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Abstract

Inspired by animals that co-adapt their brain and body to interact with the environment, we
present a tendon-driven and over-actuated (i.e. # joint, n+1 actuators) bipedal robot that (i)
exploits its backdrivable mechanical properties to manage body-environment interactions without
explicit control, and (ii) uses a simple 3-layer neural network to learn to walk after only 2 min of
‘natural’ motor babbling (i.e. an exploration strategy that is compatible with leg and task
dynamics; akin to childsplay). This brain—body collaboration first learns to produce feet cyclical
movements ‘in air’ and, without further tuning, can produce locomotion when the biped is
lowered to be in slight contact with the ground. In contrast, training with 2 min of ‘naive’ motor
babbling (i.e. an exploration strategy that ignores leg task dynamics), does not produce consistent
cyclical movements ‘in air), and produces erratic movements and no locomotion when in slight
contact with the ground. When further lowering the biped and making the desired leg trajectories
reach 1 cm below ground (causing the desired-vs-obtained trajectories error to be unavoidable),
cyclical movements based on either natural or naive babbling presented almost equally persistent
trends, and locomotion emerged with naive babbling. Therefore, we show how continual learning
of walking in unforeseen circumstances can be driven by continual physical adaptation rooted in
the backdrivable properties of the plant and enhanced by exploration strategies that exploit plant
dynamics. Our studies also demonstrate that the bio-inspired co-design and co-adaptations of
limbs and control strategies can produce locomotion without explicit control of trajectory errors.

1. Introduction

Active and explicit control of robotic bipedal loco-
motion poses multiple challenges, including: (i)
hybrid dynamics that transition among single- and
double-leg stances and aerial phases [1], and (ii) actu-
ators with insufficient bandwidth to manage instant-
aneous impacts [2]. To address these challenges, stud-
ies that take inspiration from the musculature of
organisms have incorporated mechanical compon-
ents and architectures to reduce limb inertia by imple-
menting cable (i.e. tendon) driven structures [3], and
increase the use of passive limb properties to man-
age impacts [2, 4]. Furthermore, approaches like zero
moment point (ZMP) enable balance during bipedal

© 2024 The Author(s). Published by IOP Publishing Ltd

locomotion via quasi-static foot placements [5], as
in the ASIMO low-impact robot [6], which is built
and programmed in a way that avoiding impacts with
the environment is one important design consid-
eration. Theories like hybrid zero dynamics (HZD)
have been developed where a reset map allows the
system to go back to stable performance after the
intrinsic impulse perturbations of ground interac-
tion in dynamic behavior [1]. In the furthest extreme,
there are robots whose own structure allows them
to produce locomotion without feedback signals that
inform a computing system about body-environment
interaction. An example of this is seen in [7] where
a bird-inspired robot uses feedforward control (no
sensory feedback) to produce locomotion; to do so
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it exploits its anatomy, which enables the robot to
change its mechanical function at the moment the
feet touch ground. This change is based on a spring-
tendon structure that allows the legs to transition
from aerial to on-ground states, enabling the produc-
tion of useful steps. Proof of principle comes from
passive walkers that can produce useful movements
without sensors and/or actuators [8, 9].

The influence that the physical properties of a
robot have on data acquisition and learning is at the
core of the studies presented in this paper. Physical
adaptation of robots to environmental constraints
and conditions is a research area that can poten-
tially improve the performance of walking robots
when subjected to unforeseen circumstances [10]. In
[11] a legged robot is able to achieve locomotion in
novel environments by exploiting its morphological
adaptability, showing that changing the robot phys-
ical configuration as a result of robot-environment
interaction simplifies the task of learning new con-
trol strategies to walk in unforeseen environments.
Another important point to improve learning of
walking and its performance is to have more efficient
ways, based on plant properties, to acquire training
data. In [12] it is explained how a model, to be able to
accurately describe and predict the behavior of a sys-
tem, needs to be trained with data samples spanning
throughout the entire range of possible values such
samples could have. With our experiments we show
how a training strategy that exploits a robot’s phys-
ical properties, in contrast to an strategy that naively
forces the robot to perform regardless of its proper-
ties, produces data that is more relevant to the task to
solve.

We take inspiration from how many biological
organisms learn locomotion on their own: by co-
adapting their brain (in robots this would be the con-
troller) with their bodies and tasks to perform. An
example of an application of control-adaptation in
legged robotics is the work performed in [13], where
it is highlighted how legged locomotion can emerge
based on a robot’s control adaptability. Such study
is an example of how body-environment interaction,
in conjunction with feedback-based adaptable con-
trol, can drive the emergence of efficient and adaptive
obstacle negotiation (i.e. more stable: with less vari-
ation in joint angles, hence more energy efficient).
For the case of our studies, to create a bipedal robot
that implements a brain-body-task co-adaptation to
learn locomotion, we combined three bio-inspired
features:

(i) Tendon driven limbs that are over-actuated
(i.e. 2 joints, 3 actuators). This feature can be
compared to the musculoskeletal systems of ver-
tebrates where muscles pull on tendons to move
joints. As tendons can only pull, redundant
actuation is required: more than one tendon
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per joint is needed for both positive and neg-
ative joint rotations. These systems are simul-
taneously underdetermined (i.e. more than one
tendon tension combinations can achieve the
same limb posture and net joint torque) and
overdetermined (i.e. only one tendon excur-
sion combination allows for a particular limb
position) [14]. Tendon driven systems present
advantages over traditional torque driven sys-
tems (which are easier to control since single
actuators directly drive individual joints). One
advantage is the reduced limb mass (lower limb
inertia), since motors can be placed closer to the
center of mass of the system and further from
moving joints (e.g. knee). Another advantage of
this anatomy is the versatility that emerges from
having more actuators than joins, for example
in the index finger multiple tendons (i.e. 7)
drive three joints, enabling the emergence of
a feasible force set that allows for force and
torque generation in multiple directions, facil-
itating grasp [15]. In the case of legs, versatile
locomotion (related to the ability to generate
forces with the feet in multiple directions while
exploiting pendulum dynamics) depends on the
control of a redundant muscle anatomy where
individual joints are driven by more than one
muscle [16].

(ii) Backdrivable limbs that in our robot exist due
to backdrivability of its DC motors (i.e. low
gear ratio in the gearhead that drives the out-
put shaft of its DC motors). This allows envir-
onmental mechanical perturbations (impacts
and contact with the floor) to counteract motor
rotation, allowing the robot to adapt to envir-
onmental physical constraints. In [17], a back-
drivable robot can interact with its physical sur-
roundings allowing mechanical inputs to the
robot affect its behavior. In [18] it is explained
and shown with an artificial knee joint, how
inherent flexibility in actuators can exist due to
backdrivability; allowing better interaction with
the environment while generating large torque
output.

(ili) Motor babbling compatible with leg and task
dynamics, that allows brain—body collabora-
tion through sparse physical actions (akin to
childsplay [19, 20]), to heuristically learn to per-
form tasks [21-24]. In the rest of the paper we
further develop this point.

We present a ‘Natural’ motor babbling strategy
as an extension of G2P or ‘General to Particular’
model-agnostic algorithm [25] which enables bio-
inspired learning of locomotion movements in ten-
don driven robotic limbs. This natural babbling
strategy is an improvement of the naive babbling
strategy previously used by G2P. Data collected



10P Publishing

Bioinspir. Biomim. 19 (2024) 066008

during both, natural and naive babbling, are used to
train a simple 3 -layer artificial neural network (ANN)
which represents the inverse map from 6D limb kin-
ematics (i.e. for our robot proximal and distal joint
position, velocities, and accelerations) to 3D motor
control sequences (i.e. three motors actuating the
joints through tendons).

In [25], it is seen how a naive babbling strategy
causes aproximately 80% of the data generated to lie
on edges of the configuration space, away from the
area where the locomotion solutions lie. In contrast
to this naive strategy (that persistenly coactivates ant-
agonist actuators, imposing movements that can con-
flict with leg dynamics), natural babbling resembles
muscle mutual inhibition in living organisms [26,
27]. This promotes a more informative sensory feed-
back, compatible with the limb properties. In detail,
when performing natural babbling, motor activa-
tions: (i) produce joint rotations away from their lim-
its of rotation and (ii) follow a sinusoidal patterns
instead of step functions (with a phase shift of 180
+—20 degrees for pairs of motors that act on the
same joint, in other words two antagonist motors
are not simultaneously activated with high activation
values). As a result the leg joints are more homo-
geneously exposed to the region of the configuration
space where locomotion patterns lie, promoting a
higher success rate of learning of robotic locomotion
(ratio of experiments where walking is learned to
those where it is not learned).

The main contributions of this paper are:

(i) To show a clear case where data-efficient train-
ing driven by plant dynamics can produce higher
success rate of learning of walking and

(ii) To show that the need for feedback signals to
adapt to unforeseen physical constraints can be
significantly reduced by leveraging limbs back-
drivable properties.

While our studies are not designed to account for
the balance part of locomotion, we demonstrate with
a physical robot that useful cyclical movements can
emerge from the adaptation of actions learned from
limited experience enabled by backdrivable limbs
that implicitly manage body-environment interac-
tions. These learning and adaptability approaches
could be complemented by the computation of bal-
ance parameters based on theories like ZMP [5] or
HZD [1] which explicitly considers the transitions
between locomotor contact states in bipeds that do
not use gantries to locomote. One of the critical
factors offered by Natural Babbling is its data effi-
ciency achieved by exposing the biped’s leg joints to
areas in the configuration space where locomotion
patterns lie, which can serve as a baseline for the
lifelong learning of walking. All in all, our study
emulates the adaptive behavior of animals, where
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continual success of learned actions relies on useful
brain—body-environment interaction [28, 29].

2. Methods

2.1. Robot characteristics

For our experiments, we built and used a tendon-
driven physical bipedal robot (figure 1). Each of its
legs has hip and knee joints and a ball foot to facilit-
ate the relative rotation of the lower section of the leg
with respect to the ground.

The mechanical power to the joints is provided
by a structure that resembles a muscle: the force is
provided by a motor, while the muscle-joint inter-
face (which in our robot would be the motor-joint
interface) is a string that we call tendon. This robot is
over-actuated since it has more actuators than degrees
of freedom (DoF). The tendon route is shown in
figure 1(a).

The tendon routing of our robot is an evolution
of the routing for the robot in our already published
paper [25], where all the motors were placed distally
to the leg (i.e. in the hip). Here we simplify the tendon
routing by having only two motors placed distal to the
leg and one of them in the thigh. This design decision
was made to reduce the torques driving the hip joint,
thus potentially simplifying the task of learning a
useful movement. The motors (Maxon DCX16S GB
KL 24 V) include a gearhead (with a reduction ratio
of 21:1). Respectively, each motor is called M1, M2,
and M3, for details on their location please refer to
figure 1. Comparing two motors A and B, both set to
the same voltage level and mechanical load; A with
a gearhead and B without one: motor A reduces the
back-drivability of the limb while increasing its mech-
anical power output capabilities. This is an advant-
age for when the design of the robot is changed
to a heavier one due to a bigger body size and/or
the addition of more components (e.g. sensors and
actuators).

The range of motion of the joints was bigger than
for our previous robot designs, allowing us to explore
the capability of the robot to track a desired trajectory
independently of hard stops providing physical help.
Here it is important to mention that in locomotion
experiments the movement of a robot is typically
physically limited by two components that serve as
boundaries of its feasible configuration space: mech-
anical constraints (i.e. hard tops) in its own body,
and environmental constraints (i.e, objects or ground
itself). By designing our robot to have big ranges
of motion normally not reachable while performing
tasks (figures 4(b) and 5(b)), we focus on the role that
environmental constraints have on the resultant per-
formance of a task.

To maintain rotational inertia as low as possible
(having a direct impact on power consumption to
meet the demands of leg movement), and to increase
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Figure 1. A Tendon route diagram of one leg, B Render of
the 3D model of the biped C Photograph of the
tendon-driven bipedal robot. To reduce rotational inertia,
motors M1 and M2 (Maxon DCX16S GB KL 24V, 21:1
reduction ratio gearhead) are placed distally to the joints.

the stiffness of the legs, we used aluminum tubes as
main components of the legs. We used additive manu-
facturing or 3D printing techniques, for the construc-
tion of the joints. We also considered the implementa-
tion of easy tendon attachment points to facilitate the
replacement of tendons, which is the part of the robot
that breaks more often.

We built a gantry to support the biped, only allow-
ing its hip to move along the x and z axis in its sagit-
tal plane. The gantry prevents the biped from fall-
ing down, allowing us to focus merely on the task of
learning a locomotion cycle.

D Urbina-Meléndez et al

2.2. General G2P overview

G2P stands for ‘General to Particular’. This is a bio-
inspired algorithm which objective is to produce use-
ful feedforward behavior in the physical world based
on a data-driven approach. It uses motor babbling
(random play) to explore and learn the ‘general’ cap-
abilities of a physical system. Through motor bab-
bling it creates a map from limb kinematics to cor-
responding motor activations. This map is then used
to define ‘particular’ kinematic tasks to produce a
desired outcome (an example of a desired outcome
would be to generate locomotion cycles for walking).
For this paper, the task that G2P generates is to follow
a set of limb kinematics (a set of desired joint angu-
lar positions, velocities and accelerations) to follow a
desired foot trajectory.

In the context of this paper, we refer to ‘naive G2P’
as the G2P where motor babbling is driven by ran-
dom ‘naive’ motor activations; we refer to ‘natural
G2P’ as the G2P where motor babbling is compatible
with the dynamics of the legs. When referring only to
the babbling strategies, we call them naive and nat-
ural babbling depending on the used motor activa-
tion strategy. More details of both cases (i.e. naive
and natural G2P, as well as their respective babbling
strategies) are explained in this and the next sections
in Methods.

The first version of G2P was developed in [25].
This algorithm uses an ANN as a map from inputs
to outputs (respectively desired kinematics to motor
activations) (figures 2 and 3). The ANN is trained
with input—output data sets obtained from babbling
and tested with input-output data sets obtained from
babbling by predicting outputs given inputs. The
predicted outputs are compared with ground truth
motor activations outputs. The difference between
predicted and obtained values is the ‘training’ error.
During babbling, the algorithm aims to reduce such
training error. The testing/training data set size ratio
is 0.25. We use one ANN per leg. In [25], G2P refines
this map with a reinforcement learning approach, for
this paper we do not consider such a section of the
algorithm since we are interested in understanding
the value of the data obtained during babbling.

The ANN wused for Natural and naive G2P
(figures 2 and 3 respectively) represents the inverse
map from 6D limb kinematics (i.e. for our robot
proximal and distal joint position, velocities, and
accelerations) to 3D motor control sequences
(i.e. three motors actuating the joints through ten-
dons), it has three fully connected layers (input,
hidden and output layers) with 6, 15 and 3 nodes,
respectively.

As the transfer functions for all nodes, we selected
the hyperbolic tangent sigmoid function, which is an
S-like function that produces a bounded output value
in a range between —1 and 1. Additionally, we chose
this function over the sigmoid since the gradient of
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the second is bigger than the first. The higher gradi-
ent produces a greater sensitivity to changes in the
input values, producing higher updates in the weights
of the networks (thus potentially faster learning). We
also applied a scaling for the output layer (giving val-
ues between -1-1) to obtain values to cover the whole
motor control range values (0-255).

The weights and biases were initialized based on
the Nguyen-Widrow initialization algorithm [30, 31];
with this, we avoid initializing weights close to the
regions where the gradient of the transfer function
has very small or high values. Having initial values
localized in the mentioned region creates undesired
output saturation. To obtain the best results, this
approach randomly initializes weights close to the
midpoint of the transfer function (i.e. 0 for the cases
of our experiments).

As a performance/error function, we used the
mean square error (m.s.e.) approach. With this, the
mean of the differences between values predicted by
the ANN and the ground truth values are calculated.
This loss function aims to minimize the overall train-
ing error.

This training error is propagated backward to
update the initial weights, the action performed
with the Levenberg—Marquardt back propagation
technique, the assignment of new weights is par-
ticularly done with adaptive moment estimation
(Adam), a gradient descent method chosen over
MomeNtum, AdaGrad, RMSProp. Adam is the stand-
ard go-to method since it includes benefits from
both Momentum and RMSProp. To find the best
model weights, it leverages the usually seen speed
of MomeNtum, and adaptability to gradients with
different orientations commonly well handled by
RMSProp. Each time the backpropagation is com-
plete, it is considered that an epoch happened. We
determined the maximum number of epochs to
100; also, the model training stops after there is no
improvement after 5 epochs.

2.3. Natural babbling: changes to G2P babbling
strategy
As mentioned in the introduction, we made changes
to the babbling strategy of G2P to more homogen-
eously expose the leg joints to the areas in its config-
uration space where locomotion patterns lie. To keep
our focus on assessing the usefulness of the data to
produce a mapping with which a desired trajectory
can be tracked, we particularly tested the G2P cap-
ability to create motor activations to limb kinematics
map without any refinement to such a map. With this
paper, we show that (for a two DoF, three actuators
leg) properly obtained data can be enough to train an
ANN to produce useful movement (more details in
results and discussion sections).

Before explaining the details of natural bab-
bling, it is important to highlight that naive babbling
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consists of random step PWM signal variation for
each one of the motors and that each motor signal is
independent of the others (frequency of steps change:
1.3 Hz), as shown in figure 2, rightmost panel. For
natural babbling, we modified the randomness of
motor activations by including the rule that the activ-
ation level of two antagonist motors should be signi-
ficantly different (As observed in motors (M) 2 and 3
in figure 3, rightmost panel).

For natural babbling (figure 3), each PWM sig-
nal for each of the motors follows a sinusoid profile.
Considering that the mean value of the signals is 0,
only the positive section is used. For each motor, the
signal amplitude is varied randomly. M1 and M2 sig-
nals have a phase shift of 180 deg. This is to avoid
simultaneous activations of the motors which cause
no hip movement to happen [26, 27]. Every 15s, the
phase between M1 and M3 was increased by 36 deg
and the baseline of each signal varies +—30 PWM
units (approximately +— 1V). To get a sinusoid-like
shape, steps in series need to be considered (this is a
digital system, so we are discretizing the signal). Step
frequency: 6 Hz. Sinusoid frequency (every time a
period is completed): .6 Hz. Frequency of each sig-
nal peak: 1.3 Hz. Each peak (natural babbling) has
approximately the same width as each step of naive
babbling. All frequencies are reported as approximate
values. It is intrinsic to the microcontroller behavior
to have slight variations in signaling and sampling fre-
quency. The limits of rotation of each of the joints
were never reached with natural babbling, a crucial
point for our results and conclusions (figure 4(b)).

2.4. Desired foot trajectory characteristics and
variations

Before hardware experiments were performed, we did
a forward kinematics analysis of possible limb move-
ments that allowed us to obtain the desired joint evol-
ution profile and ranges shown in figures 4(a) and
(b)). The resultant foot trajectory is such that allows
its front and back swings to have different heights
(figure 4(c)).

As shown in figure 6, we divide our experiment
into three main conditions determined by the loc-
ation of the desired trajectory with respect to the
ground. The desired trajectory always has the same
distance to the robot’s hip, changing the position of
the desired trajectory requires changing the robot’s
hip height by re-configuring the gantry that prevents
the robot from falling down (figure 1(c)). Depending
on its location, a fraction or no part of the desired tra-
jectory is reachable by the feet of the biped. We divide
our experiments in three cases:

(i) Condition 1: Desired trajectories in air- only
in air movement, with no interaction with the
ground. When performing movements, the feet
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Figure 2. Representation of the ANN used as a map from six limb kinematics (input nodes, left column) to 3 motor activations
(output nodes, right column). In this figure we show real data used to train the ANN (particularly naive babbling data) As a
reminder, motor activations in babbling are random (Specific details on naive babbling are given in section 2.2). The ANN has
three fully connected layers: input, hidden and output layers with respectively 6, 15 and 3 nodes. Note that motors are persistently
simultaneously activated (i.e. coactivation, see motors M2 and M3 in leftmost panel), this decreases the spread in training data.

trajectories will be limited only by the charac-
teristics of the biped itself (figure 6(a)).

(ii) Condition 2: Desired trajectories in slight con-
tact with the ground- desired foot trajectories
are only partially reachable since they are par-
tially under the ground level. In other words,
ground constraints the movement of the robot
to stay over the boundary marked by the ground
(figure 6(b)).

(iii) Condition 3: Desired trajectories 1 cm under
the ground- desired trajectories are unreach-
able, they are completely under the ground
level. This is the condition where the biped’s
movements are more constrained. Also, for this
condition, the area of the feasible joint con-
figuration space is smaller than in points 1
or 2 (i.e. here the biped movements are con-
strained to exist between the limits imposed by
the ground and the limits marked by the limits
of joint rotations) (figure 6(c)).

2.5. Hardware experiments steps

The following steps were performed using both: naive
and natural babbling. Eight trials of this experiment
were performed, four based on naive babbling and

four on natural babbling. If the biped displaces its
body mass for 40 cm we consider this a successful
walking trial. The success rate is calculated by dividing
the number of successful trials by the number of per-
formed trials of a particular kind (i.e. condition and
type of babbling data used). When a result is reported
as ‘mean, it is the average value from four trials. For
the mean cases of spread and detrended fluctuation
analysis (DFA), the number of values considered is
eight (left and right legs for each of four trials: total
eight).

These are the steps we followed to perform our
experiments:

(i) Collect babbling data for two min (figure 5).
Babbling characteristics are described in
section 2.2.

(ii) Train an ANN to map motor activations to limb
kinematics as described in section 2.2.

(iii) With desired trajectories in air (i.e. section 2.4,
biped suspended in air, no ground constraint),
track the desired foot trajectory (figure 6(a)).

(iv) With desired trajectories in slight contact with
the ground (i.e. section 2.4, biped’s hip at 40 cm
off the ground). Perform trajectory tracking as
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Figure 3. Representation of the ANN used as a map from six limb kinematics (input nodes, left column) to 3 motor activations
(output nodes, right column). In this figure we show real data used to train the ANN (particularly natural babbling data) As a
reminder, motor activations in babbling are random (Specific details on natural babbling are given in section 2.3). The ANN has
three fully connected layers: input, hidden and output layers with respectively 6, 15 and 3 nodes. This figure shows how oscillatory
movements are produced (see ‘Normalized angular positions’ panel) driven by the by oscillatory babbling activations (rightmost
panel) with significant difference activation level between antagonist motors.

in (figure 6(b)). Measure the time the biped
takes to travel 40 cm in case there is successful
walking.

(v) With desired trajectories 1 cm under the ground
(i.e. section 2.4, biped’s hip at 39 cm off the
ground, figure 6(c)). Measure the time the
biped takes to travel 40 cm in case there is suc-
cessful walking.

It is important to make the distinction between
‘training’ and ‘trajectory’ errors. Training error is the
difference between obtained and predicted leg kin-
ematics during babbling. Trajectory errors are the
difference between desired and obtained trajector-
ies while performing cyclical foot trajectory patterns,
that error is neither modulated nor reduced.

2.6. Data analysis (Spread calculation)

We discretized the area within the desired trajectory
into 1 x 1 mm? pixels and checked if the foot visited
that pixel during a single babbling trial. Then by cal-
culating the ratio of the occupied pixels to all pixels,
we quantified the spread. Spread quantifies how well
the algorithm (specifically, the babbling) can explore

different kinematics by knowing the locations that
feet have passed through.

2.7. Data analysis (DFA)

In DFA, the fractal scaling component estimates
a time series’ scaling behavior which represents
the power law scaling behavior of the time series
over various time scales. The steps for DFA are as
follows:

(i) First, we detrended the time series data of the
endpoint’s distance to the hip from each trial
by dividing the time series into non-overlapping
windows of equal length and then fitted a poly-
nomial function of first degree to each window.

(ii) Then we divided the detrended series into smal-
ler segments of equal length (boxes). The scale
factor determines the length of the boxes.

(iii) Afterward, we calculated the root-mean-square
fluctuation (F) for each box in the detrended
series.

(iv) Then, we calculated the average root-mean-
square fluctuations across all the boxes at a given
scale.
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Figure 4. Desired joint and foot trajectories. In A it is
shown a hip and knee joint evolution profile that produces
limb movements away from the limits of its in-air
configuration space as shown in B (Both panels in B
represent the same, right one is a zoom out version). The
resultant foot trajectory, shown in C is such that permits its
front and back swings to have different height (necessary
point to produce locomotion). Note that the desired foot
trajectory is always kept at a constant distance from the hip;
thus if the hip position is changed the desired foot
trajectory will also change.

(v) We repeated steps 1 to 4 for different scale
factor values and plotted the average fluctuation
versus the scale factor (DFA curve).

Finally, we analyzed the DFA curve to check
the time series data for long-term correlations.
The DFA curve shows a power-law relation-
ship between the fluctuation and the scale factor

(vi)
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quantified by the slope alpha (fractal scaling
component) using linear regression on alog—log
scale.

A higher fractal scaling component indicates that
the time series exhibits stronger long-term correla-
tions or persistence over various time scales, which
means that the fluctuations in the time series at lar-
ger time scales are more correlated, and the time
series has a more persistent trend. Conversely, for a
lower fractal scaling component, this analysis indic-
ates weaker long-term correlations or anti-persistence
in the time series, which means that the fluctuations
at larger time scales are less correlated, and the time
series has a less persistent trend [32—35]. We use the
persistence of trends and strength of correlation in
the legs’ movements as a criterion to compare how
well and robustly the biped walks (in case walking is
achieved) in different cases and conditions.

3. Results

3.1. Exploiting limb mechanical properties
increases the spread of training data and increases
success rate of locomotion learning

All results reported in this subsection correspond to
babbling data and walking attempts for Condition 2:
Desired trajectories in slight contact with the ground
(figure 6(b)). As a reminder, the success rate is cal-
culated by dividing the number of successful trials by
the number of performed trials of a particular kind
(i.e. condition and type of babbling data used).

Two min of natural babbling data are enough to
produce locomotion, while 2 min of naive babbling
data are not enough (figure 6(b)). With natural bab-
bling G2P learned walking in 75% of the trials com-
pared to 0% for naive babbling trials. Mean displace-
ment speed for successful natural-babbling-based tri-
als was 1.9 cm s~ ! speed for 3 out of 4 successful trials:
2.45,1.96,1.3 cms™ ',

The difference, as previously described, between
the naive and natural cases resides in the babbling
data. More spread babbling data (i.e. natural bab-
bling data are more spread compared to naive bab-
bling data, as shown in figure 5) shows that the bab-
bling was more successful in exploring the leg kin-
ematics, which is the primary purpose of babbling.
Consequently, compared to natural cases, a lower suc-
cess rate happen when training with naive babbling
data.

As shown in figure 5, natural babbling data are
closer to the regions of the configuration space where
locomotion solutions lie. If we analyze the spread of
this data within the area delimited by a desired tra-
jectory, we see that the spread for the natural babbling
data is higher than that of the naive babbling data. For
the trial presented in figure 5, left-right leg spread of
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Figure 5. Two min of babbling data and desired trajectories for one trial. A: Joint Space with joint motion limits marked with a
doted square, B: Endpoint Space. The spread values are 0.14 and 0.18 for naive babbling data (left and right legs respectively) and
0.60 and 0.53 for natural babbling data (left and right legs respectively).
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Figure 6. Plots of obtained and desired foot trajectories shown together with close ups of the biped feet in different conditions.
‘naive and Natural trajectories’ means trajectories obtained from training with naive and natural babbling (this figure corresponds
to the same trial as the one presented in figure 5): Condition 1 (A): Desired trajecotries in air, Condition 2 (B): Desired trajectories
in slight contact with the ground (locomotion emerges when training with natural but not with naive babbling) and Condition 3
(C): Desired trajectories 1 cm under ground (locomotion emerges when training with both natural and naive babbling).

Displacement direction

naive babbling data: 0.14 and 0.18 respectively; left—
right leg spread of natural babbling data: 0.60 and
0.53 respectively. Mean spread values for naive and
natural babbling data respectively are: 0.55 and 0.95.

In [12] it is described how a model to be able
to describe a system, and to accurately predict its
behavior, needs to be trained with more training
samples spanning throughout the entire range of

possible values such samples could possibly have. In
our experiments most of the naive babbling points lie
away and few inside the desired trajectory, in many
cases failing on training a model that can accur-
ately predict the behavior inside the desired traject-
ory. In this work behavior will be the motor com-
mands to pull on the tendons to produce cyclical
movements that are close to the desired trajectory.
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Figure 7. This figure shows the dot plot of the fractal scaling components for naive (blue) and natural (green) cases from eight
different trials (four trials from each leg). Conditions 1, 2, and 3 show fractal scaling components when the desired trajectory is in
the air, in slight contact with the ground, and 1 cm under the ground, respectively.

This is seen in figure 6(a) where the blue trajector-
ies based on a model trained with naive babbling data
fail to closely resemble the desired trajectory. In con-
trast natural babbling points, which are more spread
and lie inside of the desired trajectory are better to
train a model which can predict the motor activations
required to produce cyclical foot trajectory patterns
that better resemble the desired trajectory. This is
seen in figure 6(a) where the green trajectories based
on a model trained with natural babbling data better
resemble the desired trajectory compared to the case
of the naive babbling based experiments.

3.2. Placing desired trajectories completely under
ground level increases walking success rate and
produces faster walking

When the desired trajectories were 1 cm under the
ground (Condition 3) (figure 6(b)), G2P learned sup-
ported bipedal walking in 100% of the trials based on
both naive and natural babbling. naive case speeds
(1.79, 3.27, 1.7, 2.18 cms™!), natural case speeds
(5.03,4.93,6.19, 3.81 cm s~ !) Respectively, mean dis-
placement speeds for this cases were 2.23 cms~! and
4.99 cms~! For trials based on natural babbling,
when going from the condition where the desired
trajectories are in slight contact with the ground
(Condition 2) to the condition where the desired
trajectories are 1 ¢cm under ground, mean speed
increased by 262%, and success rate was increased
from 75% to 100%. For the trials based on naive bab-
bling the success rate was increased from 0% to 100%.
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For the condition where the desired trajectories
are in slight contact with the ground (Condition
2), the biped can only barely touch ground with
fully straight legs, reducing the work that the legs
produce to only the swing of the hip. In contrast,
when the desired trajectories are 1 cm under ground
(Condition 3), the biped can produce work with both
hip swing and knee flexion (figure 6).

Compared to the biped’s in-air performance
(desired trajectories in air), when the desired traject-
ories make slight contact with the ground, the scaling
behavior decreases (See DFA in Methods, section 2.7)
across all our experiments (figure 7). This indicates,
as expected, that tracking ground trajectories is more
complex for the biped than tracking in-air trajector-
ies. When trained with naive babbling data and the
desired trajectories are 1 cm below the ground, the
resulting movement exhibits significantly higher scal-
ing components (p~20.03) compared to when the
desired trajectories slightly touch the ground, indic-
ating more persistent locomotion. Conversely, when
trained with natural babbling data under the same
conditions, there is no significant difference in scaling
components (p ~0.22), though there is less variance
between trials.

For cases trained with natural babbling data,
when taking the desired trajectory from slightly
touching ground to being completely under ground,
there is an increment in walking speed. The reason
for this is that, for cases based on natural babbling
training data, walking has already emerged when
the desired trajectory slightly touches ground. In the
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other hand, for cases based on naive babbling training
data, walking first emerges when the desired traject-
ories are placed 1 cm under ground. Both naive and
natural cases present an improvement when traject-
ories are placed under ground level, but naive cases
has less improvement after locomotion emerges than
cases based on natural babbling.

4. Discussion

This paper aims to motivate the creation of bipedal
robots that learn locomotion via data-driven co-
adaptation with the dynamics of the plant to man-
age interactions with the environment. This is made
possible by using motor babbling to inform a motion
planning strategy that produces cyclical movements
that can undergo useful adaptations thanks to the
backdrivable and impact-resilient properties of the
legs. These properties allow the unsupervised modi-
fication of a previously learned behavior to enable
the emergence of locomotion under different (previ-
ously unseen) conditions. We find that a bio-inspired
approach to ‘natural’ motor babbling compatible
with the dynamics of the tendon-driven legs improves
the success of locomotion learning and performance
compared to ‘naive’ arbitrary motor babbling. The
techniques presented here could be further comple-
mented by other relevant approaches such as the cal-
culation of parameters useful to maintain a balanced
gait such as ZMP [5], or HZD [1] that explicitly
considers the transitions between locomotor contact
states. Even though these techniques are not necessary
for the successful performance of our robot, in gen-
eral they are potential options to further complement
the experiments of this paper which do not focus on
balance, but particularly on the generation of useful
cyclical movements for locomotion.

A central aspect of our results is that the robot’s
backdrivable limbs interact with the environment
by allowing their movements to adapt to where the
desired trajectory of a walking action is located with
respect to the ground: in air, in partial contact with
the ground (partially reachable) or under ground
level (unreachable). For each of these conditions,
interference of the desired trajectory with the ground
was progressively greater, and the adaptation of a pre-
viously learned action was automatically modulated.
Thus, the success of the resulting behavior does not
depend on explicitly modulating or reducing desired
vs. obtained trajectory errors. Rather—similar to
the adaptive behavior observed in the locomotion
of insects [36], crustaceans [37], and birds [38]—
successful locomotion emerges because of, and not
in spite of, brain (or controller)-body-environment
interactions [28]. This adaptation happened with a
performance strategy not explicitly aware of interfer-
ence or impacts with the environment.
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For the natural babbling case (compared to naive
case), we found higher fractal scaling components
for cyclical movements with ground interference,
as shown in figure 7-condition 2, suggesting they
are more persistent. In the case of naive babbling,
increased ground interference had a more profound
effect. When there was slight contact with the ground,
we saw no locomotion and lower fractal scaling com-
ponents (figure 7-condition 2). But when contact
with the ground was further increased (figure 7-
condition 3), locomotion emerged from cyclical
movements with higher fractal scaling components
comparable to those for natural babbling. These
results points to counterintuitive controller-body-
environment interactions that produce better loco-
motion as interference with the ground increases.
While we expected the reduction of the workspace of
the leg to hamper locomotion, it seems the compli-
ance of the legs (due to their backdriveability) adapt
sufficiently well to shape the limits cycles to produce
locomotion without the control signals being expli-
citly aware of control trajectory errors.

We refer to our natural babbling approach as a
brain—body-task co-adaptation technique. This state-
ments is based on:

(i) During babbling, the body postures and beha-
vior are driven by motor activations, as shown
in figures 2 and 3 where the leg kinemat-
ics (i.e. joints angular positions, velocity and
accelerations) depend on the motor activations.
In other words the body is adapting to brain
inputs.

(i) A map (represented by an ANN with spe-
cific weights and biases) of movement to
motor activations is created (i.e. central part of
figures 2 and 3). This map depends on the res-
ultant limb kinematics produced by a particular
train of commands dictated by natural or naive
babbling. For the particular case of natural bab-
bling, there is a connection between the brain
(ANN) and the plant properties. The plant,
through its properties, significantly determines
the ANN generated. In other words we say that
the brain is adapting to the body’s properties.

(iii) Using the map generated in (ii), the limb is
tasked to move with different kinematic pro-
files (i.e. joints positions, velocities and accel-
erations which depend on step (i) and (ii)) to
reach an specific desired trajectory. In figure 6
it can be seen how different training strategies
produce different kinematic profiles to reach a
desired trajectory. Here we say that the task (to
follow a particular kinematic profile to reach a
desired trajectory) depends on (or adapts to)
the body which behaves differently depending
on the used babbling strategy.
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When following a naive babbling approach, the
brain (ANN) is not adapting to the plant mech-
anical properties and dynamics (i.e. over-actuated,
under- and over-determined tendon driven pendu-
lum system; properties explained in the Introduction
and Methods sections). Naive babbling does not let
the brain co-adapt with the properties of the body,
but to a behavior driven by a naive approach that
forces the plant to perform actions regardless of its
properties. In the other hand, when performing nat-
ural babbling, the brain adapts to the properties of the
plant, producing a higher success rate of locomotion
learning.

Even though we do not address the balance part
of bipedal locomotion (which is a bipeds capability
to stay in upright position regardless of the instabil-
ity effect that gravity pull imposes on it), gravity still
affects the plant behavior and thus the characteristics
of the ANN (i.e. map from limb kinematics to cor-
responding motor activations). In other words, the
brain (ANN) is affected by the body which beha-
vior is related to gravity. Together with the physical
characteristics of the plant (i.e. mass, inertia, dimen-
sions, etc), gravity determines the swinging properties
of the legs. Our robot learns to coordinate antagon-
istic actuators to move a limb which pendulum-like
behavior significantly depends on gravity (i.e. when
the leg segments are not perpendicular to ground,
gravity accelerates or deaccelerates their movement
depending on their instantaneous swinging direc-
tion; this gives rise to the pendulum’s oscillatory
nature).

As mentioned before, one fundamental aspect of
this study is that we prescribed a type of motor bab-
bling (i.e. natural motor babbling) that is compatible
with, and exploits the bio-inspired mechanical prop-
erties of the tendon-driven limbs. Although similar in
principle to Berniker et al [39], where the anatom-
ical properties of a bio-inspired limb are exploited, we
develop these strategies directly in hardware (and not
in simulation). Moreover, we do not explicitly sim-
plify the task by prescribing recurring muscle pat-
terns (i.e. muscle synergies) to produce limb move-
ments. It is our natural motor babbling that impli-
citly finds useful patterns of motor activations to the
tendons. In fact, our natural motor babbling is one
of the important extensions to out prior work on
autonomous learning of locomotion [25]. By using
this type of motor babbling that tends to avoid antag-
onist motor commands, we take inspiration from bio-
logical organisms where co-contraction can be ener-
getically wasteful. While co-contraction can be con-
sidered as energetically wasteful, it can also be a means
to control limb impedance and other physical con-
straints in animals, so it can also be a feature [40, 41].
Actions that leverage the backdrivable mechanical
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properties of the plant, compatible with the over-
and under-determined actuation of its tendon-driven
limbs, are parallel to one of the fundamental blocks
of limb function [14, 29] to produce oscillatory limb
movements (e.g. leg swing [27]) .

5. Conclusion

We made changes to the training babbling strategy
of G2P to more homogeneously expose a biped’s leg
joints to the areas in its configuration space where
locomotion patterns lie. We did that by implementing
a natural babbling strategy that exploits the tendon-
driven bio-inspired mechanical properties of its limbs
(i.e. oscillatory movements produced by oscillatory
activations, with significant difference activation level
between antagonist motors). We observed that nat-
ural babbling reduces the spread of training data
and increases the success rate of locomotion learn-
ing when environmental constraints are minimal
(Condition 2 of our experiments). Furthermore we
also observed that increasing environmental con-
straint to the system (interference between ground
and desired trajectories) increased the tendency of the
plant to behave homogeneously between different tri-
als (regardless of trials being based on natural or naive
babbling). This shows how, even though the envir-
onment (i.e. ground) generates a higher desired vs.
obtained trajectory error, it also collaborates with the
backdrivable biped legs by ‘guiding’ them to perform
a successful task by reducing their feasible configura-
tion space.

We present proof-of-principle that effective loco-
motion can emerge from brain—-body-environment
interactions driven by a controller that does not
aim to reduce errors with respect to desired loco-
motion trajectories. We find that these effective
interactions arise from the co-adaptation facilitated
by bio-inspired backdrivable properties of limbs.
Moreover, the cyclical movements motor commands
are informed by pseudo-random motor babbling that
exploits and leverages the bio-inspired tendon-driven
mechanical and dynamical properties of the limbs.
This demonstrates the bio-inspired co-design and co-
adaptations of limbs and control strategies can pro-
duce locomotion without explicit control of traject-
Ory errors.
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