Current approaches to the neural control of movement must
account for the fusimotor system.
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How does voluntary movements happen in the presence of muscle afferentation ?



Movement commands originate from brain to spinal cord, and to muscles which generate forces that drive limbs.
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Proprioceptors: Muscle spindles and Golgi tendon organs provide proprioceptive signals to the CNS.
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The activation of a-motoneurons (MNs) is the result of the integration of thousands of synaptic inputs from cortical,
propriospinal, and sensory signals (Pierrot-Deseilligny and Burke, 2005; Schieber, 2011;Loeb and Tsianos, 2015).
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Fusimotor system and spindle afferent
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signals(Gardon ,1994).

 Gamma efferent (y-static & y-dynamic) adjust
the spindle sensitivity to changes in muscle
length and velocities that occur during

Gamma motor neuron

Gamma motor.
neurons
from CNS

Sensory neurons Sensory movement.
to alpha motor axons
neuron
Gamma motor Skeletal . . . .
neurons o S—— * Monosynaptic excitation drive to the a-
uscie . .
Skeletal musce spindle motoneuron is the foundation of muscle tone

fiber

and stretch reflexes (Liddell & Sherrington,
1924).



Spindle afferent and servo-control theory

Servo action (Marsden, Merton & Morton, 1972):
* Muscle spindles contraction due to reflexes or voluntary movements, via gamma MNs lead to afferent discharges

from the sensory endings.
* This induce, via a spinal stretch reflex arc, contraction of the extrafusal (main) muscle.

e Automatic correction of unexpected changes in the load against which the muscle is working.
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Can a servo-control perspective explain the role of spindle afferents during voluntary movements?



Motivation & Goals

* Muscles are afferented and the sensory outputs flood the spinal cord.
* Therefore, afferent signals must be regulated in a context sensitive way that is useful for movement.

Demonstrate in simulation that modulation of gamma motoneurons suffice to enable voluntary
movements in the presence of muscle afferent.

Approach
1. Simulate spindle afferent during movement
2. Test our hypothesis



Approach 1: Simulation of spindle afferent during movement

Goals:

a. Simulate movements without afferentation
b. Add a simple, constant spindle-like afference
c. Quantify the effects of spindle afferent on limb kinematics



Methods

Biomechanical Model:

Convert and modify Chan and Moran’s SIMM model of macaque arm into MuJoCo model (Chan & Moran, 2006).
31-muscle rhesus macaque model with:

- 7 DOFs

- 5 segments: upper arm, ulnar side and radial side of lower arm, hand, and torso as the initial frame.

- Activation curves
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Use Monte Carlo method to create 100 sets of feed-forward cortico-spinal activation (bell shape).
2-seconds MuJoCo simulation of the macaque arm model.
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Methods

* Spindle model * Record eccentric length & velocity signals from
Aref each muscle, and the endpoint trajectories
aMN L Activation equation
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* Compute trajectory errors and terminal errors
YMN with respect to to the reference trajectories

without afferentation.
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Disruption in endpoint space trajectories Results & Discussion

Sample endpoint space trajectories . . .
Sample endpoint space trajectories
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* As expected, afferentation is an internal perturbation.
* However, sometimes, the perturbations are big or small.
* Therefore, the effects of afferentation are context-dependent like Shadmehr and Mussa-lvalidi ‘s perturbation
to curl fields (Shadmehr and Mussa-lvaldi, 1994).
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* Trajectory & terminal errors w.r.t reference trajectories

3. Trajectory errors
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Overall, increase in spindle sensitivity to muscle stretch signals lead to increase in both trajectory and



Current directions

* Use more biologically realistic spindle models (Mileusnic et al., 2006)

e Test our hypothesis in approach 2:
s Demonstrate in simulation that modulation of gamma motoneurons suffice to enable voluntary

movements in the presence of muscle afferent.
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Relevance of the work

Understand and disambiguate the fundamental contributions of the spinal circuits to
movements.

This will allow us to understand the neural and neuromechanical contributors to
versatile function, and how its disruption creates disability.

Potential contribution to prostheses and assistive devices.
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Supplement materials



Motor unit and muscle action

Transmission of action potential at the motor end
plate cause release of neurotransmitter at the
sarcolemma.

Change in membrane electrical properties triggers
release of Ca+ions.

calcium cause a conformational change in troponin
and tropomyosin, thus exposing the active binding
sites on the actin filaments.

Myosin binds to the actin filaments

Muscle contraction is a consequence of interaction
between the actin and myosin filaments
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Fusimotor system : Gamma Motor neurons & Muscle Spindles
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How should gamma motoneurons be modulated ?
( Alpha-gamma coactivation vs Independent control)

Alpha-gamma coactivation

Muscle is stretched cause increase in la
firing

Activation contraction of muscle (muscle
shortening) lead to spindle unloading.

Simultaneous simulation of alpha and
gamma MNs will prevent spindle from
slackening
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Independent modulation

Loeb & Hoffer, 1981:
* la afferent behave differently depending on the contraction profile (
shortening or lengthening) of the muscle of origin.

* High activation of gamma MN during muscle contraction via
shortening .

* Relatively little activation of gamma MN during muscle contraction via
lengthening.
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