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Abstract— Like mammals, robots must rapidly learn to
control their bodies and interact with their environment despite
incomplete knowledge of their body structure and surround-
ings. They must also adapt to continuous changes in both. This
work presents a bio-inspired learning algorithm, General-to-
Particular (G2P), applied to a tendon-driven quadruped robotic
system developed and fabricated in-house. Our quadruped
robot undergoes an initial five-minute phase of generalized
motor babbling, followed by 15 refinement trials (each lasting
20 seconds) to achieve specific cyclical movements. This pro-
cess mirrors the exploration-exploitation paradigm observed
in mammals. With each refinement, the robot progressively
improves upon its initial ”good enough” solution. Our results
serve as a proof-of-concept, demonstrating the hardware-in-
the-loop system’s ability to learn the control of a tendon-
driven quadruped with redundancies in just a few minutes to
achieve functional and adaptive cyclical non-convex movements.
By advancing autonomous control in robotic locomotion, our
approach paves the way for robots capable of dynamically
adjusting to new environments, ensuring sustained adaptability
and performance.

Index Terms— Tendon/Wire Mechanism; Bioinspired Robot
Learning; Continual Learning

I. INTRODUCTION

To operate in and move around the physical world for
extended time periods, an agent must learn to control their
body, understand the environment through the imperfect
understanding of themselves, and update their understanding
of both with time. The degree to which a learner, biological
or synthetic, can imitate these abilities will be crucial in
determining its capacity to learn, perform, and adapt in real-
world applications with limited observability, incomplete or
inaccurate priors, and uncertainties in interacting with the
environment or other agents [1]. Evolutionary solutions for
developing lifelong learning capabilities typically exhibit
exceptional learning speed, efficiency, and adaptability, even
without a detailed prior model of their body, the task, or the
physics of the environment [2]–[4]. Prior works have demon-
strated how vertebrates develop motor skills with minimal
exposure to a task, adapt to new experiences, generalize basic
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principles across various tasks, and learn new tasks without
overwriting existing ones [5]–[11].

Vertebrates achieve this without explicit models of their
body and environment physics ( or the parameters of these
models such as maximal muscle forces, moment-arm values,
etc.). Recent developments in robotics have started to inves-
tigate this approach to bio-inspired motor learning [4], [12]–
[16]. However, it continues to present a significant challenge
when robots are expected to adapt to changes they encounter
or learn in a physics-agnostic way, which opens new avenues
for brain-body coevolution in robots. We postulate that
enabling robots to develop self-awareness of their continually
changing bodies, and variations in environment dynamics,
will enable them to quickly learn through exploration and
adapt to changes in either their body or the environment
with minimal loss in performance [16], [17].

We chose tendon-driven systems as our study case for
model agnostic autonomous learning of controls due to
their bioinspired approach to movement and the inherent
control challenges they pose. Unlike in torque-driven sys-
tems, tendon-driven systems can provide the system with
great flexibility in actuator placement which can increase the
movement efficiency [18]. However, they are simultaneously
over- and under-determined in nature which significantly
constrains their feasible kinematic state space. This makes
the control problem more challenging, as there is no one-to-
one relationship between the degrees of freedom (DoFs) and
actuators [19].

In this study, we have implemented and expanded General-
to-Particular (G2P) algorithm [17] to learn the kinematic
control of a tendon-driven quadruped robot where each limb
has two DoFs controlled by three tendons. Our results indi-
cate that the quadruped robot can learn to follow non-convex
non-differentiable cyclical movements within five minutes of
initial babbling, demonstrating control proficiency coupled
with rapid adaptation. Continuous refinements through sen-
sory feedback and a few-shot learning pipeline enable the
robot to learn to interact with their body and environment
with little-to-zero prior knowledge of either. This approach
serves as a proof-of-principal demonstration for the potential
of lifelong learning in advancing the state of autonomous
movement control for real-world hardware implementation
of bio-inspired robots. By imitating vertebrate-like learning
processes, our approach paves the way for robots that can
dynamically and autonomously adjust to new environments
and tasks, ensuring persistent and adaptable performance.
At the same time, it can be a test bed to better study of
mechanics, kinematics, and dynamics of biological systems.
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Fig. 1. Quadruped Leg Structure: Three tendons (label 1) are controlled
by motors M0, M1, and M2. The mono-articular tendon connected to motor
M1 exclusively drives the proximal joint in an counter-clockwise (flexion)
direction. However the tendons connected to motors M0 and M2 are multi-
articular. Motor M0 drives the proximal joint clockwise (extension) and the
distal joint counter-clockwise (flexion). Motor M2 only performs extension
on both joints. Tendon channel (see label 2) keep the tendons from falling off
the joints. The mechanical design of the legs (and this figure) was obtained
from a previous study (Marjaninejad et al. [17]).

II. METHODS

A. Quadruped design in Hardware

The tendon routing of each quadruped’s the planar legs
is illustrated in figure 1. The orientation of the hind legs
were mirrored with respect to fore legs. This tendon-driven
quadruped featured light-weight designs conducive to addi-
tive manufacturing (3D printing) such that the knee joints
bent inwards. Motor and leg mounts were designed to be
modular and easily interchangeable. This was essential since
part failures happened when the mechanical stresses exceed-
ing the parts’ tensile strength and/or when the temperature
of the motors exceeded the glass transition temperature of
polylactic acid (PLA) material causing the 3D printed motor
mounts to warp under load. The hip and shoulder structures
were also mirror symmetric, possessing a tetrahedral design
to maximize robustness to mechanical stresses while reduc-
ing weight. Hard stops at the hip and knee restricted joint
angles to ensure that the feasible force spaces of the end
effectors never collapsed [19]. In turn, this ensured that the
quadruped would never get trapped in singularities in the
cost landscape.

The electromechanical architecture for sensing and tendon
actuation was based on a previous study involving locomo-
tion and movement in tendon-driven systems [17], [20], [21].
Each of the three inelastic nylon tendons of a limb was
actuated by a Faulhaber® 2342-S024-CR gear-free brushed
DC motor. The gear-free motor together with a small coil
of tendon on each motor shaft ensured backdrivability. The
motors were driven by Western Servo Design LDU-S1 linear
current amplifiers. Voltage commands to these amplifiers
were used to modulate the DC current through and hence the
torque applied by each motor. The hip and knee joint angles
for each limb were sensed by CUI® AMT103-V incremental
encoders [22].

We used a custom Marionette toolchain for tendon-driven
robotics was used for low-level robot operation and remote
control [23]. One of its components— QuickDAQ, a soft-
ware data acquisition library that interfaced with National
Instruments® (NI) DAQmx data drivers—was used to read
encoder angles and motor voltage commands from a PXI®

data acquisition PC computer. The toolchain was also used
for closed-loop PI control of tendon tension. In-turn, G2P-
based machine learning (ML) pipeline (see section II-D)
operating on a separate ML computer received encoder angle
data from, and returned motor reference commands to the
PXI PC. The Sub-millisecond near-real-time communication
between the two computers was achieved over a peer-to-peer
Ethernet connection using RT-Bridge, another component of
Marionette which enables remote control and telemetry using
the ZeroMQ message-passing library [24], [25].

The architecture of our physical implementation, featuring
both the physical and software environments is illustrated in
figure 2.

B. Task and Test Case

1) Task: We have tested all our cases with continuous
cyclical movements. During this task, both proximal and
distal joints follow sinusoidal trajectories with a π/2 phase
difference. Additionally, diagonal limbs are synchronized
together (similar to trotting). This task consists of 20 seconds
of movement with 3.6 second cycles.

2) Test Case: We have tested our quadruped while it
was suspended in air, so its limbs did not contact the floor.
Therefore, the system only needed to learn how to control
the dynamics of its own limbs.

C. Dynamic Control of Tendon-Driven Legs

Our system controls four tendon-driven legs, enabling
a quadruped to walk using four DC motors. Each motor
pulls a tendon, adjusting the corresponding leg’s position
and velocity. The control strategy dynamically activates the
motors based on a model that classifies movement patterns
and their intensities at different time points.

Mathematically speaking, each leg Li may be modeled as
a second-order system:

q̈ = −I(q)−1C(q, q̇) +Bq̇ + I(q)−1T (1)

where q is the joint angle, I is the inertia matrix, C(q, q̇) is
the Coriolis and centripetal forces matrix, B is the damping
coefficients matrix, and T (t) is the torque at the joints.

The forces exerted by the musculotendons (represented
here as cables pulled by motors) are subsequently linked to
the vector of applied joint torques as:

T (t) = M(q)F0a (2)

where M(q) is the moment arm matrix, F0 is a diagonal
matrix containing the maximum force that each actuator can
exert, and a is the activation sequence sent to the actuator.
The system aims to achieve the desired leg positions xi,des(t)
and apply forces corresponding to the desired activations a.



Fig. 2. System Overview: The physical implementation of the robot features software and hardware sections. Our modular tendon-driven robot, featuring
DC motors and encoders, was controlled by a custom DAQ and control program on a DAQ-capable computer running the NI-DAQmx driver. The G2P
learning pipeline—running on a machine learning-capable computer—used RT-Bridge over Ethernet to send commands and receive sensory data from the
DAQ program in near-real-time with sub-millisecond round-trip latency.

We trained an artificial neural network (ANN) to be an
inverse map connecting the resulting kinematics with each
random activation that produced them. The inverse map
aims to find the actuation values vector a for any given
set of desired kinematics q, q̇, q̈ without using any implicit
model and only from the babbling and task-specific data. The
trained ANN for mapping used in the lower-level control of
this study is described in the equation:

a = ANN(q, q̇, q̈) (3)

The control system adjusts the voltage applied to each
motor driver (which in turn modulates the motor toque)
using the activations predicted by the ANN, ensuring the legs
achieve the desired movements and intensities in real-time.

D. Learning Pipeline (G2P Algorithm)

To find a mapping between desired kinematics and muscle
activations in our tendon-driven system, we use the G2P
algorithm [17], which consists of two main parts:

1) Motor Babbling: During this phase, muscles are ran-
domly activated (uniformly distributed from 0 to 100% ac-
tivation), and the resulting sensory input information (tactile
sensory information, such as endpoint force values, and
kinematics, including joint angles, angular velocities, and
angular accelerations) are collected. These sensory inputs
and activations are then used to train an ANN as inputs and
desired outputs, respectively.

The resulting ANN is used to predict muscle activations
required to perform the desired tasks during the refinement
phase. For all cases in this study, we performed the babbling
phase for 60 seconds.

2) Refinements: During this phase, the kinematics of the
desired task (either cyclical or point-to-point) are sent to
the ANN to estimate the required muscle activations. These
activations are then used to perform the movement. For
tactile sensory input, we feed the previous time step’s sensory
data (except for the first simulation step, where we feed 0).
The resulting task-specific sensory information and muscle

activations are concatenated with the data available so far and
used to re-tune the ANN. Note that motor babbling provides
sparse sampling within a vast volume of sensory information,
while refinements enable sampling more specific to the
sensory space of a desired task.

E. Scaling Sensory Data

Scaling and normalizing input data can enhance learning
speed and improve the data efficiency of a machine learning
algorithm, especially when inputs have different units and
ranges. We scaled the input data by dividing them by their
expected variance. These scaling factors were calculated by
running a 60-second babbling (done only once for the entire
curriculum of tasks and test cases) with the quadruped in the
air (no load). This approach helps in faster convergence of
the ANN training processes.

F. ANN Architecture

We use a single ANN for each limb (a total of four ANNs,
each having identical network architecture) that maps all the
sensory input of that limb to the predicted muscle activation
values (3 muscles). The ANNs start with babbling (in air),
and once trained, they concatenate kinematic data (position,
velocity, and acceleration for each of the two joint) from
new babbling or refinements and re-tune their weights using
this cumulative data set, warm-starting with the weights from
the last case. The error used to train the ANNs is the mean
square error (MSE) over all muscle activations. We use
multilayer perceptron (MLP) ANNs with one hidden layer
(24 neurons for the single ANN and 6 neurons for each ANN
in the multiple ANN case), linear activation functions (which
performed better than sigmoid functions), and the ADAM
optimizer [26] in the Keras API from the TensorFlow library.

G. Position Error Feedback

Similar to [27], we implemented corrective position error
feedback on the joints’ position error. To measure system
performance on the desired movements, we calculate the
root mean square error (RMSE) over the joint angles (across



all limbs) for the last half of the data (to avoid effects
of transient initial conditions) and report it. RMSE is used
instead of MSE because it preserves the units of the inputs
(radians).

III. RESULTS AND DISCUSSION

In this study, we implemented a method for a quadruped
robot to learn cyclical movements in air using a structured
approach based on motor babbling and ANN-based inverse
mapping. The following sections detail the steps taken and
the outcomes observed.

A. Initial Motor Babbling

Each run starts with a five-minute motor babbling about
initiating a mapping between the kinematics and motor
activation sequences pairs for the quadruped. During this
phase, a pseudo-random control sequence was fed to the
motors of each limb, generating a 3D time-varying vector of
current changes. The kinematic data (joint angles, angular
velocities, and angular accelerations) were recorded using
encoders at each joint. These data formed the basis for
training an initial artificial neural network (ANN) to create an
inverse map from 6D kinematics to a 3D control sequence.

B. Movement Parameterization and Control Sequence Gen-
eration

A closed orbit in 2D joint-angle space, defined by a ’fea-
ture vector’ of 10 evenly distributed points, parameterized the
desired cyclical movement (see [17]). For a cycle duration
of approximately 1 second, this orbit defined the 6D limb
kinematics for each of the robot’s four limbs. Using the initial
inverse map, we produced a control sequence, which was
applied to the quadruped’s limbs, generating ≈5 movement
cycles.

C. Performance Evaluation

After each control sequence application, the resulting
kinematics were appended to the dataset, which included
initial motor babbling and previous attempts. This aggregated
data was used to refine the ANN gradually. Our quadruped
learned to follow the particular cyclical movement (see Fig.
3) within 15 refinements (each lasting only 20 seconds)
following an initial five-minute period of generalized motor
babbling, emulating the exploration-exploitation paradigm
seen in mammals. The system demonstrated adaptive im-
provement, mirroring trial-to-trial experiential adaptation ob-
served in biological motor learning (Fig. 4).

After 15 refinements within the same run, the quadruped
was able to follow the target angle trajectories (Fig. 5) both
in the distal and proximal joints. The endpoint locations
resulting from this reproduction could follow the desired
trajectory (Fig. 3), a non-convex curve, serving as a proof-
of-principle for the G2P algorithm in hardware. Through
each refinement step, the robot continually improves on
its already ”good enough” solution to progressively reduce
the RMSE. After each refinement, the previous refinement
iteration’s ANN is transferred and further trained on the

Fig. 3. Endpoint trajectories of the quadruped Suspended in air: The
green trajectories represent the performance immediately after babbling,
with no refinement. The solid red trajectory indicates the target path the
quadruped was supposed to follow. The blue trajectory illustrates the per-
formance after the final refinement. This figure demonstrates the quadruped’s
progress following the target trajectory through successive refinements.

Fig. 4. Refinements in Air: 15 refinements of a single over five minutes of
continuous operation were performed in the air following motor babbling.
The RMSE (Root Mean Square Error) of the resulting trajectories was
plotted for the two joints of each of the four legs (eight values for each
boxplot). Initially, the RMSE was 65.4◦, which was reduced to 9.3◦ by the
end of the refinements.

new refinement data. This process fine-tunes the mapping
parameters, enabling continuous improvement and lifelong
learning. The ANN adapts and evolves by progressively
integrating new data, ensuring more accurate and effective
performance over time. When the robot runs for longer
durations, this approach of repetitive refinement could be
leveraged to enable the robot to adapt to wear-and-tear in its
body and changes in the environment, achieving functional
and adaptive cyclical non-convex movements without prior
knowledge of the environment or its own body.

These results are promising, demonstrating the hardware-
in-the-loop system’s ability to learn the control of a tendon-
driven quadruped with redundancies in just a few minutes.
The system’s ability to continually learn and adapt suggests
potential lifelong learning capabilities, advancing the state-
of-the-art in autonomous control of robotic locomotion by
offering a bio-inspired approach to realizing robots that can
dynamically and autonomously adjust to new environments,
ensuring persistent and adaptable performance.



Fig. 5. Joint Angles: The real joint angles were plotted vs the target
trajectories after the 15th refinement showing the quality of the performance
of the task by the legs for a cyclical motion in air (without load) with zero
knowledge of the body and the environment before the motor babbling.

D. Conclusion

The quadruped robot successfully learned non-convex
non-differentiable cyclical movements in air, leveraging just
five minutes of motor babbling coupled with an ANN-based
learned inverse map. The refinement steps in G2P enable
online learning without prior knowledge. This allowed our
quadrupeds to display continual improvement in performance
with each refinement. Our results show that the hardware-in-
the-loop system’s ability to learn the control of a tendon-
driven quadruped with redundancies in just ten minutes
(five minutes each of babbling and refinements) to achieve
functional and adaptive cyclical non-convex movements.
This implementation underscores the efficacy of structured
learning approaches for robotic motor control.

E. Limitation and Future Work

Artificial intelligence is a rapidly growing field that has
been beneficial in various domains of engineering [28]–
[30]. In this example, we demonstrate how using ANN
architectures enables a quadruped robot to learn limb control
from scratch. The ability to adapt to varying conditions is a
crucial step for robots to successfully perform locomotion
tasks. [31]–[35]. But, while our results demonstrate the
ability of G2P learning pipeline to achieve kinematic control
of our quadrupedal robot, our approach has not been tested in
the context of the dynamics associated with either loading the
robot or subjecting it to different operational environments.

Another factor that is key to locomotion is the ability to
balance the body on uneven terrains [36], [37]. However, our
robot limbs are entirely planar and unable to generate three
dimensional force spaces at the end-effectors—an important
property to achieve effective balance control. The increase in
the number of DoFs to achieve this would in-turn necessitate
more tendons. This would result in an increase in the dimen-
sionality of the control/activation space which the learning
pipeline would need to explore. Unless handled carefully,
this would greatly increase the babbling time of our robots.

To address these limitations, we have a series of im-
provements on which we are currently working. As a first
step, we are currently using a gantry-based system to test
our robot and G2P learning algorithm’s ability to perform

locomotion at different simulated boy weights. Then, we
will test the ability of G2P learning methods to learn to
switch between multiple tasks such as standing from prone
position, walking in a straight line, and turning. In the mean
time, we are working on novel edge accelerator designs for
the real-time acceleration of learning pipelines for larger
robotic systems, and bio-inspired distributed neural control
architectures to reduce the dimensionality of the control
space [23], [38], [39]. Finally, we intend replace the planar
limbs of our quadruped with limbs capable of movement and
force production in 3D space.
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