

set of desired kinematics (q, q̇, q̈ without using any implicit model and only from the

babbling and task specific data. The mapping done by the ANN used in the lower-level

control of this study is described in Equ. 3.3.

a = ANN(q, q̇, q̈) (3.3)

Finally, the higher-level controller (in the RL task) is in charge of exploring the

kinematic space and converging to desired kinematic trajectories that yield high reward.

While these equations are effective for describing and controlling systems, we designed
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G2P’s lower level control with the premise that only the joint dynamics were observ-

able (while not being used in real-time), and that the only controllable element is α . As

a consequence, our system does not have any direct a priori conception of the model

structure or the constants that drive the dynamics; lower level control must infer those

relationships using training data from babbling and refine them after each attempt using

only task specific input-output data (without being provided with a desired or error signal

while refining the map after each attempt).

3.5.2 Learning and control algorithm

Learning and control in this first implementation of the G2P algorithm happens at two

levels: (i) inverse mapping and refinements (the lower-level control) and (ii) the reward-

based reinforcement learning algorithm (the higher-level control). The lower-level is

responsible for creating an inverse map that converts kinematics into viable control se-

quences (motor commands). The higher-level control is responsible for reward-driven

exploration (reinforcement learning) of the parametrized kinematics space which are fur-

ther passed to the lower-level control and ultimately run through the system.

3.5.3 Inverse mapping and refinements

The lower-level control relies on two phases. As system is provided with no prior in-

formation on its dynamics, topology, or structure, it will first explore it dynamics in a
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general sense by running random control sequences to the motors, which we call mo-

tor babbling. After 5 minutes of motor babbling, the system creates the initial inverse

map using the babbling data and then further refines this map using data collected from

particular task-specific explorations, which we refer to as task-specific adaptation. This

transition from motor babbling to adaptation to a particular task is the reason we refer to

this algorithm as General to Particular or G2P.

3.5.3.1 Motor Babbling

During this phase, the system tries random control sequences and collects the resulting

limb kinematics. A Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN) is

trained with this input-output set to generate an inverse map between the system inputs

(here, motor activation levels) and desired system outputs (here, system kinematics: joint

angles, angular velocities, and angular accelerations). Although sparse and not tailored

for any subsequent task of interest, data from these random inputs and outputs suffice for

the ANN to create an approximate general map based on the system’s dynamics.

Random activation values for the babbling The motor activation values (control se-

quences) for motor babbling were generated using two pseudo-random number genera-

tors (uniformly distributed). The first random number generator defines the probability

for the activation level to move from one command level to another. This value was set to

1/fs and therefore, the activation values for each actuator will change on an average rate

of 1Hz. The second number defines the activation level of the next state with sampling
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from a range of 15% (to prevent tendons from going slack; see Tendons subsection) to

100% activation. The resulting command signals were stair-step transitions in activa-

tions to each motor. Three command signals were created (using different initial random

seed) which ran three motors during the motor babbling. It is important to note that these

stair-step random activities are designed to explore general dynamics of the system and

are not tailored for any tasks performed during this study (see Fig. 3.4.2).

Structure of the Artificial Neural Network The ANN representing the inverse map

from 6-dimesional limb kinematics to 3-dimensional motor control sequences (Equ. 3.3)

has 3 layers (input, hidden, and output layers) with 6, 15, and 3 nodes, respectively. The

transfer functions for all nodes were selected as the hyperbolic tangent sigmoid function

(with a scaling for the output layer to keep it in the range of the outputs). The perfor-

mance function was selected as MSE. Levenberg-Marquardt backpropagation technique

was used to train the ANN and weights and biases were initialized according to the ac-

cording to the Nguyen-Widrow initialization algorithm. Generating and training ANNs

were performed using MATLAB’s Neural Network ToolBox (MathWorks, Inc., Natick,

MA; see MATLAB’s Deep Learning Toolbox—formerly known as Neural Network tool-

box—documentation for more details).

3.5.3.2 Task based refinements

Motor babbling yields sample observations distributed across a wide range of dynam-

ics, but still represents a sparse sampling of the range of state-dependent dynamical
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responses of the double pendulum (Fig. 3.4.2). As a result, this initial inverse map

(ANN0, Fig. 3.3.1) can be further refined when provided with more task-specific data.

The higher-level control will initiate the exploration phase using ANN0. However, with

each exploration, the system is exposed to new, task-specific data, which is appended to

the database and incorporated into the refined ANNK map (Fig. 3.3.1). This refinement

is achieved by using the current weights as the initial weight of the refined ANN and

training it on the cumulative data after each attempt. A validation set is used to stop

overfitting to the train data. The weights will not be updated for a run if the performance

over the validation deteriorates for 6 consecutive attempts (default settings for the used

toolbox). The data to be used to train the ANN was randomly divided into train, test, and

validation sets with 70%, 15% and 15% ratios, respectively. It is important to note that

refinements can update the map’s validity only to a point; if major changes to the physi-

cal system are experienced (changing the tendon routings or the structure of the system)

the network would likely need to re-train on new babbling data. This could be manu-

ally performed or a threshold for feedforward error could be set to activate re-babbling.

However, we found that motor babbling done strictly while the limb was suspended in

air nevertheless worked well when it was used to produce intermittent contact with the

treadmill to produce locomotion on the treadmill and there was no need to re-babble in

this study unless a motor, tendon cable, or link was replaced.
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3.5.4 The reinforcement learning algorithm for the treadmill task

A two-phase reinforcement learning approach is used to systematically explore candi-

date system dynamics, using a 10-dimensional feature vector, ultimately converging to

a feature vector that yields high reward. Similar to the ideas used in [49, 27] we have

simplified the task by parametrizing it to avoid having the RL agent explore all possi-

ble states in the motor activation space (and its corresponding kinematics space). We

have used a 10-dimensional feature vector to create cyclical trajectories. The goal of

the policy search RL here is to converge to a parameter vector that yields high reward

(treadmill movement). The use of a lower-level control to learn the inverse map enabled

us to use a policy-based model-free RL whole parameters are reduced to only 10 (feature

vector). The system will start from an exploration phase (uniformly random parameter

search) and once the reward passed a certain threshold, policy will change to a Multi-

variate Gaussian distribution based stochastic search centered on the feature vector that

yielded the highest reward so far (see below). Please note that the ANN in the lower-level

control only creates an inverse dynamical model between the motor activation values and

the joint kinematics (and has no information regarding the terminal reward: moving the

treadmill). The RL agent perceives this inverse model simply as a part of the environ-

ment. Therefore, this method should not be confused with model-based RL algorithms

where the agent utilizes a model to find actions whose predicted reward is maximal.
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3.5.4.1 Creating cyclic trajectories using feature vectors

At each step of the reinforcement algorithm, the policy must produce a candidate set of

kinematics. We defined ten equally-distributed spokes (each 36◦ apart; see Fig. 3.3.1c)

on the angle-angle space. We can then set the lengths (distance from the center) of each

spoke to define an arbitrary closed path that defines angle changes, which remains a

smooth, closed trajectory. The positioning of the spokes and center are defined by the

range of the babbling data. These ten lengths of the spokes are the 10-dimensional feature

vector. Using interpolation of these 10 locations, we yield an angle-angle trajectory, and

derivate those points (equally spaced in the time domain) to get the associated angular

velocities and accelerations, which fully describe joint kinematics in time domain. Using

the inverse map (lower-level control) these 6-dimensonal target limb kinematics (q, q̇, q̈)

will be mapped into the associated control sequences. The produced control sequences

(motor activation values) are then replicated 20 times and fed to the motors to produce 20

back-to-back repetitions of the cyclical movement. Repeating the task 20 times allows us

to smoothen the effect of unexpected physical dynamics of the task (e.g., system noise,

unequal friction values over the treadmill band, nonlinearities of the system, etc.) which

might lead to fluctuations in reward. The features were bounded in [0.1-1] range for the

treadmill task and [0.2-0.8] during the free cyclical movements experiments to provide

more focused task specific trajectories.
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3.5.4.2 Exploration phase

Exploring random attempts across the 10-dimensional feature vector space (uniform at

random in [0.1-1]; Equ. 3.1) eventually will produce solutions which yield a treadmill re-

ward. Exploration continues until either the reward is higher than a predefined threshold

or stopped when a maximal run number is surpassed (a failure).

3.5.4.3 Exploitation phase

Once the reward passes the threshold, the system will select a new feature vector in

the vicinity of the feature vector from a 10-dimensional Gaussian distribution, with each

dimension centered at the threshold-jumping solution. Much like a Markov process, with

each successful attempt, the 10-dimensional distribution will be centered on the values

of the feature vector which yielded the best reward thus far. The standard deviation

of these Gaussian distributions is inversely related to the reward (the distribution will

shrink as the system is getting more reward). The minimal standard deviation is bounded

at 0.03. This mechanism helps in converging to the behavior with higher reward and

explore their vicinity in feature space (forming high reward habits) within reasonable

time span but without any guarantee on finding global optima. This is analogous to

vertebrate learning behavior which can form efficient functional habits that may not be

optimal. The governing equations on generating the next feature vector to be executed

by the higher-level control are described in Equation 4:
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F̄ =


u( fm, fM) Rb < rewardthreshold

max(min(N (Fb,Σ(Rb), fM), fm) Otherwise

(3.4)

where u, and N are Uniform and Gaussian distributions, respectively, F̄ is the feature

vector of the next attempt, fm and fM are the min and max bounds for each feature in

the feature vector, respectively (0.1 and 1 in this test), R is the reward, Rb is the highest

reward so far, Fb is equal to the feature vector which yielded Rb and Σ(Rb) is described

as:

Σ(Rb) = σ(Rb)I10 (3.5)

where I10 is a 10 by 10 identity matrix, R is the reward, and σ is defined as:

σ(Rb) = (b−Rb)/a (3.6)

where a and b are scaling and bias constants, respectively. Here we empirically se-

lected values of a and b to 600 and 9000, respectively (Table 3.1). Please note that these

values only change the deviation of feature which will have an impact on the exploration-

exploitation trade off; we observed that the performance of the system is not very sensi-

tive to these values (i.e., the system will find an acceptable solution as long as reasonable

values are set for them).
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Table 3.1: Pseudo code for the RL algorithm

while R < Rewardthreshold
Fbar =Uni f orm[0.15,1]
R = execute(Fbar)

end
Fbest = Fbar
Rbest = R
f or i = 1 : 15

Fbar = Normal(Fbest ,sigma.∗ Identity(10))
Fbar = max(min(Fbar, fM), fm
R = execute(Fbar
i f R > Rbest

Rbest = R
Fbest = Fbar
sigma = (a−Rbest)/b

end
end

Between every attempt, the ANN’s weights are refined with the accumulated dataset

(from motor babbling and task-specific trajectories) regardless of the reward or rein-

forcement phase. This reflects the goal for our system to learn from every experience.

3.5.5 Simulations

We first prototyped our methods in simulation using a double pendulum model of a

tendon-driven limb (equations and code for the double pendulum simulation are adapted,

with modifications, from [122]). Similar to the physical system, our method proved to

be efficient in the simulation and yielded comparable results (Figures S2 and S3). These

simulations were kept isolated from the physical implementation, and its results were

never used as seeds for the physical implementation. It is important to note that similar
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to any other modeling attempt, these simulations are simplified representations of the real

physics. In addition, some values of the system are very challenging (if not impossible) to

measure (e.g. the moment arm value function; which is another reason on why we think

model-free approaches are an absolute need in this field). The simulations in this study

are mainly designed to test the feasibility of the algorithm before testing it on the real

system and are meant to only reflect the general structure of the system and parameters

of these simulation are not fine-tuned to accurately mimic the physical system.

3.5.6 Physical system

We designed and built a planar robotic tendon-driven limb with two joints (proximal with

a fixed height, and distal) driven by three tendons, each actuated by a DC brushless motor.

A passive hinged foot allowed natural contact with the ground. We used DC brushless

motors as they have low mechanical resistance and are backdrivable. The motor assembly

and proximal joint are housed in a carriage that can be lowered or raised to a set elevation

for the foot to either reach a treadmill or hang freely in the air (Figure 3).

We used the minimum number of tendons required to have full control on both joints

(a minimum of n+1 tendons are required where n is the number of joints) [148]. Further

considerations and part details can be found in the Supplementary Materials. Feasible

Wrench Set and Design Validation The feasible force set of a tendon-driven is defined

by all possible output force vectors it can create. Equation 3.7 describes the static output

wrench for a tendon-driven system [148].
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w = J(q)−T M(q)F0a (3.7)

where w represents the wrench (Forces and Torques) output and J(q)−T represents the

Jacobian inverse transpose of the limb which transforms net joint torques into endpoint

wrenches.

By evaluating all binary combinations for the elements in a, the resultant wrenches

give rise to a feasible force set. It is important to preserve the physical capability of the

tendon routing through the many iterations of limb design, so at each design phase we

computed these sets for different positions throughout the limb propulsive stroke. Joint

moment arms and tendon routings were simulated and ultimately built to have adequate

endpoint torque and forces in all directions which is important for versatility [148]. Many

other effective designs (different tendon routings, different link lengths, etc.) or design

optimization techniques can be used and their performances in the tasks performed here

can be evaluated; however, that is out of the scope of the current study.

3.5.6.1 Mechanical considerations

The carriage was attached to a wooden support structure, via linear-bearing and slide

rails to adjust its vertical position. A clamp prevented sliding once the vertical position

was set. Sandpaper was glued to the footpad and in strips across the treadmill to improve

traction (Fig. 3.3.1 a and b).
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3.5.6.2 Data acquisition

The control system had to provide research-grade accuracy and consistent sampling to

enable an effective hardware test of G2P. A Raspberry Pi (Raspberry Pi Foundation,

Cambridge, U.K.) served as a dedicated control loop operator—issuing commands to the

motors, sensing angles at each of the proximal and distal joints, and recording the tread-

mill band displacement (Figure 3 a and b). Furthermore, the electrical power consump-

tion for each motor was measured at 500Hz using current-sensing resistors in parallel

with the motor drivers, calculating the watt-hours over each inter-sample-interval, and

reporting the amortized mean power (watts) for the entire attempt. All commands were

sent, and data received, via WiFi communication with the Raspberry Pi as csv files.

3.5.6.3 Running the system

The limb is placed in a consistent starting posture before activations are run to mini-

mize variance in the initial conditions of the physical system. To aid development, a

live-streaming video feed was designed for real-time visualization on any computer on

the network (See Supplementary Video 1). A computer sends a control sequence to the

Raspberry Pi, and after it is successfully run, the computer receives (i) the paired input-

to-output data in csv format for iterative analysis or training, (ii) the net distance (mm)

covered over the course of the entire action, and (iii) the amortized power the system

consumed during the trial. Once data are collected, to calculate kinematics to train the
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inverse map, samples are first interpolated using their corresponding time labels to com-

bat the nonuniform inter-sample interval of 78±5Hz. Prescribed activation trajectories

are also served at this rate. The pipeline for data acquisition was designed with Python

3.6.

3.5.7 Data and Code Availability Statement

The source code can be accessed at https://github.com/marjanin/Marjaninejad-et.-al.-

2019-NMI. Also, all other data (run data for experiments as well as the 3D printing

files) can be accessed at:

https://drive.google.com/drive/folders/1FO0QJ2fBsdYCJs-h1LH7Iwb-wa0VPDi-?

usp=sharing.
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Chapter 4

Autonomous Control of a Tendon-driven Robotic Limb

with Elastic Elements Reveals that Added Elasticity can

Enhance Learning

Ali Marjaninejad1, Jie Tan2, and Francisco J. Valero-Cuevas1,3

1Department of Biomedical Engineering, University of Southern California, Los Ange-

les, CA

2Google Brain, Mountain View, CA

3Division of Biokinesiology and Physical Therapy, University of Southern California,

Los Angeles, CA

4.1 Chapter summary

Passive elastic elements can contribute to stability, energetic efficiency, and impact ab-

sorption in both biological and robotic systems. They also add dynamical complexity
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which makes them more challenging to model and control. The impact of this added

complexity to autonomous learning has not been thoroughly explored. This is especially

relevant to tendon-driven limbs whose cables and tendons are inevitably elastic. Here, we

explored the efficacy of autonomous learning and control on a simulated bio-plausible

tendon-driven leg across different tendon stiffness values. We demonstrate that increas-

ing stiffness of the simulated muscles can require more iterations for the inverse map to

converge but can then perform more accurately, especially in discrete tasks. Moreover,

the system is robust to subsequent changes in muscle stiffnesses and can adapt on-the-go

within 5 attempts. Lastly, we test the system for the functional task of locomotion and

found similar effects of muscle stiffness to learning and performance. Given that a range

of stiffness values led to improved learning and maximized performance, we conclude

the robot bodies and autonomous controllers—at least for tendon-driven systems—can

be co-developed to take advantage of elastic elements. Importantly, this opens also the

door to development efforts that recapitulate the beneficial aspects of the co-evolution of

brains and bodies in vertebrates.

4.1.0.1 Author Contribution

A. M. has designed experiments, wrote the code, run simulations and written the first

draft of the manuscript. F.V-C. and J. T. have provided guidance and feedback to the

manuscript and during each step of the experiment design and interpreting the results.
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4.2 Introduction

Elastic elements are known to contribute in a passive way to a number of advanta-

geous mechanical properties of robotic and biological systems. These include absorb-

ing impacts, storing energy and postural stability. By absorbing impacts, elastic ele-

ments reduce noise and prevent damage to the structural elements and actuators (link-

ages, hinges and motors in robots; and bones, joints, and musculotendons in animals)

or the environment [2, 154, 94, 55]. Also, opposing pairs of elastic elements act like

proportional controllers (that can only pull) that can passively grant postural stabil-

ity [124, 158, 5, 98, 102, 114, 121, 120]. It is also known that great energetic efficiency

can be achieved by storing and timely release of energy in elastic elements [94, 138, 48].

These benefits, however, come at a cost. They can add nonlinearities, hysteresis and

oscillatory modes to the system dynamics and, in general, make it harder to model and

find accurate and robust analytical control solutions [144]. This is especially the case for

analytical control methods that require precise models of the plant and the environment

to operate accurately [108, 23] which is, in general, infeasible for most real-world plants

and problems. Moreover, the mechanical properties of elastic materials are more often

susceptible to changes in environmental (e.g., temperature), and use-case (e.g., wear and

tear) factors.

An alternative approach to the control of plants with elastic elements would be to

use control methods that do not depend on prior models, are data-driven, autonomous, or

adaptable on the fly. However, the performance of these methods in dealing with added
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dynamical complexities introduced with the elastic elements has not been thoroughly

explored. Moreover, the robustness of such methods to changes in stiffness values or

operation in different functional regimes (e.g., nonlinear springs) needs to be addressed

as well. This is an under-studied problem especially on bio-inspired, tendon-driven sys-

tems.

Tendon-driven systems are particularly interesting because they can offer great func-

tional agility and versatility and freedom of design (e.g., actuator placement and tendon

routing) [92, 86, 148, 62, 142]. Moreover, they can help us better understand and even

approach the diversity and functional versatility of animals by shedding some light on

governing principles of vertebrate form and function [90, 87].

These systems, on the other hand, are harder for engineers to model and analytically

control for a number of reasons. To begin with, they are simultaneously under- and over-

determined as, respectively, multiple muscle forces can produce a same net torque at a

joint, yet a single joint rotation sets the lengths of all muscles that cross it. Thus, it can

be challenging to find solutions that satisfy all the constraints imposed by tendons and

by task specifications at the same time [90, 148]. Moreover, the fact that their actuators

are not directly operating on the degrees of freedom (as is the case in joint-driven sys-

tems), makes it challenging to use an off the shelf controller (such as a simple PID setup)

without having access to dynamical equations of the system or a forward or inverse kine-

matics model [91]. Also, these tendon-driven systems often require accurate modeling

and control strategies for applications such as animation of life-like figures [74], control
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of anatomical limbs to understand neurological conditions [70, 110, 57], or functional

electrical stimulation of limbs (e.g., [80] or [119]).

Here, we explored the efficacy of autonomous learning and control on a simulated

bio-plausible tendon-driven leg across different tendon stiffness values. For the sake of

generality, in this first study, we used two autonomous learning algorithms—one that

builds a data-driven explicit kinematics model of the limb vs. one that uses end-to-end

learning (see Methods)—to gauge the effect of elasticity of the actuators on learning and

performance. Our results show that autonomous learning (both with an explicit inverse

map and end-to-end) could learn to control the limb across all stiffness values. Our

results also show that an appropriate value of added stiffness can enhance the learning

and precision in all cases and even exhibit emergence of lower energy consumption. This

is of great significance because the elasticity that is inherent to some types of plants (i.e.,

tendon-driven systems) can now be leveraged to improve learning and performance.

4.3 Methods

In this paper, we studied how adding elastic elements affects autonomous learning in a

two-joint three-tendons simulated limb (similar to the physical system introduced in [90,

91]) in the MuJoCo environment [146](Fig. 4.1.a). The muscle model we use consist of

a contractile element with Force-Length-Velocity properties [146, 148], a small parallel

damper (100 Ns/m) and a parallel elastic element with stiffness value ‘K’ (see Fig. 4.1.b).

96



Specifically, we studied the convergence of the inverse kinematics map, how its perfor-

mance accuracy changes with stiffness, as well as its adaptability when learning with one

stiffness value and then performing using a different value.

As for learning, we used our autonomous few-shot hierarchical learning algorithm

General-to-Particular (G2P) [90], and the end-to-end Proximal Policy Optimization (PPO)

autonomous learning algorithm [137]. G2P is a hierarchical autonomous learning algo-

rithm that, on its lower level, creates an inverse kinematics map using output kinematics

collected from an initial random set of actuation commands (motor babbling). Systems

that use an explicit kinematics model are, in general, easier to study and interpret, more

data efficient and can generalize to a wider range of tasks; however, they can suffer from

inaccuracies in the model especially during complex dynamical interactions (e.g., contact

dynamics, injury to the body, or changes in the environment) [91, 90, 72, 20, 155, 107].

Systems that perform end-to-end learning (such as PPO), on the other hand, usually re-

quire larger number of samples to learn to perform a task, are harder to interpret due to

their implicit modeling, and usually cannot generalize well across tasks [77, 136, 137,

45, 100]. These methods, however, can achieve better asymptotic performance even in

challenging tasks.

4.3.1 Simulated experiments

For this study, we have performed three set of simulated experiments. In all simu-

lations, elastic elements are considered as parallel elements with each musculotendon
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Figure 4.1: (a) The studied tendon-driven limb in MuJoCo environment. (b) each mus-
culotendon consists of a muscle model (M), elastic element (K), and a damper (B).

(Fig. 4.1.b); the stiffness value of all elements are equal for each simulation and referred

to as “stiffness”. The details for each of these set of simulations are provided below.

4.3.1.1 Controlling the limb with different stiffness values in the muscle model

In this simulation, for each stiffness value, we first randomly activated muscles and

recorded the resulting kinematics (motor babbling [90]) for 3 minutes (100 samples per

second). The recorded kinematics are joint angles, angular velocities, and angular accel-

erations for both joints (a vector of 6 values). Next, we trained a Multi-Layer Perceptron

(MLP) Artificial Neural Network (ANN; one hidden layer with 15 neurons; trained for

20 epochs; 80% training 20% validation; loss function: MSE, optimizer: ADAM) with

kinematics as input and activations as output to form the inverse kinematics map (similar
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to [90, 91]). Finally, this inverse map was used to control the system to perform two

tasks: Cyclical and Point-to-point movements.

Cyclical movements In this task, the system was prescribed to move to generate a

perfect circle in its configuration space (joint angle space). I.e., Joint angles change

sinusoidal with π/2 phase difference. The frequency of these cyclical movements was

set to 0.7 Hz and the task was continued for 21 cycles (total of 30 seconds).

Point-to-point movements Unlike the cyclical movements task, which is a smooth

continuous task, the point-to-point task is consisted of discrete joint angle locations con-

nected with rapid movements. In this task, 10 independent random angles (sampled from

a uniform distribution within the range of each joint) are selected for each joint. The sys-

tem then is commanded to go to each joint angle pair and stay there for 3 seconds (total

of 30 seconds).

Similar to our previous work [90], we chose these tasks since they cover both extrem-

ities in the movement spectrum between continuous and smooth movements and discrete

movements with fast transitions. For each joint, we calculate the error as the Root Mean

Square Error (RMSE) of the difference between the joint angle and the desired angle in

Radians. We disregard the error for the first 25% of the signal to make sure any initial

condition effect is washed out [90, 91].
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4.3.1.2 Adaptability to changes in stiffness

Stiffness value of an elastic element can change as a function of many physical factors

such as temperature, wear and tear, etc. This can potentially endanger performance of

the autonomous control of a system even if the system performs accurately in absence of

any changes. This task is designed to study this effect as well as studying the feasibility

of adaptive learning on-the-go (without a need to stop the system and redo the babbling)

to compensate for these changes.

Here, we first perform the motor babbling for a system with an initial stiffness value

(let’s call it “A”) and train the inverse map with the collected data. Then, we change the

stiffness value (to let’s say “B”) and command the system to perform a cyclical movement

attempt (described above). After each attempt, we concatenate all collected data and

refine the inverse map using the cumulative data (refinement phase of G2P [90]). Here,

we are showing results for up to 5 refinements for a system the stiffness value of which

has changed (from “A” to “B”) as well as systems that performed both babbling and

refinements with the same stiffness value (“A” to “A” and “B” to “B”) to provide better

insight for a better comparison of the adaptation performance.
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4.3.1.3 Functional task of locomotion

Studying the ability of our system in creating an inverse kinematics map for different

stiffness values provides great insight into understanding the effects of stiffness on con-

trol and learning. However, a precise inverse map does not necessarily mean better per-

formance in performing functional tasks that also features contact dynamics [91]. Also,

most autonomous control methods do not use an explicit inverse kinematics map. There-

fore, it is important to study the effects of stiffness on the performance of the system for

a functional task. We chose a locomotion task that entertains contact dynamics, deals

with gravity and inertia, and yields a reward as a measure of success. For this task, the

limb is connected to a chassis that can move in x-axis (forward-backward) with friction

to stop the system from floating. The system can also move on y-axis (up-down) where

it is assisted with a spring-damper mechanism (similar to a gantry [91]). Please see the

Supplementary Video (Supplementary Information section) for the task in action.

We have performed this task with two leading algorithms in autonomous learning.

First, the G2P algorithm [90, 91], which is specifically designed to handle challenging

task of learning and adaptation with no prior model and only using limited experience

(which is a need in most real-world applications) and has proved to work well on the

tendon-driven systems. Second, we have chosen the PPO algorithm, which is one of

the leading end-to-end learning methods: for each observation, predicts activations that

will yield high reward. The G2P implementation was in a faithful manner to the original

paper [90], babbling time was selected to be 3 minutes, and the exploration-exploitation
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reward threshold was set to 3 meters of the chassis movement in the forward direction.

For PPO, we used the “PPO1” implementation from Open AI’s stable baselines reposi-

tory. We run the training for 5000 episodes (1000 samples each; sampling rate: 100Hz)

4.4 Results

4.4.0.1 Controlling the limb for different stiffness values

Fig. 4.2 shows the MSE over the training data as a function of the epoch number across

stiffness values. We see a consistent pattern in the training error curves in which sys-

tems with higher stiffness values start with larger error, yet once enough training rounds

(epochs) are performed, they exhibit the smallest training errors. This pattern can be

explained by the fact that more stiffness will add more dynamics to the system which

initially makes it harder for the ANN to catch, but once converged, these extra dynamics

can reduce the size of the solution space [17, 92, 148] (less ambiguity caused by the

under-determined nature of the system) and therefore make more precise predictions.

However, these MSE values only show how well the ANN could fit to the training data

coming from the motor babbling (see Methods). Therefore, to study its performance

across tasks, we now focus on the results collected from the cyclical and point-to-point

tasks. Fig. 4.3 shows RMSE values for this simulation across all tested stiffness values

(also see the Supplementary Video). We see that stiffness in the range of 2k-10k N/m

can significantly improve performance compare to zero stiffness or very high stiffness
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Figure 4.2: MSE over the training data as a function of the epoch number across stiffness
values (Average of 50 Monte Carlo runs).
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Figure 4.3: RMSE of joint angles as a function of stiffness for cyclical (dark blue) and
point-to-point (light blue) tasks. 50 Monte Carlo runs for each case.

values. This improvement is even more significant for the point-to-point task which is

explained by the fact that this task is more prove to the adverse effects of control in

under-determined systems (see Discussion and [92, 148]).

4.4.0.2 Adaptability to changes in stiffness

Fig. 4.4 shows the performance of the system trained and tested with different stiffness

values as well as its progress through refinements. Fig. 4.4 also shows the performance
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B A (light green) the other way around), as well as the performance of systems trained,
refined, and tested with the same stiffness values for baseline comparison (A A and B B,
red and dark green, respectively), 50 Monte Carlo runs for each case.

of systems trained, refined, and tested with the same stiffness values for comparison. In

Fig. 4.4, A and B correspond to 7K N/m and 2K N/m, respectively. Adaptability between

other stiffness values, in general, also followed the same pattern (in all error bars and

error shades in this paper, end to end height of whiskers/shades are equal to one standard

deviation of the data). Fig. 4.4 results show that it is feasible for a system to create an

initial inverse map and then adapt on-the-go while converging to similar performance

measures as if it did not have a change. This is important since it will prove the use of

elastic elements that are subject to change due to physical features (temperature, wear and

tear, etc.) to be feasible in real-world robotic systems. We used G2P here and showed the

feasibility of adaptation on-the-go to the changes in the tendon stiffness values. However,

we want to underline that other adaptive learning methods can also be used (e.g., [72,

20, 9]).
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4.4.0.3 Functional task of locomotion

In this section, we study the results for the functional task of locomotion for two au-

tonomous learning algorithms: A hierarchical one that creates and utilizes a map of in-

verse dynamics and one with end-to-end (actions to observable states) learning; Namely,

G2P and PPO (see methods). It is important to note that the focus of this section is to

study the potential effects and contributions of the elastic element on autonomous learn-

ing of the tasks in an unbiased manner and not maximizing performance (e.g., using

feedback to minimize the error [91], finding the optimal solution or the most efficient

one) or modifying the algorithms to do so.

Fig. 4.5 shows the results for the G2P implementation of the locomotion task for 50

Monte Carlo runs (also see the Supplementary Video). Fig. 4.5a shows the success rate

(if the algorithm found a solution that passes the 3m threshold within 100 exploration at-

tempts). This figure shows that except for very high stiffness values, the algorithm could

find a way to fulfil the task. Fig. 4.5b shows the ultimate reward for the successful at-

tempts. Since G2P algorithm is not strict on maximizing the reward (finds a good-enough

solution within few attempt), we cannot see any big distinction between these final re-

wards. Fig. 4.5c shows the energy consumption for the attempts with the ultimate reward

(here we define energy as the sum of squared activation values for all three muscles and

across time). This figure shows that the energy consumption for the mid-range stiffness

values is lower. It is important to note that we did not put an energy cost term in the re-

ward and therefore, this pattern is an emergent feature of the physics of the system. This
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Figure 4.5: Results of the locomotion task using the G2P algorithm. 50 Monte Carlo
runs for each case.
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Figure 4.6: Results of the locomotion task using the PPO algorithm. 50 Monte Carlo
runs for each case.

result justifies future studies that would focus on utilizing stiffness in reducing energy

costs. Lastly, Fig. 4.6 shows results for the PPO implementation of the locomotion task

for 50 Monte Carlo runs (also see the Supplementary Video; Negative values mean back-

ward displacement). Fig. 4.6a shows that all learning curves exhibit a consistent pattern

where systems with mid-range stiffness values raise faster and also end up with higher

ultimate rewards. Fig. 4.6b shows the first episode in which the Fig. 4.6a curves passed

an arbitrary reward cap (9m for this figure). The plot can slightly change based on the

selected threshold, but the pattern is consistent in that systems with mid-range stiffness
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values need less episodes to pass any reward cap. Finally, Fig. 4.6c shows the ultimate

rewards in which, again, consistent with all other findings of this paper, a mid-range stiff-

ness value resulted in higher performance. It is important to note that although the PPO

algorithm does not use an explicit inverse map, it builds an implicit inverse map which

justifies why the results are consistent with the ones coming from the G2P algorithm,

which uses an inverse map in a hierarchical structure.

One important point we observed in our simulations was oscillatory behavior (chat-

ter) in systems with very high stiffness (see Supplementary Video). The likely origin

of this is that high stiffness in the muscle model, we now see, can make the system

have modes at higher resonant frequencies (analogous to high gains for small errors in

a proportional controller) that can lead to instability and interfere with the numerical

integrator. This happens at high stiffness values even though our MuJoCo model has

mild damping and frictional losses distributed throughout the body (i.e., at joints, con-

tact model, muscles, etc.) to make the system more stable, realistic and numerically

efficient.

4.5 Discussion

Here we show, first, the feasibility of autonomous learning and adaptation in the pres-

ence of elastic elements in tendon-driven systems. And second, we provide evidence that

changes in the parallel stiffness of the actuators (i.e., muscle model) affects both learning

speed and performance. Our results are useful in that they show (i) fast learning and
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adaptation in systems known to be challenging to control with analytical approaches,

and (ii) great promise and opportunity for the design of robotic systems where tuning

the stiffness of the actuators can greatly enhance performance while leveraging the in-

herent passive properties of elastic elements that also grant stability and potential energy

efficiency with, importantly, minimal to no degradation in learning speed.

These findings are critical for the future evolution of robot design, which to date has

splintered into two main camps: ‘conventional’ robot design with rigid bodies and actu-

ators [156] vs. ‘soft robots’ that have few to no stiff elements [152]. Our work here now

points to a third option that can, in principle, combine the benefits of both approaches by

populating the spectrum between them. In our prior work, we have emphasized that the

design space of tendon-driven systems must include both the topology of the limb (i.e.,

the number, type and connectivity among its elements) and the parameters of the indi-

vidual elements (e.g., joints, linkages and tendons) for both robots and musculoskeletal

systems [52, 149]; we have also explored the extreme case of purely data-driven locomo-

tion of tensegrity structures [130] and limbs [90]. However, that work did not explicitly

explore the consequences of elasticity to learning per se.

We now argue that elasticity is an inevitable element of tendon-driven robots and

biological systems (see Introduction), and thus must be systematically and explicitly

considered in this current AI wave seeking to develop autonomous learning for robots,

and to understand neuromuscular control in animals. As such, our results argue for,

and enable, the co-development of robot bodies and autonomous controllers that take
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advantage of elastic elements, which can lead to improved learning and performance—

while also taking advantage of its intrinsic benefits of stability, energetic efficiency, and

impact absorption. It is important to underline that the main focus of this study was not

to optimize for performance or energy efficiency. Moreover, we used two of the most

recent algorithms that prove to be suitable for the test case in hand but similarly, other

state of the art algorithms can also be used in the future to control these systems. Our

results, therefore, open the door to development efforts that recapitulate the beneficial

aspects of the co-evolution of brains and bodies in vertebrates.

One particularly interesting observation from Fig. 4.2 is that it was initially easier for

the ANN in G2P to fit to the data when the muscles had low stiffness values. And then,

after a few epochs, the fit was better with higher stiffness values. This suggests that, in

principle, learning would be optimized if one were to start out with low stiffnesses that

increased over time. This is paralleled by the fact that most vertebrates start their life

with a more compliant anatomy which stiffens with development [141, 115, 37]. In our

prior work, we have discussed in detail how the over-determined nature of tendon-driven

systems with stretch reflexes in the muscles can make them difficult to control [148]. This

is because the rotation of a joint will be impeded or disrupted if even one of the muscles

that crosses it fails to lengthen (via its stretch reflex). That is, multiple constraints (i.e.,

lengthening of muscles) must be satisfied when driven by few variables (i.e., join angles).

Such over-determined systems, which have more variables than equations, have at most

one solution and are solved in practice via least-squares error methods. In such methods,
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a solution is found by finding a set of variables that violate the constraint equations

the least (in a Euclidean norm or sum-of-squares sense). This is why, in the past, we

have called the elasticity of musculotendons (the combinations of muscle and tendon)

as a ‘critical enabler’ of the neural control of smooth movements [148]. The results

Fig. 4.2 bear this out: it is easier to learn to control tendon-driven system where low

stiffnesses at the muscles provide a large error margin for muscle lengths at the expense

of performance; but stiffening the system once the initial learning has taken place will

improve performance. This, in a sense, is a form of morphological curriculum learning

that can enable new thinking about ‘developmental robotics,’ where changes that happen

within an individual’s life span improve learning and performance, echoing the work of

Bongard where morphological changes within a single individual aid learning [8]. This

is an interesting path for future work and is distinct from ‘evolutionary’ robotics that

occurs over multiple generations of individuals.

Other future work could focus on the development of hardware/software to exploit

these benefits of elastic elements, especially in tendon-driven systems. This also opens

up opportunities for testing autonomous learning algorithms and assessing their perfor-

mance in more sophisticated designs (such as bipeds or quadrupeds, especially in their

physical implementations), and more challenging tasks and environments. It is impor-

tant to note that this study worked within the abilities and limitations of MuJoCo, which

implements a very particular version of a Hill-Type muscle model that does not include a

tendon with the elasticity and viscosity parameters of the aponeurosis and tendon [148].
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The stiffness values that we changed in the muscle model are those for the parallel elastic

element to the force generating module that uses a simple approximation to the force-

length and force-velocity properties of muscle [146, 148], and does not contain the natu-

ral spinal closed-loop control (i.e., afferentation) of muscles [104]. Studying the effects

of the series elastic element (which, by the way, is also the stress-strain curve of a me-

chanical cable in a robot) would be an interesting and necessary path to follow in the

future work.
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Chapter 5
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Learning in Bio-Inspired Tendon-Driven Systems
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les, CA
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5.1 Chapter summary

Error feedback is known to improve performance by correcting control signals in re-

sponse to perturbations. Here we show how adding simple error feedback can also accel-

erate and robustify autonomous learning in a tendon-driven robot. We have implemented

two versions of the General-to-Particular (G2P) autonomous learning algorithm using a
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tendon-driven leg with two joints and three tendons: one with and one without real-time

kinematic feedback. We have performed a rigorous study on the performance of each

system, for both simulation and physical implementation cases, over a wide range of

tasks. As expected, feedback improved performance in simulation and hardware. How-

ever, we see these improvements even in the presence of sensory delays of up to 100 ms

and when experiencing substantial contact collisions. Importantly, feedback accelerates

learning and enhances G2P’s continual refinement of the initial inverse map by providing

the system with more relevant data to train on. This allows the system to perform well

even after only 60 seconds of initial motor babbling.

5.1.0.1 Author Contribution

A. M. has designed experiments, wrote the code, run simulations and hardware exper-

iments, written the first draft of the manuscript. D. U-M. has designed the physical

system and contributed in hardware experiments and to the manuscript. F.V-C. has pro-

vided guidance and feedback to the manuscript and during each step of the experiment

design and interpreting the results.

5.2 Introduction

The field of robotics in general would benefit greatly from autonomous learning to con-

trol movements with minimal prior knowledge and limited experience [90, 72, 103].
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Figure 5.1: Physical tendon-driven robotic limb (left) and the simulated system in Mu-
JoCo environment (Right)
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Figure 5.2: Schematic of the closed-loop system
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Extensive trial-and-error experience in the real world can be very costly both in biolog-

ical and robotic systems. Not only does it risk injury, but the opportunity cost can be

large. Therefore, evolutionary game theory in biological systems favors systems that can

function suboptimally or well-enough with only limited experience and continue to learn

on-the-go from every experience [90]. Biological systems can then use sensory feedback

to refine performance as needed.

Such learning from limited experience is also attractive in robotics [72, 90], mostly in

situations where optimality is not as critical as adaptability to unstructured environments,

unpredictable payloads, or working with systems for which creating accurate models is

costly or time consuming. Thus, data-efficient learning that produces suboptimal behav-

ior can be a practical and attractive control strategy as it does not rely on accurate prior

models or extensive expert knowledge [65, 93, 101, 36, 33, 131, 47, 69] , or require

thousands of hours of or learning in simulation [100, 143, 45, 3, 137, 136] (please see

[90] for detailed discussion on how our General-to-Particular (G2P) algorithm relates to

the field).

A drawback of learning with limited experience that produces suboptimal behavior

is that the performance of the model can degrade when encountering dynamics far from

those under which it was trained. On the other hand, systems that heavily depend on

the feedback error correction would not perform efficiently and are prone to instability,

especially in the presence of sensory delays[9, 90]. Moreover, it is important to note that

in a tendon-driven system, actuation is not directly connected to the joint and therefore, a
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simple off-the-shelf PID controller cannot be used without knowing the dynamical equa-

tions of the system [90, 148, 92]. Thus, here we explore the combination of data-efficient

learning algorithm, G2P, with simple feedback to maintain the key benefits of learning

under limited experience while improving performance and robustness to perturbations

(or unmodeled dynamics) as needed. This approach is directly inspired by biological

systems that, under certain circumstances, successfully use simple corrective responses

triggered by delayed and non-collocated sensory signals [99, 14, 13].

As an initial proof-of-principle, we implemented two versions of the data-efficient

autonomous learning algorithm, G2P [90] (that is originally designed to control tendon-

driven systems) : One purely feedforward (open-loop) as published in [90], and one

with simple feedback on joint angles (closed-loop). Both implementations of G2P find

motor commands that produce desired leg kinematics by creating an inverse map. The

initial inverse map is generated from “motor babbling” input-output data (i.e., random

sequences of input commands to the three motors driving the tendons that produce time

histories of two joint angles of the leg). We find that the performance is, as expected,

better for the closed-loop system as it compensates for errors in the leg joint angles

arising from imperfections of the inverse map or external perturbations (e.g., contact

dynamics). However, we also find that, by collecting more task relevant data, this simple

feedback accelerates learning and improves the quality of the inverse map that enables

the system to work with shorter motor babbling sessions and also improves learning on-

the-go capability (the refinement of the inverse map from each experience) of the system.
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In addition, we also report improved performance even when sensory signals are delayed.

We have validated our method on a physical tendon-driven leg to demonstrate its utility

in real-world applications.

5.3 Methods

In this section, we first discuss the design of the tendon-driven system. Next, we for-

mulate and describe the controller design. Lastly, we discuss the tests we performed in

detail.

5.3.1 Tendon-driven leg design

Tendon-driven anatomies are a relevant use case because they are difficult to control as

they are simultaneously nonlinear, under-determined and over-determined [92, 148, 90,

17]. The simulated leg is a similar design to the physical leg used in [90]. It is a 2-DoF

planar leg actuated with 3 (minimal number of tendons to control a 2-DoF leg) tendons.

Unlike [90], the simulation model uses a Hill-type model of skeletal muscle (MuJoCo’s

built in force-length and force-velocity model [146, 148] and has moment arms that can

bowstring. The physical system used for validation is a replica of the one used in [90]

with an improvement on the data acquisition system (we use PXI system from National

Instruments, Austin, TX, USA). Fig. 5.1 shows the tendon-driven legs for the physical

and the simulation systems.
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5.3.2 Controller design

Our system takes desired movement kinematics (joint angles for each joint and their

first two derivatives; angular velocities and angular accelerations) and outputs activation

values that will drive the actuators (skeletal muscles in simulation and electric DC motors

connected to the tendons on the physical system) to produce the desired kinematics on

the leg.

The feedforward path consists of an inverse mapping that maps the desired kinemat-

ics to the activations that will ideally (in the case of a flawless inverse map and without

any perturbation) create activations required to replicate the desired kinematics on the

plant (Fig. 5.2). This inverse map is created by training a Multi-Layer Perceptron (MLP)

Artificial Neural Network (ANN) with 15 hidden layer neurons using the data collected

during a short phase (5 minutes) of random movements and observing their correspond-

ing kinematics which is called motor babbling (please see [90] or the supplementary

code for more details on the feedforward path). Once the activations are calculated, they

will be fed into the plant and the corresponding kinematics will be recorded. These ob-

servations can then be used in a feedback loop to compensate for any error in the inverse

map or the error caused by external perturbation.

Here we only use joint angles as the real-time sensory feedback. Also, we mainly

focus on reducing the error on the joint angles (as opposed to its derivatives) since error

in joint angles is less forgiving than joint velocity or acceleration in successful compila-

tion of most day to day tasks either being manipulation, locomotion or other movements;
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however, if desired, user can substitute the error term with the angular velocity or accel-

eration or a weighted combination of them. We know that for a given joint, joint angle

and angular velocity are related by equation 5.1.

∆q = q̇ . dt (5.1)

where t is time. Therefore, we can compensate the error in position by changing the

velocity corresponding to the magnitude and the direction of the error. We implement

a PI controller like method where we add an adjustment term to the desired angular

velocity of each joint proportional to its current and cumulative error (see discussions

for alternative choices). Equations 5.2- 5.6 describe relationships between all system

variables over a complete loop:

a[n](3×1) = ANN(qc[n] (2×1), q̇c[n] (2×1), q̈c[n] (2×1)) (5.2)

where a[n] is the activation vector at time sample n and qc, q̇c, and q̈c, are joint angle,

control angular velocity and control angular acceleration, respectively. These control

variables are calculated as follows:

qe = qd−qp (5.3)

q̇a = KP (2×2) qe +KI (2×2)

∫
qe . dt (5.4)
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q̇c = q̇d + q̇a (5.5)

q̈c = q̈d, qc = qd (5.6)

where subscripts d, p, e, and a stand for desired, plant, error, and adjustment, respec-

tively. Also, KP and KI are diagonal matrices defining the proportional and integral

coefficients for each joint. The complete schematic block diagram of the closed-loop

system is depicted in Fig. 5.2.

5.3.3 Studied tasks

To demonstrate the performance of the proposed method and its capabilities, we have

tested it in a number of different cases, each of which demonstrates at least one of its

prominent features. Wherever applicable, we have compared the results with the ones

produced by the open-loop method used in [90].

5.3.3.1 Cyclical movements in-air task

During this task, the leg is suspended in-air (i.e. no contact dynamics/external perturba-

tions involved) and is commanded to perform 50 random cyclical patterns (10 cycle with

2.5 seconds each). Since there are no external perturbations applied to the system in this

task, an ideal inverse map should be able to perform it flawlessly. However, the inverse

map trained with limited experience is almost always imperfect; during this task we will

study the effect of the proposed closed-loop system on reducing these imperfections.
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These patterns are created by projecting a vector of 10 random values sampled from a

uniform distribution (U(0,1)) into joint angle space as described in [90]. In short, each

random number defines the normalized radial distance from the center of the joint angle

space of one of equally distributed spokes (each 36 degrees apart) and then, these points

will be connected and the resulting closed cycle will be filtered to make it smooth (see

[90] for more details).

5.3.3.2 Point-to-point movements in-air task

Unlike the continuous and smooth cyclical task, point-to-point task is consisted of dis-

crete ramp-and-hold movements. Since the inverse map was trained with random ac-

tivations (motor babbling), it would be interesting to study how it performs when the

desired task involves maintaining joint angles in specific positions (both angular velocity

and accelerations will be equal to zero in all these positions). The point-to-point task is

designed to study these cases and involved 50 trials where in each trial the leg is going

to be commanded to go to 10 random positions (U( jointmin, jointmax) for each joint) and

stay there for a predefined duration (2.5 seconds here).

5.3.3.3 Different cycle period durations task

During the motor babbling, the inverse map is introduced to a very sparse set of samples

in the 6D kinematics space [90]. Although it has fully swiped across joint angles for

both joints during the motor babbling phase, there are many combinations of these angles

with their angular velocities and accelerations that will not be experienced. Here we are
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going to study the performance of the system for perfectly cyclical movements (sin and

cos) over a wide range of cycle periods (1 / cycle frequency) to investigate how well the

open-loop system performs in each case and to compare the performance of the proposed

feedback controller.

5.3.3.4 Performance in the presence of contact dynamics tasks

Dealing with contact dynamics is a current challenge in robotics [25, 26]. Therefore, it

is important to test the performance of the proposed method in the presence of contact

dynamics. We have shown that the open-loop system can perform well when introduced

to minor contact dynamics[90]; however, the performance of the system has not been

studied under the effect of significant contact dynamics caused by the need to push the

system forward/backward in the presence of an antagonist force or the need to carry its

own weight (note that the system was trained in-air and therefore adding weight will be

a major change to its dynamics). Here, we have studied the performance of the system

during two tasks both including contact dynamics.

Locomotion with the gantry In this task, we have lowered the chassis (so that the

leg can touch the floor) and let it move on the x-axis (forward/backward) with friction.

Moreover, we have held it up with a spring-damper (build-in features in MuJoCo) so that

it can partially compensate for the weight (similar to a gantry). Similar to the “Cyclical

movements in-air”, here we have applied 50 different cyclical movements and studied the

performance of the system. Please note that here we are simply applying random cyclical
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movements to compare open-loop and closed-loop performance; however, a higher-level

controller can also be used to find better movement trajectories to yield higher forward

displacement [90].

Holding a posture under a weight In this task, we took off the spring-damper mech-

anism provided by the gantry and increased the weight of the chassis significantly. The

goal here for the leg is to stay vertically straight (standing leg position) while reacting to

a strong downward force applied to it, due to the added weight of the gantry.

5.3.3.5 Learning from each experience task

Experience can be very costly in real-world physical systems [90] and therefore, an ef-

ficient system should be able to start performing as soon as possible and improving the

performance with the data coming from each experience. During this task, we start

with an inverse map created using a shorter duration (1 minute) and run the system on a

cyclical task for 25 repetitions; after each repetition, we refine the inverse map with the

cumulative data from all the experience that the system had so far (including the motor

babbling). We repeat this process for 50 different cyclical trajectories.

5.3.3.6 Variable feedback delay task

Delay in the sensory feedback or processing information is inevitable in real-world ap-

plications. In a system that solely depends on error correction, these delays can inject

large errors and even drive the system to instability. We have studied the performance of
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the system over a wide range of loop delays (from 5 to 100 ms; which is about the largest

delay in the human sensory-motor loop) over 50 random cyclical movements.

All tasks were performed on both simulation (sim) and physical (phys) systems ex-

cept ”performance in the presence of the contact dynamics” and ”variable feedback de-

lay” tasks which were only performed on simulation due to physical limitations. Also,

physical results for the ”learning from each experience task” has already been studied on

[90].

5.4 Results

In terms of the error (root mean square error between joint angles to the desired reference

trajectories; will be referred to as “error” from here on), as expected, we see the closed-

loop control architecture reduces the error compared to the open-loop one in all cases.

Fig. 5.3 shows the average error for the open-loop and the closed-loop system across all

tasks.

5.4.1 Cyclical movements in-air task

Fig. 5.4 shows a sample trial of the cyclical movement in-air task for the physical system

(also see supplementary information section for the supplementary video). This figure

shows that the error is larger at the distal joint compared to the proximal joint. This

is because all three tendons cross the proximal joint first, thus errors propagate to, and

accumulate at, the distal joint.
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Figure 5.3: The average error for open-loop and closed-loop systems across all tasks.

For all “sample run” plots that were performed in both simulation and the physical

system (Figs. 5.4, 5.5, and 5.7) we observe very similar patterns and are only reporting

the physical system results here. The reader, however, can access all plots in [91].

5.4.2 Point-to-point movements in-air task

Fig. 5.5 shows a good example of the limitations of an open-loop system (also see sup-

plementary video). When the system is commanded to go to a new position, it can do

so—except in cases where the commanded change is small. The inverse map may not

have sufficient resolution to implement such small changes. Also, please note that both

angular velocities and angular acceleration inputs will be zero (except during the transi-

tions which are very short) and the system needs to go to the right position based only

on joint angle values. However, the closed-loop system detects and corrects those errors.
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Figure 5.4: The desired (black), open-loop (blue), and closed-loop (orange) joint angles
for one trial of the cyclical movements in-air task.
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Figure 5.5: The desired (black), open-loop (blue), and the closed-loop (orange) joint
angles for one trial of the point-to-point movements in-air task (over one sample run).
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Figure 5.6: Error values for different cycle period durations task as a function of cycle
duration for the open-loop and the closed-loop systems (sim: simulation; phys: physical
system).

Importantly, this also improves the on-the-go training of the inverse map (see learning

from each experience task). Note the unavoidable small fluctuations around the desired

location, which are naturally caused by having a simple error correction feedback strat-

egy. Better tracking can be achieved with more sophisticated closed-loop controllers, but

that is beyond the objective and scope of this work.

5.4.3 Different cycle period durations task

The simple proportional-plus-integral feedback on joint angles has a limited bandwidth.

We expect, and see, that its ability to correct errors degrades for cyclical movements with

shorter cycle periods (i.e., higher frequencies). Fig. 5.6 shows improved performance

of the closed-loop system for cycle period durations longer than ∼ 2 seconds for both
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simulated and physical systems. As expected, the open-loop system also has problems at

short cycle periods (due to effects of inertia, excitation of the nonlinearities of the double

pendulum, bandwidth of the motors, etc), but the error does not improve as the cycle

periods lengthen. The closed-loop system plateaus at a small average error of 0.1-0.2

radians per cycle quickly and then continues to reduce slowly. The error in the open-

loop system, in contrast, has an error that is roughly twice as large with minimum at

periods of ∼ 1.5−2 seconds, which is perhaps closer to the region it experienced during

babbling and also close to the system’s resonant frequency. Fig. 5.7 shows the desired

and actual outcomes of the task (for both open-loop and closed-loop systems) over one

sample run for a 2.5 seconds cycle period (also see supplementary video).

5.4.4 Performance in the presence of contact dynamics tasks

5.4.4.1 Locomotion with the gantry

This leg system was designed to ultimately produce locomotion. Therefore, we tested in

simulation how the closed- and open-loop systems performed this task. When introduced

to mild ground contact (barely swiping the ground) both methods performed similarly

well and comparably to the in-air task—albeit with a slightly larger error. However,

when the simulated gantry was brought lower (and therefore more substantial contact

dynamics were introduced), the open-loop system failed to clear the ground and could

not complete the movement cycle to match the desired trajectories (see supplementary

video and Figs. 5.3 and 5.8). In contrast, the closed-loop system was able to complete
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Figure 5.7: The desired (black), open-loop (blue), and the closed-loop (orange) joint
angles for one sample run of the different cycle period durations task with a cycle period
of 2.5 seconds.

the swing-phase and recover from the ground contact (see Supplementary video), which

then resulted in very small errors even in the presence of these contact dynamics. This is

expected as contact dynamics can be thought of as physical perturbations that were not

included in the motor babbling. Thus, the open-loop system naturally performs poorly

(even with a well-refined, accurate inverse map). However, it was important to see that

even simple feedback was able to compensate for such strong unmodeled, perturbations.

5.4.4.2 Holding a posture under a weight

In our simulations, we also observed that the open-loop system cannot compensate when

a weight is applied to the chassis of the leg (the leg collapses under the weight). In

contrast, the closed-loop system compensates—as much as the strengths of the muscles
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Figure 5.8: The desired (black), open-loop (blue), and the closed-loop (orange) joint
angles for one sample run of the locomotion with the gantry task.

allow—for the deviation from the desired posture and maintains the prescribed posture

which is standing vertically (see Supplementary Video).

5.4.5 Learning from each experience task

Biological systems subject to Hebbian learning reinforce or attenuate synaptic connec-

tions with each experience [44, 40]. Similarly, the G2P algorithm adds the input-output

data from each run (i.e., experience) to its database and recalculates (i.e., refines) the

inverse map with all available data before the next run (i.e., warm start of the ANN).

Fig. 5.9 shows the mean and standard deviation of error over 50 random cyclical move-

ment tasks as a function of refinement number after each experience for both the open-

loop (blue) and the closed-loop (orange) systems. Both systems exhibit the expected
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reduction of error with increasing experience. However, this trend is accelerated in the

closed-loop system where both the mean and the standard deviation of the error plateau

after only 6 refinements.

We believe that the more relevant data collected by the closed-loop system contributes

to this. To test this idea, after each refinement, we tested both systems with switched in-

verse maps. This will distinguish contribution of the error correction of the feedback

signal from the potential contribution of a more precise inverse map. Open-loop system

shows accelerated learning and smaller error when using the inverse map trained by the

closed-loop data (green). Also, although the error for the closed-loop system with either

inverse model is very small and plateaus fast (after∼ 5 refinements), it has smaller mean

and standard deviation with the inverse map trained with data collected by the closed-

loop system. The p-value between the 50 trials of the last refinement of closed-loop

systems using closed-loop and open-loop inverse maps (orange and red curves, respec-

tively) was 3.0927e-04. This measure for the open-loop systems (green and blue curves)

was 1.0234e-07. These results show that not only does closed-loop system reduce error

by commanding correction signals, but it also enhances the refinements of the inverse

map by providing more task specific data at each attempt.

To demonstrate that the system will not suffer from overfitting with the proposed

method and will allow generalization at the same time with improving the inverse map

on-the-go, we also tested refinements for both systems for 50 random cyclical move-

ments introduced back to back and saw similar descending trend in the error even for the
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movement cycles that were not experienced before. These on-the-go improvements of

the inverse map are consistent with the physical system results (without real-time feed-

back) that we have previously reported in [90]. Note that the babbling data are always

included in the refinements (as the original version of G2P [90] to make sure it will not

overfit to experience alone.

5.4.6 Variable feedback delay task

Fig. 5.10 shows error over 50 random cyclical movements as a function of increasing

feedback delay from 5–100 ms. We plot open-loop error (red wireframe styled lines)

for the same tasks as a reference and see that the closed-loop system outperforms it for

delays up to 100 ms. At very long delays, naturally, the closed-loop system will treat

corrections as perturbations, its performance will degrade, and instabilities will likely

arise.

5.4.7 Sensitivity to proportional-and-integral (PI) feedback gains

The choice of PI gains is traditionally made by either trial-and-error, Bode plots and,

more recently, by using search algorithms (e.g. evolutionary algorithms [34]). The

choice of optimal PI gains is beyond the scope of this paper. However, we briefly ex-

plored the sensitivity to a wide range of PI gains over 50 cyclical movements and found

that it still yields satisfactory performance (see Supplementary Information section in
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Figure 5.9: Error values for 50 random cyclical movements as a function of repetitions
(and consecutive refinements) for open-loop (blue) and closed-loop (orange) systems as
well as open-loop and closed-loop with switched inverse maps (green and red, respec-
tively).

[91]—albeit with the expected faster rise times and greater overshoot with higher gains,

and vice versa with lower gains.

5.5 Summary of contributions

Our method improves upon the current work in autonomous control of tendon-driven sys-

tems [90] because i) it uses the inverse map of the tendon-driven system it autonomously

learned during an initial motor babbling phase and only relies on feedback to compen-

sate for inaccuracies as needed; and, more importantly, ii) shows that by collecting more

relevant data during a performance, simple feedback also facilitates and accelerates au-

tonomous learning; naturally, more relevant experience is more useful.
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5.6 Discussion

We chose to apply corrections to the input velocity signal, as opposed to the input posi-

tion signal, since velocity has a direction (is a vector) and can move the joint to the right

position even with an imperfect model (as can be seen from the point-to-point experiment

results, the outputs of position input can have high errors). Also, please remember that

we chose position as the output to define error on and it is very common in controls to

use the derivative of the tracked signal for correction (Air conditioning, Cruise control,

etc.). However, based on the need, user can choose any other error signal (or a weighted

combination) and use PID gains to feed it to the most pertinent input to entertain the

correction signals.

In this paper, we showed the contributions of simple kinematic feedback in improving

both performance and learning rate of the inverse map generated using limited experi-

ence while being robust to sensory delays and choice of PI parameters. We performed

our test in both simulation and physical implementations of a tendon-driven robotic limb.

However, it would be very interesting to test the proposed system on more complex sys-

tems such as bipeds or quadrupeds and compare their performances in more sophisticated

tasks in the future work, especially in their physical implementations.
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Chapter 6
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6.1 Chapter summary

Robots will achieve true autonomy in controlling their bodies and interacting with their

environments only when they are able to learn within the constraints of their designs

or environments with minimal to no prior information and can learn from and adapt to
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new tasks and conditions without experiencing catastrophic forgetting of prior ones. The

autonomous learning of control is of an especial important in the case of tendon-driven

robots, which offer a wide set of advantages such as flexibility in the placement of actu-

ators, but also introduce further challenges to its modeling and control. Here, we have

extended our bio-inspired learning algorithm, General-to-Particular, to a quadruped sys-

tem and have shown its aptitude in learning to control the system within only a few sec-

onds and performing functional movements with continuous learning. Most importantly,

we have successfully utilized simple tactile sensory information to enable the system

to distinguish between changes on the amount of load it carries and achieve lifelong-

learning without catastrophic forgetting (continually learn without overwriting the previ-

ous skills).

6.1.0.1 Author Contribution

A. M. has designed experiments, wrote the code, run simulations and written the first

draft of the manuscript. F.V-C. has provided guidance and feedback to the manuscript

and during each step of the experiment design and interpreting the results.

6.2 Introduction

Vertebrates can develop motor skills from limited exposure to a task, learn from and

adapt to changes when facing a new experience, generalize basic principles across dif-

ferent tasks, and learn how to perform new tasks without overwriting the old ones. This

138



lifelong-learning (L2M) without catastrophic forgetting ability has equipped them with

their enviable learning speed, efficiency, and adaptability even without a comprehensive

prior about or model of the task, their body, or the environment. The level to which

an agent with artificial intelligence can mimic these abilities will be a decisive factor in

determining if it can learn, perform, and adapt in real-world applications with limited

observability, incomplete or even inaccurate priors, and uncertainties in interacting with

the environment or other agents.

Vertebrate do not have explicit access to their biomechanical models or its parameters

(such as maximal muscle forces or the moment-arm values). Although not very often

in current commercial robots, it can be the case in some of the robotic applications as

well. It is an important challenge when the robot is expected to adapt to the changes it is

introduced to or if it want to learn in a design-agnostic way, which opens up new avenues

toward brain-body coevolution in robots. By enabling robots to learn by exploring and

to create self-awareness of their body dynamics, they will be able to adapt to changes in

their body dynamics or even completely new body structures.

Tendon-driven systems are great study cases for design-agnostic autonomous learn-

ing of controls since these systems are notorious for their inherent challenges in their

controls. Their simultaneously over- and under-determined nature greatly constraints the

feasible kinematic state space. Moreover, this makes the control problem even more

challenging since there is no one-to-one relationship between the DoFs and actuators as

is the case in the joint-driven systems.
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Even when a successful control strategy is found for a particular task, it is impor-

tant to be able to distinguish different tasks and utilize the knowledge gathered during

learning one to have a head-start in learning the others. Tactile sensory information is

an important type of feedback signal which can play an important part in discriminat-

ing different tasks or different phases in a single task. It has shown that tactile sensory

information can provide important information such as success in a reaching task [135]

or hitting the floor signal (heel strike) during locomotion [46]. Moreover, if placed on

the extremities, it can be a good indicator of the weight that the limb is carrying at each

moment and therefore better guide the control strategy toward adjustments on the muscle

forces.

Here we have implemented and expanded our G2P algorithm to a quadruped robot

with two DoFs controlled by three tendons on each limb and have studied the effects

of different architectures of Artificial Neural Networks (ANNs), incorporating position

error feedback, and endpoint tactile sensory information to controls and adaptation (both

forward—generalizing to new tasks—, and backward—no catastrophic forgetting of old

tasks) across 4 different test cases: performing limb movements in the air, on the floor,

on the floor while carrying a light weight, and on the floor carrying a heavy weight.

Moreover, we have tested two different curricula with the forward and reverse order of

the test cares mentioned above (light to heavy and vice versa). Our results show that

more specialized ANN architecture (one ANN for each limb) outperforms a single large

ANN that maps all the input kinematics to the estimated muscle activations. Moreover,
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our system can achieve reasonable performance (RMSE of joint angles in a 10 seconds

point-to-point and cyclical movement tasks) within only minutes of exploration and in the

absence of any prior model of the system or the environment. Moreover, this proposed

model model-agnostic approach will enable robots to learn without being limited to a

specific physical design which will also open the doors to the brain-body coevolution

idea (lifelong adaptation of both controls and physical structure) in robots.

6.3 Methods

Here we discuss the design of the quadruped system, tasks it is tested on the learning

pipeline and the variables studied: the effects of position error feedback, tactile sensing,

and the architecture of the ANNs used.

6.3.1 Quadruped design and the simulation environment

We have designed a tendon-driven quadruped with three tendons and two DoF on each

limb (each limbs follows a similar design as in[90, 91]). Each tendon is actuated using

a MuJoCo Muscle actuator with peak active force equal to 120N. Also, this quadruped

design is an expansion of the OpenAI’s HalfCheetah (which has only 2 limbs) design

and inherits most of the other physical parameters from it. The resulting design file (in

.xml format; more details and the xml design files are available online as a part of the

supplementary files) was run by the MuJoCo physics simulator [146]. We have used 2.5

ms time step to reduce the effects of potential integration errors during the simulation.
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6.3.2 Tasks and Test cases

6.3.2.1 Tasks

We have tested all our cases with two tasks: continuous cyclical movements and point-

to-point movements (similar to [90, 91]

cyclical movements During this task, both proximal and distal joints follow sinusoidal

trajectories with π/2 phase difference. Also, diagonal limbs are going to be synchronized

together (similar to trotting). This task consists of 10 seconds with a frequency of 1.5 Hz

(15 cycles during the entire task).

point-to-point movements In point-to-point task, the position of each angle is deter-

mined randomly from the range of motion of each limb (Uniformly distributed). In this

case, all four limbs are following the same desired positions. This tasks consists of 10

seconds with 10 position commands for each joint (1 second in each position).

6.3.2.2 Test cases

We have tested both task in four different cases as described here.

Suspended in Air In this case, the quadruped is suspended in air and therefore limbs

will not have contact with floor. In this case, the only thing the system needs to learn is

how to deal with and control dynamics of its own limbs.
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Walking on the floor In this case, the system is put on the floor, the limbs can interact

with the floor, and therefore can move. In this case, system is going to experience contact

dynamics and need to deal with the weight. The density (volumetric mass density) of all

the parts of the body is set to 1000Kg/m3 (except the density of head, neck and tail,

which are mainly added for visual purposed, and are set to 10Kg/m3)

Walking on the floor with a load (light) This case is similar to the walking on the

floor with a slight difference that it now has to carry a load (as seen on 6.1 c.). This will

have a direct effect on the weight and therefore a robust and successful control strategy

would require the system to adopt to the changes caused by it. The density of the load in

this case is also set to 1000Kg/m3

Walking on the floor with a load (heavy) In this case, the weight of the load is twice

as much of the previous case; in other words, this case is identical to the previous in all

aspects except the load density which is set to 2000Kg/m3.

6.3.3 Learning pipeline (G2P algorithm)

To be able to find a mapping between the desired kinematics and the muscle activations

that would lead to them on our tendon-driven system, we use the G2P algorithm [90]

which is consisted of two main parts:
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6.3.3.1 Motor babbling

During this phase, muscle are randomly activated (uniformly distributed from the 0 to

100% activation range) and the resulting sensory input information (Tactile sensory in-

formation which is endpoint force values and Kinematics which consist of joint angles,

angular velocities, and angular accelerations) are collected. These sensory information

and activations then are going to be used to train an ANN as input and desired outputs,

respectively. The resulting ANN is then going to be used to predict muscle activations

required to perform the desired tasks during the refinements phase. For all cases in this

study, we have performed the babbling phase for 60 seconds.

6.3.3.2 Refinements

During this phase, the kinematics of the desired task (here, either cyclical or point-to-

point) are sent to the ANN to estimate the required muscle activations and next, to per-

form the move using those activations. Also, for the tactile sensory, we always feed the

tactile sensory of the previous time step (except the first simulation step where we feed 0

on the tactile sensory input). The resulting task specific sensory information and muscle

activations are concatenated with the data available so far and used to re-tune the ANN.

Please note that the motor babbling provide sparse sampling within a vast volume of

the sensory information while refinements enables sampling more specific to the sensory

space of a desired task.
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6.3.4 Scaling sensory data

Scaling and normalization of input data can enhance the learning speed and therefore

improve on the data-efficiency of a machine learning algorithm. This is even more pro-

nounced when inputs have different units and therefore can have vast differences in their

ranges. To address this problem, we have scaled the input data (dividing them by their

expected variance). To make sure that we are not depending on prior information, we

calculate these scaling factors by running a 60 second babbling (which is done only once

for the entire curriculum of tasks and test cases) when the quadruped is on the floor (no

load) and use the collected data to calculate scaling factors for all cases. It is obvious

that these values do not guarantee unit standard deviation for all sensory data collected

across different tasks and test cases, however, it greatly reduces the differences in ranges

and therefore helps in faster convergence of the ANN training processes.

6.3.5 ANN architectures

We have studied two different ANN architectures to assess which one can lead to more

accurate control of movements. A single ANN for the entire system and Multiple ANNs

(one for each limb). Regardless of this architecture, all ANNs start with a babbling (in

air), and once they got trained, they will concatinate any data coming from new babblings

or refinements and re-tune their weight using (train on) this cumulative concatenated data

set while warm-starting using the weights from the last case (the ANN weights after the

last training and before the addition of the new data). The error defined to train the
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ANNs is the mean square error (mse) over all muscle activation (fed into the ANN vs.

the estimated ones). We use MLP ANNs with one hidden layer (with 24 hidden layer

neurons for the single ANN and 6 hidden layer neurons for each ANN in the multiple

ANN case), linear activation functions (which we observed to perform better than the

case of using sigmoid functions), and the ADAM optimizer [63] implementation in the

Keras API from the Tensowflow library.

6.3.5.1 Single ANN

In this case, we use a single ANN that maps all the sensory input into the predicted

muscle activations of all 12 muscles. One hypothesis is that since the ANN has access to

all sensory inputs (kinematics and tactile sensory of all limbs) at the same time, it might

be able to utilize these extra information to better implement the inverse dynamics and

therefore enable better control of the limbs.

6.3.5.2 Multiple ANNs

In this case, we use a single ANN for each limb (that is four identical ANNs in total)

that maps all the sensory input of that limb into the predicted muscle activation values (3

muscles). An opposing hypothesis to the one brought up in the Single ANN subsection

is that a more focused input and output might mean fewer distractive data points for

the ANN and therefore lead to better convergence and a superior control of the limbs

compared to the previous case.
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6.3.6 Tactile sensory information utilization

We have studied the potential contribution of tactile sensory in improving the control

performance in our G2P framework; especially across different test cases (in terms of

both forward and backward generalizability). A MuJoCo touch sensor (sensing the mag-

nitude of the applied force) is used at the end of each limb (see the green areas on 6.1).

We study the performance of the system across tasks and test cases with and without

access to these tactile information.

6.3.7 position error feedback

Similar to [91], we have implemented corrective position error feedback on the position

error of the joints and here we have studied the amount in which it contributes to the

improvement of the accuracy of the limb control in our simulated quadruped across task,

test cases, and ANN architectures.

6.3.8 Performance metrics

Here, we have assessed the control error on joint positions in the proposed L2M frame-

work. As an essential part of L2M without catastrophic forgetting, the agent should

demonstrate both forward learning (being able to learn as it is introduced to new tasks)

and backward generalizability (being able to still perform well on the task it has learn

earlier even after being trained on the newer tasks) capabilities.
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6.3.8.1 Defining of error

Also, to measure how well a system has learned to perform the desired movements, we

calculate the round mean square error (rmse) over the joint angles (across all limbs) for

the last half of the data (to make sure the effects of transient initial conditions are washed

out) and report it. We use rmse as opposed to mse since it preserves the the units of the

inputs (radians).

6.3.8.2 Forward learning plots

In these series of plots, we show the error of each task and the progress of error after

each babbling or refinement. Please note that for each point in these plots, we use the

updated model that was trained with the cumulative data so far.

6.3.8.3 Backward generalization plot

Once babbling and refinement phases across all test cases are over and the ANN param-

eters are re-tuned using the most updated cumulative data set, we fix the model (ANN

parameters) and test all task cases again with this final model. This will show how well

the current model can generalize across all tasks it has learned so far without being re-

tuned.
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6.4 Results

Here, we have demonstrated the effect of studied configurations on the control accuracy

over the joint angles. At each figure, we have only changed the configuration of the

interest (position error feedback, tactile sensory information, and the ANN structure)

and compared the results while the other configurations are kept the same.

6.4.1 Effects of position error feedback

Fig. 6.1 shows the forward learning plots for the configuration with and without position

error feedback in orange and blue, respectively. Also, Fig. 6.1a-d are corresponding to

the test cases of: in air, on the floor, on the floor with the light load, and on the floor with

the heavy load, respectively Also, fig. 6.2 shows the backward generalization plot for

all the test cases mentioned above for the configuration with and without position error

feedback (for each test case, right and left box plots, respectively).

As you can see, the plots on Fig. 6.1 show that the having position error feedback

greatly reduces the time needed for the error curves to converge and therefore reduce the

number of refinements needed for the error plots to flatten. Also, Fig. 6.2 (backward

generalization results) show that the corrective position error feedback significantly re-

duces the joint position error across all test cases (One and two stars represent p-valeus

equal or smaller than 0.05 and 0.01, respectively, for a one way ANOVA analysis).

In terms of other configurations, these plots represent the results where there is no

tactile feedback and the system uses multiple ANNs, however, the general pattern is
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Figure 6.1: Forward learning plots across test cases with (orange) and without (blue)
position error feedback.

consistent across other variations (position error feedback always enhances the perfor-

mance). Please see the supplementary documents for the complete set of result plots for

all possible configurations.

6.4.2 Effects of ANN architecture

Fig. 6.3a-d show the forward learning plots for for all cases for the configuration with

multiple, and single ANNs in orange and blue, respectively. Fig. 6.4 shows the backward

generalization plot for all the test cases for the configuration with a multiple and single

ANNs (for each test case, right and left box plots, respectively).

As can be seen on both figures, the multiple ANN structure outperforms the single

one. Moreover, this difference in performance is more significant in tasks that are ex-

periencing the effects of weight which suggests that multiple ANN structure can better

handle (is more robust) the unexpected dynamics of interactions with the floor that are

caused by the weight.
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Figure 6.2: Generalization plots across test cases with (right boxplot for each case) and
without (left boxplot for each case) position error feedback.

One hypothesis would be that since the single ANN has more coefficients (weights

and biases) to set, it would need more data to converge. However, we saw a similar

pattern (multiple ANNs outperforming the single ANN) even when trained on larger

data set. Moreover, the fact that the forward learning curves are almost flat after the

second case rejects this hypothesis.

Alternatively, a larger ANN might be more likely to suffer from local minima. In

addition, the kinematic input from other limbs seems not to be very helpful and there-

fore create destructive interference. The differences in the performance are even more

statistically significant when we enable position error feedback (see supplementary in-

formation). This reinforces the destructive interference in the single ANN hypothesis

since there is only a single corrective position error feedback signal for each joint for the
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Figure 6.3: (Forward learning plots across test cases with multiple (orange) and single
(blue) ANN structure.

multiple ANN structure being fed back to the ANN while all the corrective position error

feedback signals are fed back to the same ANN in the single ANN structure.

6.4.3 Effects of tactile sensory information

Fig. 6.5a-d show the forward learning plots for for all cases for the configuration with

and without tactile sensory in orange and blue, respectively. Fig. 6.6 shows the backward

generalization plot for all the test cases for the configuration with and without tactile

sensory (for each test case, right and left box plots, respectively).

Here, we have selected the results with configuration without position error feedback

to isolate the contributions of tactile sensory. We see that pretense of feedback highly en-

hances the accuracy and therefore covers most of the contributions of the tactile sensory

(please see the supplementary figures).

As can be seen on both figures, overall, the tactile feedback contributes in enhanced

performance. It is especially the case for the backward generalization results of the more

extreme cases (on air and with the heavy load). We believe that it is because the presence
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Figure 6.4: Generalization plots across test cases with multiple (right boxplot for each
case) and single (left boxplot for each case) ANN structure.

of the tactile sensory enables the mapping to differentiate cases with different weight and

therefore select the appropriate muscle activation values for each case. On the contrary,

the configuration without the tactile sensory do not have access to these discriminatory

information and the ANN tries to minimize the error over the entire data set (across

all cases) and therefore would not have major performance drop for the ”on floor” and

”with light load” cases but would suffer more (compare to the configuration with the

tactile sensory) on the more extreme cases (”in air” and ”with heavy load”).

Importantly, we see an even more pronounced contribution for the sensory in the

single ANN structure (please see the supplementary info) that is persistent for all four

test cases. It suggests that having access to sensory signals from other limbs can further

enhance the performance since it provides a more complete set of information regarding
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Figure 6.5: Forward learning plots across test cases with (orange) and without (blue)
tactile sensory information.

the total weight of the system and the part that is being carried by each leg. Therefore,

similar to biological systems, it seems like having specialized networks that are intercon-

nected with each other at some level (here, sharing the sensory information of each limb

with other limbs) seems to be a promising future design architecture to pursue.

Also, please note that the ”with tactile sensory” case has a relatively higher error on

the 0th refinement of the ”on the floor” case (the test results before babbling or being

trained on the information collected from the new test case). This is because the input

nodes associated with the tactile sensory information so far have always fed with zeros

(since there is no touch during the ”in air” case) and therefore, the weights associated

with them are not refined. These weights, however, are pruned right after the system is

exposed to the new environment and the ANNs are trained with data including tactile

sensory information.
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Figure 6.6: Generalization plots across test cases with (right boxplot for each case) and
without (left boxplot for each case) tactile sensory information.

6.4.4 Stacking all improvements

In this part, in order to assess the overall contribution of these configurations, we have

stacked all the configurations that had lead to an improvement in performance (A system

with position error feedback, tactile sensory, and multiple ANNs) and have compared

the resulting performance with the system without any of these configurations. We label

these two systems as higher performance and lower performance configurations, respec-

tively. Please note that the without enhancement system is similar in configurations to

the original G2P algorithm presented in [90].

Fig. 6.7 and 6.8 shows the plots for the forward learning and backward generalization

results, respectively. As it is clear from these figures, there is a significant improvement

in the control performance for the higher performance configurations in both forward
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Figure 6.7: Forward learning plots across test cases with all enhancing configurations
stacked together (orange) and without them (blue).

learning and backward generalization which leads to a better L2M without catastrophic

forgetting performance in achieving kinematic control which is the main focus of this

paper.

6.5 Conclusion

Here we have implemented task-agnostic autonomous learning for a bio-inspired tendon-

driven quadruped and have studied the effects of different configurations on its kinematic

control performance. Our results show that the proposed framework is able to learn with-

out any prior knowledge about the design parameters just after a minute of random kine-

matic exploration (motor babbling) and a few attempts of the task of interest (followed

by refinements).

We have shown that the corrective position error feedback that utilized the forward

model generated using the G2P algorithm significantly improves the performance. Also,

our results show that smaller and more specific neural networks would outperform a

single all-in all-out network when only dealt with kinematic information. However, our
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Figure 6.8: Generalization plots across test cases with all enhancing configurations
stacked together (right boxplot for each case) and without them (left boxplot for each
case).

results suggest that having access to tactile sensory information from other limbs can

further enhance the performance of each limbs.

Our proposed framework was able to achieve RMSE of less than 4◦ in controlling

joint positions of a tendon-driven quadruped which satisfied the main goal of this re-

search. Moreover, we have shed some light into the effect of contributions of ANN

structure and tactile sensory in kinematic control which can help future work in design-

ing even more accurate and data-efficient control frameworks.
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6.6 Limitations and future work

As brought up in the previous section, our results suggest that although a single ANN

for each limb in general outperformed an all-in all-out approach, having access to tactile

information of other limbs can favorably affect the kinematic control of a limb. This

makes sense since by having access to these information, an ANN would be able to

make a better assumption regarding the total weight of the system what fraction of it that

the limbs needs to taken care. This is also supported by evidence seen in biology where

smaller and densely connected local networks are more sparsely interconnected to other

networks at some levels [11, 88]. Implementation of such a hybrid ANN architecture is

beyond the scope of the current work but is a very interesting avenue to pursue for future

studies.

Here we have achieved to satisfactory levels of kinematic control and it would be

interesting to attach it to a higher level controlled (in a hierarchical fashion) to perform

functional tasks. Moreover, here we have only shown the effect of studied configurations

in kinematic control; however, it would be interesting to also study contributions of the

sensory information (either tactile or kinematic) on higher level planing and control task.

For example, sensory signals are known to contribute significantly in high level task

planning and dexterous manipulation tasks in biological systems [35, 151].

Moreover, although we have used a physically faithful simulator (MuJoCo), it would

be an interesting future work to also assess the performance of the system in a real-

world, physical implementation. Lastly, here we have studied the L2M capabilities of
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the proposed framework in adapting and generalizing to different weight loads, however,

assessing the adaptiveness of such L2M algorithms to changes to the system design (wear

and tear, partial damage or loss of a limb, etc.) would be another interesting research

direction that will further pave the way for highly robust, adaptive, and multipurpose

L2M robots.
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Chapter 7

Conclusion and future direction

Robots can only become useful across multiple real-world tasks and scenarios when they

can learn from limited experience and adapt to new and unexpected scenarios. Moreover,

model-agnostic autonomous learning would further enhance their practicality by reduc-

ing the amount of prior knowledge needed to control their bodies and perform functional

tasks. This is especially important in tendon-driven systems (or non-rigid systems in

general) that are known to be difficult to model or control, yet have a lot to offer such as

a large set of feasible output kinematics and flexibility in actuator placement.

In this project, I have built a framework in which robots can autonomously learn to

control their tendon-driven structures within minutes of exploration, and in a model- and

task-agnostic fashion.

In Chapter 2, we elaborated on tendon-driven systems, their underlying principles,

challenges in their control, and the benefits they can provide. In Chapter 3, we introduced

the G2P algorithm which enables autonomous learning of functional tasks in robots from

limited experience and tested it on a single tendon-driven leg connected to a gantry. In
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Chapter 4, we tested the abilities of G2P to adapt and utilize added dynamical complex-

ities to the leg design in Chapter 3 in terms of adding parallel stiffness to the tendon

actuators. We showed that not only can it handle these added dynamical complexities

but also it can utilize them to accelerate learning and enhance performance. In Chapter

5, we implemented a corrective position feedback controller which complements G2P’s

feedforward control and showed how it can significantly improve performance across

cyclical or point-to-point tasks in both simulation and hardware implementations. Lastly,

in Chapter 6, we studied different strategies in implementing an accurate and robust G2P

based control strategy for a complete quadruped and showcase precise kinematic control

without catastrophic forgetting for locomotion.

I believe that this work represents a significant advancement in the field of biologically-

inspired and algorithmically-rigorous autonomous learning in robots, and minimizes

their dependencies on their physical designs. This will enable the emergence of robots

that can learn on-the-fly and adapt to real-world situations in unstructured environments.

Moreover, the fact that our systems are able to work with non-rigid structures, and es-

pecially tendon-driven architectures, enables autonomous robots to enjoy new levels of

agility, energy efficiency, and safety. This algorithm and hardware (brain-body) combi-

nation is a key toward a new generation of robots that can contribute to a wider range

of non-routine applications in unstructured environments from post-disaster rescue mis-

sions to practical everyday tasks, to planetary exploration.
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It is important to note that the proposed versions of G2P can also be used as a kine-

matic learning and control module along with other learning algorithms and hierarchi-

cal/distributed control architectures. This means that it can be used in a hierarchical way

to enhance learning by bypassing the inverse kinematic mapping in end-to-end learning

algorithms such as Proximal Policy Optimization (PPO). It can also be the ‘predictive

step’ in Model Predictive Control (MPC) algorithms. Moreover, although the proposed

algorithm is model-agnostic, I encourage the use of a model (even if preliminary) to

speed up the process of learning whenever such a model is available. One simple way of

using a model to enhance (i.e., ‘warm-start’) learning would be to use the model to run

the forward dynamics and generate pairs of actuation-to-kinematics data that can then be

fed into the algorithm to train it and provide it with a warm-start. Finally, the proposed

G2P approach can be used not only to predict inverse dynamics but also to randomly

explore and model other problems. For example, more recently, we have shown its util-

ity as an agnostic observer that predicts joint angles from biologically-tenable sensory

signals in mammalian muscles [42].

In terms of the future work, I believe that the field can and should benefit from modu-

lar structures in both hardware design and learning algorithms. Modular and hierarchical

learning and control algorithms can further enhance data-efficiency by breaking compli-

cated tasks into smaller and more specific sub-tasks, to then tackle them individually.

Modular design can provide robots with a wider range of applications across multiple
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body architectures to reduce the production costs while increasing the range of applica-

tions. Moreover, transfer learning across tasks and across agents would be an important

topic to focus on. Inheriting basic principles learned by one robots and shared with oth-

ers across a number of tasks can further enhance data-efficiency by providing all robots

with a warm-start during the learning process of new tasks. Meanwhile, inter-agent share

of information in multi-agent cases can help with parallel acquisition of data and faster

learning of skills, especially on the higher-level side of tasks that are (or should be)

agnostic to kinematics or design details of individual robots, environments and tasks.

Lastly, current research on the field of bio-inspired robotics can not only provide inspi-

ration from biology for development of new and enhanced robotic structures and algo-

rithms. This research can also lead to testbeds to ‘put biological theories to the ultimate

test of physical implementation’ and answer questions in precise, biologically-faithful

and well-structured robotic implementations.
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lian Schrittwieser, et al. Starcraft ii: A new challenge for reinforcement learning.
arXiv preprint arXiv:1708.04782, 2017.

[154] Patrick M Wensing, Albert Wang, Sangok Seok, David Otten, Jeffrey Lang, and
Sangbae Kim. Proprioceptive actuator design in the mit cheetah: Impact mitiga-
tion and high-bandwidth physical interaction for dynamic legged robots. IEEE
Transactions on Robotics, 33(3):509–522, 2017.

[155] Yuxiang Yang, Ken Caluwaerts, Atil Iscen, Tingnan Zhang, Jie Tan, and Vikas
Sindhwani. Data efficient reinforcement learning for legged robots. arXiv
preprint arXiv:1907.03613, 2019.

[156] Tsuneo Yoshikawa. Foundations of robotics: analysis and control. MIT press,
1990.

[157] Felix E Zajac. Muscle and tendon properties models scaling and application to
biomechanics and motor. Critical reviews in biomedical engineering, 17(4):359–
411, 1989.

[158] Xiaodong Zhou and Shusheng Bi. A survey of bio-inspired compliant legged
robot designs. Bioinspiration & biomimetics, 7(4):041001, 2012.

177



ProQuest Number: 

INFORMATION TO ALL USERS 
The quality and completeness of this reproduction is dependent on the quality  

and completeness of the copy made available to ProQuest. 

Distributed by ProQuest LLC (        ). 
Copyright of the Dissertation is held by the Author unless otherwise noted. 

This work may be used in accordance with the terms of the Creative Commons license 
or other rights statement, as indicated in the copyright statement or in the metadata  

associated with this work. Unless otherwise specified in the copyright statement  
or the metadata, all rights are reserved by the copyright holder. 

This work is protected against unauthorized copying under Title 17, 
United States Code and other applicable copyright laws. 

Microform Edition where available © ProQuest LLC. No reproduction or digitization  
of the Microform Edition is authorized without permission of ProQuest LLC. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, MI 48106 - 1346 USA 

28644917

2021


