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Abstract

This dissertation focuses on characterizing cortical involvement during low force dexter-

ous manipulation. Cortical oscillations in the beta frequency range (15 - 30 Hz) are

synchronous with contralateral muscular activity during static precision pinch, indicative

of strong cortico-muscular coupling. However, it is poorly understood how the cortex

modulates the control of fingertip forces during a time-critical dexterous task. The goal

of this research was to examine the functional connectivity between cortex and muscle

during a force tracking precision pinch task using a rigid wooden dowel and a compli-

ant unstable spring at two force levels. At the low force level for both objects and at

the high force level with the dowel, the difficulty in maintaining a steady compression

was minimal. However, at the high force level with the unstable spring, the dexterity

requirements to maintain a steady force compression were significantly more challenging

and required heightened sensorimotor integration. Using this novel paradigm, we showed

that increases in sensory feedback and dexterity demand disrupt consistent descending

commands seen in stable grasps and are reflected as a reduction in beta corticomuscular

coherence. Despite the fact that the force levels were kept constant for both objects, these

findings suggest that for precision force control there exist functionally different cortical

circuits that are highly dependent on the temporal demands of the task.
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Chapter 1

Introduction

1.1 Background

Human dexterous manipulation is characterized by the ability to precisely control the

forces we exert on everyday objects with our fingers and hands. Throughout the day we

interact with our surroundings in a variety of ways, ranging from large force production

tasks, such as when holding a hammer to strike a nail, to fine manipulation involving low

forces, such as typing, playing the piano or buttoning a shirt button. Fine manipulation

involving the pads of the index finger and thumb is commonly referred to in literature as

a precision pinch. Numerous studies have utilized this paradigm to assess many aspects

of hand function including the examination of forces exerted on an object (Johansson

& Westling 1984, McDonnell, Ridding, Flavel & Miles 2005), muscle strategies using

electromyography (Maier & Hepp-Reymond 1995), the effects of transcranial stimulation

(Davare, Lemon & Olivier 2008), cortical power (Murthy & Fetz 1992), and cortical

synchrony with hand muscles (Baker, Olivier & Lemon 1997) to name a few. While the
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literature is rich with static precision pinch analysis, this encapsulates a small fraction of

daily hand-object interactions.

This dissertation focuses on characterizing dexterous function by utilizing well es-

tablished electrophysiological recordings and force measurements and introducing the

element of instability. The goal here was to tax the nervous system with a dexterously de-

manding task to differentiate between how the brain communicates with peripheral hand

muscles when performing simple versus difficult manipulation tasks. Coherence analysis

was used to assess these differences by identifying cortical areas with known functional

projections onto spinal motor neurons controlling hand muscles and by describing the

preferred frequencies of communication.

1.2 Neural Control of Movement

The sensorimotor process involved in performing a motor task is depicted as a three

step process as shown in Fig. 1.1. During skilled manipulation, tactile information

about the physical properties of the object in hand (e.g., shape, weight, smoothness,

etc.) are relayed to the cortex. The brain incorporates this information and subsequently

provides an appropriate motor command, thereby changing the state of the task. With

this new state, sensory information is updated and the process continues. While this

model provides a general conception of the sensorimotor process, the true mechanisms

involved are far more intricate.
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Figure 1.1: Schematic of the sensorimotor process involved in motor control. Initially,

sensory information from the object being held is obtained. The demands of the task

designate an appropriate motor response to the sensory cortex. Execution of the motor

command causes in a change in the state of the task resulting in new sensory information

and the process continues.

1.2.1 Sensory Processing

The importance of sensory feedback in manipulation cannot be overstated. This is evident

in the large somatotopic representation of the hand in the sensory and motor homunculus.
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Indeed, the success of homo sapiens is largely due to the co-evolution of cognitive devel-

opment and the ability to use tools (Faisal, Stout, Apel & Bradley 2010). The abundance

of mechanoreceptors in the glabrous (i.e. hairless) skin of the hand which relay critical

afferent sensory information such as pressure, vibration, static touch, and proprioception

(Johansson & Flanagan 2009) emphasize the importance of sensory feedback in object

manipulation.

Mechanoreceptors in the fingers and hands transmit sensory information to dorsal

root neurons in cervical segments C6 and C7 through Aβ neurons. The diameter of these

heavily myelinated group II axons range from 6 - 12 µm and permit the transmission

of cutaneous information at conduction velocities of 35 - 75 meters per second (Bear,

Connors, Paradiso, Bear, Connors & Neuroscience 1996), second only in speed to Aα

neurons for proprioception. Axons from the nuclei in the dorsal root ascend through

the dorsal column medial lemniscus pathway, decussate in the medulla and synapse with

neurons in the thalamus. These neurons then project onto cells in the primary sensory

cortex (S1), secondary sensory cortex (S2) and the posterior parietal cortex.

The methods by which the sensory information is processed is dependent on the spe-

cific goals of the task. For example, a feedforward strategy is applied to reach for an

object based on an internal model (Kawato 1999) and no sensory integration is necessary.

However, when the task requires manipulation, a feedback control strategy must be imple-

mented to integrate sensory information to correct for errors (Desmurget & Grafton 2000).

Neurons of the primary sensory area are known to project to areas involved in voluntary

movement and the planning of movement, namely the primary motor cortex (M1) and

the supplementary motor area (SMA) (Martin 2003).
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1.2.2 Motor Control

Cortical areas involved in the execution of motor task have been heavily studied. Gross

factors influencing the contributions from specific areas include velocity, force and posi-

tion (Jancke, Specht, Mirzazade, Loose, Himmelbach, Lutz & Shah 1998, Deiber, Honda,

Ibaez, Sadato & Hallett 1999, Ashe 1997, Thickbroom, Phillips, Morris, Byrnes & Mastaglia

1998, Humphrey, Schmidt & Thompson 1970). In a functional magnetic resonance

imaging (fMRI) study comparing cortical involvement during power grip versus pre-

cision pinch, the researchers showed greater sensorimotor activity when performing a

power grip compared to a precision pinch. However the precision pinch task showed

higher activation in ventral premotor, posterior parietal and prefrontal cortices (Ehrsson,

Fagergren, Jonsson, Westling, Johansson & Forssberg 2000, KuhtzBuschbeck, Ehrsson

& Forssberg 2001). In a separate fMRI study, it was shown that maintaining a pre-

cision pinch on a small object with just enough force to keep it from slipping acti-

vated the supplementary motor area (SMA), whereas stronger isometric forces showed

no SMA activation (KuhtzBuschbeck et al. 2001, Haller, Chapuis, Gassert, Burdet &

Klarhfer 2009, Galla, de Graaf, Bonnard & Pailhous 2005). Furthermore, self-paced

movements of individual fingers revealed prominent blood flow into the SMA (Roland,

Larsen, Lassen & Skinhoj 1980). In a positron emission tomography (PET) study, it

has been shown that as the difficulty of a task is increased, activation in the premotor,

SMA and caudate nucleus was increased (Winstein, Grafton & Pohl 1997). The inter-

pretation from these studies suggests that gross movements and strong contractions can

be controlled directly from the primary motor area (M1), however, low force and fine
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precision pinch tasks require the additional engagement of the SMA and premotor cortex

for critical control of fine manipulation and high level motor planning.

The control of hand function is mediated by direct cortical projections via the lateral

corticospinal tract (CST) onto alpha motor neurons in the ventral horn of the spinal

cord. The first evidence for direct corticospinal projections onto contralateral muscles

was suggested by Bernhard et al. in 1953 who investigated skilled hand tasks performed

by macaque monkeys (Bernhard, Bohm & Petersen 1953). Anatomical studies have shown

that primary motor neurons terminate in the spinal cord (Kuypers 1960, Shinoda, Yokota

& Futami 1981). It is now known that, in addition to M1, axons in the CST originate

from the dorsal and ventral premotor cortices, SMA, and cingulate motor cortex (Dum

& Strick 2005, Dum & Strick 1991). Descending commands from the cortex are highly

task specific and the origin, pathway and synaptic input play a role in the execution of

movement (Lemon 2008).

1.3 Previous Work

1.3.1 Electrophysiological Studies

The production of static and slow oscillatory precision pinch forces upon an object is

a critical aspect of everyday grasping. Several studies have used time series analysis

techniques such as spike-triggered averaging, transcranial magnetic stimulation and cross-

correlation to assess the relationship between cortical activity and the electromyogram

(EMG) (Lemon, Johansson & Westling 1995, Lemon & Mantel 1989, Muir & Lemon

1983). In addition to these techniques, corticomuscular coherence (CMC), has been
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used to determine cortical projections from M1 onto spinal neurons (Feige, Aertsen &

Kristeva-Feige 2000, Fetz & Cheney 1980, Mima & Hallett 1999, Halliday, Conway, Farmer

& Rosenberg 1998). Simply stated, CMC measures the consistency of the phase lag

between cortical activity (i.e. EEG) and muscular activity (i.e. EMG). The result is

a coherence spectra describing the correlation between the signals for all frequencies of

interest. Studies have associated coherence in distinct frequency bands with specific motor

tasks. For example, CMC in the alpha frequency range (8 - 12 Hz) has been associated

with brief finger movements (Feige et al. 2000, Ohara, Mima, Baba, Ikeda, Kunieda,

Matsumoto, Yamamoto, Matsuhashi, Nagamine & Hirasawa 2001) and coherent sigma

oscillations (12 - 15 Hz) are associated with the startle reflex (Grosse & Brown 2003).

Perhaps the most studied frequency range for coherence analysis is the beta band

which extends from 15 - 30 Hz. Corticomuscular coherence studies have shown that

this range is associated with static force production (Murthy & Fetz 1992, Baker et al.

1997, Baker 2007, Conway, Halliday, Farmer, Shahani, Maas, Weir & Rosenberg 1995,

Kilner, Baker, Salenius, Hari & Lemon 2000, Kilner, Fisher & Lemon 2004, Kilner, Baker,

Salenius, Jousmki, Hari & Lemon 1999, Kristeva, Patino & Omlor 2007). CMC has been

used to determine the specific cortical areas and frequencies involved in precision pinch

tasks (Kilner et al. 2000, Riddle & Baker 2006, Fisher, Galea, Brown & Lemon 2002, Chen,

Entakli, Bonnard, Berton & De Graaf 2013). It has also been shown that beta CMC in

the primary motor cortex is modulated by digit displacement (Riddle & Baker 2006) and

object compliance (Kilner et al. 2000). Furthermore, these rhythms are absent during

movement (Baker et al. 1997, Brown 2000, Kilner et al. 1999, Kilner et al. 2000, Kilner

et al. 2004, Feige et al. 2000). Significant coherence in the beta frequency range during
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sustained muscular contractions suggests that these rhythms are necessary for stability.

One study has investigated beta coherence in the supplementary motor area to show that

CMC was associated with precision control of fingertip forces (Chen et al. 2013).

Only a handful of groups have investigated the synchrony of gamma oscillations (>

30 Hz) between the cortex and musculature. These studies have shown that gamma

CMC is associated with strong muscular contractions (Mima, Simpkins, Oluwatimilehin

& Hallett 1999, Brown, Salenius, Rothwell & Hari 1998, Hari & Salenius 1999). In more

recent investigations, it was shown that during static force production, peak coherence

appeared in the beta frequency range, however, during slow oscillatory force production,

the coherence spectra shifted into the gamma range (Omlor, Patino, Hepp-Reymond &

Kristeva 2007, Patino, Omlor, Chakarov, Hepp-Reymond & Kristeva 2008).

The limitations of these studies is that they focus primarily on static force production

or slow finger movements. As a result, the functional role of M1 and other cortical areas

remain relatively unexplored for time-sensitive dynamic manipulation. Largely due to

the complex nature involved in the control of the hand, few research efforts have explored

the full details of the neuromechanics involved in dynamic force production. Thus, the

current body of literature lacks adequate coherence analysis where unpredictable and

unstable objects are manipulated.

1.3.2 Measuring Dexterous Ability

Given the ease with which we are able to pick up an object, such as a pen and immediately

begin to write, it is easy to underestimate the complex neural strategies involved in

controlling the large number of degrees of freedom in the hand. Literally, there exist
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an infinite number of muscle coordination patterns that can generate the same force

on an object, a problem known as muscle redundancy (Bernstein 1967). The method

used by the nervous system to select the appropriate pattern are currently unknown

but is of significant interest. Several studies hypothesize that a strategy is selected which

maximizes or minimizes a cost function. Optimization functions that have been employed

include energy minimization (Alexander 1997), maximizing smoothness of movements

(Flash & Hogan 1985) and minimizing torque (Uno, Kawato & Suzuki 1989). Despite the

implementation of the multitude of control strategies in state-of-the-art robotic hands,

even the most advanced designs pale in comparison to the dexterous capabilities of a

toddler.

Multi-finger dexterous manipulation of an object involves rotation, translation, mak-

ing and breaking of contact surfaces, and adjustments to fingertip endpoint force magni-

tude and direction (Valero-Cuevas, Smaby, Venkadesan, Peterson & Wright 2003, West-

ling & Johansson 1984, Loeb, Brown & Cheng 1999). This process requires continuous

sensorimotor integration to update muscle coordination strategies to produce accurate

hand postures and endpoint finger forces necessary to maintain control of an object. Over

the years, many clinical methods have been developed to measure dexterity in humans

including the Box and Blocks (Mathiowetz, Volland, Kashman & Weber 1985), 9-Hole

Peg (Mathiowetz, Weber, Kashman & Volland 1985), Jebsen-Taylor (Jebsen, Taylor, Tri-

eschmann, Trotter & Howard 1969), and Fugl-Meyer (Duncan, Propst & Nelson 1983)

tests. These quantitative measures of dexterous performance suffer from a number of

pitfalls: (1) they rely on repetitive tasks which are scored based on time to completion

and accuracy, (2) they involve gross upper body movements, effectively taking the focus
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away from individual finger movements, and (3) they do not rely on the integration of

critical sensory feedback and can be performed based on visual feedback alone.

Valero-Cuevas et al. (2003) defines dexterity as the ability to dynamically regu-

late endpoint force magnitude and direction (Valero-Cuevas et al. 2003). This concrete

definition led to the development of the Strength-Dexterity (SD) test (Valero-Cuevas

et al. 2003). In this novel precision pinch paradigm, dexterity is measured by asking par-

ticipants to compress a slender spring prone to buckling to the point of maximal stability.

Subject performance is based on their ability to dynamically regulate their endpoint force

direction and magnitude to stabilize the spring throughout compression (Valero-Cuevas

et al. 2003). Strength, the force necessary to bring the spring to solid length (i.e. where

all the coils of the spring are touching), and dexterity, the ability to dynamically regu-

late endpoint force direction and magnitude, are paramount to task performance. Given

the dynamic nature of the SD test, continuous sensorimotor integration is required to

account for variability, small perturbations and increased proprioceptive/sensory feed-

back from the fingertips. fMRI studies during SD spring compression have found that

specific cortical and subcortical areas become active when dexterity demands of the task

increase (Mosier, Lau, Wang, Venkadesan & Valero-Cuevas 2011, Holmstrom, de Man-

zano, Vollmer, Forsman, Valero-Cuevas, Ullen & Forssberg 2011, Talati, Valero-Cuevas

& Hirsch 2005).

In precision pinch paradigms where static forces are applied to rigid objects, the pre-

dominant muscle strategy is that of co-contraction (Smith 1981). In the SD test, however,

the dynamic nature of the task necessitates a more advanced control strategy. Individ-

ual control of the index finger and thumb are required to maintain a constant force on
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the spring. As a result, the strategy of the muscles controlling the digits operate in

a more fractionated pattern (Schieber & Santello 2004, Bennett & Lemon 1996, Kilner

et al. 1999). It is known that sensory feedback in precision pinch manipulation is crucial

to task performance (Johansson & Westling 1984, Johansson & Flanagan 2009, Westling

& Johansson 1984, Westling & Johansson 1987) and given the dynamic nature of the SD

test, the sensorimotor loop becomes highly susceptible to neural noise and transmission

delays. By taxing the nervous system with a dexterously demanding task, this precision

pinch paradigm makes it possible to push the limits of sensorimotor integration to de-

termine how the nervous system controls for instability. Building upon this work and

by combining high-temporal electrophysiological recordings, we employ a variation of the

SD paradigm to characterize the neural control of the hand in the context of real world

dynamic manipulation.

1.4 Prior Lab Work

• A multipurpose data acquisition system was developed to capture force data mea-

sured from compressible springs and transmit the information wirelessly. The device

was designed with versatility in mind and was able to capture data from a multi-

tude of both passive and active sensors (Reyes & Valero-Cuevas 2013). This device

was used in a number of studies including analysis of body movement on a slack

line, during running, walking and cutting, and as a rehabilitation gaming device

for dexterous manipulation and motor control in children with autism spectrum

disorder.
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• We successfully showed that the precise location of a fine-wire recording site could

be detected in a 3T scanner. Furthermore, spike-triggered averaging was used to

develop transfer function models from a fine-wire EMG to surface EMG recordings.

• We recorded electrocorticographic (ECoG) data from a few patients undergoing

monitoring for epileptic seizures to investigate the changes in cortical power during

simple and dexterous tasks involving static and dynamic force production as well

as movements.

• We have developed an experimental paradigm to investigate spatiotemporal cor-

ticomuscular relationships between rigid and compliant object manipulation with

the hand. Non-invasive EEG was recorded from five healthy subjects during a vi-

suomotor force tracking task. For all data collections, we simultaneously recorded

endpoint fingertip force and surface EMG from select muscles that control the in-

dex finger and thumb. We utilized signal processing techniques such as coherence

and power spectral density analysis to demonstrate that significant differences arise

in the frequency domain between cortical and muscular activity during tasks of

varying degrees of stability.

1.5 Significance of Research

This research can provide several significant contributions to the scientific, clinical and

robotics communities. Scientifically, the ideas presented here will help formulate a new

definition of dexterity which includes neurophysiological measurements. The spectral

analysis in this dissertation will help further our understanding of how the brain utilizes
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specific cortical oscillations to integrate sensory feedback with motor control. From this,

it would be possible to determine how and when the brain becomes dissociated during

complex movements and assigns the task to subcortical and/or spinal circuits. From a

clinical perspective, corticomuscular coherence analysis could provide clinicians with non-

invasive methods for the early detection of nerve pathologies and neuromuscular disorders

affecting dexterous performance and assist in tracking rehabilitation progress. In the

robotics field, this research could be used in the development of hierarchical controllers

which track synchronous cortical and muscular oscillations to send commands to robotic

and prosthetic limbs based on the desired intent of the user.

This dissertation provides a novel analysis of cortical drive to contralateral hand mus-

cles during dexterous manipulation. Many hand-object interactions throughout the day

involve dynamic movements and the readjustment of fingertip forces, however these com-

plex interactions are rarely addressed in literature. The Strength-Dexterity paradigm

offers a novel method of investigating cortical involvement during dynamic dexterous

tasks. Unfortunately, the investigations utilizing the SD test have been performed under

the temporal constraints of functional MRI. The methods presented here utilize a vari-

ation of the SD paradigm and bypass the temporal limitations of fMRI by using EEG

to characterize the frequency content involved in brain-body communication. Further-

more, this research expands on the corticomuscular literature to incorporate instability

and unpredictability in manipulation tasks in an effort to move away from static grasp

analysis. The results presented here begin to address how the sensorimotor system uti-

lizes time-sensitive tactile feedback in order to accurately control the muscles of the hand
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during dexterous manipulation and helps to further our understanding of how cortical

bandwidth is utilized in strategic motor tasks.

1.6 Dissertation Outline

1.6.1 Chapter 2

This chapter presents a custom designed low-cost wireless data acquisition system with

user-configurable settings. Originally, the device was designed to capture force data

during the Strength-Dexterity test, however several applications are discussed to highlight

the devices’ wireless capabilities as well as the versatility in acquiring data from several

types of active and passive sensors. This work was presented at the 35th Annual American

Society for Biomechanics Conference in 2011 and as a podium presentation at the IEEE

EMBS Special Topic Conference on Point-of-Care Healthcare Technologies in 2012. Dr.

Francisco J. Valero-Cuevas is a co-author.

1.6.2 Chapter 3

This chapter discusses the ability to detect a micro-hematoma formation made during fine-

wire electrode placement in a structural MRI. Additionally, transfer function models were

developed to relate the propagation of individual motor unit action potentials recorded

with a fine-wire electrode to an array of surface electrodes. Part of this work was presented

at the 6th International IEEE/EMBS Conference of Neural Engineering in 2013. Dr.

Krishna Nayak, Dr. Gerald Loeb and Dr. Francisco J. Valero-Cuevas are co-authors.

14



1.6.3 Chapter 4

This chapter investigates differences in cortical power in epilepsy patients during tasks

of varying difficulty. This pilot work was done in collaboration with the Department of

Neurology at the Keck School of Medicine of USC. Part of this work was presented at

the 43rd Annual Meeting of the Society for Neuroscience in 2013 and at the 7th World

Congress of Biomechanics in 2014. Emily L Lawrence, Sarine Babikian, Dr. Christianne

Heck, Dr. Charles Liu and Dr. Francisco J. Valero-Cuevas are co-authors.

1.6.4 Chapter 5

Chapter 5 provides a review of the functional significance of synchronous oscillations

in the cortex and in the muscle. The calculation and interpretation of coherence are

discussed.

1.6.5 Chapter 6

This chapter examines the effects of modulation of synchronous cortico-muscular oscil-

lations in dexterous tasks. We explore the role of cortical areas other than the primary

motor cortex during dexterous manipulation and extends the analysis of corticomuscular

coherence into the gamma frequency range and the supplementary motor area. This work

was done in collaboration with the Applied Mathematical Physiology Lab (AMPL). This

work was done in collaboration with the Applied Mathematical Physiology Lab (AMPL).

Dr. Christopher M. Laine, Dr. Jason J. Kutch and Dr. Francisco J. Valero-Cuevas are

co-authors.
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1.6.6 Chapter 7

Chapter 7 discusses the future direction of this research.
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Chapter 2

Data Acquisition Box

Abstract

As electronic components become smaller and cheaper with each passing year, wearable

technology is rapidly becoming realizable. The ability to wirelessly transmit data from

wearable sensors allows for individuals to perform complex movements and tasks without

being tethered to a computer or confined to an indoor laboratory setting. In this paper,

we describe a novel wireless data acquisition box (DAB) capable of transmitting data from

up to 16 unique sensors to a computer with built-in Bluetooth capabilities. Sample rates,

signal gains and filter cutoff frequencies can be preprogrammed as per the requirements of

the study. We have been able to receive stable transmissions from over 100 ft. away even

as the wearer performs rapid movements. Furthermore, the device is compact enough

to fit inside a pocket and has the ability to support both passive and low-power active

sensors. Data has been successfully collected with this system on several occasions, a few

of which are mentioned here.
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2.1 Introduction

The use of wearable wireless systems are an invaluable asset in the laboratory setting as

they allow for the acquisition of biological and kinematic data. However, many commer-

cially available systems are typically expensive, require the use of a USB receiver and

cannot be used in harsh outdoor environments. Furthermore, many Bluetooth systems

cater to a proprietary or specific type or brand of sensor and are application specific, such

as ECG monitoring (Andreasson, Ekstrom, Fard, Castao & Johnson 2002, Proulx, Clif-

ford, Sorensen, Lee & Archibald 2006), glucose monitoring and EMG systems. Current

wireless systems which allow for the acquisition from different types of sensors are often

limited to passive sensors. Without a doubt, sensor versatility, long range acquisition and

affordability are paramount for research purposes.

To our knowledge, there does not currently exist a commercially available device which

can sample from several sensors at satisfactory sampling rates using Bluetooth technology

(Cosmanescu, Miller, Magno, Ahmed & Kremenic 2006). The wireless acquisition system

described here circumvents these shortcomings by giving experimentalists the freedom to

collect data from active and passive sensors while also incorporating a novel encoding

algorithm to maximize sampling rates. We have employed off-the-shelf electronic compo-

nents to bring low-cost technology to bring versatility and affordability to the laboratory

setting. In addition to its wireless capabilities and ease-of-use, the device is small enough

to fit into the pocket of the user, giving participants the freedom to explore their en-

vironment while data from up to 16 sensors are telemetered to a computer. This first
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implementation of the device works in tandem with a custom designed graphical user

interface giving testers visual confirmation of data quality.

2.2 Methods

2.2.1 Telemetry Details

The data acquisition box (DAB), shown in Fig. 2.1, supports inputs from up to 16 types

of sensors including accelerometers, load cells, temperature transducers, etc. Interfacing

connectors provide +3.3 V and +5.0 V to power active sensors. Three of the DAB in-

puts have been configured in differential mode while the remaining 13 are single-ended.

Differential inputs reject common noise with a CMRR of 105 dB before conversion to

single-ended inputs. Data are then amplified, filtered and sequentially sampled at an

adjustable rate. 12-bit analog-to-digital conversion is achieved with a peripheral inter-

face controller (PIC) microcontroller (Microchip, Chandler, AZ) operating at 30 million

instructions per second (MIPS). Each sample is prepended by a 4-bit address to ensure

proper decoding by the receiving algorithm. The DAB employs Universal Asynchronous

Receiver/Transmitter (UART) protocol to transmit data and address as two 8-bit pack-

ets. Each data packet is enclosed within a start (low) and stop (high) bit. These bits

indicate to the receiver when a valid data packet is being transmitted. Data that do not

contain the correct transmission sequence are discarded. The result is a dual packet serial

transmission of 20 bits for single sample and is shown in Table 2.1.
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Connector:

 13-pins

 5 devices per connector

 Easily accessible

Bluetooth Module:

 RN-41

 921,600 Bps transmission rate

 Communication using UART 

 Frequency hopping for security

Microcontroller:

 dsPIC30F5011

 16 analog data inputs

 64-pin TQFP

 10 mm x 10 mm

 30 MHz operating 

  frequency

Programming connector:

 Quick software updates

ON/OFF Switch:

 Simply �ip on to start   

 collecting data

 

Status LEDs:

 Green - ON

 Red - Low Battery

 

Board dimensions:

  1.8” x 2.2”

Figure 2.1: Circuit board layout for Data Acquisition Box (DAB) with individual com-

ponents and description of features. The circuit board measures 1.8 x 2.2 inches.

Although the PIC microcontroller can sample data at high frequencies, the maximal

sampling rate per channel is limited by the transmission rate of the Class 1 Bluetooth

Module (Roving Networks, Los Gatos, CA), which can achieve stable transmission rates

up to 921,600 bps. Given this, the calculated maximal sampling frequency for a channel

is Fsmax = 46080/N Hz/channel, where N is the number of channels in use. As a result,

when only a single channel is in use, the maximal sampling rate is approximately 46 kHz.

When all 16 channels are in use, the DAB can sample at 2.88 kHz per channel. While
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these are the maximal sampling rates that can be achieved, the user is able to sample at

lower sampling rates.

Byte 1

start d8 d9 d10 d11 a0 a1 a2 a3 stop

Byte 2

start d0 d1 d2 d3 d4 d5 d6 d7 stop

Table 2.1: Serial communication arrangement for transmitted data. Start and stop bits
indicate to the receiver when valid data have arrived. Four address bits are used to
indicate channel number and 12 data bits correspond to sensor voltage.

2.2.2 Receiving Data

Since many laptop computers and portable devices come with built-in Bluetooth connec-

tivity, we have eliminated the need for receiving hardware (such as a receiving antenna),

which may take up a USB port and require the installation of drivers. We take advan-

tage of the widespread use, ease of connectivity and low power consumption associated

with Bluetooth technology, making this the ideal choice for the DAB over other wireless

standards such as WiFi and RF. Once the device has been paired with the host com-

puter, a virtual communication port is created through which all data are transmitted

and received. Using a custom Matlab GUI, users simply push a start and stop button to

begin and end data collection. This feature allows users to stream data for an indefinite

amount of time, limited only by disk space and battery life.

When the start button is pushed, the algorithm opens Realterm (Broadcast Equip-

ment Ltd., Auckland, New Zealand), an open-source hyper terminal program, to establish

the serial communication link. A request for data is sent from the computer to wake the

device up from a power-saving sleep mode to begin transmission. After the user has

21



collected data for the desired time, communication terminates and the device re-enters

sleep mode.

For this initial design, incoming data are not displayed in real time, but are instead

written to a text file. This was done to reduce computational demands on the receiving

unit and minimize potential data bus and CPU conflicts across platforms. Once transmis-

sion has completed, the program opens the text file, decodes the data using the address

bits and populates the data matrix according to the appropriate channel. The time re-

quired to decode the data stream will depend on the recording length and CPU speed.

All data are saved as .mat files with subject identification and trial number stored for

recall when necessary in the Matlab GUI.

2.2.3 Additional Features

The printed circuit board (PCB) is contained within a custom wearable rectangular enclo-

sure made from acrylonitrile butadiene styrene (ABS) material and manufactured using

a 3-D printing machine. The entire device measures 5.08 cm × 5.84 cm × 1.27 cm and

weighs less than 100 g, making it smaller and lighter than an average cell phone. It uses

a standard low-profile +3.7 V Li-ion rechargeable battery with a capacity of 1000 mAh.

The battery is recharged by an external wall charger and takes approximately 30 minutes

to complete. Future versions of the device will incorporate a recharging circuit to elim-

inate the need to remove the battery. Noise and crosstalk on the PCB were minimized

by optimizing component placement to create direct signal traces and by incorporating

a ground plane layer. Two onboard LEDs indicate status: green when the device is on

and red when the battery is low and needs to be recharged. A red LED on the Bluetooth
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module lets users know that there is no communication between the device and computer.

When communication is established, the red flashing LED ceases and a second greed LED

turns on and remains illuminated for the duration of the data transmission. Preliminary

tests show that the DAB can receive data from up to 100 ft. away and with a few hours

of use every day, the device can operate for two weeks without the need to recharge the

battery.

2.2.4 Sensors

Here we describe two types of sensors that have been configured for use by the data

acquisition box. To measure fingertip forces exerted upon hand held objects, we used a

strain gauge based single-axis load cell (Measurement Specialties, Hampton, VA) capable

of measuring up to 10 lbs. of force. This sensor uses a Wheatstone bridge configuration

to measure changes in resistance and produces a differential output proportional to the

applied normal forces. The circular load cell measures 1.27 cm in diameter and 0.41 cm

in height, requires a +5.0 V supply and draws 2.0 mA of current.

For movement analysis, we used a custom designed low-profile tri-axial accelerometer

(STMicroelectronics, Geneva, Switzerland) mounted on a custom designed printed circuit

board measuring 15 mm in diameter. The miniature accelerometer measures 4 mm ×

4 mm × 1 mm, has a detection range of ±2 g, sensitivity of about 1 V/g, powered by

either +3.3 V or +5.0 V, and requires approximately 850 µA of current. The load cell

and accelerometer in comparison to a U.S. penny are shown in Fig. 2.2.
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Figure 2.2: Uni-directional load cell and ti-axial accelerometer next to a US penny for

size comparison.

2.3 Results

We first tested the sensitivity and reliability of this device by mounting the tri-axial

accelerometer on a sliding tray that moves along a single axis. The sensor was attached

using tape and moved back and forth causing the sensor to experience acceleration in a

single direction. After a few trial movements, the accelerometer was remounted so that

the movement direction aligned with a different acceleration axis. This procedure was

repeated for all three axes.

Fig. 2.3 shows data collected from an accelerometer mounted on a moving tray at a

sample rate of 400 Hz. Initially, the direction of the movement was aligned with the x-axis

of the accelerometer, then moved to align with the y-axis and finally the z-axis. The top,

middle and bottom graphs correspond to accelerations along the x, y and z directions,

respectively. As expected, the output of the accelerometer is sensitive only to movements

along the aligned axis while the other channels produce no activity. At approximately

21 and 42 seconds, the accelerometer was repositioned, causing the sensor to experience
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accelerations on all channels. The results obtained in this test illustrate that the device

can accurately collect rapid dynamical data from several channels without cross talk.

x-axis acceleration

S
e

n
s
o

r 
V

o
lt
a

g
e

 (
V

)

-0.1

0

0.1

y-axis acceleration

Time (s)
10 20 30 40 50 60

z-axis acceleration

-0.1

0

0.1

-0.1

0

0.1

Figure 2.3: Sensitivity of accelerometer to detect accelerations in three perpendicular

directions.

Next, we captured fingertip force dynamics during a sensorimotor tasks that measures

strength and dexterity during manipulation of a small deformable spring (Valero-Cuevas

et al. 2003). The device records from force and acceleration sensors attached to either

end of a compressible spring using double-sided tape, as shown in Fig. 2.4. Subjects

were asked to squeeze the spring between their thumb and index finger in an attempt to

compress it fully without it buckling. Subjects were asked to curl in the remaining three

fingers to avoid any contact with the spring. Once they reached a comfortable level of

compression, they were asked to maintain that posture for a few seconds.
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Figure 2.4: Compressible spring with load cells and accelerometers attached at either

end.

Fig. 2.5 shows a sample of data collected from two load cells and two tri-axial ac-

celerometers, a total of 8 channels, sampled at 400 Hz for 30 seconds. The top figure

shows normal forces applied to a compressible spring squeezed between the thumb and

index finger. Sudden drops in the sensor voltage indicate when the spring buckled and

finger contact was lost. The bottom figure shows the Euclidean norm of the x, y and z

accelerations from accelerometers placed on the ends of the spring. This was performed

to show two representative acceleration traces rather than all six channels.
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Figure 2.5: Top trace: Force profiles for index finger and thumb during spring compres-

sion. Bottom trace: Euclidean norm of index finger and thumb accelerations.

Analysis of the force data can be used to obtain the maximal compression force and the

sustained compression, defined as the period in which the compression force is bounded

by one standard deviation of the mean force (Dayanidhi, Hedberg, Valero-Cuevas &

Forssberg 2013). Using these metrics, a dexterity score can be given to the subject based

on their performance (Valero-Cuevas et al. 2003).

To showcase the wearability of the device, five tri-axial accelerometers were attached

to a subject as they ran, walked, made cutting maneuvers, and jumped in an open field.

Accelerometers were attached using medical tape to the knees, ankles and trunk as shown

in Fig. 2.6.
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Figure 2.6: Subject wearing five accelerometers attached to the thighs, trunk and ankles.

Fig. 2.7 shows ten seconds of acceleration data captured from a subject who started

from rest and then began to jog. Data from 15 channels were captured at a rate of 300

Hz from the subject to show the kinematics involved during a light jog. The time series

data show that each channel is independent of the others and there are no indications

of erroneous decoding or lost data while collecting from multiple sensors. During our

recording session, we were able to receive reliable data transmissions at distances up to

15 m, giving an active collection area of approximately 706 m2. All data were collected

using a PC running Windows 7 and Realterm 2.0.0.70.
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Figure 2.7: Five accelerometers attached to the thighs, trunk and ankles of a subject as

they start from rest then perform a light jog.

By analyzing the sensor data during these exercise and movement tasks, it will be

possible to compare kinematic data between healthy subjects and individuals at varying

stages of rehabilitation from anterior cruciate ligament (ACL) injuries. Deviations from

healthy kinematic data will provide physical therapists with a measurement tool to help

them gauge the severity of the injury and allow them to develop customized rehabilitation

programs for ACL patients.

Lastly, the device was used as a gaming controller to promote gross motor skill de-

velopment in children with autism spectrum disorder (ASD). The device was attached to

the trunk of the child using an adjustable belt and had an accelerometer attached which
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would mimic the child’s jumping actions to control an on-screen character’s vertical posi-

tion. The side-scrolling game consisted of a character whose goal was to avoid obstacles

by jumping over them.

During the prototyping phase of the game, the acceleration captured from the DAB

was integrated twice to yield position data. This was then compared to a Kinect gaming

system to determine if it was possible to obtain accurate position data from our custom

designed accelerometers and DAB. In this test, the subject performed gradually larger

jumps within a 10 second interval. Figure 2.8 shows the vertical acceleration, velocity and

position of the trunk sensor obtained through the integration of the acceleration captured

by the DAB. In the last panel of the figure, the position data captured from the Kinect

system is plotted to show the comparison of the true vertical position against our twice

integrated acceleration. The offset in the trunk trace of the Kinect data arises from the

fact that the Kinect system uses the center hip marker as the datum (i.e. at rest, the

trunk marker is approximately 0.15 m above the hip).
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2.4 Discussion

The multipurpose wireless data acquisition box presented here is configurable, wearable,

robust, low cost, and easy to use. The device can be tailored to collect analog data from

a wide variety of active and passive sensors, giving it the potential for use in countless

laboratory, clinical and industrial applications. With this device, subjects are permitted

to freely move around in their environment while data is reliably transmitting and dis-

playing data on a user-friendly GUI. Aside from being a valuable laboratory device, the

system was also designed with clinical and in-home rehabilitation and monitoring appli-

cations in mind. Given the economical pricing of the wireless transmitter, we hope to

distribute these devices to parents and their children in need of physical therapy for hand

function and gross motor skills. Our in-home rehabilitation comes in the form of custom

designed video games that use the device and attached sensors as the controlling input.

We believe this approach will serve as a fun and effective motivational tool for children

to engage in daily rehabilitation. Currently, the system is undergoing several updates

to the hardware, GUI and firmware to make the device integratabtle, user-friendly and

fully configurable. The device, PCB and enclosure will be upgraded by adding strain

relief to the connectors and will incorporate a rechargeable battery circuit. Additionally,

the device will undergo a complete redesign of the enclosure to make it more robust and

stylish. Firmware will be updated to reduce power consumption for the PIC to give the

device a longer battery life. Lastly, the GUI software will be updated to present the data

in real time and we will work towards making the device compatible with cell phones,

tablets and other Bluetooth enabled devices.
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Chapter 3

Localization of a Fine-wire Recording Site and its

Propagation Characteristics

Abstract

The ability to extract information about muscle activation and control at the scale of

individual motor units from surface EMG depends critically on the spatial distribution

of the electrodes with respect to the source within the muscle. Despite this importance,

few studies have used the precise location of an intramuscular recording site to relate

frequency characteristics, such as filtering effects, to those of non-invasive surface record-

ings. In this study, we recorded from a single fine-wire EMG electrode inserted into the

extensor carpi radialis brevis (ECRB) of the right forearm arm of a single volunteer along

with seven surface electrodes placed equidistantly around the proximal forearm in the

same transverse plane as the fine-wire electrode. Following a series of hand and finger

manipulation tasks, the fine-wire electrode was removed and each surface electrode was

replaced with a fiducial marker. We then acquired structural images of the forearm of

the subject with a 3T scanner. The objectives of this study were two-fold: (1) show that,
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with a structural MRI, it is possible to locate the exact fine-wire recording site based on

the presence of a micro-hematoma formed during needle insertion and (2) characterize

transfer function characteristics from fine-wire to surface electrodes using spike-triggered

averaging (STA) of individual motor unit action potentials (MUAPs). Our findings in-

dicate hematoma formations showing the path of the needle as it moved deeper and

proximally into the muscle of interest. Secondly, we developed input-to-output charac-

teristics and extracted hints of MUAPs buried in the noise floor which would otherwise

be overlooked. These results pave the way for the optimization of system identification

models, validation of volume conduction models and may lead to methods of solving the

inverse problem of source localization.

3.1 Introduction

Intramuscular recordings have long served as the gold standard for obtaining muscular

activity from individual motor units (MUs). Fine-wire and needle electrodes have been

used in numerous human and animals studies for use in understanding biokinesiology

during movement and force production (Cianchetti & Valero-Cuevas 2010, Burgar, Valero-

Cuevas & Hentz 1997), assisting in the clinical diagnosis of neuromuscular diseases (Oaube

1991), and the assessment of motor unit conduction velocities (Farina, Arendt-Nielsen,

Merletti & Graven-Nielsen 2002) to name a few.

Despite the numerous advantages of intramuscular recordings, many pitfalls exist.

Fine-wire recordings are obtained using a hypodermic needle that pierces the skin to insert

either one or two thin-gauged stripped wires in the muscle of interest. Once placement
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has been carefully validated through either stimulation or visual inspection of the EMG

signal, the hypodermic needle is removed leaving the wires embedded within the muscle.

Placement of needle electrodes is a similar procedure, however the needle remains within

the muscle throughout the duration of the study. Certification is required for insertion

of intramuscular electrodes in human subjects. Potential complications associated with

intramuscular EMG recordings include muscle spasms, numbness, soreness and may cause

the subject to feel faint (Jonsson, Omfeldt & Rundgren 1967).

Surface EMG (sEMG) offers a non-invasive alternative to intramuscular recordings

at the cost of limited bandwidth. Bandwidth for sEMG ranges up to approximately 600

Hz whereas invasive techniques range up to 1.0 kHz (Rash & Quesada 2003). Studies

have investigated the relationship between sEMG to those of fine wire (Rajaratnam 2014,

Semciw, Neate & Pizzari 2014), however the experimentalist is never precisely sure of the

exact location of the intramuscular electrode recording site nor the spatial relationship

between the target muscle and the surface electrode(s).

An action potential in a motor neuron depolarizes the sarcolemma in all the muscle

fibers that it innervates. The action potential enters the innervation zone and travels along

the muscle in both direction. The interference pattern of the depolarized muscle cells make

up the electromyogram. Many factors influence the quality of the surface EMG, includ-

ing electrode design, contact impedance and electrode placement (Fuglevand, Winter,

Patla & Stashuk 1992). However, even under ideal conditions, one is still faced with the

problem of degraded signal-to-noise ratio caused by the spatial low-pass filtering effects

of tissues and signal attenuation from muscle to electrode. Understanding the spatio-

temporal spectral relationship that exists between intramuscular and surface electrode
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recordings would serve as an invaluable tool for describing muscle activation within a vol-

ume conductor. To date, signal propagation has often been described with computational

models using symmetrical configurations and estimating electromagnetic propagation pa-

rameters (Plonsey 1974, Farina, Mesin, Martina & Merletti 2004, Farina 2001, Lowery,

Stoykov, Taflove & Kuiken 2002, Gootzen, Stegeman & Van Oosterom 1991, Roeleveld,

Blok, Stegeman & Van Oosterom 1997). By knowing the exact location of an intramus-

cular fine-wire recording site within the muscles of the forearm, we can maximize the

information obtained from spatially known surface EMG recordings (Farina 2001).

To our knowledge, there have been no reports which accurately localize an intramus-

cular recording site within a muscle belly in relation to sEMG sites. We present here, for

the first time, the detection of a fine-wire recording site from a structural MRI from the

formation of a hematoma created during needle insertion. Secondly, we relate both spatial

distances and signal propagation characteristics from the intramuscular recording site to

generate accurate transfer functions. These results will be used to fully characterize the

electrical parameters of biological tissues to experimentally validate volume conduction

models.

3.2 Methods

3.2.1 Ethics

We collected data from a right-handed consenting volunteer (male, 28 years old). The

participant had no known history of neurological conditions and had no history of hand
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surgery. All aspects of this study were approved by the Institutional Review Board (IRB)

at the University of Southern California.

3.2.2 Recordings

A pair of fine-wire electrodes and seven bipolar surface electrodes were used to record

EMG from the right forearm of a single consenting volunteer (male, 28 years old) who

performed isometric and dynamic force generation manipulation tasks with the hand,

wrist and fingers. The seven bipolar surface EMG electrodes (Delsys, Boston, MA) were

placed circumferentially around the proximal third at the widest part of the right forearm.

The electrodes were arranged equidistantly with no particular objective muscle in mind.

Each electrode was labelled with a number from one to seven for reference. A large ground

electrode was placed on the right olecranon. The fine-wire electrode was inserted using a

26-gauge needle into the belly of the extensor carpi radialis brevis (ECRB) muscle between

surface electrodes 3 and 4 at an angle of approximately 25◦ relative to the surface of the

arm. The target muscle was confirmed using structural landmarks, muscle palpation

and visual inspection of EMG response. Figure 3.1 shows the placement of the surface

electrodes and Fig. 3.1a shows the insertion point for the hypodermic needle used to

place the fine-wire electrodes. All EMG recordings were captured at a sample rate of 4

kHz.
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(a) (b) (c)

Figure 3.1: Placement of EMG electrodes around forearm. (a) Point of insertion for

fine-wire electrode. Surface electrodes 2 - 4 can be seen on the posterior-lateral forearm.

(b) Surface electrodes 4 - 6 on the anterior-lateral forearm. (c) Surface electrodes 6 and

7 on the anterior forearm.

3.2.3 Spike-Triggered Averaging

Motor unit action potentials represent the basic driving force for producing full scale mus-

cular contractions. Fine-wire recordings often record from either one or a few individual

units. Here, we investigated synchronous time-locked surface EMG activity centered

on the peak of each fine-wire MUAP using spike-triggered averaging (STA) (Murthy &

Fetz 1996b). In general, the STA can be written as

STA (τ) =
1

N

N∑
i=1

x (ti − τ) (3.1)
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where N is the total number of spikes to average, ti is the temporal location of event

i for signal x (t) and τ is the window size for the average. STA was calculated using the

peak height of a detected MUAP over a 30 ms window (5 ms before and 25 ms after

peak). EMG data were notch filtered at 60 Hz and high pass filtered from from 2 Hz to

remove any slow trends in the data.

To describe the characteristic of signal propagation in biological tissue, a transfer

function model was estimated using a 50th order fast transversal least means square

(LMS) adaptive filter (Slock & Kailath 1991). For a sample frequency of 4 kHz, a fifty-

tap FIR filter will include latencies up to 12.5 ms, allowing deep MUAPs to propagate to

surface electrodes.

3.2.4 Imaging of a Hematoma

To determine if it would be possible to image the exact location of the fine-wire recording

site, we had made preparations to capture structural MR images immediately following

the manipulation portion of the study. Within 30 minutes, the fine-wire electrodes were

removed and each surface electrode was replaced by an MR compatible fiducial marker

(i.e. vitamin E tablet). We obtained structural MR images of the subject’s forearm in

a clinical 3T scanner (GE Healthcare, Waukesha, WI) with the arm fully pronated to

maintain the same posture and muscle-electrode relationship as during the experiment.

The scanner was configured to acquire fast HD 3D spoiled gradient recalled (SPGR) with

1.5 mm slices.
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3.3 Results

3.3.1 MR Images

Figure 3.2 shows the progression of the hematoma formation through the muscular tissue

as shown by the blue arrows. As the hypodermic needle pierced the skin during fine-wire

electrode insertion, small hematoma formations appear along the path. In the scanner,

these small blood formations are revealed as dark spots in the MR scan. The left panel

shows the hematoma view from the coronal plane moving in the dorsal to volar direction.

The right panel shows the progression of the hematoma as viewed in the transverse plane

moving deeper into the forearm. Bright dots around the forearm correspond to the fiducial

markers representing the locations of the surface electrodes.
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Figure 3.2: Path of hypodermic ned used to insert fine-wire electrodes. The left panel

shows the path from the perspective of the sagittal plane. The right panel tracks the

path from the transverse plane.
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Figure 3.3 shows the sagittal, coronal, and transverse planes that best represent the

final detectable location of the micro-hematoma. From the series of images, it was de-

termined that the needle reached a depth of approximately 8 mm into the tissue. These

measurements were consistent with measured depth of the needle and video taken during

the electrode placement. Cross-validation with anatomical landmarks and similar scans

containing clearly labeled muscle groups further confirmed that the micro-hematoma was

in the ECRB muscle.
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Figure 3.3: Insertion point for fine-wire electrode. Structural MR images of forearm indi-

cating a hematoma representing the location of a fine-wire electrode within the extensor

carpi radialis brevis muscle.

3.3.2 STA

Following strong muscular contractions during the dexterous tasks, a motor unit action

potential (MUAP) train appeared in the intramuscular recording, however there was no

visible movement in the hand or wrist. Figure 3.4 shows the spike-triggered average of

840 MUAP events triggered on the peak of the waveform from the fine-wire recording.
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Nine separate MUAP bursts appeared throughout the data and consisted of a smaller

MUAP with a peak of 0.12 V and a larger MUAP with a peak voltage of 0.4V. The

peak detection algorithm to capture the spike times was adjusted to capture both sets of

MUAPs.
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Figure 3.4: Spike-triggered average of 840 individual motor unit action potentials in a

fine-wire recording.

Figure 3.5 shows an example transfer function calculated using the LMS method from

the fine-wire recording to surface electrode 3 and is represented as the blue discretized

trace. Here, the coefficients were normalized to have a maximum value of 1 and the entire

trace was inverted from its true transfer function. Inversion of the trace does not affect the

cutoff frequency, it merely changes the sign of the resulting waveform. The orange trace

in Fig. 3.5 is a 50th-order sinc function centered at 25. Convolving a sinc function with

a time domain signal, x (t), effectively low-pass (LP) filters the signal. For an infinitely

long sinc function, the frequency domain transform yields a rectangular waveform (i.e.

an ideal low-pass filter) as shown in the following Fourier transform pair
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rect

(
t

τ

)
←→ τsinc

(ωτ
2π

)
(3.2)

where τ is the width of the rectangle function, and 2π/τ is the cutoff frequency.

The similarity in shape of these signals demonstrates that the transfer function for this

input-to-output relationship assumes the general form of a LP filter.
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wire to electrode 3 (blue trace) and an ideal low-pass filter (orange trace).
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Table 3.1 describes the relative locations of the surface and fine-wire electrodes accord-

ing to the scanner coordinate system. The last column of Table 3.1 indicates the muscle(s)

directly under the surface electrodes as determined using anatomical landmarks. Elec-

trodes 1 through 7 are the surface electrodes labelled in 3.1 and electrode 8 is the fine-wire

recording. The proximity of the fine-wire recording sight to surface electrode 3 and the

fact that the surface electrode was at least in part recording from the ECRB helps to

explain the relative cleanliness of the transfer function estimation.

Electrode
Coordinates (mm)

Muscle
x y z

1 -87.36 -41.92 43.21 flexor digitorum profundus (FDP)

2 -78.58 -7.76 25.14
extensor digiti minimi (EDM)

and extensor carpi ulnaris (ECU)

extensor carpi radialis brevis (ECRB)
3 -54.25 -0.30 6.91

and extensor digitorum (ED)

4 -24.57 -10.03 -2.74 brachioradialis (BR)

5 -17.48 -38.62 -14.09 brachioradialis (BR)

6 -37.59 -67.35 -4.74
palmaris longus (PL)

and flexor carpi radialis (FCR)

7 -66.75 -68.45 28.29 flexor carpi radialis (FCR)

8 -44.33 -8.95 1.04 extensor carpi radialis brevis (ECRB)

Table 3.1: Coordinates of each recording electrode with respect to MRI coordinate system.

Electrode
Distance from

fine-wire electrode (mm)

1 68.68

2 41.91

3 14.41

4 20.15

5 42.78

6 59.04

7 69.18

Table 3.2: Distance from fine-wire electrode to each surface electrode in millimeters.
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Figure 3.6 shows the computed STAs shown as white traces for each surface (Elec-

trodes 1 - 7) and the fine-wire (Electrode 8) channels overlaid on the transverse view of

the right forearm.

The yellow traces in each surface electrode subfigure are the result of convolving the

fine-wire STA of the 50 LMS adaptive filter coefficients calculated from each input-to-

output relationship. Each subplot is arranged to appear next to its respective electrode

around the arm, indicated by the numbered red dots. The red ‘x’ labeled as number 8

indicates the location of the fine-wire recording and its trace is shown at the bottom of

the figure.
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Figure 3.6: Spike-triggered average of fine wire and surface electrodes with approximate

location. Peak of fine wire MUAP used as trigger. White traces indicate STA. Yellow

traces are estimates of STA. Electrode 8 is the STA of the fine-wire channel.

3.4 Discussion

In this, the first study of its kind, we combined magnetic resonance imaging with precision

electrophysiological recordings to detect the precise location of an invasive EMG electrode

and map its spatial relationship within the muscle. We then continued to investigate

signal transformations that occur when MUAPs propagate through biological tissue to

surface electrodes. While invasive electromyography will likely remain the sole method
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of recording high quality MUAPs, these results make it possible to begin to tease apart

electrical parameters of skin, fat, muscle and bone.

The location of the recording electrode relative to the source of the fine-wire recording

site is separated by a so-called volume conductor made up of biological tissues. It is well

known that these tissues act as a spatial low-pass filter to both attenuate and spread

the frequency of the signal (Day 1997). The extent of the filtering effects are dependent

on the electrical properties of the medium (i.e conductivity and prematurity), distance

from source to recording site, muscle fiber size, etc. (Roth, Gielen & Wikswo 1988, Blok,

Stegeman & van Oosterom 2002, Farina et al. 2004).

In an anisotropic and inhomogeneous medium, such as skeletal muscle, factors such

as fiber direction, appellation angle and frequency dispersion play an important role in

how signals are conducted (Lowery, Stoykov, Dewald & Kuiken 2004, Roth et al. 1988,

Roeleveld et al. 1997). In our analysis, system identification was best estimated for

Electrodes 2-5 in Fig. 3.6. The waveforms for these electrodes were preserved in these

channels due to their relative proximity to the fine-wire recording site. Peak latencies

in these channels were consistent with values obtained from conduction velocity studies

(Farina et al. 2002).

Low-pass filtering effects of the tissues becomes evident as the width of the action

potential gradually widens at surface electrodes farther away, with the most prominent

effect seen at electrode 5. The magnitude of the STAs for electrodes 2 - 5 are buried deep

within the noise floor and are not detectable in the raw traces. In Electrodes 1, 6 and

7, the surface electrodes appear to be too far from the fine-wire site, resulting in poor

estimates of the STAs for those channels. However, by the number of events used in the
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STA will improve both the SNR and temporal resolution (Farina et al. 2002). In this

study, we averaged 840 action potentials to generate the averages, but with thousands of

events, it could be possible to expose faint underlying signals in distant electrodes.

With the addition of high-resolution MR images, piecewise linear models incorporating

boundary conditions between two media can be developed to increase the accuracy of the

invasive recording site as well as the spatial distribution of tissues and surface recording

sites. Higher density surface EMG arrays would only further enhance the ability to

quantify electrical parameters such as conductivity and permittivity for each tissue (i.e

muscle, bone, skin, and fat). Signal processing techniques such as system identification,

independent components analysis and equalization techniques can be used to recover

an accurate representation of a single MUAP from a weighted combination of surface

electrode recordings as depicted in Fig. 3.7. Invasive recordings, X (s), pass through

system identified FIR filters, H (s), to an array of surface recordings, represented as Y (s).

From the forward transfer models, an inverse model, H (s), is attainable. Statistical

processing techniques such as independent components analysis, blind deconvolution and

Bayesian inference can be integrated to undo the filtering effects and triangulate a muscles

and obtain its activation level.

H(s)
Y(s)

X(s) H-1(s) X(s)

Figure 3.7: System identification and equalization for use in source localization.

The ability to locate the source of ground-truth MUAPs within a muscle along with

transfer function fitting enables the optimization of system identification, validation of
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volume conduction models and provides information regarding electrical properties of

biological tissue. Analysis of this data may lead to methods of source localization and the

decomposition of individual muscle activation levels during low isometric force production,

slow finger movements, and motion-to-force transitions leading to improvements in the

dexterous capabilities of robotic and prosthetic hands.

Acknowledgments

Co-authors Dr. Francisco J. Valero-Cuevas. Krisha Nayak for setting aside time for the

use of the MRI machine, Jason J. Kutch for the use of his equipment and lab during

data collection, and Dr. Gerald E. Loeb for the insertions and guidance during fine-wire

electrode placement.

This material is in part based upon the work supported by NSF Grant EFRI-COPN

0836042, NIH Grant R01-052345, NIH Grant R01-050520 to FVC, and NIH Supplement

R01-050520-W1 to AR.

51



Chapter 4

Power Spectral Density Analysis in Phase II Epilepsy

Patients with Implanted Subdural Electrodes

Abstract

The ability of the human hand to precisely control the direction and magnitude of fingertip

endpoint force during a dynamic manipulation task serves as indication of dexterous

ability. However, the classification of cortical rhythms into its constituent frequency bands

as they relate to dexterity demand has been relatively unexplored. In this study, cortical

activity was recorded from a grid of subdural electrocorticographic (ECoG) electrodes

implanted in two patients undergoing monitoring for intractable epileptic seizures prior

to epilepsy surgery. Subject 1 performed a series of three tasks with each successive task

increasing in dexterity demand. They first held a rigid object at three points of contact

using their thumb, index and middle fingers with just enough force to prevent the object

from slipping. Secondly, the object was rotated back and forth in a twisting motion as if

tightening and loosening a bottle cap at a frequency of approximately 1 Hz. Lastly, they

performed the Strength-Dexterity (SD) test, a measurement of dexterity involving the
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compression of an unstable spring between the index finger and thumb. Subject 2 also

performed the SD test, but not the other two tests. Power spectral density (PSD) was

calculated when the subjects were fully engaged in the task to eliminate any extraneous

effects. PSD was referenced to a quiescent period when the subjects were relaxed with

no movements or distractions. Preliminary results reveal task-dependent spectral shifts

in the motor and sensory cortices based on task difficulty. A firm understanding of the

changes that occur in these cortical rhythms may pave the way to understanding how the

brain controls for dynamic force production and instability.

4.1 Introduction

Surgical implantation of subdural electrodes is the primary method of successfully local-

izing and excising epileptogenic zones (Wyler, Ojemann, Lettich & Ward Jr 1984, Stefan,

Quesney, AbouKhalil & Olivier 1991, Weinand, Wyler, Richey, Phillips & Somes 1992).

In some cases, large subdural electrode arrays placed over the temporal lobe, a common

location of seizure foci, overlap with the hand areas of the primary motor cortex per-

mitting the analysis of cortical rhythms involved in manipulation. Functional MRI has

been used to investigate dexterous manipulation (Mosier et al. 2011), however due to its

poor temporal resolution, the characterization of frequency activity during these complex

sensorimotor tasks remains largely unexplored. It is known that cortical oscillations in

specific frequency bands are present in motor tasks (Murthy & Fetz 1992). The phys-

iological relevant cortical oscillations are often classified into distinct frequency bands,

these are delta (0 - 4 Hz), theta (4 - 8 Hz), mu (8 - 12 Hz), sigma (12 - 15 Hz), beta (15
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- 30 Hz), and gamma (> 30 Hz). Positive increases in power when in a frequency band

are a result of synchronous firing of underlying neurons and is referred to as event-related

synchronization (ERS). Conversely, a decrease in power is attributed to randomized fir-

ing of underlying neurons and is referred to as event-related desynchronization (ERD)

(MacKay 2005, Pfurtscheller & Lopes da Silva 1999). Many studies use these time-

locked measurements to associate motor function with cortical rhythms. For example,

ERS in the theta range is associated with preparation of movement (Popivanov, Mineva &

Krekule 1999) and rhythmic movement (Turak, Louvel, Buser & Lamarche 2001), ERD in

the alpha range is associated with hand and finger movements (Pfurtscheller & Lopes da

Silva 1999) and tactile stimulation (Chatrian, Petersen & Lazarte 1959), and ERS in

the beta frequency range during fast finger tapping and ERS during slow finger tapping

and weak muscle activity (Toma, Mima, Matsuoka, Gerloff, Ohnishi, Koshy, Andres &

Hallett 2002).

Currently, there have been no ECoG studies which investigate cortical power during

dynamic dexterous manipulation. Here, dexterity is defined as the ability to dynamically

control the direction of the applied force at the fingertip (Valero-Cuevas et al. 2003).

In this study, we challenged participants to perform a variety of manipulation tasks

varying in dexterity demand to investigate cortical oscillations associated with simple

versus difficult motor tasks. We found that cortical area and bandwidth increased with

more difficult tasks and that the beta frequency range provided the most information

regarding task difficulty. Work in this area may lead to advancement in understanding

the neural control strategies employed by the nervous system during object manipulation.
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4.2 Methods

4.2.1 Ethics

We obtained ECoG recordings in two male patients (34 and 43 years old) who were being

continuously monitored in the ICU for epileptic seizures. The participants gave written

consent prior to data collection and the protocol was approved by the Institutional Review

Board at the University of Southern California.

4.2.2 Experimental Paradigm

In this study, the first subject performed three tasks manipulation tasks. In the first,

they was instructed to small object weighting approximately 300 g with a three fingered

grasp (thumb, index, and middle fingers) statically as shown in Fig. 4.1a for 30 seconds

with just enough force to keep it from slipping. In the second task, they rotated the

same object for 30 seconds in a twisting motion back and forth twisting motion as if

tightening and loosening a bottle cap at a rate of approximately 1 Hz (Fig. 4.1b). In the

third task, both subjects compressed a small slender spring between the index finger and

thumb as much as possible while trying to prevent the spring from buckling to the points

of maximal compression (Fig. 4.1c), a paradigm known as the Strength-Dexterity test

(Valero-Cuevas et al. 2003). In all tasks, normal forces were recorded from a uni-axial

load cell (Measurement Specialties, Hampton, VA) at the points where the fingertips

came into contact with the objects. Due to the placement of the subdural electrodes, the

subject performed the motor tasks with their left (non-dominant) hand.
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Task 3: Unstable

Spring Compression

Task 1: Static 

Three-!ngered Grasp

Task 2: Three-!ngered

Rotation

Increasing Dexterity Demand

~1Hz

(a) (b) (c)

Figure 4.1: Manipulation tasks performed during electrocorticographic recordings. Nor-
mal forces at the point of contact were recorded using a uni-axial load cell. From left
the right the tasks increase in dexterity demand from static hold to slow movements and
finally to unstable object manipulation. (2) Three-fingered static grasp of a 300 g object
using the thumb, index and middle fingers. (b) Three-fingered rotation using the 300 g
object which was oscillated back and forth in a twisting motion at a rate of approximately
1 Hz. (c) Strength-Dexterity test in which the subject compressed a slender spring as
much as possible using a precision pinch.

4.2.3 Electrocorticography (ECoG)

Neurophysiological monitoring was achieved using a 128-channel head box (EMU 128FS,

XLTEC). Subject 1 had an 8 × 8 array of subdural electrodes implanted in the right

hemisphere overlaying the sensorimotor cortex and portions of the prefrontal, premotor

and posterior parietal cortices as shown in Fig. 4.2a. Subject 2 was implanted with a

6 × 8 grid covering the right sensorimotor cortex as shown in Fig. 4.2b. The platinum

subdural electrodes had a with 1 cm center-to-center spacing with a contact diameter of

2.5 mm. Data for Subject 1 were sampled at 500 Hz and at 1 kHz for Subject 2 with
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open filters. Prior to analysis data were filtered from 5 - 100 Hz and notch filtered at 60

Hz and harmonics up the Nyquist frequency.
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Figure 4.2: Approximate electrode grid layout for Subjects (a) 1 and (b) 2.

4.2.4 Spectral Analysis

The average power spectral density (PSD) was calculated during each task and further

separated into the delta, theta, mu, and beta frequency bands. All data were compared

to a quiescent time when the patient performed no movements. Three-second long epochs

of data were analyzed during which the subjects were well into the task.

4.3 Results

Figure 4.3 shows the changes in PSD in Subject 1 over the entire grid as compared to

a resting period. Cortical areas experiencing ERS are shown in dark red, indicating an

increase in power requirements for the specified task than during rest. ERD is shown in
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blue and indicates that there was more power in rest than in the task being performed.

For Task 1, the only increase in power during is confined to the beta frequency, which is

consistent with literature regarding static force production (Murthy & Fetz 1992, Fetz &

Cheney 1980, Baker et al. 1997, Kilner et al. 1999). For Task 2, there were large increases

in power in the delta, theta and mu frequency ranges over the primary motor area,

which is also consistent with findings in literature that have investigated slow rhythmic

movements (Turak et al. 2001, Pfurtscheller & Lopes da Silva 1999) and increases power

over the in the medial cortex in the mu and and beta frequency range. In the primary

motor area however, beta frequency range was abolished. During Task 3, there were

increases in power only in the medial cortex in the mu and beta range and increased

power in M1 in the beta frequency range. The spectral plots for Task 2 suggest that

both cortical area and bandwidth requirements increase with steady rotation movements.

Tasks 2 and 3 involve active moment which seems to be correlated with increases in power

in the medial cortex towards the supplementary motor area (SMA). For the tasks that

required a steady force production (i.e. Task 1 and 3), beta range power increased in the

motor cortex.
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Figure 4.3: ERS and ERD.

The changes in power as compared to rest in the beta frequency range for Subject 2

is shown in Fig. refECoGBetaPower.eps. This subject only performed the SD test (i.e.

Task 3 in Subject 1). During the SD test, beta power increased slightly in the most

posterior part of the sensorimotor area, however beta power decreased anterior to this

section while the other areas remained relatively unchanged from rest.
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Figure 4.4: Electrocorticographic power associated with dexterity.

4.4 Discussion

We were given a unique opportunity to collect cortical activity from arrays of subdural

ECoG electrodes implanted in two subjects who underwent monitoring for intractable

epilepsy prior to epilepsy surgery. Subject 1 performed tasks that varied in dexterity

requirement. Subject 2 only performed the most dexterous task. The aim of this study

was to determine whether spectral analysis of cortical activity in the motor and sensory

cortices could provide information about spatiotemporal relationships in the brain during

manipulation of unstable objects.

Subject 1 showed an increase in beta power over the sensorimotor cortex (Fig. 4.3)

which was in direct contrast to Subject 2, who showed that the hand area of the sensory

cortex exhibits a large decrease in power during spring compression (Fig. 4.4). This

difference in power changes is likely due to the fact that Subject 1 was squeezing the
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spring well within the stable domain. The compression force on the spring for which the

PSD was calculated was relatively low, suggesting that this subject was not incorporating

increased sensory feedback. Instead, they were squeezing the spring at low enough levels

that mimics stable force production. It has been shown that beta range oscillations in the

cortex are associated with the maintenance of stable forces (Murthy & Fetz 1992, Fetz

& Cheney 1980, Baker et al. 1997, Kilner et al. 1999). Subject 2, on the other hand,

was performing the SD test correctly and was squeezing the spring to nearly the point at

which the spring would fly out of the hand. Because this subject made dynamic updates

to the forces applied to the ends of the spring, beta rhythms in the sensorimotor cortex

attenuated. It has been shown in literature that dynamic movements cause beta rhythms

to disappear (Toma et al. 2002, Baker et al. 1997, Brown 2000, Feige et al. 2000).

These preliminary data suggest that differences in task complexity are detectable us-

ing ECoG electrodes and are reflected as changes in the power spectral density. Continued

data collected will assist in the development of cortical maps that relate cortical activity

during during the production of static and dynamic. We will also begin recording data

kinematic data to relate moment variability to changes in the PSD. Furthermore, elec-

tromyographic recordings will be added with the goal of detecting relationship between

cortical activity to muscle activity for simple and difficult tasks as well as measure con-

duction delays from cortex to endpoint movement and force. Future work in this area

may lead to advancement in brain-computer interfaces that allow for the control of higher

degrees of freedom and real-time classification of finger function.
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Chapter 5

Introduction to Coherence

Abstract

Understanding the cortical control of voluntary movements is an important topic in neu-

roscience. One method of assessing this control is through coherence analysis. In this

chapter, the development, calculation and implications of coherence are discussed. We

begin with a description of cortical oscillations, current ideas on their generating mech-

anisms and how they are measured. Next, the motor associations of specific frequency

bands are discussed followed by a brief description of the connectivity between cortex

and muscles. Lastly, coherence is introduced as a tool for measuring the functional con-

nectivity between the cortex and peripheral muscles.

5.1 Introduction

In healthy humans, electroencephalography (EEG) and magnetoencephalography (MEG)

serve as the predominant methodology for non-invasive measurements of the temporal

dynamics of the active cortex. The ability to record high temporal activity enables
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experimentalists and clinicians to subdivide the power spectra of cortical oscillations

into discrete frequency bands and begin to associate changes the in rhythms activity

with motor actions. Positive increases in the power spectra of underlying neurons in a

frequency range is referred to as event-related synchronization (ERS). Conversely, de-

creases in power at a frequency is referred to as event-related desynchonization (ERD)

(MacKay 2005, Pfurtscheller & Lopes da Silva 1999, Pfurtscheller & Neuper 1994, Leo-

cani, Toro, Manganotti, Zhuang & Hallett 1997). For example, ERS of sigma oscillations

of approximately 14 Hz are associated with concentration and suppression of a motor

response (Rougeul-Buser & Buser 1997, Nashmi, Mendona & MacKay 1994), whereas

ERD of beta rhythms coincide with slow finger tapping and weak muscular activity

(Toma et al. 2002).

Measuring the power in the brain gives a general idea of the role of oscillations in motor

control, however, in order to truly understand the cortical control of the hand, a relation-

ship between the rhythms of the cortex and of the musculature must be established. It has

long been known that the primary motor cortex (M1) projects directly onto the motor neu-

rons in the dorsal column of the spinal cord (Bernhard et al. 1953). As a result, descending

commands from M1 have been shown to exhibit synchronous oscillations with spinal motor

neurons which can be detected in the electromyogram (EMG) (Conway et al. 1995, Baker

et al. 1997, Brown 2000). Corticomuscular coherence (CMC) assess the strength of the

temporal correlation between EEG and EMG. CMC has been heavily investigated in the

beta frequency range (15 - 30 Hz) for static force production (Murthy & Fetz 1992, Baker

et al. 1997, Baker 2007, Conway et al. 1995, Kilner et al. 2000, Kilner et al. 2004, Kil-

ner et al. 1999, Kristeva et al. 2007, Chen et al. 2013), yet recent work has shown that
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gamma CMC is present during slow oscillatory force production (Omlor et al. 2007, Om-

lor, Patino, Mendez-Balbuena, Schulte-Mnting & Kristeva 2011, Patino et al. 2008),

strong muscular contractions (Mima et al. 1999, Brown 2000, Hari & Salenius 1999)

and movement (Brown 2000, Hari & Salenius 1999).

In several studies, precision pinch tasks have been used to detect corticospinal projec-

tions from the primary motor cortex to contralateral muscles(Baker, Pinches & Lemon

2003, Lemon et al. 1995, Lemon & Mantel 1989, Muir & Lemon 1983). However it is

known that, in addition to M1, the corticospinal tract (CST) is comprised of neuron

originating from the supplementary motor area (SMA), the dorsal and ventral premotor

cortices, and the cingulate cortex (Dum & Strick 1991, Dum & Strick 2005, He, Dum

& Strick 1995), yet the functional coupling in the prefrontal cortex has been relatively

unexplored. Only one study, to our knowledge, has demonstrated high beta-range CMC

in the SMA for a fine precision pinch task (Chen et al. 2013).

Excluding gross movements of the arms, CMC has been investigated during static

grasps, slow and fast finger movements, and slow oscillatory force production. Needless

to say, there is still much research to be done, specifically in the domain of dynamic

dexterous manipulation, such as when typing, writing, or playing an instrument. Further

coherence studies will undoubtedly serve as an invaluable tool for understanding the

neural control of the hand.
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5.2 Oscillations in the Cortex

The universe is filled with oscillatory systems: planetary orbits, electromagnetic radiation

such as light, the pendulum of a clock, and even sound is vibration of the air. Therefore,

it’s not surprising that the nervous system also possess oscillatory characteristics. The

first human electroencephalographic recordings of cortical oscillations in the 8 - 12 Hz

frequency range were recorded by Hans Berger in 1929 (Berger 1929). Since then, nu-

merous clinical and research studies have investigated the functional significance of these

oscillations.

Studies have shown that individual cortical neurons possess the inherent ability to

fire over wide frequency ranges (Llins 1988, Hutcheon & Yarom 2000), however, models

describing the generating mechanisms of these oscillations have yet to be developed. It

has been suggested that the rhythm of cortical oscillations is the result of pyramidal

neurons discharging during post-inhibitory rebound excitation following the discharge of

large populations of inhibitory neurons joined through gap junctions (Jasper & Stefanis

1965, Pauluis, Baker & Olivier 1999). Another theory hypothesizes that intrinsic cell

properties and cortico-thalomocortical networks serve as the main underlying generator

of cortical oscillations (Steriade 1997).

The parallel arrangement of long dendritic branches of pyramidal neurons act as neural

dipoles creating time-varying field potentials that can be recorded through the scalp us-

ing electroencephalography (EEG) and magnetoencephalography (MEG) (MacKay 2005).

This accumulation of electrical activity from large populations of neurons is comprised of

several frequencies summed together and is best viewed in the frequency domain. Changes
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in the power spectral density (PSD) of EEG and MEG recordings can be characterized

into two categories: event-related synchronization (ERS) and event-related desynchro-

nization (ERD). During ERS, the underlying neuron population fires synchronously which

is seen as an increase in the PSD at the firing frequency. Conversely, during ERD, the

neuron population are firing in a more randomized pattern causing the PSD to decrease

at that particular frequency (MacKay 2005). In both of cases, the change in the PSD

must be measured relative to a reference period, typically the time prior to a stimulus

event (Pfurtscheller & Lopes da Silva 1999, Da Silva & Pfurtscheller 1999).

Spectral analysis of EEG and MEG signals over the sensorimotor cortex have enabled

the association of specific frequency bands with motor tasks. Physiologically relevant

oscillations have been observed up to 80 Hz and have been classified into five distinct

bands: theta (4 - 8 Hz), alpha (8 - 12 Hz), sigma (12 - 15 Hz), beta (15 - 30 Hz), and

gamma (>30 Hz). Table 5.1 provides an overview of the motor associations for each

frequency band as it relates to changes in sensorimotor PSD.

Inspection of Table 5.1 clearly indicates that oscillations in the cortex are an important

factor in motor control. Yet the underpinnings surrounding the reasons why the brain

operates in a specific frequency band for a motor task and switching to another range for a

different task is currently unknown. Without a concrete explanation of how and why the

brain oscillates in the way that it does, research is limited to identifying consistencies in

PSD changes observed prior to and after a stimulus. Additional problems arise due to the

definition of what constitutes a certain frequencies band. For example the ‘beta’ frequency

range is 13 - 24 Hz according to Gross et al. (Gross, Pollok, Dirks, Timmermann, Butz

& Schnitzler 2005) whereas Conway et al. extends this range by another 11 Hz to include
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13-35 Hz (Conway et al. 1995). Those researchers working in the lower gamma frequency

range may feel that they are being infringed on. Overall, the investigation of power

spectral changes in EEG and MEG provides us with a view of one side of the coin.

The nervous system is a complex interaction between brain and body and as such, it is

necessary to investigate the transmission of cortical information to the periphery.

5.3 Correlation

To understand coherence and its derivation, we begin with the mathematical definition

of Pearson’s correlation coefficient between two variables x and y, which is given as:

ρxy =
cov (x, y)

σxσx
(5.1)

where cov is the covariance and σx and σy are the standard deviations of x and y,

respectively. The correlation coefficient is counted between -1 and +1. A correlation of

+1 indicates a perfect relationship (e.g. the signal area basically the same, but may have

different amplitudes), a -1 would indicate that the signals are anti-correlated (e.g. out of

phase by 180◦), and a 0 suggests that there is no relationship between the two (e.g. both

signals are white noise).

Correlation is a bivariate analysis, meaning that this can only be performed with two

signals, unlike Fourier transform or evaluating the mean, which can be performed on a

single signal. This raises problems which are demonstrated using the following examples.

Consider the signals x1 (t) = cos (2π15t) and x2 (t) = 0.5 · cos (2π15t) shown in Fig.

5.1a and their Fourier domain transformations shown in Fig. 5.1b. These signals are
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pure cosine waves with different amplitudes and no difference in phase. This results in a

perfect linear correlation of +1. Notice in this example that, regardless of the amplitudes

of the oscillations, the correlation coefficient is unaffected.
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Figure 5.1: Two cosine signals and frequency representation with a perfect linear cor-

relation. (a) The blue trace is a pure cosine wave with a frequency of 15 Hz and an

amplitude of 1. The red trace is a 15 Hz cosine wave with an amplitude of 0.5. The

correlation between the two signals is ρ = 1. (b) Frequency domain representation of the

cosine signals in (a). The peak frequency is at 15 Hz for both traces and their magnitude

directly relate to the amplitude of their respective cosine waves.

In the next example, signals x3 (t) = cos (2π15t− π/5), x4 (t) = 0.5·cos (2π15t− π/2)

and x5 (t) = 0.5 · cos (2π15t− π) have been added and are shown in Fig. 5.2a and their

frequency domain transformations are shown in Fig. 5.2b. Here, it can be seen that

although the frequency of oscillations remains the same for all signal, phase shifts of π/5,

π/2 and π result in correlation coefficients of ρx1x3 = 0.81, ρx1x4 = 0 and ρx1x5 = −1.
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The frequency spectra for the additional signals x3 (t), x4 (t) and x5 (t) are the same. The

critical problem with simple correlation begins to arise. The correlation between these

signals is now dependent of the phase shift. The magnitude of the correlation should

not depend on the phase shift as this can often happen in real data recordings due to

transmission delays.
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(a) (b)

Figure 5.2: The effects of phase shifting a signal on correlation. (a) The primary signal

(blue trace) is a cosine with an amplitude of 1 and frequency of 15 Hz. The next three

signals share the same frequency but are shifted by π/5 (red trace), π/2 (yellow trace)

and π (purple trace), resulting in correlation coefficients of ρ = 0.81, ρ = 0 and ρ = −1.

(b) Frequency domain representation of the cosine signals in (a). The main trace is

represented in blue with magnitude 1 and the three shifted waves overlap each other and

have magnitude 0.5 at 15 Hz.
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One final example demonstrates the problems with correlation coefficients. Consider

two signals, each with two distinct frequencies, x1 (t) = cos (2π15t) + 0.01 · cos (2π250t)

and y1 (t) = 0.5 · cos (2π15t− π/2) + 0.03 · cos (2π250t). These are shown in Fig. 5.3a.

Both signals contain the same two frequencies, however they differ in amplitude. The

frequency spectra in Fig. 5.3b shows large peaks for the signals at 15 Hz and almost

unseen peaks at 250 Hz. The correlation coefficient for this signal pair is ρx1y1 = 6 · 10−4

(i.e. nearly zero). Now, if we multiply the 250 Hz component in both signals by 100,

effectively replacing x1 with x2 (t) = 0.5·cos (2π15t− π/2)+·cos (2π250t) and replacing y1

with y2 (t) = 0.5 ·cos (2π15t− π/2)+3 ·cos (2π250t), we obtain the signals in Fig.5.3c and

frequency transform in Fig. 5.3d. The resulting correlation coefficient is now ρx2y2 = 0.7,

a much different value than before.
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Figure 5.3: Effect of frequency component magnitude on correlation. (a) The primary

wave (shown in blue) consists of two frequencies: a 15 Hz component with unit amplitude

and a 250 Hz component with amplitude 0.01. The second signal consists of the same

frequency components, however the 15 Hz component has an amplitude of 0.5 and a 250

Hz component of 0.03. The correlation between the signals is nearly 0 (b) Frequency

domain representation of signals in (a). The 15 Hz components for both signals are

much larger than the 250 Hz components. (c) The two signals have similar frequency

components as in (a) however, the 250 Hz components have been amplified by 100. The

correlation is now ρ = 0.7. (d) Frequency spectra of the signals in (c). The 250 Hz

components now dominate the 15 Hz components.
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These examples demonstrate that initially, when one frequency component was shared

between the two signals, the phase dominated the magnitude of the correlation coefficient

while amplitude had no effect. However, as the complexity of the signal increases by

adding more tones, both phase and amplitude of the signal components had drastic

effects on the correlation coefficient. In real world electrophysiological signals, we are

not afforded the luxuries of pure sine and cosine waves, therefore it seems a shame to

describe the relationship between two complex signals using a single coefficient, such as

correlation. Instead, it is necessary to describe the relationship between two signals on a

per frequency basis. This is the basis of coherence.

5.4 Calculation of Coherence

Briefly, coherence is a measure of the temporal correlation between two signals (Nunez,

Srinivasan, Westdorp, Wijesinghe, Tucker, Silberstein & Cadusch 1997). The concept of

coherence can be described with the following example. Imagine that we were observing

a wave traveling down the length of a rope as one end is moved up and down and arrives

at the other end some time later. We can clearly see that the two ends are physically

connected and the peak of the wave at one end always appears at a fixed time later at the

other end. However, imagine now that we were unable to see the length of the rope, but

we could oscillate one end at a desired frequency and amplitude and observe the response

at the other end. After a few trials, it could quickly be concluded that if an oscillation

at a particular frequency occurring at the end we control always occurs at a constant

time later at the other end, there likely exists a relationship between the two systems.
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Continued experimentation would only strengthen the argument that the systems are

functionally connected and by extending this relationship to include all frequencies, we

could develop a correlation spectrum. This is the basic underlying principle of coherence.

For the time-series variable x (t), let the auto spectral density be defined as

Pxx (f) =
1

L

L∑
i=1

Xi (f) ·X∗
i (f) (5.2)

where X (f) is the Fourier transform of x (t) of the current segment (i = 1 . . . L) and

∗ denotes the complex conjugate. Similarly, for y (t),

Pyy (f) =
1

L

L∑
i=1

Yi (f) · Y ∗
i (f) . (5.3)

The auto spectral density of a signal represents the power of the signal. The cross

spectrum of the signals x (t) and y (t) is represented as

Pxy (f) =
1

L

L∑
i=1

Xi (f) · Y ∗
i (f) (5.4)

Coherence is calculated by normalizing the square of the cross-spectral density be-

tween two signals by the product of their individual auto spectral densities (Rosenberg,

Amjad, Breeze, Brillinger & Halliday 1989, Farmer, Bremner, Halliday, Rosenberg &

Stephens 1993, Baker et al. 1997, Nunez et al. 1997) as indicated in Eq. 5.5. This gives

the equation for coherence as

Cxy (f) =
|Pxy (f)|2

Pxx(f) · Pyy (f)
(5.5)
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Notice the similarity in the equation of coherence with that of Eq. 5.1 for correlation.

The difference is that coherence is bounded between 0 and 1 (rather than -1 and +1) and

is a function of frequency. Hence for each frequency of interest, a correlation coefficient

is assigned. For a coefficient of 1 at a particular frequency, there exists a perfect linear

relationship between the two signals, while a 0 indicates linear independence (Farmer

et al. 1993).

As with any study, it is necessary to compare across conditions and subjects. There-

fore an appropriate transform which accounts for differences in trial length and number

of samples. A Z-transformation provides an adequate technique for handling these un-

avoidable differences. The Z-transformation for coherence is given as

Z (f) =
tanh−1 (Cxy (f))− 1

2T−2√
1

2T−2

(5.6)

where Cxy is the coherence between two signals, T is the number of sections used in

the spectral estimation, and tanh−1 is the hyperbolic arctangent.

In physiological measurements, coherence between cortical activity and muscular ac-

tivity is given the name corticomuscular coherence (CMC). Before getting into the inter-

pretation of CMC in literature, it is important to know that coherence is a measurement

that relies on spectral power estimation (i.e. Pxx, Pxy and Pxy). The topic of power

spectral estimation is discussed next.
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5.5 Multitaper Power Spectral Density Estimation

Thousands of books and articles have been written on the subject of estimating the power

content in a time series signal, and justifiably so, as this is a topic of immense importance.

While numerous methods exist for calculating PSD of a signal, this section focuses on

the multitaper method (Thomson 1982, Percival & Walden 1993).

Perhaps the most widely known (and used) spectral estimation technique is the pe-

riodogram. In this method, the power spectral density of a time-series signal, x (t), is

measured within a within a fixed time window of length ∆t. This is often referred to as a

rectangular window or, due to its resemblance to that of a railroad car on a train, a box-

car. The boxcar window is shifted (with or without overlap) N times over the length of

the signal x (t). The estimate of the PSD is found by averaging the N power calculation.

Overlapping the windowed section of data window helps to reduce variance in the PSD

estimation. The periodogram is biased and does not provide a an accurate estimation

of the PSD. Furthermore, the sharp edges of the boxcar window causes spectral leakage.

Spectral leakage occurs when the true power of a frequency leaks into nearby frequencies.

The frequency representation of the boxcar shows shows side lobes that allow power from

nearby frequencies to leak into the power estimation. To overcome this problem, windows

that taper off at the ends have been developed, these include the Hann, Hamming, and

Gaussian windowing functions to name only a few. The frequency domain representations

of these window functions are designed to have smaller side lobes to reduce the influence

of nearby frequencies in the spectral estimation.
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In each of these functions, a single estimate of the power spectral density in a calcu-

lated by multiplying the time-series data by the tapers. However, multiple measurements

of the spectral content within a time window will help produce an unbiased estimate of

the PSD. This method is represented mathematically in Eqs. 5.7 and 5.8 (Pesaran 2008).

In these equations, SMT is the multitaper spectral estimate of the individual segment

estimation x̃k (f) with K tapers of length N and wt (k) is the window function operated

on time segment xt.

SMT (f) =
1

K

K∑
k=1

|x̃k (f)|2 (5.7)

x̃k (f) =
N∑
t=1

wt (k)xte
−2πift (5.8)

A special class of orthogonal window functions, known as the discrete prolate spheroidal

sequences (DPSS) or Slepian tapers (Slepian & Pollack 1961, Thomson 1982), provides

an optimal method of maximizing the spectral concentration properties within a spec-

ified bandwidth (Pesaran 2008). The first three Slepian tapers are shown in Fig. 5.4.

With each successive taper sequence, the function has one more zero crossing and works

to accurately estimate higher frequencies within the time segment. The goal of these

sequences is to maximize the frequency estimation in the bandwidth [−W,W ], where W

is the half-bandwidth parameter. For a taper length of N , K = 2NW − 1 sequences are

created.
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Figure 5.4: First three Slepian multitapers.

The selection of the half-bandwidth parameter and length is dependent on the re-

quirement of the experimenter and determines how smooth the spectral estimate will be.

Narrow bandwidths will produce noisy spectral estimations, while a large half-bandwidth

parameter will prohibit the detection of specific frequencies in the signal of interest. In

physiological signals, it can be assumed that oscillations specific frequency are shared

with nearby frequencies. Increasing the number of beyond K will only provide worse

spectral estimation (Pesaran 2008).
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5.6 Data Preprocessing

Numerous factors impact the calculation of coherence which can lead to erroneous co-

herence spectra. Therefore, it is important to take the necessary care in the prepro-

cessing of electrophysiological data and consider methodological influences such as EEG

reference, EMG rectification, epoch normalization, and frequency spectra estimation to

name a few. The choice of reference for electroencephalographic data is a topic of much

debate. Re-referencing schemes commonly used are Laplacian (Zhou 2012, Nunez, Silber-

stein, Cadusch, Wijesinghe, Westdorp & Srinivasan 1994, McFarland, McCane, David &

Wolpaw 1997, Peters, Pfurtscheller & Flyvbjerg 2001), common average reference (CAR)

(Bertrand, Perrin & Pernier 1985), linked earlobe reference, and Hjorth transformation

(Hjorth 1975, Hjorth 1980). The choice of reference can be used to detect the effects of the

underlying electrodes while removing the influence of distance sources. Normalization of

data epochs in EEG is recommended for coherence analysis in order to remove sections of

data that favor larger amplitudes (Halliday & Rosenberg 2000). Electrophygiolocal data

is typically non-stationary, therefore smaller sections are also preferred so as to assume

quasi-stationarity in shorter time windows. Relevant EEG has been reported up to 100 Hz

(Ohara et al. 2001, Marsden, Werhahn, Ashby, Rothwell, Noachtar & Brown 2000, Crone,

Miglioretti, Gordon, Sieracki, Wilson, Uematsu & Lesser 1998), and thus EEG data are

typically low-pass filtered below 200 Hz.

Rectification is a standard procedure for EMG data prior to coherence analysis. This

enables the detection of grouped firing rates of rates (Mima & Hallett 1999, Myers,

Lowery, O’malley, Vaughan, Heneghan, Gibson, Harley & Sreenivasan 2003). The literate
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debates on the necessity of rectifying EMG and some argue for (Yao, Salenius, Yue, Brown

& Liu 2007, Myers et al. 2003) and against it (McClelland, Cvetkovic & Mills 2012). As

with EEG, normalization of EMG is recommended for the same purposes mentioned

earlier.

5.7 Corticomuscular Coherence Review

Specifically, the analysis of coherence between cortical activity (e.g. EEG, MEG, ECoG,

and LFP) and muscular activity (e.g. sEMG and fine-wire) is termed corticomuscular

coherence (CMC). Unlike, fMRI, coherence cannot be calculated during a resting pe-

riod since at least some amount of muscular activity is required. Table 5.2 lists several

examples of CMC findings across several cortical frequency bands.

As is evident in Table 5.2, the beta frequency range is heavily studied. The main

finding in these studies is that beta CMC is found mostly during isometric force contrac-

tions (Murthy & Fetz 1992, Baker et al. 1997, Baker 2007, Conway et al. 1995, Kilner

et al. 2000, Kilner et al. 2004, Kilner et al. 1999, Kristeva et al. 2007) and gamma CMC

engages cortico-spinal coupling during dynamic force production (Omlor et al. 2007, Om-

lor et al. 2011, Patino et al. 2008, Chakarov et al. 2009). It can be concluded that beta

and gamma CMC are an essential part of object manipulation, however further stud-

ies are required to truly understand how the cortex and periphery utilize synchronous

frequencies in the control of movement.
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5.8 Separation of Power and Coherence

Lastly, an important distinction must be between power measured in the cortex and

coherence between these oscillations and muscular activity. Measures of cortical power

provide experimentalists with a view of one side of a multi-dimensional coin. In order to

understand how the brain controls the body, it is necessary to observe the transmission of

oscillations throughout the nervous system. To state it boldly and succinctly: power does

not equal coherence. Despite the fact that coherence relies on spectral power estimation

its calculation, it has been shown in numerous studies that reductions and/or increases

in cortical power in a specific frequency range, do not necessarily affect coherence magni-

tude. For example, intravenous injections of diazepam, a known enhancer of beta cortical

activity, were given to healthy subjects. Cortical activity in the beta frequency range in-

creased significantly, however, corticomuscular coherence remained relatively unaffected

(Riddle, Baker & Baker 2004, Baker & Baker 2003).

As an important reminder, coherence is a measure of the temporal correlation be-

tween two signals. The strength of coherence depends on the synchronous activity of

two measurement, as determined by the phase relationship of the two signals. A prime

example of this was demonstrated by Nunez et al. (Nunez et al. 1997). In this example,

two signals comprised of the same three frequency components (5, 12 and 20 Hz) with

unequal amplitudes (5, 12 and 1), as shown in Fig. 5.5a, were generated with each hav-

ing different consistencies in their phase relationships. In each signal the phase would

randomly change every second. In the 5 Hz component, the phase would vary between
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±18◦, the 12 Hz signal would change vary by ±180◦ and the 20 Hz signal had a consistent

phase throughout the entire duration.

The power in each of the frequency components was directly related to the amplitude,

hence the power in 5 Hz component was the lowest of the three components, the 20 Hz

component had the greatest power, and the 20 Hz component had the least power. The

signal with the most chaotic change in phase shift from one second to the next was the

12 Hz component. As a result, even though it had the highest power, the coherence,

as shown in 5.5b is non-existent. The signal with relatively small changes in the phase

consistency, (i.e. the 5 Hz component), retained a strong measure of coherence between

the two signals. For the 20 Hz signal which had the lowest power (Fig. 5.5a), exhibited

the highest coherence (Fig. 5.5b) due to the unchanging phase relationship with each

passing second.

84



(a)

(b)

A
m
p
li
tu
d
e

C
o
h
er
en
ce

Figure 5.5: Effect on the randomization of signal phase on coherence. (a) Two signals

which share frequency components at 5, 12 and 20 Hz are created, each with phase

relationships that vary after each second. (a) The amplitude of the 5, 12 and 20 Hz

components are 5, 12 and 1, respectively. The phase of the 5 Hz component is randomly

varied between ±18◦, the 12 Hz component varies by ±180◦ and the 20 Hz component

contains an unchanging phase with each passing second. (b) Since the phase of the 5 Hz

components was bounded within a small range, the coherence at this frequency remains

relatively strong. Because the phase of the 20 Hz component varies drastically from

second to second, the coherence is extremely low. Lastly, the 20 Hz signal, although it

had the smallest amplitude, had the strongest coherence due to the consistency in the

phase throughout the duration of the signals. Taken from Nunez et al. (1997).
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In summary, this chapter provided an overview of the range of physiologically relevant

cortical oscillations and discussed their possible generating mechanisms. The problems

with correlation as a measure of the relationship between two complex physiological sys-

tems was discussed. Coherence was introduce was a measure that provides a quantitative

analysis of the likelihood that two signals are either physically or functionally related.

Over repeated measures of the consistency of the phase relationship, the conclusion that

there is indeed a relationship is only strengthened. A review of the studies which have

used coherence were presented. It was shown that the beta and gamma frequency ranges

are of the greatest interest and high beta corticomuscular coherence is present during

sustained muscular contractions while gamma CMC is present during more dynamic mo-

tor tasks. Lastly, it was shown that changes in the power of a signal do not provide an

indication of how the coherence will be affected, but instead is dependent on the temporal

correlation between the two signals.
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Chapter 6

Synchronous Corticomuscular Oscillations During Dynamic

Unstable Manipulation

Abstract

The control of fingertip forces is essential for dexterous manipulation. However, the

functional role of the primary motor cortex and other cortical areas remains relatively

unexplored for dynamic manipulation. In this study, we investigated corticomuscular

coherence in the beta (15 - 30 Hz) and low gamma (30 - 45 Hz) frequency ranges to

quantify the functional connectivity of the cortex to hand musculature during the pro-

duction of precision pinch forces on a rigid object (a wooden dowel) and a compliant and

unstable object (a slender spring prone to buckling). For both objects, 15 right-handed

participants produced and held force levels set to 40% and 80% of the greatest com-

pression force they could sustain with the spring. This produced four unique conditions:

spring-low (SL), dowel-low (DL), spring-high (SH), and dowel-high (DH). We used EEG

to calculate corticomuscular coherence (CMC) with the first dorsal interosseous (FDI)

and abductor policies brevis (APB) muscles during steady hold periods. In the DL and
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DH conditions, significant CMC appeared over the sensorimotor cortex, however, their

magnitudes were not significantly different. The highest beta CMC was found in the

sensorimotor cortex during the SL task, however, in the SH condition, beta range co-

herence in M1 was abolished. A linear mixed-effects model was used to investigate the

effect of task condition on beta range coherence in M1. The results showed that there

were no significant differences in effect for low force compressions for either object on

beta coherence. However, there was a clear difference in effect for the DH and SH condi-

tions (p < 0.001). Our investigations of gamma range CMC showed significant increases

over the supplementary motor area (SMA) during the SH task. We speculate that the

presence of gamma coherence in the SMA during the most dexterously demanding task

supports the notion that higher frequencies may be an indication of rapid sensorimotor

integration and strategic motor planning. Overall, these findings suggest that for preci-

sion force control, cortical drive to contralateral hand muscles is modulated by dexterity

demand and there exist context-sensitive cortical circuits involved in the control of stable

and unstable manipulation.

6.1 Introduction

Beta range (15 - 30 Hz) oscillations in the sensorimotor cortex of humans and non-human

primates have been frequently observed (Sanes & Donoghue 1993, Donoghue, Sanes, Hat-

sopoulos & Gal 1998, Witham, Wang & Baker 2010, Murthy & Fetz 1992, Murthy &

Fetz 1996a, Murthy & Fetz 1996b, Conway et al. 1995, Lebedev & Wise 2000, Mima
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et al. 1999, Stanck Jr & Pfurtscheller 1996). Similar oscillations recorded in the elec-

tromyogram (EMG) have been shown to be phase-locked to these cortical rhythms,

specifically around 20 Hz, during the maintenance of static forces (Baker et al. 1997, Con-

way et al. 1995, Murthy & Fetz 1992, Salenius, Portin, Kajola, Salmelin & Hari 1997).

The functional connectivity between cortical and muscular activities can be quanti-

fied using corticomuscular coherence (CMC), which measures the strength of the phase

relationship between two spatially separated systems (Conway et al. 1995, Rosenberg

et al. 1989, Farmer et al. 1993). While the neural mechanisms generating these syn-

chronous oscillations are poorly understood, research suggests that CMC magnitude re-

flects both efferent commands and afferent sensory feedback (Fisher et al. 2002, Riddle

& Baker 2005, Baker, Chiu & Fetz 2006).

It has been shown that factors such as applied force level, fatigue, muscle cooling,

movement preparation, and learning largely influence beta CMC magnitude (Witte et al.

2007, Mendez-Balbuena, Huethe, Schulte-Mnting, Leonhart, Manjarrez & Kristeva 2011,

Tecchio, Porcaro, Zappasodi, Pesenti, Ercolani & Rossini 2006, Riddle & Baker 2005).

Other studies which show the disappearance of beta CMC during movement provide

further evidence for the association of static force production with beta rhythms (Baker

et al. 1997, Brown 2000, Feige et al. 2000, Kilner et al. 2000, Kilner et al. 2004, Kilner

et al. 1999). Low force (< 5.0 N) precision pinch paradigms have been used to study

cortico-spinal interactions (Baker et al. 2003, Lemon et al. 1995, Lemon & Mantel 1989,

Muir & Lemon 1983, Lemon, Baker, Davis, Kirkwood, Maier & Yang 1998). Other studies

have found that CMC is modulated by digit displacement (Riddle & Baker 2006) and

object compliance (Kilner et al. 2000).
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The beta range CMC literature tends to focus heavily on static force production,

however the manipulation of objects involves far more dynamical interactions, thereby

mandating the exploration of CMC in other frequency ranges. Gamma (30 - 45 Hz)

CMC has been shown to be associated with moderate (Brown et al. 1998) and maximal

muscular contractions (Brown et al. 1998, Mima et al. 1999). Gamma CMC has also been

reported in preparation of wrist movement prior to a go cue (Schoffelen, Poort, Oostenveld

& Fries 2011, Schoffelen, Oostenveld & Fries 2005). More recently, dynamic movement

investigations have shown that peak coherence shifts from beta into the gamma frequency

range (30 - 45 Hz) during slow predictable (Omlor et al. 2007, Patino et al. 2008, Brown

et al. 1998) and unpredictable (Omlor et al. 2011) oscillatory force tracking tasks.

Anatomical studies have shown that, in addition to M1, axons of the corticospinal

tract originate in the dorsal and ventral premotor cortex and SMA (Dum & Strick 1991,

Dum & Strick 2005, Kuypers 1960, Shinoda et al. 1981). In one study, it was shown that

during a fine uni-manual manipulation task, beta CMC extended into the SMA (Chen

et al. 2013). This evidence suggests that context-sensitive cortical circuits are engaged

based on dexterity demand.

From these studies, it is clear that cortico-muscular coupling in the beta range regu-

lates static force while gamma coherence presides during dynamic movements and forces.

However, dexterous precision pinch manipulation involves both static and dynamic ele-

ments, therefore, it is necessary to investigate the entire coherence spectrum when per-

forming a task that requires the continual adjustment of fingertip forces. In this study, we

expand on these previous findings to investigate the role of synchronous cortico-muscular

oscillations during a dexterously demanding paradigm in which the precise control of
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endpoint finger force is paramount to task performance. Dexterity is defined here as

the ability to precisely control the magnitude and direction of fingertip endpoint force

(Valero-Cuevas et al. 2003). Based on this definition, the Strength-Dexterity (SD) test

was developed to quantify dexterous ability by asking participants to squeeze a slender

spring with unstable characteristics as much as possible before buckling (Valero-Cuevas

et al. 2003). This paradigm has been used in fMRI studies to reveal context-sensitive

cortical areas involved in the control of unstable springs (Mosier et al. 2011, Holmstrom

et al. 2011, Talati et al. 2005).

Based on the promising results of these findings, we developed a visuomotor force

tracking version of the SD test to assess the modulation of coherence during matched

force compression of an unstable compressible spring as compared to the compression of

a rigid dowel. We found that beta CMC was present in the primary motor area during

low and high force compressions with the wooden dowel and at the low force compression

with the spring. Furthermore, we found that, despite matched force levels, beta range

CMC during the high compression levels with the spring was significantly reduced in

comparison to the high force dowel task in the primary motor cortex. In this dexterously

demanding task, we observed a spatial shift of CMC into the SMA and a spectral shift

into the gamma frequency range. These findings suggest that the extinction of beta CMC

in the sensorimotor cortex in favor of gamma in the SMA for the most unstable and

dynamic task may indicate concentration, rapid sensorimotor integration, and strategic

motor planning.
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6.2 Methods

6.2.1 Subjects

15 healthy participants (30.3 ± 4.6 years, 6 females) who were self reported as right-

handed took part in this study. There were no known neurological conditions in any of

the participants, nor did they report any prior hand injuries or surgeries. Subjects were

consented prior to the experiment and the protocol was approved by the Institutional

Review Board (IRB) at the University of Southern California.

6.2.2 Experimental Paradigm

6.2.2.1 Task 1: Strength-Dexterity (SD) Test

We obtained a measure of each participant’s dexterous performance by employing a

paradigm known as the Strength-Dexterity (SD) test (Valero-Cuevas et al. 2003). The

SD test provides a quantitative measure of hand dexterity by challenging participants to

use a precision pinch to compress a slender spring prone to buckling to the point of max-

imal stability. Performance during this task is based on two key components: strength

and dexterity. Here, strength is defined as the ability to produce a sufficient amount

of force to compress the spring to solid length (i.e. where all of the spring coils are

touching); and dexterity is defined as the ability to dynamically regulate endpoint force

direction and magnitude to stabilize the spring throughout compression (Valero-Cuevas

et al. 2003).

Subjects rested their arm on a table and compressed the spring using a posture that

was comfortable for them. They were given four attempts (90 seconds each) to try to
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compress the spring as much as possible before it slipped out of their hand. During the

task, we asked participants to ensure that their 3rd-5th fingers did not assist in the task.

The average maximal compression force reached prior to spring buckling was taken as a

normalized measure of their dexterous performance. We rounded this value to the nearest

tenth and defined this as the subject-specific Fmax. From this, we calculated 40% and

80% of the subject-specific Fmax to be used in the second phase of the study.

6.2.2.2 Task 2: Visuomotor Force Tracking

In the visuomotor force tracking portion of the experiment, subjects were seated com-

fortably in front of a computer monitor with their arm resting on a table with the spring

in their hand. When the trial began, subjects were given real-time visual feedback of

their applied compression force and instructed to squeeze the spring to match on-screen

force levels displayed as a horizontal red line. Breaks were given in between trials when

necessary to reduce fatigue effects. In each trial, ten randomized target forces of 40%

and 80% of their Fmax were presented in 30 second intervals with five seconds of rest in

between. During the resting periods, the subjects would hold the object with just enough

force to prevent it from dropping. Each target level was presented five times per trial and

was performed over three trials for a total presentation of 450 seconds per target level.

Subjects then repeated the procedure with a rigid wooden dowel for the same duration

and matched force levels. This two-by-two factorial design yielded four manipulation

conditions: spring-low (SL) , spring-high (SH), dowel-low (DL), and dowel-high (DH).
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6.2.3 Compliant and Rigid Object Characteristics

Subjects manipulated two objects: a compliant spring and a rigid wooden dowel.

Spring: The spring used in this study is shown in Figure 6.1. The force required to

bring the spring to solid length was approximately 3.7 - 3.8 N. We specifically chose a

spring with a low strength requirement (< 15 % maximal precision pinch force) to focus

primarily on cortical drive involved in dexterity demand rather than applied force. The

spring alone measured 4.2 cm long, weighed approximately 2 grams and had a spring

constant of 0.86 N/cm. Custom designed 3-D printed acrylonitrile butadiene styrene

(ABS) plastic end caps were glued to both ends of the spring to create flat surfaces on

which to attach a force transducer. Additional ABS end caps were attached on top of the

sensor for two purposes: (1) to provide a place for subjects to grasp the object and (2)

to serve as a thermal barrier to prevent body heat from adding a bias to the temperature

sensitive transducer. With the addition of the end caps and sensor, the effective length

of the uncompressed compliant object was 5.7 cm as shown in Figure 6.1b.
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(a) (b)

Figure 6.1: Spring used in the quantification of hand dexterity. (a) Typical precision

pinch hand posture used in the Strength-Dexterity test. Endcaps at either end with a

load cell attached to the index finger side of the spring. (b) Close-up of spring and force

sensor next to a ruler.

Dowel: Subjects also manipulated a rigid wooden dowel measuring 3.8 cm in length

and a diameter of 0.12 cm as shown in Fig. 6.2. With the load cell and ABS end caps,

the effective length of the rigid object was 5.2 cm (Fig. 6.2b). This object was chosen for

its similarity in length, shape, and weight to the spring. The resting length of the spring

was 0.5 cm greater than that of the dowel. A compression force of 0.4 N would be need

to be applied to the spring to match the resting length of the dowel.
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(a) (b)

Figure 6.2: (a) Wooden dowel with uni-axial load cell attached. (b) Dowel with load cell

and end caps next to a ruler.

6.2.4 Recordings

6.2.4.1 Force

Throughout the SD test and visuomotor force tracking task, normal compression forces

were measured by affixing a uni-axial load cell (Measurement Specialties, Hampton, VA)

with double-sided tape to the index finger side of the compliant spring. The circular

load cell measured 0.41 cm in height and 1.27 cm in diameter and aligned perfectly with

the diameter of the objects. Signals from the sensor were differentially amplified with a

custom designed circuit set to operate in the range of 0 to 5 N. Data were captured using

a USB Data Acquisition (DAQ) system (National Instruments, Austin, TX) sampling at

a rate of 2048 Hz. Prior to data collection the sensor voltage was converted to Newtons by

removing the DC offset and calibrating the load-cell using a four-point linear regression
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with fixed weights. The offset and gain of the load cell were corrected periodically to

ensure accurate force recordings.

6.2.4.2 Electromyography (EMG)

Bipolar surface EMG were collected using a Delsys Bagnoli desktop system (Delsys, Nat-

ick, MA) from the first dorsal interosseous (FDI) and the abductor pollicis brevis (APB).

Data were amplified from 1000 - 10000 and sampled at a rate of 2048 Hz. The reference

electrode for the recordings was placed on the olecranon of the right arm. Recording

locations were identified by palpating the muscle during force production in the direction

of mechanical action for that particular muscle.

(a) (b)

FDI

Ch. 1

APB

Ch. 2

Netter, F. Atlas of Human Anatomy, 3rd Edition.

Figure 6.3: Intrinsic muscles of the hand that were recorded. (a) First dorsal interosseous.

(b) Abductor policis brevis.
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6.2.4.3 Electroencephalography (EEG)

64 channels of EEG were recorded at a sampling rate of 2048 Hz (ANT Neuro, Enschede,

The Netherlands). The recording sites remained fixed within a flexible cap according

to the international 10-20 system for scalp electrode placement. We ensured repeatable

recordings of cortical areas across subject by taking skull measurements to place electrode

Cz at the cross section of the midway point between the nasion and inion and the midway

point between the left and right tragi of the ear. Electrode impedances were kept below

10 kΩ with respect to the reference electrode CPz.
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(c)

AFz

CPz

Figure 6.4: eegosports EEG cap. (a) Front view. (b) Left view. (c) Top view. (d) 2-D

layout of all channels. The ground electrode, AFz, is shown in red and the reference

electrode, CPz, is shown in green.

Electrophysiological data were band pass filtered from 10 to 500 Hz and notch filtered

at 60 Hz and its harmonics up to 500 Hz using a 4th order Butterworth filter implemented
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in MATLAB (Mathworks, Natick, MA) and FieldTrip, a software package for EEG and

EMG analysis (Delorme & Makeig 2004, Oostenveld, Fries, Maris & Schoffelen 2011).

Subsequently, EMG were rectified to extract group activity of motor units (Halliday,

Rosenberg, Amjad, Breeze, Conway & Farmer 1995, Mima & Hallett 1999). Data formats

collected from two separate systems were synchronized by configuring the NI-DAQ to send

a trigger pulse to the EEG and EMG systems via a split BNC cable. Custom scripts were

created to read in trigger events and synchronize all data.

6.2.5 Trial Selection

The start of a trial is defined as the time when the on-screen target transitioned from a

resting value to either 40% or 80% of Fmax and its end is defined as the time when the

target value returns back to rest. Trial windows were 30 seconds in duration with a five

second inter-stimulus interval. Force data during these steady hold phases were visually

examined to determine if the task was performed correctly. Our requirement was that

the hold phase must be within a ±15% tolerance of the target force value and be held

within this range for at least five seconds; force profiles not meeting these criteria were

excluded from analysis. Synchronized EEG and EMG from each condition that satisfied

the steady-state criteria were pooled across conditions and subjects and further divided

into five second long epochs and normalized prior to coherence analysis (Amjad, Halliday,

Rosenberg & Conway 1997). Partitioning the data in this fashion has the overall effect of

weighing each trial equally to overcome problems of non-stationary electrophysiological

recordings in lengthy trials by assuming the data to be quasi-stationary over smaller

time windows. Additionally, this method effectively eliminates coherence bias that favors
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sections with high EMG amplitude (Amjad et al. 1997, Laine, Yavuz & Farina 2014, Laine,

Negro & Farina 2013, James, Halliday, Stephens & Farmer 2008, Schoffelen et al. 2011).

6.2.6 Coherence Analysis

Synchronous oscillations between cortical activity and EMG indicate functional connec-

tivity which can be assessed through coherence analysis (Mima & Hallett 1999, Nunez

et al. 1997). Coherence describes the relationship between two signals through the

strength of their consistent phase lag as a function of frequency. The result is a co-

herence spectrum bounded between 0 and 1 for each frequency of interest. A value of 1

indicates a perfect linear relationship, while a 0 indicates independence. For a given time

series, x (t), let the auto spectra be represented as

Pxx (f) =
1

L

L∑
i=1

Xi (f) ·X∗
i (f) (6.1)

where Xi (f) represents the Fourier transform of the signal of segment i of L, and ∗

indicates the complex conjugate. A similar spectrum exists for the signal y (t), represented

as Pyy (f). The cross spectrum between the signals x (t) and y (t) is defined by

Pxy (f) =
1

L

L∑
i=1

Xi (f) · Y ∗
i (f) (6.2)

Corticomuscular coherence (CMC) is calculated by normalizing the square of the cross-

spectral density between an EMG and an EEG signal by the product of their individual

auto spectral densities (Baker et al. 1997, Nunez et al. 1997) as indicated in Eq. 6.3.
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Cxy (f) =
|Pxy (f)|2

Pxx(f) · Pyy (f)
(6.3)

CMC was computed for each EEG-EMG electrode pair using FieldTrip, an open-

source toolbox in MATLAB for the analysis of EEG and MEG data (Oostenveld et al.

2011). We used discrete prolate spheroidal sequences (DPSS) or Slepian tapers (Slepian

& Pollack 1961) for the calculation of the auto and cross spectra. The multitaper method

provides several measures of the spectral estimation by multiplying the data series by a se-

ries of orthogonal tapers prior to calculating the Fourier transform (Pesaran 2008). Three

tapers were used in our analysis, providing a spectral bandwidth of ±5 Hz (Schoffelen

et al. 2011, Maris, Schoffelen & Fries 2007).

6.2.7 Selection of EEG Electrodes

To restrict our statistical analysis to a subset of the electrodes, we selected only those

electrodes which showed coherence over the 99% confidence limit in the DL task. Our

confidence limit for electrode selection set according to Eq. 6.4 (Rosenberg et al. 1989),

where α is our desired confidence level and N is the total number of tapers used in the

analysis (Schoffelen et al. 2011, Maris et al. 2007).

CL (α) = 1− (1− α)
1

N−1 (6.4)

We then obtained a difference statistic of standard Z-scores to compare coherence

spectra calculated across conditions and subjects to account for differences in the number
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of segments (Schoffelen et al. 2011, Kilner et al. 1999, Baker et al. 1997, Laine et al. 2013,

Laine et al. 2014). The transformation is given in Eq. 6.5,

Z (f)n =
tanh−1 (Cxyn (f))− 1

2Tn−2√
1

2Tn−2

(6.5)

In Eq. 6.5, Cxyn is the coherence, Tn is the number of tapers used in condition n and

tanh−1 is the inverse hyperbolic tangent function.

6.2.8 Linear Mixed-Effects Model

A linear mixed-effect (LME) model provides a method of describing a relationship for a

measurable quantity as a function of the sum of weighted independent variables (Winter

2013b, Winter 2013a). We investigated the effects of task condition on mean beta coher-

ence, using a LME model with the following format:

CMCβ ∼ β0 + β1 · Condition+ β2 (1|Participant) + ε (6.6)

where CMCβ is the average beta range coherence, Condition is the fixed-effect term,

Participant is the random-effect term, the βn terms are the coefficients for the independent

variables, and ε is the error. The random-effects term was inserted to account for subject

variability since there were several measurements taken for each condition. Two models

were generated to estimate FDI-EEG and APB-EEG beta coherence.
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6.3 Results

6.3.1 SD Test Performance

A typical force profile during the SD test for a single trial in a representative subject is

shown in Figure 6.5. Sudden drops in the force trace indicate where the spring buckled

and slipped out of their hand. Each subject was given four 90 second attempts to reach

their maximal compression force. For this subject, their average maximal compression

force prior to spring bucking was calculated to be 2.6 N, shown as the red dotted line.

This resulted in 0.4 · Fmax = 1.04 N and 0.8 · Fmax = 2.08 N, however rounding these

values to the nearest tenth gave target low and high forces of 1.0 N and 2.1 N, which are

shown as the purple and green dotted lines, respectively. These values were presented to

the subject for the visuomotor force tracking task.
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Figure 6.5: Sample force profile during the Strength-Dexterity test. The average maximal

compression force for this subject was 2.6 N (red dotted line). As the spring is compressed,

it becomes unstable and difficult to control, resulting in the subject dropping the spring.

These drops are clearly shown as sudden decreases in the force profile. 40% and 80% of

Fmax were calculated to be 1.0 N and 2.1 N, respectively, and shown as the purple and

green dotted lines.

Table 6.1 shows the maximal SD compression force measured for each subject. The

last two columns show the calculated 40% and 80% target values that were used for the

visuomotor force tracking portion of the study. The average compression force was 2.2 N

with a range of 1.8 - 2.8 N and a median of 2.2 N.

Figure 6.6a demonstrates the precision pinch paradigm with the spring. Figure 6.6b

shows a single trial of the visuomotor task for a single representative subject consisting

of five randomized presentations of each force level. Subjects were asked to match the

target force, which is represented as the black dashed line. The trials are classified into

spring high (SH) and spring low (SL) conditions. The low and high forces, for this
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Subject Identifier Gender Age (years) Fmax (N) 0.4 · Fmax (N) 0.8 · Fmax (N)

P001S002 M 36 2.8 1.1 2.2

P002S002 M 40 2.0 0.8 1.6

P003S001 M 27 2.2 0.9 1.8

P004S001 M 36 1.8 0.7 1.4

P005S001 F 26 2.2 0.9 1.8

P006S001 M 26 2.6 1.0 2.1

P007S001 F 33 2.2 0.9 1.8

P008S001 F 32 2.0 0.8 1.6

P009S004 M 32 2.7 1.1 2.2

P010S003 M 32 2.5 1.0 2.0

P011S002 F 27 2.2 0.9 1.8

P012S001 F 26 2.1 0.8 1.7

P013S001 M 31 1.8 0.7 1.4

P014S001 F 26 1.8 0.7 1.4

P015S001 M 25 2.4 1.0 2.0

Table 6.1: Fmax values for each subject. 15 right-handed subjects participated in this
study, six of which were female. Mean age was 30.3 ± 4.6 years. Mean Fmax was 2.2 N,
median was 2.2 N and range was 1.8− 2.8 N.

subject, corresponded to 1.0 and 2.1 N, respectively. The red dashed lines indicate the

performance criteria threshold values set to ±15% of the target value. Only those sections

which were within threshold for a minimum of five seconds were used for the analysis,

which is shown as the grey shaded areas. In Fig. 6.6c, the same paradigm as in Figure

6.6a is repeated with the spring replaced with a stable wooden dowel. Figure 6.6d shows

the force tracking profile for the dowel. Low and high force levels are the same as those

in Fig. 6.6b. A qualitative comparison between the force variability in the DH and SH

conditions illustrates the difficulty in maintaining a steady force with the spring despite

the force levels being identical. Furthermore, it can be seen that the force compression

of the spring dropped outside of the threshold level in the second to last hold phase

(high target). Force compressions with the rigid dowel are clearly distinguished from the
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compliant spring by the overshoot following the onset of the target force, which did not

appear in the spring condition.
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6.3.2 Muscle Activation

The activation pattern of the intrinsic hand muscles (FDI and APB) for each task is

shown in Fig. 6.7. The activation for a particular muscle was obtained by dividing the

average value of the rectified EMG during a trial by the mean EMG for that muscle over

all trials and conditions. For the FDI muscle, there was steady increase in the activation

with force applied for both objects. The FDI becomes more involved in the task during

the SH condition than the DH condition despite the force levels being equal. For the APB,

the activity was not significantly different for compression of the dowel, however there is

a trend towards decreasing activation with applied force. This inverse relationship has

been described in literature as the trade-off synergy (Sirin & Patla 1987, Maier & Hepp-

Reymond 1995, Maier & Hepp-Reymond 1994, Huesler, Maier & Hepp-Reymond 2000).

Tasks with the spring show an overall increase in muscle activity as compared to the

dowel.

Figure 6.8 shows a scatter plot indicating the muscle activations across all subjects and

tasks to show the relative contribution of the intrinsic hand muscles for each condition.

The first principal component (PC) is shown for each condition as a line through the

scatter points which aligns with the direction of the most variance. Figure 6.8a compares

the resting conditions for the spring and dowel. The first PCs for each task are aligned

during the resting condition. In Figure 6.8b, the slope of the PCs have decreased for each

condition. In the high conditions, depicted in Fig. 6.8c, the PC for the dowel task shows

that there is little APB activation required for this task, however, the PC for the spring
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task has a slope of approximately one, suggesting equal contribution for both muscles

despite the normal force being the same.

DR DL DH SR SL SH
0

0.5

1
FDI

DR DL DH SR SL SH
0

0.5

1
APB

Figure 6.7: Muscle coordination patterns for the FDI and APB across all conditions.
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Figure 6.8: Scatter plots showing the muscle activation for the FDI and APB for matched

force levels of the objects. The first principal component for each condition is shown to

capture the direction of the maximum variance. (a) Rest condition. During the period

between the 40% and 80% Fmax target force compressions, the activation the muscles

were calculated. The PCs corresponding to the spring and dowel objects are aligned in

this task demonstrating that the FDI and APB muscle are activated similarly during

rest. (b) Low force condition. As in the resting condition, the first PCs for each object

are aligned, but with a slightly lower slope than in (a). (c) High force condition. During

high compression with the dowel, the activation of the APB muscle is minimal and is

dominated by FDI activity. Compression at the high force of the spring object shows a

slop approximately equal to one, suggesting that there is an equal contribution from both

muscles in order to maintain a constant force on the spring.
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6.3.3 FDI-EEG Coherence

Figure 6.10a shows a head map of the grand average of the spatial Z-transformed cortico-

muscular coherence between the FDI and all EEG channels during the DL condition. The

map shows only those electrodes which exceeded a 99% Bonferroni corrected threshold

based on the number of EEG electrodes. Four significant electrodes over the primary

motor cortex (C3, C1, CP3, and CP1) remained after thresholding. Figure 6.10b shows

the average Z-transformed coherence of the four electrodes in Fig. 6.10a. The peak co-

herence of the average appeared in the beta range (grey area of Fig. 6.10b) at 18.15 Hz

with a value of 6.7. Figure 6.10 shows the coherence spectra for the electrodes that were

above significance for each of the four conditions. The same general trend was present

in these four electrodes for all conditions. The highest beta coherence exists for the SL

condition, while the DL and DH conditions have comparable coherence spectra, and the

SH consistently has the lowest beta CMC.
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(a)

C3 C1

CP3 CP1

(b)

Figure 6.9: Results for the dowel-low task. (a) Grand average Z-transformed coherence

head map for the FDI muscle to all EEG electrodes for the DL task. A 99% Bonfer-

onni corrected Z-score threshold was applied to the head map to account for multiple

comparisons based on the number of EEG channels. The four electrodes with significant

coherence above the threshold were C1, C3, CP1, and CP3 with respective Z-transformed

coherence values of 4.81, 5.26, 4.66, and 4.54. (b) Average coherence spectra for the four

electrodes shown in (a). The beta frequency range (15 - 30 Hz) is shown as the grey

shaded area. Peak coherence for the average was 6.7 at a frequency of 18.15 Hz.
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Figure 6.10: Coherence spectra for the four EEG electrodes with average beta range

coherence values over the threshold limit. In each plot, all four conditions. The respective

condition and trace color are as follows: DL - blue, SH - red, DH - yellow, and SH

- purple. Red dashed line in each figure corresponds to the 99% Bonferroni corrected

threshold value and the grey shaded areas indicate the beta frequency range (15 - 30 Hz).

Individual coherence spectra for each condition for electrode (a) C3, (b) C1, (c) CP3, and

(d) CP1.
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6.3.4 LME Model

Figure 6.11 shows the effects of each condition on FDI-EEG (Fig. 6.11a) and APB-EEG

(Fig. 6.11b) beta range coherence. Using an F-test, we compared the coefficients for

the effects of the SL and DL conditions on beta CMC and found that there was no

statistical difference in the effects of the low conditions in either FDI-EEG (p = 0.24502)

or APB-EEG (p = 0.2357) coherence. A comparison between the coefficients for the DH

and SH tasks, however, showed a clear significance in effect of beta CMC in FDI-EEG

(p = 6.859 · 10−8) and APB-EMG (p = 1.6889 · 10−5).
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Figure 6.11: Results of the linear mixed-effects model. The model was constructed to

predict mean beta range coherence using Condition as the fixed-effect and Participant

as the random effect. In each bar graph, the mean beta range CMC is shown on the

vertical axis and condition is on the horizontal axis. Standard error bars are included

for each condition and the indicators above the bars represent the statistical difference

in the linear mixed effects coefficients as determined using an F-test. n.s. indicates that

there was no significant difference in effect between two conditions and ∗ ∗ ∗ indicates

that the p-value was less than 0.001. Linear mixed-effect models for the prediction of (a)

FDI-EEG beta coherence and (b) APB-EEG beta coherence.

6.3.5 Power

We investigated the individual EMG beta power for the intrinsic hand muscles and the

EEG electrodes of interest. Figure 6.12 shows the average beta power in the the FDI and

APB muscles. There is a large increase in beta FDI (Fig. 6.12a) and APB (Fig. 6.12b)

power during the SH task compared to all other tasks. There is a highly significant
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difference in the effect of the SH vs. the DH task on EMG power (p<0.001) in both

intrinsic hand muscles. The firing rates of the motor unit action potentials as well as

their shape during compression of the spring at the high force levels could influence

spectral content in the beta frequency range leading to the significant increase in the

beta range power for the FDI and APB.
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Figure 6.12: Average beta power for the FDI and APB muscles for the DL, SL, DH and

SH conditions. (a) FDI power for all four conditions. The largest beta power for the FDI

was apparent during the SH task. The power during the SH was significantly higher than

for all other conditions. (b)
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Additionally, we explored beta power for each condition in the four scalp electrodes.

Figure 6.13 show a representative example for electrode C3 since all other electrodes had

a similar trend. The statistics for this electrode showed that there was no significant

difference between the DH and SH conditions for C3 beta power, and in fact there there

were no differences in effect for any condition.
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Figure 6.13: Average beta power for the EEG electrode C3 for the DL, SL, DH and SH

conditions.

Based on literature findings, power does not necessarily have an effect on coherence.

This has been demonstrated in studies which have used drugs to modify cortical power and
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coherence. In one study diazepam was used to increase beta power in the motor cortex,

however there was no change in beta corticomuscular coherence (Baker & Baker 2003).

The second study, which used carbamazepine (CBZ) on epilepsy patients, showed that

after taking CBZ there was an increase in coherence, however no significant change in

EEG power (Riddle et al. 2004). This demonstrates a disconnect between spectral power

and coherence.

6.3.6 Root Mean Square Error of Force

Lastly, we investigated the performance of the force variability in the tasks for all four

conditions. Figure 6.14 shows the root mean square error (RMSE) of compression force to

target force for all four conditions. As would be expected, force variability increased dur-

ing higher force production. Furthermore, since there was no difference in force variability

during high force compression for either object, hence this rules out force variability as

the leading cause of the change in corticomuscular and inter muscular coherence.
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Figure 6.14: Root mean square error of compression force to target force.

6.4 Discussion

The role of the sensorimotor cortex during dexterous manipulation in humans is a topic of

intense interest. In this study, we present for the first time, a measure of corticomuscular

coherence during unstable and unpredictable dynamic manipulation. To our knowledge,

the functional significance of cortico-muscular coupling under these conditions has never

been unexplored. fMRI studies under these dexterously demanding conditions have shown

a continuous and context-sensitive involvement of the brain, depending on the functional

parameters of the task (Mosier et al. 2011). We have extended this approach to include

cortical coupling to hand muscles and emphasize tasks where the level of instability can

be regulated. Our results indicate that in the DL and DH conditions, significant corti-

comuscular coherence appeared in M1, however, their magnitudes were not significantly
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different. The highest magnitude of beta CMC was recorded over M1 during the SL con-

dition with coherence extension into the supplementary motor area (SMA). Prior studies

have shown that object compliance affects coherence magnitude (Kilner et al. 2000, Riddle

& Baker 2006). During fine manipulation, SMA coherence was also shown to be increased

in the beta frequency range (Chen et al. 2013). However, no study has investigated CMC

under unstable conditions.

Investigators have reported that the index finger and thumb are independently con-

trolled (Schieber & Santello 2004). Based on this idea, the model in Fig. 6.15 demon-

strates the possible underlying principles that may enable stable versus dexterous manip-

ulation. When performing a task that requires minimal sensorimotor integration, such as

the DL, DH and SL tasks, we speculate that the cortical representations of the FDI and

APB operate in synchrony to perform a stabilizing task involving a predominantly co-

contraction strategy of the muscles. This idea is depicted in Fig. 6.15a. The underlying

neural oscillators controlling the FDI and APB are coupled during stable manipulation.

In addition, there would be strong coupling in the FDI-APB coherence, representative of

a common neural drive to both muscles. However, in the unstable SH condition, the in-

dex finger and thumb must operate more independently thereby disrupting the coupling

between the FDI and APB cortical representations. Since the common drive between

the FDI and APB would no longer exist, the coherence between FDI and APB would

decrease.
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Figure 6.15: Model of cortical drive to hand muscles during stable and unstable tasks.

In the stable domain, ares of the cortex representing the FDI and APB are driven by

underlying neural oscillators.

Figure 6.16 shows the FDI-APB coherence across the low and high force production

conditions. These muscles were chosen due to their critical involvement in the mainte-

nance of the static force production. As expected, the peak Z-transformed coherence in

all four conditions appeared in the beta range with the largest value existing in the SL

condition at a frequency of 23.3 Hz and a coherence value of 10.5. Coherence spectra

during compression tasks with the dowel were similar with the higher force level being

slightly greater than that of the low force compression with the dowel. In the SH con-

dition, the beta coherence was much lower than any of the other conditions and had a
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peak value of 2.3 at 24.4 Hz. These EMG-EMG coherence spectra supports the idea that

the cortical drive to the FDI and APB are more independently controlled in the presence

of instability. To investigate the disruption in neural oscillatory coupling between the

FDI and APB areas of the cortex, higher density cortical electrodes would be required.

Nonetheless, the decrease in FDI-EEG, APB-EEG and FDI-APB coherence during the

SH task help to support our model
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Figure 6.16: EMG to EMG coherence between the first dorsal interosseous and the

abductor pollicis brevis. The SL condition is shown as the yellow trace with a peak

coherence of 10.5 at 23.3 Hz. The DL (blue trace) and DH (red trace) have similar peak

coherence values within the beta range at 5.7 and 6.6 at 24.8 and 24.6 Hz, respectively.

The SH condition (purple trace) has the lowest overall beta range coherence with a max

value of 2.3 at 24.4 Hz
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We performed an additional analysis to investigate the changes in gamma frequency

CMC in the task. Figure 6.17 shows non-thresholded head maps of the grand averages

of the spatial Z-transformed corticomuscular coherence between the FDI and all EEG

channels during the DL (Fig. 6.17a) and SL (Fig. 6.17b) conditions. For both low force

tasks, a significant peak in beta coherence appears over the left primary motor cortex.

The measured peak coherence values were 6.42 and 8.23 for the DL and SL condition,

respectively. In the SL condition (Fig. 6.17b), coherence extends medially into electrodes

Cz and FCz, over the supplementary motor area.
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Figure 6.17: Grand average FDI-EEG beta coherence head maps during the low force

conditions. (a) DL condition. Peak CMC appears over contralateral M1. (b) SL condi-

tion. Peak coherence exists over contralateral M1 with greater magnitude than in the DL

condition. Coherence extends medially into the supplementary motor area (i.e. electrodes

Cz and FCz).

Based on the spatial shift into the SMA in the SL task, we extended our investigation

to include changes in gamma range CMC over electrode C3 (sensorimotor) and Cz (SMA).

Figure 6.18 shows the change in average gamma coherence between objects at matched

125



force levels was calculated for each subject. A Wilcoxson rank sum test was used to show

that the average gamma coherence significantly increased only in the SMA electrode (Cz)

during the SH task as compared to the DH task (p = 0.007).

Given the unavoidable delays in the nervous system, it is poorly understood whether

and how the cerebral cortex can contribute to the time-critical control of fingertip forces

during dexterous dynamic manipulation. Corticomuscular coherence gives insight into

how the brain communicates with the body. Given that our interaction with objects

involves a multitude of complex force productions which dynamically change with task

demands, it is necessary to not limit our analysis to the beta range coherence which

is associated with static force. Furthermore, since strategic planning is involved, the

investigation of CMC in cortical regions other than the M1 and S1 are imperative. In

this study, we did not have any premonitions about what frequency range to investigate

nor the cortical areas to include since this task varied drastically from previous literature.

The goal of the tasks in this study was to maintain a constant level of force. From the

perspective of the force recordings, there did not exist a noticeable difference in the force

production during the SH and DH tasks. However, the nervous system was faced with

the added challenge of interacting with an unstable object. As a result, we determined

that the cortex communicates with the musculature in a far different manner when the

need to exert a constant force on an unstable spring is required. This suggests that the

neural strategies involved are not classified into a uni-dimensional goal directed objective,

such as constant force production. Instead the cortex chooses to engage higher frequency

ranges involving context-sensitive cortical circuits which are dependent on the temporal,

dynamic and dexterity demands of the task. Lastly, it is likely that the cortex requires the
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use of higher frequency communication to account for the instabilities and uncertainties

seen in everyday object manipulation.
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Chapter 7

Conclusions and Future Work

The human hand is an amazingly complex and fascinating apparatus. There appar-

ently seems to be no limit to its capabilities. Our hands have enabled humans to build

skyscrapers that pierce the clouds, paint breathtaking sceneries, compose soothing music;

it is strong and robust enough to grip a sledgehammer with immense strength to drive

a spike into the ground, yet is nimble enough to thread a needle. However, the neural

mechanisms that give us the ability to precisely control finger movements and forces is

by no means a trivial one.

In this dissertation, one piece of the puzzle in the neural control of movement was

presented. By investigating the temporal relationship two electrophysiological measure-

ments, EEG and EMG, it is possible to gain insight into how cortical activity is trans-

formed into motor precision fingertip control. Oscillations are an abundant phenomenon

in the universe and are present in the nervous system as well. Therefore, the role of these

oscillations under real-world conditions of dexterous manipulation are essential to our

understanding our own bodies.
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Continued research in this area and similar fields will undoubtedly lead to the advance-

ment of brain-computer interfaces and robotic hands. It is my hope that, as technological

advances are made, and it becomes possible to probe and track neural activity from cortex

to muscles to endpoint force along each step of the way, we will come closer to the devel-

opment of a truly dexterous prosthetic hand that is indistinguishable from the biological

hand.
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