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Learning to lift and rotate objects with the fingertips is necessary for au-

tonomous in-hand dexterous manipulation. In our study, we explore the im-

pact of various factors on successful learning strategies for this task. Specif-

ically, we investigate the role of curriculum learning and haptic feedback in

enabling the learning of dexterous manipulation. Using model-free Reinforce-

ment Learning, we compare different curricula and two haptic information

modalities (No-tactile vs. 3D-force sensing) for lifting and rotating a ball against

gravity with a three-fingered simulated robotic hand with no visual input.

Note that our best results were obtained when we used a novel curriculum-

based learning rate scheduler, which adjusts the linearly-decaying learning

rate when the reward is changed as it accelerates convergence to higher re-

wards. Our findings demonstrate that the choice of curriculum greatly biases

the acquisition of different features of dexterous manipulation. Surprisingly,

successful learning can be achieved even in the absence of tactile feedback,

challenging conventional assumptions about the necessity of haptic informa-

tion for dexterous manipulation tasks. We demonstrate the generalizability of

our results to balls of different weights and sizes, underscoring the robustness

of our learning approach. This work, therefore, emphasizes the importance

of the choice curriculum and challenges long-held notions about the need for

tactile information to autonomously learn in-hand dexterous manipulation.

Introduction

Dexterous manipulation is a triumph of biology (1–8). However, the autonomous learning of

such behavior continues to remain out of reach for robots (4, 9–12). Robots have excelled at

grasping (reaching for and statically coupling an object to the hand by applying forces with the

fingertips, fingers, and palm (4,6,13,14)) for decades (e.g., (15–23)), but grasp is not dexterous
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manipulation (4). Dexterous in-hand manipulation (i.e., dynamically holding and reorienting

an object with the fingertips (4, 18, 24, 25)) is critical for interaction with, and use of, objects in

unstructured human environments.

To achieve this kind of manipulation with multi-fingered robotic hands, the robotics commu-

nity has developed sophisticated control theoretical approaches 1 (e.g., (4,7,26–33)). These con-

trol theoretical approaches, however, tend to require accurate models and state estimation, have

narrow stability margins, and have difficulty compensating for friction, interpreting intermit-

tent/deformable contact, and coordinating between multiple fingers. As an alternative approach,

biorobotic, neuromechanics, and artificial intelligence communities have introduced a variety

of bio-inspired and data-driven machine-learning approaches (for reviews see (4,11,14,34,35))

in simulation and hardware.

One particularly promising approach is the sub-field of Reinforcement Learning (RL), which

has provided several successful examples (12,23,36–39). RL empowers robots to iteratively en-

hance their manipulation skills through trial and error (without of a need of an accurate model of

the task or the environment), resulting in gradual improvements within complex environments.

However, manipulation RL studies to date are usually highly computationally intensive—and

have relied on vision—which limits their applicability (28, 35, 40–49). Lastly, most studies

have been limited to the upward-facing hand configuration, relying on the palm as a resting

platform for the object being manipulated which makes it an inherently more stable task to han-

dle than a down-facing hand configuration (9). Adding the downward-facing hand configuration

broadens the scope of solutions, delivering valuable insight to the robot manipulation commu-

nity (9,12,50). However, it introduces additional challenges as this orientation requires the hand

to counteract gravity at all times (51), and errors can lead to instabilities and failure by dropping

the object. Here we use an RL based on the Proximal Policy Optimization (PPO) (52) algorithm

to autonomously learn manipulation with a downward-facing hand without direct vision. We

1Henceforth we use the shorthand manipulation to mean dexterous in-hand manipulation
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find that the choice of curriculum biases learning manipulation toward one or another combi-

nation of skills (i.e., lifting the ball and/or rotating it) more profoundly than the availability of

tactile information.

Surprisingly, the absence of tactile information did not necessarily prevent or significantly

degrade learning relative to the influence of curriculum. These results reveal fundamental and

previously underappreciated aspects of curricula as a powerful tool for autonomous learning of

multi-objective tasks. For example, curricula commencing with both lift and rotation exhibit

initial superior performance compared to those building up from simpler blocks, such as focus-

ing solely on lift or rotation. Focusing on a single skill thereafter, however, can be additionally

beneficial. Beyond assessing the impact of curricula on autonomous manipulation, our study

yielded the significant revelation that, contrary to long-held notions, the absence of tactile in-

formation (and direct vision) does not inherently impede or degrade the learning process. In

fact, there seems to be a functional interaction with a curriculum where available sensing capa-

bilities bias the learning process toward combinations of dexterous manipulation skills that can

leverage the available tactile information.

Results

The goal of this project was to utilize curriculum-based RL to learn in-hand manipulation of

an object against gravity in a data-efficient way—even while not using visual information. We

demonstrate how the choice of curriculum is more influential than tactile information when

learning to lift and rotate a ball (weighing 50 g with 35 mm radius) with a three-finger robotic

hand in simulation (Fig. 1). To do so, we systematically explored two tactile conditions: No-

tactile (no force perception at all at the fingertip) vs. 3D-force (a 3D force vector in the direction

of force at the fingertip) during five distinct curricula (details in Methods). We defined each

curriculum as implementing a learning policy that rewards various combinations and sequences

of lift (L) and rotation (R) of a ball, which can switch at the halfway point (Methods, Table 1).

4



Compound Reward: R+L

yθ

Degrees of Freedom

Translation: x, z

Tactile Area
hz

dz

xy

q1

bz
yθz

x
mg

Reward Terms
Simulation Environment

Lift Penalty: L= -c (|z - z |)
b dL

x

z Hand Height

Ball Height

q2

Rotation Reward: R = c θ yR

Rotation: yθ

t1f

t2f nf

h,fNo-tactile: s    = 0

Tactile Information

3D-force: s    = [f  , f  , f ] h,f nt1 t2

Desired Height

Object Options

50 g, 35 mm radius

50 g, 30 mm radius

5 g, 35 mm radius

5 g, 30 mm radius

(A)

EpisodeIndependent Trial

Run Simulation
for one 10 s Episode 

Learn for 2,000 Episodes

PPO Seeding

Update 
PPO Policy

Curriculum Reward

Tactile Information

|0-1K 1K-2KEpisodes

|

Learning 

s h,f

[R    L       L]|
Strategy

Critic

PPO

TD Error

Reward

Curriculum-Based 
Reward Function

Actor

s
b

State, Ball

s h
State, Hand

a
Action

R+L

Tactile
Information

Hand 
Kinematics

Initial State Manipulation

s
b

s h

Initialize state vector:

(B)

Figure 1: Overview of Simulation Environment and Learning. High-level overview of the simulation en-
vironment and learning approach to autonomous manipulation. See the Methods section for further details. A:
Simulation Environment. A simulated three-finger robotic hand attempted to lift and rotate (i.e., dexterously ma-
nipulate) a ball. The 3D movement of the ball was lightly constrained to the X-Z plane. Changes in the ball state
affect the reward, which is a function of rotation, lift, and/or a combination of the two. We tested this approach
with two different tactile information conditions (No-tactile and 3D-force) available at the fingertips and four balls
of different weights and sizes. B: Learning Algorithm. Independent Trial, Left: For each of the five curricula,
autonomous learning was evaluated over 60 independent trials (one trial shown). Each trial in a curriculum con-
sisted of two learning phases lasting 1,000 episodes for a total of 2,000 episodes. The reward function changed at
the end of the first learning phase (with the exception of Curriculum 3, see Table 1). Episode, Right: Each episode
lasted 10 s and began de novo with the ball on the ground with the hand and fingertips suspended above it. In each
episode, the PPO learning algorithm dynamically updates the agent’s action (i.e., moving the fingers and hand) to
increase the curriculum’s reward.

For example, Curriculum 1 (i.e., C1) only rewards lift (L) in the first half of the trial, and both

lift and rotation (L+R) in the second half are described as [L|L+R]). Lastly, we confirmed the

generalizability of our approach by learning to manipulate balls (objects) of different weights
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and sizes (Fig. 5). We find that the order of reward (curriculum) greatly affects the progression

of learning and the final performance, 3D tactile information was not consistently better than

No-tactile information, and a similar trend was observed across all configurations (see the video

file in Supplementary Information).

Curriculum profoundly affects the progression of learning and final per-
formance

Each combination of curriculum and tactile information (Methods, Table 1) leads to a distinct

evolution of learning and final performance. This effect of curriculum affects both the progres-

sion of learning (path) and final performance (endpoint), and can be visualized as traversing a

developmental process (as ‘Waddington Landscapes’ in biology, Fig. 2, see Discussion).

Curricula, as expected, diverge in their ability to lift and rotate the ball. In fact, they had the

profound effect of biasing toward one or another combination of skills (L or R) and also adapt to

the available sensory input, much like experience-dependent developmental paths from an initial

pluripotent state (Fig. 2C). As we describe in detail in the Discussion section, we explicitly

explored different initial rewards with similar final rewards (C1 [L|L+R] vs. C2 [R|L+R] ),

and vice versa (C4 [L+R|R] vs. C5 [L+R|L] ). In all cases, the system was able to respond

to the change in reward (albeit with variable success). Note the evolution of skills for each

curriculum tended to saturate quickly within the first 250 episodes of the first and second phases

of learning. They tended to asymptote between the 250 and 1,000, and between the 1,250 and

2,000 episodes, respectively. Nevertheless, the final endpoints for each curriculum differed

significantly, showing that curricula are more than simply a means to learn multi-objective

tasks, but can actually produce different learning paths and endpoints—which can be exploited

by the user to achieve different capabilities with the same naïve system (Fig. 2).

Counterintuitively, starting with a multi-objective reward can be as effective, if not more

effective, than starting with simpler rewards. For example, rewarding both lift and rotation
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during the first 1,000 episodes (C3 [L+R|L+R] , C4 [L+R|R] , and C5 [L+R|L] ) improves

rotating the ball at the end of learning (episode 2,000) better than when only rewarding rotation

(C2 [R|L+R] ) at the start.

Tactile information is not necessary but can affect learning

Most surprisingly, the absence of tactile information did not preclude learning. Moreover, learn-

ing with No-tactile information was comparable to the 3D-force information (Fig. 2). The

presence or absence of 3D-force information did, however, change the learning paths and end-

points of each curriculum (Fig. 2, 3)—but the effect was not uniform. For example, 3D-force

information did produced more lifting than No-tactile in C1 [L|L+R] at the end of learning. But

this was reversed in C3 [L+R|L+R] ; and tactile information did not affect C4 [L+R|R] or C5

[L+R|L] much (Fig. 2). This nuanced effect of tactile information at the end of learning is also

seen in Fig. 3, and on average during learning in Fig. 4. This interaction was also seen while

learning with different objects (see details in the Generalizability section and Fig. 5).

Further nuance of the effect of tactile information can be seen in the different paths of

learning and in the response to switching of rewards between the first and second learning

phases (i.e., after episode 1,000). Note C3 [L+R|L+R] rewards both skills during the entirety

of both phases, but tends to be most effective at lifting in the No-tactile condition compared to

3D-force condition, Fig. 2. Nevertheless, when switching the reward to only lift C5 [L+R|L] or

only rotation C4 [L+R|R] at the end of the first learning phase, the 3D-force case makes up for

lost ground and has endpoints similar to those for the No-tactile condition. This effect seems to

be reversed for C1 [L|L+R] and C2 [R|L+R] where only lift or rotation were rewarded at first.

In these cases, the 3D-force condition produced greater lift and rotation during both learning

phases.
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Average lift success vs. completed rotations over 60 trials
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Figure 2: The evolution of learning highlights the dynamic functional interaction between curriculum and
tactile information. Manipulation performance during the last 10s of each episode noted: the percent of the time
the ball is within the desired height range vs. number of complete rotations. Each point is the average of 60 inde-
pendent trials. Arrows point in the direction of increasing episodes. Negative rotations were set to zero. Note that
the choice of curriculum had a profound effect on learning for both tactile conditions ((A) No-tactile and (B) 3D-
force ). Surprisingly, learning happened even in the absence of tactile information, and manipulation performance
was not always better with 3D-force information. (C) An analogy of learning as a developmental trajectory from a
pluripotent state based on experience (curriculum). This effect of curriculum (and tactile information, cf. A vs. B)
affects both learning (path) and final performance (endpoint), and can be visualized as traversing a ‘Waddington
Landscape’ (adapted from (53)).
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Figure 3: Performance across all curricula and both tactile information conditions. The joint distribution
illustrates the performance during the final 10s episode of each of the 60 trial runs (showcasing the mean ball
height (mm) versus the number of completed rotations). The color-coded cumulative reward for the last episode of
each run (refer to equation (1)) corresponds to different curricula. Note that the final manipulation performance is
represented by those points inside the green box defining the desired ball height (25 ± 4 mm).

Discussion

What did we learn about learning to manipulate?

We provide proof-of-principle that it is possible to learn the hard problem of dynamic dexterous

manipulation. Putting our work in context is critical and best done by pointing to its place in the
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updated taxonomy of hand function put forth by MacKenzie, Iberall, Brand, Curkosky, Dollar,

and others (2,18,54–57). In particular we have addressed the problem of dynamic manipulation

with three fingers while the ball is at risk of being dropped at any moment (see ‘Compari-

son to State-of-the-Art’ section). This definition emphasizes that ‘grasp’ and ‘pick-and-place

manipulation’ are conceptually and mechanically distinct from ‘dynamic manipulation’ as ad-

dressed here, even though they are at times used interchangeably in the literature (58). Such

dynamic manipulation is, in fact, an enviable ability that is also difficult for biology to achieve

as it develops in humans late in childhood, degrades in healthy aging, and is quickly lost in
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Figure 5: Final Performance for Lift (Left) and Rotation (Right) for both tactile conditions for four objects.
The top row corresponds to the baseline object described in the main results. Violin plots show the distribution of
Lift and Rotation at the end of learning (i.e., the last 10 seconds of the 2,000th episode) for all 60 trials. Lift is
described as a distance from the desired height (the green box shows the distance from the desired height range ±
4 mm) and Rotation as the number of completed rotations for both tactile conditions, No-tactile and 3D-force.
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even mild/initial forms of neurological conditions such as peripheral neuropathies, stroke, and

Parkinson’s disease (e.g., (58, 59)). In our work, the fingertips induce dynamic translation and

rotation of the ball while making and breaking contact. As such, the hand function we achieved

merits the description of dynamic dexterous manipulation.

Curriculum learning can be seen as a developmental process from a pluripotent state. We use

the analogy of the Waddington Landscape (Fig. 2C) for curriculum learning of manipulation

because of its similarity to epigenetic transformation from a pluripotent state in biological de-

velopment (53, 60). Curriculum learning, in fact, produces a developmental trajectory from a

naiv̈e (i.e., pluripotent) state based on resources (tactile information) and experience (curricu-

lum) (Fig. 2A&B). Each curriculum affects both the progression of the learning (path) and

its final performance (endpoint), and can thus be thought of as traversing a Waddington Land-

scape. Importantly, the evolution of skills for each curriculum was (unlike cell differentiation)

not strictly irreversible, but remained adaptable. Specifically, the change of reward after the

first learning phase did not preclude the system from emphasizing the improvement of the new

skill. This is visually represented by 90° shifts in the paths (see C1 [L|L+R] and C2 [R|L+R]

in Fig. 2). In some cases, the response to a switch in reward even reversed a learned skill for

the first 250 episodes in the second phase of learning, and only then increased the new skill (see

C4 [L+R|R] and C5 [L+R|L] in Fig. 2). In one case, C3 [L+R|L+R] , there was no change in

reward after the end of the first learning phase, and the system was saturated already. In others,

the system did respond like an ‘irreversible’ system that learned little of the new skill, of at all,

when the reward function was switched (e.g., C2 [R|L+R] in the 3D-tactile case in Fig. 2). See

the next Discussion Section.

The role of sensory information

Manipulation can be achieved without tactile information or vision. Tactile information has

long been thought as necessary for human—and by extension robotic—manipulation (4, 61).

12



This idea was reinforced by the work of Johansson and Westling (62, 63) demonstrating that

numbing the fingerpads with temporary anesthetic greatly impairs fine manipulation. Our re-

sults in Fig. 2 provide a counter-example to this longstanding notion. Interestingly, we found

that our system was able to learn even in the absence of tactile information (the No-tactile con-

dition in Figs. 2A and 3). In fact, having 3D-tactile information not always produced better

performance (cf. C3 [L+R|L+R] in Fig. 2A&B).

How is it possible to learn to manipulate without vision or tactile information? The answer,

we believe, comes from the nature of reinforcement itself. As described in Fig. 1B, PPO—as a

reinforcement learning algorithm—condition its actions (next-step finger joint angles, angular

velocities, palm position, and velocity) based on the system state, ultimately optimizing for

increased reward. In the No-tactile case, the hand’s state comprises finger joint angles, angular

velocities, palm position, and palm velocity—which seem to suffice to learn the task. Therefore,

lift and rotation of the ball was a product of guided hand kinematics that properly affect ball

dynamics to increase the reward in the No-tactile case, such as in our previous work to learn

locomotor movements without the need to sense the ground (39).

As such, a main contribution of our work is to provide an existence proof that an agent

using reinforcement learning is able to learn a sophisticated manipulation behavior even in the

absence of tactile information. Note that direct vision was not necessary either, as in other prior

work (39). Our important result about dynamic manipulation provides impetus to revise our

thinking about, and use of, tactile and visual information to allow freer thinking for engineers

(and bio-roboticists) creating the next generation of dexterous hands and robots.

The presence or absence of tactile information did, however, alter the progression of learning.

Figures 2A&B (and the Supplementary Information Fig. S1) show that the type of sensory infor-

mation did affect learning—but the general features of the path and endpoint of each curriculum

remained similar in both tactile conditions. Importantly, the effect of tactile information was not
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systematic. The 3D-tactile cases were not consistently or necessarily better than the No-tactile

cases, or vice versa. Thus, curriculum is a dominant factor compared to tactile information.

From the computational perspective, one could have expected that when learning with a

fixed number of episodes, 3D-tactile information would perform systematically worse because

of the computational demands associated with extending the length of the hand state vector sh

by 9 elements (3 forces per finger) for the same PPO algorithm architecture which now has to

tune more weights (Fig. 1). But, 3D-tactile cases at times outperformed the No-tactile cases

(e.g., C1 [L|L+R] in Fig. 1A&B), which strongly suggests that our comparisons across curricula

and tactile conditions are not the result of an imbalance in computational demands for a fixed

number of learning episodes (1,000 per learning phase for a total of 2,000). This is additionally

supported by the fact that 3D-tactile cases also saturated their learning by the 250th episode

(like the No-tactile cases).

Also, it is important to note that this study does not undermine the effectiveness of tactile

information in many everyday tasks. It merely provides a proof-of-principle that it is possible

to learn a specific task (i.e., the manipulation task of interest in this paper) without using tactile

information; and with performance comparable to when tactile information is available. It

is clear that many tasks exist for which sensory signals would either be crucial to perform,

or would greatly enhance, either the learning speed for the task, the final performance, error

correction, and/or their robustness and repeatability. These are beyond the scope of our work.

What did we learn about learning?

Our system exhibits some important features of lifelong learning. As defined in (11), our system

shows transfer and adaptation because it reuses knowledge to improve performance and rapidly

adapts to novel skills as in C1 [L|L+R] C2 [R|L+R] , C4 [L+R|R] , and C5 [L+R|L] (in Figs.

23, and 4). Similarly, our system did not suffer from catastrophic forgetting as it was able

to retain varying amounts of previously learned knowledge on a case-by-case basis (Fig. 2 and
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Supplementary Information, Fig. S1). For example C4 [L+R|R] and C5 [L+R|L] did not entirely

forget to lift or rotate when they were no longer rewarded, respectively.

Curriculum learning does not necessarily have to advance gradually from single-objective to

multi-objective rewards. In many applications such as locomotion, investigators have found

that curriculum learning is indispensable to advance gradually from single-objective (i.e., ‘sim-

pler’) to multi-objective (i.e., ‘more complex’) rewards (64). This has led to curriculum learning

becoming the standard approach in the field. From the traditional definitions of Vanilla or Pro-

gressive curriculum learning (65,66), one might assume that first learning to lift the ball (a form

of grasp) is ’easier’ than rotating it, which involves a dynamic behavior (4,27) and a curriculum

strategy in which rotation is learned only after lift is going to be a significantly more successful

one. However, rewarding lift and rotation from the start does not hinder learning, as demon-

strated by C3 [L+R|L+R] . In fact, it allowed transfer and adaptation for C4 [L+R|R] and C5

[L+R|L] to subsequently refine the single skill rewarded during the second phase of learning—

albeit at the expense of some reduction of the non-rewarded skill. However, it is noteworthy

that curricula that rewarded only one skill from the start (C1 [L|L+R] and C2 [R|L+R] ) were

not able to learn the second skill as efficiently during the second learning phase (rotation and

lift, respectively).

Another aspect of lifelong learning involves the saturation of capacity causing learning to

slow down (67, 68). Capacity saturation arises due to the fixed representational capacity of

parametric models, including the PPO algorithm (68). We see this in our implementation of

PPO—which increasingly fails to absorb additional knowledge from successive episodes. This

is most evident in C3 [L+R|L+R] for the entire second phase of learning, as shown in Fig. 2.

A learning model with more free parameters would theoretically be able to absorb additional

knowledge from successive episodes.
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The curriculum-based learning rate scheduler enhances the efficiency of learning which accel-

erates convergence to higher reward

We sought to align the implementation of learning rates in PPO with the nature of curricu-

lum learning. To do this, we defined our curriculum-based learning rate scheduler to adjust

the linearly-decaying learning rate when the reward changed (Fig. 6). We find this improved

learning and allowed a more fair comparison across curricula as it reduced heuristic tuning ef-

forts. This curriculum-based learning rate scheduler offers an effective approach tailored to

curriculum learning for autonomous systems by modifying the learning rate only when chang-

ing task complexities and rewards. Empowering curriculum learning to adapt learning rates in

a way compatible with changing rewards enables autonomous systems to learn complex and

dynamic environments more systematically, autonomously, and effectively. Thus, integrating

curriculum-based learning and reward scheduling into a ‘curriculum-based learning rate sched-

uler’ for autonomous systems is vital to enhance their learning capabilities and performance in

manipulation tasks.

Lastly, we demonstrate our results generalize to balls of different weights and size. As shown

in the Supplementary Information in Figs. S1–S7, our results were consistent across the four

objects we studied (i.e., of two masses, 50 and 5 g, and two sizes, 35 and 30 mm in radius, Fig.

1A). Namely, our system was successful at learning to manipulate, but in a way that curriculum

had a greater impact than tactile information. There were minor differences across the endpoint

performance for each object (note the difference is the scales of the axis). But the learning paths

for each curriculum, and the effect of switching the reward, remained consistent (Fig. S1). This

can also be seen in the detailed depiction of the distribution of rewards as learning progressed,

Fig. 5). This further shows that the effect of ball size or weight (like that of tactile information

as mentioned above) was not substantial nor systematic.
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Comparison to the state of the art

It is critical to note that, as we have stated in the past (4), grasp or pick-and-place tasks are not

dexterous manipulation in the rigorous sense of grasp taxonomies. Even reorienting a cube rest-

ing on an upward-facing palm (9,16,50,69–72) is not prehensile manipulation. Likewise, Prior

work has used extensive vision with the upright palm to hold an object being reoriented (12,73),

other than one demonstration of learning under increasing force of gravity (74), we know of no

published demonstration of dynamic manipulation task against full gravity utilizing curriculum

learning either directly in simulation or hardware. We employ a novel curriculum-based learn-

ing rate scheduler for PPO, which significantly enhances the success performance across all

scenarios. We now discuss how our novel approach to manipulation compares and contrasts

with other studies in robotics and RL. The state-of-the-art of autonomous learning for in-hand

manipulation is limited. Although important advances have been made using computationally

intensive approaches in simulation and hardware (e.g., (12,28,35,41–43)), these tend to be im-

practical for autonomous learning at the edge. Augmenting RL for manipulation with imitation

learning has shown some successes (12, 36–38), but collecting task-specific expert demonstra-

tions from humans are often limited to specific objects or tasks, might not always be practical,

require specialized equipment and can be time-consuming.

In contrast, we used a model-free data-driven approach because precise prior knowledge

of the system, objects and the environment is not always available, especially in unstructured

environments. Although some other studies also use model-free RL methods for rotating objects

with simulated fingers or a robotic hand (9,75–77), we have overcome some of their drawbacks.

In (9, 76), the orientation of an object was controlled while resting on an upward-facing palm.

Thus, it did not have to be held against gravity as it was not at risk of being dropped at any time.

Some of these limitations were addressed by Chen et al. (77) in simulation by manipulating

the object with the palm facing downward like we did, but gravity was introduced slowly as

part of the curriculum. Moreover, to successfully manipulate the object the authors found it
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important to ‘initialize the object in a stable configuration’—which we did not need.

The way our work went beyond the state-of-the-art, therefore, is by demonstrating for the

first time a method with the ability to autonomously learn to manipulate an object against gravity

while revealing the role of curriculum learning and tactile information in in-hand manipulation.

The impact of learning rate scheduling on stochastic optimizer performance has been exten-

sively investigated in recent research (78, 79). In our study, we specifically explore the effects

of a constant and linear piecewise learning rate for PPO on the success of our architecture. Af-

ter careful consideration, we have decided to proceed with the piecewise learning rate. This

adaptive approach adjusts rates dynamically throughout training, speeding up the process with

higher initial rates and ensuring stable convergence with lower rates later on.

Lastly, our work underlines the importance of curricula in manipulation and shows how the

right choice of a curriculum can enhance performance and robustness across multiple tasks by

exhibiting some important features of lifelong learning.

Limitations, opportunities and future directions

While our work pushes the field of autonomous manipulation forward, it naturally has some

limitations. First, our work is done in simulation. But, as with many other studies looking

to bridge the sim2real divide (39, 80), we used realistic physical constraints within our state-

of-art physics engine (MuJoCo) that handles dynamic contacts and impacts well. This is a

foundation that will enable future implementations in hardware. As to the geometry of our

hand, it is common for useful robotic hands to have three fingers (28, 75). Curriculum learning

has multiple varieties (66) that can adapt as learning progresses such as Self-Paced curriculum

learning. In our case, our learning phases were of fixed duration even though the system tended

to plateau. Thus, it could benefit from future implementations that adapt reward changes to

minimize training time. Lastly, our manipulation tasks serve as a foundation for—but do not

yet address—traditional use cases for activities of everyday life.
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Our choices regarding PPO, curriculum design, hand and object structure, reward function,

and other parameters were specifically tailored to address the scientific questions of interest

within the scope of this paper and to establish a proof of concept. It’s important to empha-

size that our selections were not intended as universally applicable solutions. That is to say, to

address a different need, a similar pipeline to this paper can be utilized but different tasks, envi-

ronments, or robotic structures might need to be used. Also, different learning blocks (different

than the RL technique or the adaptive curriculum-based learning rate scheduler function used

in this paper) can be used that might serve best for another specific task or purpose.

Methods

In this section, we first describe the simulation environment and the task used in this study.

Then, we elaborate on the learning policy that enabled autonomous manipulation.

Simulation environment

The manipulation and machine learning communities have used the advanced physics simula-

tion environment MuJoCo (81) for tasks involving autonomous manipulation. MuJoCo allowed

us to implement reinforcement learning algorithms on a robotic hand in a realistic environment

that includes contact dynamics (including penetration) and gravitational acceleration (81, 82).

To demonstrate the adaptability and robustness of our proposed methodologies, we assessed

the performance using four different objects. Our evaluations encompassed systematic explo-

ration, considering two different weight combinations (50 g and 5 g), as well as varying ball

radii (35 mm and 30 mm). The work presented herein focuses on a ball of 50 g with a radius of

35 mm with the other configurations presented in the section Generalizability in Supplementary

material.
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Robotic Hand Design.

We simulated a bio-inspired, three-fingered robotic hand with a palm and three identical servo-

driven fingers: two adjacent fingers, analogous to the ’index’ and ’middle’ fingers, and one

opposing them, analogous to the ’thumb’. In contrast to our prior efforts (83), where we show-

cased the reach-to-manipulate capability with a downward-facing orientation using distinct cur-

ricula, we modified the hand design. Each finger consisted of two joints that could rotate about

the y-axis (q1 and q2 in (Fig. 1A)), similar to the flexion or extension seen in human fingers. The

size of the palm and length of each ‘phalanx’ was based on an average human hand (75, 84).

An additional servo motor was included at the base of the hand, which provides translational

motion in the vertical direction (zh).

Fingertip Tactile Sensors.

This work incorporated tactile information and RL, sometimes referred to as touch-augmented

RL, as we covered the internal side (i.e., the ‘pads’ of the fingertips) of the distal phalanx of

each finger with tactile sensors. Contact regions were configured near the tips of each finger

(Tactile Area, Fig. 1 ). Objects contacting the finger outside of these tactile areas (sites, in

MuJoCo) are not perceived as tactile information by the learning algorithm (76, 81).

We used MuJoCo’s built-in features to record the 3D-force sensor on the fingertips of all

three fingers. The 3D-force sensor sites provide a 3D array of 3 orthogonal forces (one normal

and two tangential to the sensor site for each sensor) of scalar values representing the 3D-force

vector. Moreover, we have considered an additional case: No-tactile. In the No-tactile case, the

state vector for the tactile information sh,f is null (we do not consider the tactile information

in learning). As shown in Fig. 1A, the possible contact tactile information at each fingertip is

indicated by sh, f = [ft,1, ft,2, fn] and it depends on tactile sensing available at fingertips. See

Supplementary Table S3 for more details on the tactile information.
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Task Description

The robotic hand attempts to manipulate a 50 g, 35 mm radius ball, which starts each episode

on the ground with the palm of the robotic hand at a height of 200 mm above the ground. The

ball height zb is defined at the center of the ball, and we specified a desired height for the ball zd

to be 25 mm above zb. In other words, the desired height zd is 60 mm above the ground.

Through simulation constraints, the ball is limited to 2 translational DOFs (moving vertically z

and horizontally x) and 1 rotational DOF (rotation about the θy direction; see (Fig. 1)). We

included viscous damping in the translational and rotational DOFs of the ball to stabilize the

simulation and prevent numerical instabilities for the simulation of the rigid fingers.

We further limited the ball’s movement in the x direction by adding stiffness to the ball.

The details of the simulation parameters, including the robotic hand and the ball) are shown in

Supplementary Table S1.

Observation and Action Space

The system’s state vector includes the hand state vector (sh), consisting of fourteen kinematic

degrees of freedom (DOFs), along with the position and velocities of the hand’s palm (sp) (2

DOFs), and the position and velocity of the ball (sb) (6 DOFs). This 20-dimensional vector

encapsulates joint angles (q1 to q6) and their derivatives, as well as the vertical height of the

hand (zh) and its derivative, collectively describing the dynamic state of the system.

Additionally, the ball state vector comprises vertical (z) and horizontal (x) translation, and

its rotation about the y-axis (θy). No other translations or rotations are permitted (see Sup-

plementary Table S2). The height of the hand, zh, is actuated for the hand to reach for and

manipulate the state of the ball (sb) by rotating (θy) and lifting (zb) it to a desired height (zd).

It’s important to note that not all state variables are utilized in our reinforcement learning

policy (observation state). Specifically, the observation state omits details about the ball’s veloc-

ity and position, as explained in the following subsection. Furthermore, it’s worth mentioning
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that the action space aligns with the observation state. When a 3D-force is introduced, the state

of the system dynamically changes, augmenting the hand state with an additional 9 data points.

Algorithm 1 Simulation with PPO
1: procedure RUNSIMULATION

2: Initialize simulation environment
3: Set random seed for reproducibility
4: Initialize policy and value networks
5: Initialize optimizers
6: Set hyper-parameters and simulation parameters
7: Initialize replay buffer
8: Set training iterations and mini-batches
9: Set PPO-specific parameters

10: for episode = 1 to 2, 000 do
11: Initialize episode
12: for t = 1 to 1, 000 do
13: Sample and execute actions
14: Store transition in the replay buffer
15: end for
16: Update the policy using PPO
17: end for
18: end procedure

Autonomous Learning Approach

To autonomously learn in-hand manipulation of a ball against gravity through utilizing tactile

information, we used a model-free RL algorithm to learn the policy. We used Proximal Policy

Optimization (PPO) as our main algorithm as it presented a balance between the ease of imple-

mentation, sample complexity, and ease of adjustment, trying to update at each step to minimize

the cost function while assuring that the new policies are not too far from last policies (52, 85).

PPO has also been adopted as one of the default methods of OpenAI owing to its excellent

performance (86, 87).
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Reward Function

The reward engineering concept (a subset of RL) focuses on finding the most appropriate reward

to maximize successful learning via reward shaping (88). Reward shaping involves carefully

designing reward functions that provide the agent with rewards for progress toward the goal.

In our work, we defined two goals, lift and rotation. Lift: Our desired height (center of the

ball above the ground) is zd = 25 mm, shown in (Fig. 1). In our algorithm, the goal is reached

when the agent supports the ball against gravity within a desired height range of [21, 29] mm,

indicated with a green box in Figs. 3 (and Supplementary Figs. S2, S4, S6). A range is used to

accommodate height variation during rotation and manipulation tasks. For results metrics, we

report the mean height of the ball and lift success as a percent time within an episode where the

ball is in the desired height range. Rotation: For rotation, we calculated completed rotations

as our performance measurement (as opposed to rotation reward or rotation in degrees). Since

we care about manipulating the ball against gravity at the desired height range, we used a

combination of primary (positive) reward and punishment (penalty proportional to the distance

between the current height and the desired height as a negative reward) at every time step.

In our reward function, the angular velocity of the ball θ̇y was the primary reward, and the

absolute distance of the state from the reference state of having the ball at the fixed desired

position (zd = 25 mm, (Fig. 1)) was the punishment. The reward function is described by

Rewardt = cRθ̇y,t − cL|zh,t − zd|, (1)

where cR = 0.51 and cL = 0.49.

We investigated learning strategies (here, curriculum) in which lift and rotation are both

rewarded (L+R), strategies in which only lift is rewarded with rotation coefficient set to zero

(cR), and strategies in which lift coefficient is set to zero ((cL) and only rotation is rewarded (R).

This is described in detail in the following section (see Table 1).
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Curriculum Learning

A learning trial consisted of 2,000 episodes, where each episode lasted 10 seconds. This resulted

in a total simulated time of 5 hours and 33 minutes per trial. Each learning trial was split into

two equal halves where the reward function changed between the two halves of the trial. We

considered five distinct curricula that differed in the behavior (rotation and lift) rewarded in two

halves of the trail. This is illustrated by a circle with a curved arrow (rotation) and a vertical

arrow (lift) throughout the paper and pictured in the second column of Table 1). As shown in

the last column, by changing cR and cL variables in equation (1), we update the reward function

in two equal halves of the learning trial in each curriculum. The final column of the table, gives

the values of cR and cL used in equation (1), to update the reward function in the two halves of

the learning trial in each curriculum.

Learning was evaluated over 60 trials for each of the 5 curricula. Each of these 60 trials

was independent by varying the seed parameters of the PPO algorithm for our reinforcement

learning policy. This was repeated for the two tactile conditions (No-tactile and 3D-force). For

each tactile condition, the initial seed for the random number generator was held constant across

different curricula. For example, the first trail run seed was exactly the same for all curricula

and both tactile conditions. Overall, we used independent trials to evaluate the effectiveness of

our approach to autonomous manipulation.

Reinforcement Learning Policy

We adopted a Proximal Policy Optimization (PPO) policy to control the robotic hand to achieve

autonomous manipulation. PPO is a set of policy gradient methods that optimize a surrogate

objective function using multiple minibatch updates per data sample (52, 89). The objective

function to optimize is the sum of several loss functions and is given by

LCLIP+V F+S
t (θ) = Êt[L

CLIP
t (θ)− c1L

V F
t (θ) + c2S[πθ](st)], (2)
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Reward During First
Half of the Trial

Reward During Second
Half of the Trial

Coefficients of equation (1)
[first | second] halves of each trial

Curriculum 1 [L | R+L]
[cR = 0, cL = 0.49 | cR = 0.51, cL = 0.49]

Curriculum 2 [R | R+L]
[cR = 0.51, cL = 0 | cR = 0.51, cL = 0.49]

Curriculum 3 [R+L | R+L]
[cR = 0.51, cL = 0.49 | cR = 0.51, cL = 0.49]

Curriculum 4 [R+L | R]
[cR = 0.51, cL = 0.49 | cR = 0.51, cL = 0]

Curriculum 5 [R+L | L]
[cR = 0.51, cL = 0.49 | cR = 0, cL = 0.49]

Table 1: We used five curricula that rewarded different combinations of rotation and lift during each half
of the independent trials. These changes in the coefficients of the reward function define a progression
of goals (i.e., curriculum learning) over the two halves of each run.

The LCLIP
t (θ) is the clipped surrogate loss function and ensures that the policy updates will not

be too large. While the LV F
t is a squared-error loss, it ensures that the loss from both policy

and value functions of the neural networks are accounted for. The S denotes the entropy bonus

term, which encourages a more random policy (i.e., more exploration), so a larger entropy

coefficient c2 will encourage more exploration (89).

To implement PPO, we use the PPO1 implementation from OpenAI’s stable baselines repos-

itory (87) with MultiLayer Perceptron (MLP) Artificial Neural Network (ANN) for the actor-

critic mapping. The Proximal Policy Optimization (PPO) algorithm, outlined in Algorithm

18, describes the iterative process through which the policy and value functions are updated to

maximize cumulative rewards.

At every time step t, the robotic hand observes its own state sh,t and the state of the ball sb,t,

predicts the optimized action, executes it at, and a reward is used rt. The state sh,t contains the

angle and angular velocity qt, q̇t of each finger and the position and linear velocity of the palm
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at every time step t. The overview diagram of the Proximal Policy Optimization algorithm in

this work is shown in (Fig. 1B).

To attain optimal performance, we fine-tuned the hyper-parameters and meta-paratmers of

the PPO algorithm during the training of our RL model. The clipped surrogate loss in the

PPO algorithm serves to prevent divergence, as discussed in (52). However, it introduces a

challenge by potentially prematurely reducing exploration variance across multiple iterations.

Strategic tuning of the loss parameters in equation (2) becomes essential to avoid issues such

as divergence or settling on a local minimum. PPO addresses this challenge by including an

entropy loss term that penalizes low variance, mitigating the risk of premature convergence. It

has been observed that a higher entropy loss weight minimizes the risk of getting trapped in

local optima. Nevertheless, if the entropy loss weight is excessively large, it can lead to a noisy

policy and a decline in average performance. Therefore, careful adjustment of the entropy loss

term for PPO is necessary. Building on the findings regarding different entropy loss weights for

the policy’s standard deviation in (90), we optimized the entropy loss term to strike a balance

between variance and average performance.

PPO employs the Generalized Advantage Estimator (GAE) to reduce the variance of policy

gradient estimates at the expense of some tolerable bias. GAE is parameterized by λ ∈ [0, 1],

which enables the PPO agent with a mechanism to control policy updates according to the sig-

nificance of each sampled state and, therefore, enhance learning reliability (91). Changing this

hyper-parameter enables PPO to find a balance between variance and bias of policy gradient es-

timates (92). In our work, this trade-off was achieved by changing the lambda meta-parameter to

relatively demote rewards achieved later in the episode (when the ball may have been dropped)

and instead emphasizing immediate rewards at every point in time (as is the case in real life).

The number of optimization epochs, GAE parameter λ, and the entropy coefficient are set

to values shown in Table S4. All other parameters are kept at their default values per PPO

implementation.
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Adaptive curriculum-based learning rate scheduler

The impact of learning rate scheduling on the performance of stochastic optimizers has garnered

considerable attention in recent research (78, 79). Traditional approaches, employing a fixed

and static learning rate throughout training, often struggle to attain optimal model performance.

To address this limitation, diverse scheduling algorithms, such as polynomial decay, cosine

decay, and warm-up, have been proposed, each tailored with distinctive forms (93). Current

methodologies often rely on predefined principles, assuming specific scheduling rules based

on empirical studies and domain knowledge. These approaches may not rigidly adhere to any

existing rule to find the optimal learning rate scheduling for a particular problem.

In our exploration of PPO, we aim to transcend the constraints associated with a constant

learning rate. Initially, we opted for a constant learning rate and linear learning rate, commonly

used approaches in reinforcement learning algorithms (94). But implementing a constant learn-

ing rate in dynamic contexts, where sensitivity to the initial rate choice can result in unstable

training or sub-optimal solutions, highlights the necessity for adaptive approaches. We proposed

a new method to tackle challenges with fixed learning rates, especially in dynamic environ-

ments like our manipulation tasks. This is addressed by an adaptive curriculum-based learning

rate scheduler, bringing multiple advantages. This adaptive strategy dynamically adjusts rates

throughout training, expediting the learning process with higher initial rates and ensuring stable

convergence through decrementing rates during later stages.

Curriculum-based Learning Rate Scheduler Strategy

Instead of utilizing a fixed or decreasing learning rate, our method embraces a curriculum-

adaptive learning strategy. The adaptive curriculum-based learning rate scheduler (piecewise

linear learning rate) strategy is described as follows:

Lr =

ϕ ·
(
1− sample number

1,000,000

)
, sample number ≤ 1, 000, 000

η ·
(
1− sample number

2,000,000

)
, sample number > 1, 000, 000

(3)
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The selection of optimal values for ϕ and η was determined empirically, ensuring adaptabil-

ity across all five curricula. The curriculum-based learning rate scheduler (Lr) is established

and adjusted through trial and error to emphasize the significance of curriculum learning. These

coefficients are then integrated into the PPO linear scheduler according to the following equa-

tion. Our curriculum dynamically changes at 1,000 episodes (1,000,000 samples), compelling

the learning rate to be piecewise linear to accommodate the variations in the dynamics of the

reward and tasks. This adaptive strategy effectively responds to changes in the environment,

contributing to the model’s success.
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Figure 6: Effect of PPO curriculum-based learning rate scheduler by comparison of Mean Height. Data
presented for mean height in C5 [L+R|L] throughout the whole learning period. The desired height for all cases
is 25 mm. Solid lines represent the mean across all 60 trials for the specified learning rate methods. Shaded areas
represent ±1 standard deviation. The solid red line follows the PPO implementation per equation (3).

To validate the effectiveness of our approach, we explore the impact of constant, linear,

and adaptive curriculum-based learning rate scheduler (Piecewise Linear Learning Rate) in C5
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[L+R|L] in Fig. 6, comparing Mean height over 2,000 learning episodes. Piecewise linear learn-

ing rate was far closer to this target height than either Linear or Constant learning rate. Thus

piecewise linear learning rate was used as the curriculum-based learning rate scheduler through-

out this work. Our results in different curricula consistently support the superior performance

of PPO with well-designed scheduling mechanisms, surpassing those utilizing a constant and

linear learning rate in both convergence rate and final performance metrics (93, 95, 96). One

key advantage is the reduced sensitivity to the initial rate choice, minimizing the risk of diver-

gence. The piecewise linear learning rate promotes efficient exploration in the early stages and

exploitation for optimal performance during convergence. Its curriculum-based adaptive na-

ture contributes to faster convergence, effectively navigating both exploratory and exploitative

learning phases. Moreover, the piecewise linear schedule imparts robustness against variations

in task difficulty or environmental changes, automatically adjusting to maintain training stabil-

ity.

To evaluate the effectiveness of different learning scheduler methods in reducing conver-

gence time, we conducted an analysis on the average number of episodes needed after switch-

ing the reward during the second phase of learning in C5 [L+R|L] . We compared three learning

schedulers: constant learning rate, linear rate, and piecewise linear rate.

Our findings reveal that the average number of episodes for convergence in successful trials

(defined as trials where the hand can maintain the ball within the target height range) after the

reward switch varied significantly across the different schedulers. Specifically, when focusing

only on the successful trials (not shown), we observed that it took 1,000 episodes for conver-

gence with a constant learning rate, 450 episodes with a linear rate, and only 250 episodes with

a piecewise linear rate (see episodes 1,250 in Fig. 6).

Figure 6 illustrates the performance of each scheduler in reaching the target height. Re-

markably, the piecewise linear learning rate outperformed both the linear and constant rates by

a substantial margin. Additionally, it achieved a higher cumulative reward across all 60 trials,
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indicating its superior effectiveness in learning and adaptation.

These results highlight the significant advantages of using a piecewise linear learning rate

scheduler in enhancing convergence speed and overall performance in C5 [L+R|L] simulations.

In summary, our adaptive curriculum-based learning rate scheduler strategy in the PPO im-

plementation aims to enhance training stability, expedite convergence, and improve adaptability

in dynamic environments. This aligns with our goal of efficiently training the agent for effective

in-hand manipulation and contributes to the exploration of learning rate scheduling strategies

on a curriculum-based approach.

The complete code for learning is available at the following GitHub repository.
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Supplementary Information

Supplementary Methods

We simulate a three-fingered robotic hand using MuJoCo, an advanced physics simulation en-

vironment that enables us to model physical systems and their dynamic interactions. We also

utilize the OpenAI baselines library and the MuJoCo-py interface to implement reinforcement

learning algorithms developed in Python. The robotic hand attempts to autonomously learn to

manipulate a ball (Fig. 1A). Our data-driven learning approach does not necessitate an explicit

model of the hand, ball, or their interactions, which is advantageous in unstructured environ-

ments compared to model-based approaches (43, 82). Furthermore, our approach does not rely

on visual information at any stage of the learning process.

Our aim is to achieve autonomous acquisition of manipulation skills by the robotic hand,

with upcoming sections detailing the simulation, learning algorithm, and thoroughly exploring

the assessment of generalizability and robustness.

Generalizability

To showcase the versatility and resilience of our proposed methodologies, we conduct thorough

evaluations across four distinct objects. These evaluations involve systematic exploration, in-

corporating various weight combinations such as 5g and 50g weights, along with different ball

radii (35 mm and 30 mm). Physical simulation parameters for the three-fingered robotic hand

and parameters of the ball for different objects are given in Tables S1 and S2.

Within the scope of our investigation, we carry out a series of exhaustive experiments for

each of the four distinct objects, denoted as O1 through O4. These experiments are carefully de-

signed, incorporating five diverse curricula identified as C1 through C5. A rigorous evaluation,

comprising a total of 60 trials for each curriculum, provides valuable insights into the adapt-

ability and performance of our methods. In addition, we systematically explored two tactile

conditions (No-tactile vs. 3D-force) across the five distinct curricula. The subsequent section
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Parameter Value
Palm Mass 100 g
Finger Mass 68 g
Link length 50 mm
Phalanx diameter 10 mm
Palm width 20 mm
Palm diameter 120 mm
Initial hand height (zh(0)) 200 mm
Maximum translation (zh) 130 mm
Joint damping 5.5× 10−6 N·s/mm
Joint limits (q1) [−45◦, 45◦]
Joint limits (q2) [−90◦, 0◦]

Table S1: Physical simulation parameters for the three-fingered robotic hand for all objects.
The overall mass of the hand comprises the combined masses of the three fingers and the palm
is 304 g.

provides detailed simulation parameters for all four distinct objects.

Simulation parameters

Physical parameters for all entities in the simulation must be specified (either directly or in-

directly) including size, mass, stiffness, and damping. Relevant simulation parameters for the

hand and ball for four objects are provided in Table S1 and S2.

Tactile information.

Tactile information is provided to the learning policy via the tactile force state vector for the

simulated robotic hand (sh,f ). Contact force is measured at the pad of the fingers (where the

tactile area is defined, see (Fig. 1A)), and directed from the finger towards the ball (81), which

at most contains the full touch force vector f = [ft1, ft2, fn]. Each finger-pad outputs the

tactile information independent from other pads. The learning policy has two options for tactile

information, which are added to the state vector for the hand (sh). These are No-tactile or

3D-force information. Table S3 indicates the detailed tactile information for the two tactile
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Object Parameter Value
Mass 50 g

Radius 35 mm
Desired height (zd) 60 mm

Height (zb) 35 mm
Stiffness in x direction 5× 10−3 N/mmObject 1
Damping in x direction 3.5× 10−4 N·s/mm
Damping in z direction 5× 10−4 N·s/mm

Damping about y direction 5× 10−3 N·s/rad

Mass 50 g
Radius 30 mm

Desired height (zd) 60 mm
Height (zb) 30 mm

Stiffness in x direction 5× 10−3 N/mmObject 2
Damping in x direction 3.5× 10−4 N·s/mm
Damping in z direction 2× 10−4 N·s/mm

Damping about y direction 5× 10−3 N·s/rad

Mass 5 g
Radius 35 mm

Desired height (zd) 60 mm
Height (zb) 35 mm

Stiffness in x direction 1× 10−3 N/mmObject 3
Damping in x direction 7× 10−5 N·s/mm
Damping in z direction 2× 10−4 N·s/mm

Damping about y direction 1× 10−3 N·s/rad

Mass 5 g
Radius 30 mm

Desired height (zd) 60 mm
Height (zb) 30 mm

Stiffness in x direction 1× 10−3 N/mmObject 4
Damping in x direction 7× 10−5 N·s/mm
Damping in z direction 2× 10−4 N·s/mm

Damping about y direction 1× 10−3 N·s/rad

Table S2: Simulation parameters for the ball across all objects, detailing size, mass, stiffness,
and damping.
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options.

Tactile Information in State Variable
No-tactile 3D-force
sh,f = 0 sh,f = [ft1, ft2, fn]

Table S3: Tactile information options available to the learning policy.

Leaning manipulation through PPO

Proximal Policy Optimization (PPO) comprises a collection of policy gradient methods de-

signed to optimize a surrogate objective function through multiple minibatch updates per data

sample (52, 89). PPO leverages the Actor-Critic Model, which consists of two Deep Neural

Networks. One network is responsible for action selection (the actor), while the other handles

reward estimation (the critic). We conducted a series of experiments to assess the performance

of the PPO algorithm in our environment. The following section provides an in-depth exami-

nation of the hyperparameters for PPO, which were determined through trial and error, and a

comprehensive analysis of the resulting performances.

PPO Hyper-parameter

The robotic agent learns manipulation using OpenAI Baselines’ PPO1 implementation as

the RL algorithm. We meticulously select hyperparameters to emphasize rewards at each simu-

lation time step over those at the end of episodes. Additionally, we employ a learning scheduler

customized for the established proximal-policy optimization (PPO) algorithm (52). The hyper-

parameters for the PPO algorithm are listed in Table S4. Non-default hyper-parameters are

chosen empirically through trial and error and careful examination of resulting performances.

Linear Rate Scheduler

Employing a fixed and unchanging learning rate throughout the entirety of training often falls

short of achieving an optimal model. Recognizing the critical role of learning rate schedules
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hyper-parameter Value
Adam stepsize 1×10−5

Number of epochs 8
Discount (γ) 0.99
Entropy coefficient 0.02
Advantage estimation (λ) 0.85
Minibatch size 64

Table S4: Proximal-policy optimization (PPO) hyper-parameters

in model performance, researchers have extensively investigated methods for effectively and

automatically tuning the learning rate for stochastic optimizers. This is because stochastic opti-

mizers are highly sensitive to the learning rate scheduling (78, 79).

The Constant Learning Rate Dilemma

Implementing a constant learning rate, while straightforward in stationary or slowly chang-

ing environments, presents challenges in dynamic contexts. Sensitivity to the initial rate choice

is a primary limitation, with high rates risking unstable training and low rates leading to pro-

tracted convergence or suboptimal solutions. Achieving the right balance becomes a nuanced

trial-and-error process, demanding significant time and effort. Furthermore, the fixed learning

rate lacks adaptability to evolving learning dynamics, resulting in suboptimal training efficiency

and performance.

The Appeal of Linearly Changing Learning Rates.

In response to these challenges, we transitioned to a linearly changing learning rate sched-

ule, offering several advantages. This adaptive approach dynamically adjusts rates throughout

training, expediting the learning process with higher initial rates and facilitating stable conver-

gence through decrementing rates during the later stages.

One significant advantage is the reduced sensitivity to the initial rate choice, minimizing

the risk of divergence. The linearly changing learning rate promotes efficient exploration by

encouraging policy discovery in the early stages and exploitation for optimal performance dur-
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ing convergence. Its adaptive nature contributes to faster convergence compared to a fixed rate,

effectively navigating both exploratory and exploitative learning phases.

Moreover, the linear schedule imparts robustness against variations in task difficulty or envi-

ronmental changes, automatically adjusting to maintain training stability. In summary, our tran-

sition to a linearly changing learning rate in the PPO implementation aims to enhance training

stability, expedite convergence, and improve adaptability in dynamic environments. This strat-

egy aligns with our goal of efficiently training the agent for effective in-hand manipulation and

contributes to the exploration of learning rate scheduling strategies in stochastic optimization.

Additionally, we present results for Curriculum 3 [L+R | L+R], comparing training dynamics

under both linear and constant learning rate scenarios to gain insights into the effectiveness of

different strategies in our experimental setup.

Supplementary Results
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Caption for Supplementary Video

Video of the robotic hand interacting with the ball after undergoing learning The ability of

the robotic hand to manipulate was evaluated after 2,000 training episodes. Learning strategy

influences manipulation performance. How we started the learning had a direct effect on the

same end goal. Here we showcase an example of learning in C3 [L+R|L+R] and C5 [L+R|L]

. Performance representative of each Curriculum while using 3D-force tactile information are

shown in the video. Interesting insights were gleaned from each approach to autonomous learn-

ing of manipulation.
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Figure S1: The evolution of learning highlights the dynamic functional interaction between curriculum
and tactile information across all objects. Manipulation performance during the last 10 seconds of each episode
is highlighted. The graph depicts lift success (percentage of time the ball remains within the desired height range)
versus completed rotations. Each data point represents the average of 60 independent trials, with arrows indicating
the direction of increasing episodes. Negative rotations were constrained to zero. It’s worth noting the significant
impact of curriculum selection on learning outcomes, observed across both tactile conditions ((A) No-tactile and
(B) 3D-force). The Red box is the default object.
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Figure S2: Evaluation of performance across all curricula and both tactile information options for Ob-
ject 2: 50g, 30 mm. The joint distribution illustrates the performance during the final episode of 60 trial runs
(showcasing the mean ball height (mm) versus the number of completed rotations). The color-coded cumulative
reward for the last episode of each independent run (refer to equation 1) corresponds to different curricula. Note
that the desired manipulation performance is represented by those points inside the green box defining the desired
ball height (30 ± 4 mm).
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Figure S3: Cumulative reward for each representative episode across all curricula and both tactile infor-
mation options for Object 2: 50 g, 30 mm. Boxplots, with median, across tactile information options for 60 MC
runs at eight representative episodes, 250 episodes apart.
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Figure S4: Evaluation of performance across all curricula and both tactile information options for Object
3: 5 g, 35 mm. The joint distribution illustrates the performance during the final episode of 60 trial runs (show-
casing the mean ball height (mm) versus the number of completed rotations). The color-coded cumulative reward
for the last episode of each independent run (refer to equation 1) corresponds to different curricula. Note that the
desired manipulation performance is represented by those points inside the green box defining the desired ball
height (25 ± 4 mm).
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Figure S5: Cumulative reward for each representative episode across all curricula and both tactile infor-
mation options for Object 3: 5 g, 35 mm. Boxplots, with median, across tactile information options for 60 MC
runs at eight representative episodes, 250 episodes apart.
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Figure S6: Evaluation of performance across all curricula and both tactile information options for Object
4: 5g, 30mm. The joint distribution illustrates the performance during the final episode of 60 trial runs (showcasing
the mean ball height (mm) versus the number of completed rotations). The color-coded cumulative reward for the
last episode of each independent run (refer to equation 1) corresponds to different curricula. Note that the desired
manipulation performance is represented by those points inside the green box defining the desired ball height (30
± 4 mm).
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Figure S7: Cumulative reward for each representative episode across all curricula and both tactile infor-
mation options for Object 4: 5g, 30mm. Boxplots, with median, across tactile information options for 60 MC
runs at eight representative episodes, 250 episodes apart.
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