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Learning is a defining ability of biological systems, whereby 
experience leads to behavioural adaptations that improve per-
formance1. The past couple of decades have witnessed aston-

ishing advances in the field of machine learning. Nevertheless, a 
new generation of applications—self-driving cars and trucks, auton-
omous drones, delivery robots, intelligent handheld and wearable 
devices, and others that we have not yet imagined—will require a 
new type of machine intelligence that is able to learn throughout its 
lifetime. Such machines will need to acquire new skills without com-
promising old ones, adapt to changes, and apply previously learned 
knowledge to new tasks—all while conserving limited resources 
such as computing power, memory and energy. These capabilities 
are collectively known as lifelong learning (L2).

In contrast to the current generation of intelligent machines, ani-
mal species ranging from invertebrates to humans are able to learn 
continually throughout their lifetime. Neuroscientists and other 
biologists have proposed several mechanisms to explain this abil-
ity, and machine learning researchers have attempted to emulate 
them in artificial systems, with varying degrees of success. In this 
Perspective article, we examine our current understanding of how 

biological organisms learn continually and review the state of the art 
in biologically inspired L2 models. We describe a variety of biologi-
cal mechanisms, both neuronal and non-neuronal, that can improve 
our ability to create highly functioning lifelong learning machines.

It should be noted that there is also a body of artificial intelli-
gence (AI) research that tackles the lifelong learning problem from 
a less clearly biological perspective2–10. These can be broadly orga-
nized into three types: ‘rehearsal’, which store or generate data from 
past tasks for replay11–13; ‘architectural’, which expand the model 
parameters14–17; and ‘regularization-based’ approaches, which 
penalize changes to parameters important to past tasks18–20 or use 
meta-learning8. Such models, which are not directly inspired by a 
biological mechanism, fall outside the scope of this Perspective.

In this Perspective, we will (1) identify a set of key features of 
lifelong learning; (2) provide an overview of biological mechanisms 
that are believed to be involved in realizing these features; and (3) 
review research in which analogous mechanisms have been imple-
mented in machine learning models with the aim of realizing life-
long learning capabilities in artificial systems. We conclude with a 
look at future challenges and opportunities.
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Biological organisms learn from interactions with their environment throughout their lifetime. For artificial systems to success-
fully act and adapt in the real world, it is desirable to similarly be able to learn on a continual basis. This challenge is known as 
lifelong learning, and remains to a large extent unsolved. In this Perspective article, we identify a set of key capabilities that 
artificial systems will need to achieve lifelong learning. We describe a number of biological mechanisms, both neuronal and 
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learning machines. We discuss opportunities to further our understanding and advance the state of the art in lifelong learning, 
aiming to bridge the gap between natural and artificial intelligence.
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Key features of lifelong learning
The vision of ‘lifelong learning machines’ (L2M) is one of systems 
that operate much like biological agents: they never stop learning, 
their performance improves with experience and—importantly—
they make modest demands on energy and compute/memory 
resources.

Below, we describe six key features of lifelong learning. Successful 
realization of these features in an AI system would represent a major 
advance towards true L2 capability (Fig. 1 provides an overview).

Transfer and adaptation. L2M need to be able to transfer and 
reuse knowledge to improve their performance, and also to rapidly 
adapt to novel environments, without the need for offline retrain-
ing. These capabilities are essential for models deployed in the real 
world where situations and environmental conditions may vary 
considerably. Studies focused on few-shot learning (learning from 
few samples) and meta-learning (learning to learn concepts quickly) 
have attempted to tackle the adaptation problem21–23.

Overcoming catastrophic forgetting. A common issue with 
machine learning models is their inability to retain previously 
learned knowledge while training on new tasks. This is known as 
‘catastrophic forgetting’, and it occurs when network parameters 
are changed to optimize performance for the current task, with-
out adequately protecting previous knowledge. It is not an issue 
of insufficient memory, but rather one of rewriting memory areas. 
The challenge of acquiring new skills without forgetting old ones is 
known as the stability–placticity dilemma24.

Exploiting task similarity. An L2 model needs to learn multiple 
tasks. Previous work has shown that learning multiple tasks and 
enabling the transfer of information among them improves per-
formance25. Forward transfer refers to the application of previously 
learned skills to new tasks, and backward transfer to the case when 
learning a new task improves performance on a previously learned 
task. One approach to achieving such forward and backward trans-
fer is compositionality—the ability to decompose complex tasks 
into more elementary components that can be reused for related 
tasks26,27. The ability to identify and reuse subtasks would accelerate 
transfer and adaptation.

Task-agnostic learning. Task-agnostic learning. L2 models 
deployed in the real world cannot rely on an oracle to tell them 
when training switches from one task to another, or which previ-
ously learned task is applicable in any given situation, but must be 
able to perform well without such information. We refer to this as 
‘task-agnostic learning’. In current state-of-the-art machine learn-
ing, some models require full task identification28 during training 
and inference, while others only need to be informed when a task 
switch occurs. L2M must be able to perform inference without 
task-identifying information.

Noise tolerance. Typically, state-of-the-art AI models are trained on 
datasets collected and cleaned to optimize training, and do not per-
form well if data encountered during inference differs significantly 
from the training data. Previous works have focused on building 
robust models but have not yet been explored in the context of L229. 
L2M must be able to handle data that differ from the training data 
due to variability in the environment or in the agent’s own sensors.

Resource efficiency and sustainability. For machine learning 
models to continue learning throughout their service life, serious 
emphasis needs to be laid on resource constraints. For example, 
a system that needs to remember (for example, in a database) all 
experiences of its past will require ever-increasing storage capacity  
(for example, in replay buffers), although there are attempts to  

compress what needs to be stored across longer timescales30–32. 
Similarly, providing a continual source of clean training data, 
perhaps even regularized33, is also impractical. The learning time 
should not overwhelm the system or slow down its inference. Also, 
the number of different tasks or behaviours available to the system 
should not affect its real-time response.Comprehensive measures of 
success for lifelong learning are still evolving and are an active area 
of research. We discuss some of the metrics commonly used in the 
literature in the Supplementary Information.

Note that this list is presented in a task-centric manner, in that 
it focuses on useful tasks that an agent may want to carry out in 
the world. As in self-supervised learning34, curiosity-driven rein-
forcement learning35, and works looking at open-ended learning36, 
there could be additional tasks (driven by particular objective or 
reward functions, for example, reducing uncertainty in predicting 
the future) that the agent may carry out which are not specific to 
useful tasks. However, even in those cases the features of lifelong 
learning above hold; for example, during exploration or free play 
the agent should still not catastrophically forget older tasks, and the 
skills learned may still be leveraged to improve performance on the 
useful tasks.

Biological mechanisms that support lifelong learning
Since many animal species appear to be able to learn continuously 
throughout their lifetime, biologists have tried to identify the under-
lying mechanisms that enable the features described in the previous 
section. Several mechanisms have been proposed, as described in 
the following subsections (Fig. 2). Most of these mechanisms are 
attributed to processes in the brain, but some are also from intracel-
lular and intercellular activities—outside the brain. Comprehensive 
measures of success for lifelong learning are still evolving and are an 
active area of research. We discuss some of the metrics commonly 
used in the literature in the Supplementary Information.

Neurogenesis. Neurogenesis is the process by which new neurons 
are produced in the central nervous system. It is most active during 
early development, but continues throughout life. In adults, neuro-
genesis is known to occur in the dentate gyrus of the hippocampal 
formation37 and in the subventricular zone of the lateral ventricles38. 
A well-known example of adult neurogenesis is observed in the 
subventricular zone of mice, where olfactory interneurons are pro-
duced and subsequently migrate to the olfactory bulb (Fig. 3). The 
rate of neurogenesis in adult mice has been shown to be higher if 
they are exposed to a richer variety of experiences39. This suggests 
a role for self-regulated neurogenesis in scaling up the number of 
new memories that can be encoded and stored during one’s lifetime 
without catastrophic forgetting of previously consolidated memo-
ries. Neurogenesis may also play an important role during infant 
development40 to allow the growth and restructuring needed to 
accommodate new information and skills.

An extreme example of dynamic architecture and the adaptabil-
ity of biological organisms to new tasks and functions is the neu-
rogenesis and synaptogenesis that occur during the development 
cycle of insects. Existing structures are enhanced and repurposed 
to match the increasing processing demands as they evolve to their 
mature state41. It has been shown that, despite drastic changes in 
size and configuration, learned responses can be preserved through 
metamorphosis, for example, in the transition from caterpillar  
to moth42.

Episodic replay. Replay is the phenomenon in which neuro-
nal activity patterns that had previously occurred during waking 
re-occur during later sleep or rest (Fig. 4). Such replay was first 
observed in the hippocampus43, and subsequently synchronously in 
the hippocampus and neocortical areas 44. An influential hypothesis 
states that experiences are initially encoded in the hippocampus, 
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and subsequently, during sleep, replayed to the neocortex. The neo-
cortex is hypothesized to interleave these replays, initiated from the 
hippocampus, with replay of its own (already consolidated) neural 
patterns, in order to integrate the new information without over-
writing previous memory structures45.

Strong experimental evidence has been accumulated in support 
of a role for replay in memory consolidation in the brain46–50, and 
there is a wealth of data indicating that sleep is critically important 
for learning and memory51. Intriguingly, a recent study52 found that 

hippocampal activation patterns do not always recapitulate wak-
ing experiences; seemingly random activation patterns are also 
observed. This may suggest a mechanism similar to what is known 
in machine learning as pseudo-rehearsal53 or generative replay54, 
a way to protect memories from interference without the need to 
store original input patterns.

While the dual (hippocampo–cortical) memory model (that 
is, fast learning in the hippocampus followed by slow learning 
in the cortex) is widely accepted as a core principle of how the 
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Fig. 1 | Key features required to achieve lifelong learning. Top, a lifelong learning agent encounters a stream of training episodes intermixed with situations 
where it must apply recently or previously learned skills. In the illustration, a robotic arm is being trained to perform a variety of tasks, and is subsequently 
able to select from its repertoire of learned skills to apply in different situations that is encounters. Bottom, key features for lifelong learning. From left to 
right: (1) Transfer and adaptation: the ability to apply previous knowledge to new tasks and to quickly adapt to changes in the task or the environment. 
Here, the system is trained on task B (packing objects in boxes) and is subsequently able to apply the learned skills to facilitate learning of similar but 
non-identical variants of the task (different sizes and shapes of objects and boxes). (2) Overcoming catastrophic forgetting: current AI systems (grey) 
suffer from catastrophic forgetting, the inability to learn new tasks without degradation of performance on ones previously learned. An L2 system (white) 
needs to be able to overcome this problem. In the example, the system is first trained on task A, then on task B. After task B training, the L2 system still 
performs well on task A. (3) Exploiting task similarity: rather than learning a monolithic representation of a task, an L2 system is able to decompose it into 
subtasks that can be applied when learning new tasks. In the illustration, the positioning action learned as part of task B training is directly transferable 
to task C, allowing reuse of this skill. The other task B skills, gripping and translation, are less applicable to task C. (4) Task-agnostic learning: the ability 
to solve a problem without being explicitly told which among several learned tasks the problem belongs to. Here, the L2 system detects that the gripping 
action that it learned during task B training is applicable in the current situation. (5) Noise tolerance: the ability to execute a task despite noise that was 
not present during training. In the example, the system is trained to perform a task without any distractions. It is subsequently able to perform the task in 
the real world, ignoring irrelevant objects and potentially distracting activity. (6) Resource efficiency and sustainability: the ability to continually learn new 
tasks with limited system resources. The figure illustrates that the L2 system is able to perform its tasks with limited memory and compute resources, and 
with compressed models.
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brain learns declarative memories, it is likely not the only mem-
ory model the brain uses. For example, procedural, presumably 
hippocampus-independent memories55,56 (for example, some motor 
tasks) can be learned without forgetting old skills. Rapid eye move-
ment (REM) sleep seems to have an important role in such learn-
ing. The dreams that occur during REM sleep are thought not to 
be actual replayed experiences, but out-of-distribution elaborations 
that may also help with generalization57.

Metaplasticity. The strength of individual synapses can be modi-
fied by neural activity; this is known as synaptic plasticity and is 
the most widely investigated mechanism by which the brain stores 
memories58. In addition, the ease with which a synapse can be 

strengthened or weakened may itself vary over time. This ‘plas-
ticity of plasticity’ has been named metaplasticity: the ability of a 
synapse to be modified depends on its internal biochemical states, 
which in turn depend on the history of synaptic modifications59,60 
and recent neural activity61. Metaplasticity has been implicated in 
multiple aspects of memory maintenance, including mitigation of 
catastrophic forgetting62 and regulation of overall neural excitabil-
ity60. In particular, heterosynaptic modulation has been shown to 
be crucial in synaptic consolidation, allowing for fast learning but 
slow forgetting63.

Storage of new memories can interfere with preexisting ones, 
causing forgetting45. The forgetting process can become very rapid 
when memory resources are restricted, as in the case when synaptic  
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weights can only be stored with limited precision. This is cer-
tainly the case with biological synaptic weights, whose values can 
be preserved on long timescales with a precision of at most four or 
five bits64. The consequences of this limited precision on memory 
capacity can be dramatic65–67, posing severe restrictions on the per-
formance of any neural system with online learning. One possible 
solution to this problem may lie in the complexity of biological syn-
apses: the modification of biological synaptic weights involves mul-
tiple cascade processes that operate on different timescales. The fast 
and slow mechanisms permit rapid acquisition of new information 
combined with a delayed decision whether to make changes perma-
nent, depending on subsequent events. A spurious signal may only 
result in temporary modifications of synaptic strengths, whereas 
repeated strong input signals will leave permanent memory traces. 
In this way, these mechanisms can contribute to solving the stabil-
ity–plasticity dilemma24.

Neuromodulation. Neuromodulatory neurons release neurotrans-
mitters that have both a local effect and a global effect on activ-
ity and plasticity (Fig. 5). Neuromodulation has been studied and 
modelled in the context of behavioural adaptation in the presence 
of expected and unexpected uncertainties68.

Neuromodulators have a selective effect on learning. For example, 
acetylcholine (ACh) regulates the trade-off between stimulus-driven 
and goal-driven attention69–71, noradrenaline (NA) drives responses 
to novelty and surprise, serotonin (5-HT) can shift patience and 
assertiveness depending on the context72 and dopamine carries 
a reward prediction error signal73, which has been an inspiration 
for reinforcement learning algorithms74,75. Evidence suggests that 
ACh release is triggered by registering expected uncertainty76 and 
unexpected reward77, while noradrenaline release is triggered by 
surprise68. Uncertainty serves as a behaviourally relevant trigger for 
adaptation and learning, making neuromodulation an ideal mecha-
nism to model AI algorithms capable of self-adaptation by focused 
attention70,78 and memory encoding78,79. Dopamine allows for  
associating cues with predicting outcomes, which can be rewards, 

punishment and novelty80,81, and can drive curiosity. It has also been 
shown to play a role in converting short-term potentiation (STP) to 
long-term potentiation (LTP) in the synapse. In some cases, only 
recently activated synapses can have LTP induced by dopamine82. 
Neuromodulation in the mushroom body of the insect brain has 
been shown to play a key role in regulating activity, forming mem-
ory and encoding valence83. Neuromodulation can boost learning, 
help overcome catastrophic forgetting, support adaptation to uncer-
tain and novel experiences, and improve understanding of changes 
in context 84–89.

Context-dependent perception and gating. In biological sys-
tems, context plays a significant role in modulating, filtering and 
assimilating new information. This is important for tracking chang-
ing environments, directing attention to changes, and integrating 
new information. Context gating, the selective enabling of sub-
populations of neurons, helps reduce interference between similar 
experiences.

For instance, in the olfactory system, context has a large role in 
modulating responses and in learning new responses. The olfac-
tory bulb, the cortical area that receives direct sensory input from 
the nose, receives more input from other parts of the brain than it 
does from the nose. Primary neurons that project directly to many 
parts of the brain concerned with memory, context and emotion, 
are driven mainly by internal states, behavioural expectations, and 
behavioural context of learned odours90. These inputs probably pro-
vide the dynamic flexibility associated with task learning, reward 
association and appropriate motor response91,92. They allow for 
faster learning of new stimuli and gating of responses, including 
different responses to the same stimulus and stable responses in dif-
ferent environments83,93,94.

Context modulation and gating is also used for selective atten-
tion 95. For instance, gain modulations have been shown to encode 
target trajectories in insect vision to locally enhance the gain of rel-
evant areas of its visual field96. A top-down task-driven path can 
effectively direct attention to task-relevant features97, where it can 
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help filter out less relevant stimuli and focus on critical stimuli that 
require an immediate response70. This procedure of directing atten-
tion and tracking expected uncertainty is observable in the cholin-
ergic system in the mammal brain98,99.

Observations of humans with prefrontal cortical lesions, neu-
roimaging studies and animal experiments suggest that prefrontal 
cortex and connected regions are important in encoding, storing 
and utilizing mental schemas, that is context-dependent behav-
ioural strategies. While the acquisition of new types of memory 
(for example, the first time ever seeing the ocean) requires the 
creation of new schemas, new memories that are similar to previ-
ously learned ones (for example, one who is familiar with oceans 
visits a new beach) can be rapidly incorporated into existing sche-
mas, while still retaining old information in other schemas100–103. 
This process requires experiences to be encoded alongside the 
contextual schemas in which they occur, and suggests a way in 
which the brain exploits task similarity to achieve transfer and 
adaptation, to overcome catastrophic forgetting and to learn in 
noisy environments.

Hierarchical distributed systems. Many biological organisms have 
either no centralized brains or extremely small brains. These control 
architectures behave as hierarchical systems. This allows processing 
and learning to be distributed across multiple networks of neurons 
throughout the body, each having high intra-network yet relatively 
sparse inter-network connectivity104–111. Such decentralized non-von 
Neumann architectures are starting to be implemented as artificial 
neural networks in AI and distributed controls112–114. By leveraging 
such hierarchical and distributed architectures, biological systems 
greatly reduce the input and output dimensionality at each layer to 
mitigate delays and accelerate learning112,113,115–118. As a prime exam-
ple, consider ‘central pattern generators’119,120 that autonomously 
respond to perturbations and accomplish locomotion and cyclical 
movements121–123.

Such a hierarchical and distributed approach allows animals to 
achieve enviable levels of performance despite noisy sensors, slug-
gish actuators (that is, muscles) and delayed signalling. In particu-
lar, there is now an emerging consensus that this is made possible 
by the brain–body co-evolution of hierarchical and distributed neu-
ral circuits—as outlined in Fig. 6—which permit effective sensory 
processing and muscle control124–126. Fortunately, it is now becom-
ing possible to map out such widely distributed biological circuits, 

allowing us to understand how they facilitate task decomposition 
and detection of task overlap127–130.

Cognition outside the brain. Much of the focus of functional com-
putation and problem-solving has been on emulating brain-like 
architectures. However, many biological systems exhibit the abil-
ity to learn from experience, anticipate future events, and respond 
adaptively to novel challenges, without the benefit of a nervous 
system. This includes organisms and levels of biological organiza-
tion, such as individual cells and even molecular networks131,132, 
which compute via non-neural bioelectric networks (BEN)133 or 
subcellular processes such as transcriptional networks134. A simple 
non-neural bioelectric model135 that can be trained to perform cog-
nitive tasks like logic and pattern recognition serves as a proof of 
principle (Fig. 7). Because the same bioelectric circuits can control 
adaptive morphogenesis (for example, regeneration) and computa-
tion (decision-making), this aspect of biology illustrates how the 
same set of mechanisms can be exploited for adjusting to novelty 
with respect to changing body structure as well as environmental 
inputs and conditions. Living systems utilizing this strategy can deal 
not only with radical changes in the environment such as encounters 
with toxins that strongly impact cellular physiology136, but also with 
changes to their own structure and function137, such as damage and 
regenerative remodelling to the original or new138,139 architecture. 
Mechanisms for plasticity and adaptation to new environments and 
new body configurations, which have been inferred from the field of 
basal cognition and regenerative biology, offer a rich pool of strate-
gies from which to draw upon in creating novel L2M140 (Fig. 8).

Biology exploits the same machinery (bioelectric and other 
kinds of networks, multi-scale homeostatic mechanisms, coopera-
tion and competition within and across levels of organization) to 
solve search problems in difficult spaces including transcriptional 
regulatory networks, morphogenetic and developmental systems, 
physiological responses, and behavioural goals. Recent data have 
revealed important commonalities in how information is processed 
in body-wide neural networks and within single cell pathway net-
works, which is beginning to be exploited in synthetic biology141.

Reconfigurable organisms. Biological organisms are highly recon-
figurable in that they maintain coherent, adaptive functionality 
despite drastically changing environments and cellular properties142. 
For example, tadpoles created with an eye on their tail (instead of their 
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primary eyes) can still exhibit efficient visual learning, showing that 
the brain may adapt to a novel architecture in which the eye is con-
nected to the posterior spinal cord138. Similarly, tadpoles re-arrange 
their face to become normal frogs even when the craniofacial  
organs are placed in abnormal positions, showing the ability to pro-
gressively reduce the error (difference from the correct target mor-
phology) and forge new paths to the correct region of morphospace 
despite drastically changing circumstances143. Planarian flatworms 
regenerate an entire body from fragments when it is cut into pieces, 
with very high anatomical fidelity144; however, transient modifica-
tions of their bioelectric circuits result in two-headed forms that 
continue to give rise to two-headed forms in perpetuity, despite their 
wild-type genome145. This illustrates the ability of somatic bioelec-
tric circuits—precursors of brain networks146—to learn from expe-
rience and maintain global anatomical information distinct from 
the default outcomes resulting from their genomically encoded 
hardware132. Moreover, cells and tissues removed from their nor-
mal context can be reconfigured into new organisms—synthetic 
living constructs—with coherent morphologies and behaviour139,147 
(Fig. 9); an enviable capacity and design challenge for engineering. 
Amazingly, not only do living bodies adapt to novel configurations, 

but they are able to remodel brain tissue while maintaining infor-
mation content (memories)137.

Multisensory integration. Biological organisms are inherently 
sensorimotor systems whereby motor actions are informed by 
multiple types of sensory signal. How these distributed, nonlin-
ear, non-collocated, noisy, and delayed sensory signals are inte-
grated to enable versatile motor function remains an active area 
of research148–150. For example, fusing hip and head acceleration 
signals, as birds are believed to do151, seems to enhance balance152. 
Also, it has been observed that the superior colliculus integrates 
sensory information from different senses (that is, vision, tactile 
and auditory signals) to produce coordinated eye and head move-
ment 153. Moreover, sensory signals also drive proprioception (that 
is, information about the configuration and state of the body, and 
its relation to the environment), which provides information for 
implicit body representations that are fundamental to the sense of  
self154. Our understanding of how organisms handle, filter and pro-
cess the flood of sensory data in a general task-agnostic way can 
support L2149,155.

Application of biologically inspired models in lifelong 
learning
The following subsections describe biologically inspired algorithms 
that incorporate the L2 features discussed above. Each subsection 
highlights a few examples of works relevant to one feature; Fig. 10 
provides a more complete overview of the referenced works. Details 
about the cited models, datasets and limitations can be found in the 
Supplementary Information.

It should be noted that important contributions to subsets of 
L2 have also been made in various machine learning methods (for 
example, deep reinforcement learning75,156) that are less clearly bio-
logically inspired, and therefore not included here.

Transfer and adaptation. Biology can provide inspiration for sys-
tems that generalize, transfer knowledge from one task to the next, 
and adapt to change without losing that knowledge. Example mech-
anisms include:

Neuromodulation. The brain’s neuromodulatory systems promote 
rapid learning and the ability to cope with context shifts caused by 
novel events or changes in motivation.

The role of neuromodulation in machine learning systems has 
been extensively explored79,84–86,88,89,157,158. Specifically in the context 
of L2, uncertainty-based modulation has been shown to allow flex-
ible adaptation70, as well as direct and control learning systems78. 
More broadly, artificial evolution of neural networks has shown the 
key role of neuromodulation in meta-learning159,160.

Context-dependent perception and gating. An L2 agent’s perfor-
mance can be improved by tracking contextual variation and using 
this information to modulate the network during training and/or 
at inference time. Examples of gating in L2M algorithms include a 
hierarchical gating mechanism inspired by schema switching in the 
prefrontal cortex, which improved transfer learning while reducing 
memory footprint161, gating based on a context signal inferred from 
recently seen inputs162 and context-based action selection during 
game playing, enabling quick adaptation163. For other works rel-
evant to context-based gating, see refs. 78,79,158,164–167.

Overcoming catastrophic forgetting. Brains incorporate several 
mechanisms that help mitigate catastrophic forgetting during con-
tinual learning. Here we describe a few examples of models that 
use neurogenesis, metaplasticity and neuromodulation. See the 
Supplementary Information for examples of models that use epi-
sodic replay and context-dependent perception and gating.
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Context-dependent perception and gating. Context-dependent gat-
ing has been used to alleviate catastrophic forgetting by improv-
ing separation between the network’s representations of patterns 
belonging to different tasks168.

Neurogenesis. Neurogenesis, especially in the dentate gyrus of the 
hippocampus, is thought to support learning new memories with-
out sacrificing old ones169,170. Neurons may be added to represent 
new memories while leaving existing neurons intact. Several L2M 
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mechanisms have mimicked neurogenesis by adding new neurons 
as needed171–174.

Episodic replay. Building on biological insights related to sleep and 
replay, it has recently been shown that both mimicking sleep175–178 
and adding internally generated replay54,179 or rehearsal of stored 
data 180, can help make deep neural networks more resistant to cata-
strophic forgetting.

Metaplasticity. Researchers have taken inspiration from the 
time-varying plasticity of biological synapses to implement meta-
plasticity in machine learning models. A cascade model of syn-
aptic plasticity was shown to significantly mitigate catastrophic 
forgetting67. More recently, a model using binarized weights with 
a real-valued hidden state was able to sequentially learn complex 
datasets, without forgetting prior learning181.

The metaplasticity model from ref. 67 has also been shown to 
mitigate forgetting in a reinforcement learning paradigm182. Other 

examples where metaplasticity is used to overcome catastrophic for-
getting include89,183–185.

Neuromodulation. In simulations and robot memory tasks79,164, neu-
romodulation has been used to decide if new stimuli were novel 
and unfamiliar (that is, create a new schema) or novel and famil-
iar (that is, consolidate into an existing schema). Neuromodulation 
signalling uncertainty has also been used to regulate the stabil-
ity–plasticity dilemma when encoding memories, thus overcoming 
catastrophic forgetting78.

Exploiting task similarity. Several bio-inspired mechanisms con-
tribute to flexible representations that facilitate task overlap and 
composition.

Context-dependent perception and gating. The disentangling role 
of the dentate gyrus, as discussed above, is general to a number of 
architectures and cognitive theories, for example, the disentangled 
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and factorized representations found in autoencoders165,166, and 
context-dependent schemas79,164. On a more abstract level, few-shot 
complex object learning can be framed as the combination of parts 
into wholes based on their relationships, which are captured in 
capsule networks186, and has led to the formation of the Omniglot 
dataset187.

Hierarchical distributed systems. Although layered architectures 
such as network protocols are typically part of good systems engi-
neering188, there are certainly combinatorial challenges in applying 
similar concepts to learning systems. These challenges arise because 
of diversity across layers in a hierarchy. This makes it difficult to 
build a system capable of flexibly capturing the entire combinatorial 
space of diversity.

In refs. 189–191, methods for learning and selecting movement 
primitives have been demonstrated to accelerate learning in robotic 
motion.

Multisensory integration. Leveraging from more than one sensory 
input enhances robot navigation192, as well as tunable perception 
of body configuration152 and its relation to the environment193. 
For example, a bioinspired spiking multisensory neural network 
can recognize objects based on multisensory integration as well as 
imagine never-seen pictures based on an audio input (for example, a 
blue apple after learning colours through vision and the association 
of the word ‘apple’ with the fruit)155.

Reconfigurable organisms. Cells taken from the skin of an organ-
ism, when excised and allowed to recombine in a new environment, 
self-assembles into an active construct that exploits similarities in its 
new environment to implement motility and interactions with con-
specifics and objects in the vicinity (such as using cilia for propul-
sion, and regenerative mechanisms to repair to the new morphology 
after damage)139,147. Note that these elements overlap and interact; 
for example, context-dependent perception and disentangled repre-
sentations enable hierarchical organizations. Also, while the above 
methods can more effectively leverage task similarity, there are still 
several limitations and open questions. Although notions of neu-
rogenesis, compositionality and reconfigurability implicitly rely on 
task similarity, it is not clear whether and how more explicit mea-
sures and representations for task similarity194 could provide further 
improvements.

Cognition outside the brain. Bioelectric networks found in 
non-neural tissue have inspired modelling of regulatory and regen-
erative functions for L2M systems195–197. Biological tissues that are 
not neurons form bioelectrical networks to control morphogen-
esis195,196. Cognition outside the brain is shaped by evolutionary 
forces just as cognition in the brain. Computational AI systems 
can mimic and exploit the resulting dynamics by simulating the 
known mechanisms of non-neural bioelectric communication 
among cells.

Task-agnostic learning. In real-world deployment, task infor-
mation is typically not provided and task boundaries are not well 
defined. A particularly challenging scenario in L2 is when the 
model is required to infer task identity. Several of the mechanisms 
described above have inspired machine learning models that can aid 
task-agnostic learning in L2 systems.

Context-dependent perception and gating. Biological systems often 
modulate perception through selective attention and can infer task 
information. Context-dependent perception or gating can utilize 
network information (local or global), to infer context shifts or 
identify context information. An example is the detection of context 
shifts based on the network’s error70,161.

Metaplasticity. Many metaplasticity-based approaches, especially 
those that aim to protect knowledge by restricting the plasticity of 
important synapses183,184, require task change notifications during 
training in order to decide when to update each synapse’s estimated 
importance. Recently, several studies have implemented metaplas-
ticity as a function that only uses information that is local to each 
synapse, without any need for task information7,181,185,198.

Noise tolerance. L2 agents operating in real-world scenarios must be 
able to maintain their performance in the presence of spurious and 
out-of-distribution patterns and data. Mechanisms such as neuromod-
ulation78,158,199, multisensory integration113,162, hierarchical distributed 
systems113,191, reconfigurable organisms139,147 and episodic replay176,177 
have been used to help improve the noise tolerance of L2 systems.

Hierarchical systems can learn higher-tier control policies that 
accommodate for noise, mitigating its effects on lower-tier control-
ler outputs113, resulting in algorithms that can perform well in noisy 
environments200. Noisy, spurious correlations can be filtered out 
by a synaptic consolidation mechanism that extracts cause effects 
in input–output streams199. Finally, cells dissociated from a living 
organism can self-organize into a novel, functional proto-organism 
without micromanagement—they tolerate high levels of noise in 
terms of number and position of cells and environmental conditions, 
to reliably construct a motile, regenerative functional system139,147.

Resource efficiency and sustainability. A difficult challenge for 
L2M is to accommodate new information without uncontrolled 
growth of memory and compute-power requirements. Examples of 
approaches that have shown promise include:

Neurogenesis. While neurogenesis allows systems to incorporate 
new information201, uncontrolled growth needs to be avoided. 
Distinguishing novel information can help discern whether further 
neurogenesis is required, and to what degree174,202. Network pruning 
mechanisms have also been shown to be effective in simulated maze 
environments174.

Episodic replay. The replay or rehearsal of previously learned infor-
mation is an effective and widely used tool in L253,54,175,176,179,180. 
However, an important concern with replay is its computational effi-
ciency and scalability, as its naive implementation involves constant 
retraining on all previously seen data. Inspired by neuroscience, 
recent work in deep learning has addressed the issue of scalability by 
showing that to avoid forgetting, it can be sufficient to only replay 
a small subset54, to just replay old memories that are similar to the 
new learning203, or to replay abstract, high-level representations of 
past experiences54. Interestingly, it has also been shown that replay 
interleaved with new learning can reduce the amount of resources 
used to represent previously learned information, allowing a grow-
ing number of tasks to be learned without memory requirements 
growing at the same rate204.

Metaplasticity. Several metaplasticity-based approaches, also 
referred to as parameter regularization methods, have been shown 
to be able to reduce catastrophic forgetting while learning new tasks 
without increasing resource requirements for memory and compute 
power89,181–183,198. However, because the representational capacity of 
these approaches is fixed, they will not be able to learn sequences 
of tasks that are arbitrarily long, and it could be argued that a con-
trolled growth in resource use is desirable205.

Conclusions
We have reviewed insights from biology regarding the abilities of 
humans and other animals to meet the challenges of lifelong learn-
ing, and presented an overview of research that applies such find-
ings toward the development of continual learning in AI systems.
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The application of biologically inspired models to lifelong 
learning has provided some tantalizing examples of the potential 
that these approaches have to transcend the limitations of current 
AI. Many of these developments are still in their infancy, involv-
ing small-scale demonstrations of individual features to achieve L2 
capabilities. Going forward, we can expect significant advances in 
our understanding of biological learning mechanisms that can con-
tinue to inform new methods for AI. We expect that adoption of 
these ideas by the AI community, and integrating them into stan-
dard AI or machine learning frameworks, will serve as a strong 
foundation to develop new generations of AI systems with greater 
autonomy and L2 capabilities. A lesson one can draw from this per-
spective is the importance of developing composite systems that 
incorporate several of the mechanisms listed above (or those yet to 
be discovered), in contrast with narrowly focusing on a small subset 
of such mechanisms.

Another crucial factor for the advancement of L2 technology 
is the development of realistic test environments that specifically 
address continual learning capabilities, not limited to pre-prepared 
datasets. Going forward, an L2 system will have to stay active, be 
aware of external changes and its own operation—as it collects hints 
for additional learning.

We suggest that future widespread deployment of AI or machine 
learning will require the development of compute-efficient L2 archi-
tectures. Rapid progress towards this goal is being made through 
the creation of new hardware substrates, notably neuromorphic 
accelerators that emulate neural processing198,206–217. In particular, 
bio-plausible L2 models can be well-suited for these neuromorphic 
accelerators.

We believe that biology will continue to be a rich source of inspi-
ration for the development of novel L2 approaches. Advancements 
in our understanding of other key biological mechanisms, includ-
ing dynamic memory updating mechanisms like active forget-
ting218, extinction219 and memory reconsolidation220 will continue to 
inspire novel algorithms beyond those described in this perspective. 
Expanding our knowledge of intracellular processes like signalling 
and gene regulation as well as intercellular communication could 
also provide inspiration for L2 beyond the central nervous system.

Because of their greater abilities and richer range of behaviours 
when deployed in the real world221, L2 systems have the potential 
to revolutionize many applications, including fully autonomous 
vehicles, smart cities and healthcare. The realization of this poten-
tial will require continued multidisciplinary initiatives that support 
researchers studying at the intersection of biology, neuroscience, 
psychology, engineering and AI222. Such collaborations are cru-
cial for generating the convergent solutions that this new form of  
AI demands.
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