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Abstract—We propose a complete methodology to find the full set
of feasible grasp wrenches and the corresponding wrench-direction-
independent grasp quality for a tendon-driven hand with arbitrary design
parameters. Monte Carlo simulations on two representative designs
combined with multiple linear regression identified the parameters with
the greatest potential to increase this grasp metric. This synthesis of
computational approaches now enables the systematic design, evaluation
and optimization of tendon-driven hands.

Index Terms—biologically-inspired robots, grasping, multifingered
hands, mechanism design

I. INTRODUCTION

Tendon-driven hands have been designed for the purposes of
grasping and manipulation [1]-[6]. While their shortcomings can
include friction and tendon compliance [7], in certain applications
(such as dexterous hands) they have distinct advantages over torque-
driven systems including light weight, low backlash, small size, high
speed, and remote actuation [8], [9]. They can also offer significant
design flexibility in setting moment arms and maximal tendon tensions
[8], which allows optimization of system output capabilities for a
particular task while minimizing size and weight.

Several studies have addressed the problem of designing the topol-
ogy, tendon routing, or link design of tendon-driven manipulators
(or fingers) [2], [9]-[16]. According to [15], for example, “The
knowledge of maximum twist and wrench capabilities is an important
tool for achieving the optimum design of manipulators”. Optimization
of kinematic hand parameters, such as finger placements, link lengths,
and joint limits is addressed in [2], but we still lack comprehen-
sive methodologies to do large-scale optimization in these high-
dimensional parameter spaces. In addition, special attention has been
given to the design of manipulators with isotropic transmission
characteristics (i.e., ability to transmit forces equally in all directions
at the end effector) [2], [10]-[14]. Advantages of this isotropy include
more uniform tendon force distribution and minimization of the
dispersion of noise through the system [2], [12]. However, it may
be advantageous to design a finger with non-isotropic characteristics
[9], as in the human hand [17]. In addition, prior work on isotropic
transmission does not consider limits on tendon tensions, which is
critical when designing small, dexterous hands.

While there has been progress in designing and controlling tendon-
driven robotic hands, a complete methodology for the evaluation
and refinement of alternative topologies based on general-purpose
grasp quality (i.e., wrench-direction-independent) has not yet been
synthesized or implemented. Our novel synthesis of computational
approaches now allows us to integrate and expand prior work to
eliminate the following shortcomings of using previous techniques
in isolation for optimization of wrench-direction-independent
grasp quality of tendon-driven hands. The previously-isolated
computational approaches and the integration we have accomplished
are illustrated graphically in Fig. 1.
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1) Optimization intractability

2) Not considering tendon-driven architecture

3) Inability to calculate wrench-direction-independent
quality

grasp

The first shortcoming has been previously circumvented by using
an approximation of the full grasp wrench set itself using mathe-
matically convenient operations [18], [19]. If desired, our method
can make computations more efficient by a different method: mesh
simplification of the full grasp wrench set. This allows more accurate
grasp quality calculations than prior approximations. The second
shortcoming has not been addressed in several studies that only con-
sider independent and identical contact points for grasp planning or
analysis [18]-[24]. We have incorporated complete characterization
of the force production capabilities of arbitrary tendon-driven hands.
The third shortcoming was encountered in [25]. They used an efficient
linear programming approach to calculate a grasp quality metric for
tendon-driven hands based on a very specific, pre-defined task wrench
space, in which a finite number of required wrench magnitudes and
directions was specified. They note that their methodology does not
generalize to the full set of feasible grasp wrenches. Our integrated
method does generalize to the full set of feasible grasp wrenches and
allows efficient calculation of wrench-direction-independent grasp
quality for tendon-driven hands.

Many other studies have addressed multi-fingered grasp [26]-
[31]. Several other grasp quality metrics can be computed based on
other criteria, but their application to the design of tendon-driven
mechanisms is extremely limited [27]. Compliances are included in
grasp analysis for statically indeterminate grasps in [28] and for grasp
stiffness analysis in [29], [30]. We calculate the boundaries of the
grasp wrench set, where the forces are deterministic. A software
environment for grasp synthesis is presented in [31], but it does not
consider tendon-driven architecture.

We demonstrate this novel synthesis of techniques and compare
grasp quality among two tendon-driven finger topologies, two grasp
configurations, and thousands of parameter combinations. We then
use Monte Carlo simulations to demonstrate how this computationally
efficient method can be used to optimize grasp quality metrics by
tuning specific design parameters.

II. PROCEDURE

A. Finding the set of feasible grasp wrenches and computing grasp
quality

Assessing the quality of a specific grasp with a specific
hand/manipulator topology requires computing the feasible grasp
wrench set and its associated grasp quality. A flowchart is in Fig.
2.

1) Select initial grasp parameters: The calculation of grasp quality
involves a few preliminary parameters to be specified, based on
the finger geometry, number of fingers, and placement of grasping
points. Grasp qualities will differ when these parameters are altered
(although not substantially if they are not greatly altered, in general).
So the finger geometry (i.e., D-H parameters of the finger), finger
placements, finger postures, and object size and shape must all be
specified before the rest of the steps of the procedure are carried out.
Finger geometry is used to find the analytical manipulator Jacobian
(see Appendix A for further details) and the finger postures are
determined from the finger geometry and choice of finger placements
(which is based on object size and shape) on the object.

2) Build fingertip feasible force set: The next step is to build the
set of 3-D forces that each finger can produce while maintaining
a static posture. This set has been called the feasible force set
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Fig. 2. Flowchart of steps for finding feasible grasp wrench set and computing
grasp quality.

[17], [32], or force manipulability set in the strong sense (i.e., zero
endpoint torque) using the language of [33], [34] . The user must
specify the finger input parameters of topology (i.e., tendon routing),
maximal tendon tensions, moment arm values, finger posture, and
link lengths. Then the feasible force set can be calculated using the
method described in detail in Appendix A. A visual example of a
feasible force set is in Fig. 3.

3) Find feasible object force set: The fingertip feasible force set
does not represent the actual forces that can be applied to the surface
of an object by the finger because fingertips can generally only push
against surfaces. To find these feasible object forces, we must find
the portion of the feasible force set that also lies inside a Coulomb
friction cone. We approximate this cone by using the convex hull of 8

The force manipulability set in the weak sense is the set of all Cartesian
forces that can be exerted by a manipulator with no constraints on endpoint
torque. The strong sense force manipulability set is a subset of weak sense
set with the added constraint of zero endpoint torque.

Illustration of integration of techniques that were previously isolated.

Feasible
force set
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Fig. 3. An example of a fingertip feasible force set and its intersection with
a friction cone to produce a feasible object force set.

vectors around the perimeter of the base of the cone, plus the origin,
as in [19], [26]. We intersect this cone with the feasible force set
to find the convex hull of feasible forces that may be applied to the
object. We call this set the feasible object force set, and an example
is in Fig. 3.

The inputs required for this step are the static coefficient of friction
and the angle of finger contact (which is determined by object
shape and finger placement). We use the Qhull vertex enumeration
algorithm to complete the intersection of these convex sets.

4) Simplify feasible object force set: Due to the complexity and
high number of vertices that may define the feasible object force set
for each contact point, we may wish to simplify the set to make the
analysis more computationally efficient>. The analysis presented in
this paper can still be completed without this step, but for thousands

2The number of vertices of the grasp wrench set is on the order of m™,
where n is the number of feasible object force set vertices and m is the
number of fingers [19]. So the computation time can become intractable for
high numbers of vertices.



or millions of calculations, this step can be very beneficial with
minimal loss in accuracy. To this end, we use edge collapse operations
to perform 3-D mesh simplification, see Fig. 4a. Due to the nature
of tendon-driven feasible force sets, there may be many vertices that
are very near each other. The edge collapse operations, in effect,
combine these very close points into a few points or one point, as
can be seen in Fig. 4.This procedure was developed in computer
graphics to reduce the processing and display time for 3-D objects
[35].
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Fig. 4. (a) An example of an edge collapse operation. The vertices v1 and
v are collapsed into a new vertex vnew. Adapted from [35]. (b) Example of
using edge collapse operations to simplify the feasible object force set from
19 vertices down to 10 vertices. Note: this view is of the underside of the
feasible object force set in Fig. 3.

While some of the finer details of the feasible object force set
are eliminated after this process, this algorithm accomplishes the
simplification in a theoretically optimal manner (when considering
the minimization of quadric error). Because of this, the algorithm
automatically selects close vertices for edge collapse operations. Fig.
4b shows a feasible object force set before and after simplification.
We find it reduces computation time considerably with minimal effect
on the results (see Results).

When the routing of the tendons is complex, such as in the human
hand or in robotic hands with complex interconnections among
tendons such as in the ACT Hand [36], the mesh simplification
will improve performance even more drastically than with simple
routings. For example, simplification of the human finger feasible
object force sets in [37] from approximately 60 down to 12 vertices
reduced computation time from 50 s to 1.37 s, a 97% reduction!

The single parameter input for this step is the number of desired
vertices for the simplified feasible object force set. Qslim is the
program used to implement the edge collapse operations for mesh
simplification [38].

5) Translate contact forces to object wrenches: The combined
forces of the fingertips produce a resultant wrench on the object. An
object wrench vector, w; ;, produced statically by a point-contact
force with friction, f; ;, at fingertip location ¢, is given by the
following equation [18]:

fi ;
wio= [y, W

where A is the scaling factor that converts units of torque to
comparable units of force, d; is the vector from the torque origin
to the ith contact point, ¢ = 1,...,n, where n is the number of
fingertip contact locations, and j = 1,...,m;, where m; refers to
the number of points defining the convex hull of the feasible object

force set at fingertip location . Each m; may be unique, in contrast
to analyses that treat all contact points equally and for which all m;
are equal. A reasonable choice for A is 1/r, where r is the distance
from the torque origin to the furthest point on the object from that
origin. As noted in [19], this choice of A guarantees that the feasible
object wrench, and hence grasp quality metrics, are independent of
object scale.

We use a soft finger model for two-finger grasp so that the grasp
can produce force closure by withstanding tangential torque [39]. The
finger model assumes a certain contact area for the calculation of a
rotational coefficient of friction, but the contact is still considered to
be a point contact that can withstand tangential torque, as described
in [26]. Past work has shown that an approximately elliptical friction
limit suffices to encloses all combinations of tangential torque and
shear force that the fingertip can withstand without slipping or
rotating. However, a linear approximation of the friction limit surface
is a valid conservative way to model a soft finger [39], which we use
to make calculations more efficient: all we need to do is add and
subtract the tangential torque limit to the appropriate object wrench
torque component for each vertex of the feasible object force set.
This process is similar to that used in [40], but they do not consider
any feasible force set (only a simple friction cone). We assume that
the fingertip can resist any combination of tangential torque and
tangential force for a constant normal force underneath the boundary
of the linear approximation.

The inputs to this step are the finger placements (for an arbitrary
grasp), and coefficient of rotational friction (which can be specified
directly or calculated from the soft-finger contact radius) if the
grasp is with two fingers, and linearization of the tangential torque
capabilities is utilized for two-finger grasp.

6) Find feasible grasp wrench set: After computing all the feasible
object wrenches that can be applied by each finger, these wrench
vectors in 6-D are combined to form the set of all wrenches in 6-D
space that can be applied to the object which the grasp can resist.
This set is a convex polytope found by taking the convex hull of the
Minkowski sum of the sets of feasible object wrench vectors, where
each set corresponds to a fingertip contact location. This operation is
given by the following equation [22]:

FGWS = Com)emHull(EB{wm, ey Wim, }) 2)

i=1

where FGWS is the feasible grasp wrench set, € is the
Minkowski sum operator, n is the number of contact points, and
{WM7 vy Wiim, } denotes the m; wrench vectors defining the feasi-
ble forces at the ith contact point. It should be noted that often the
union and not the Minkowski sum is used in grasp quality calculations
to greatly reduce computation time [18], [19]°.

7) Compute grasp quality: Once we have calculated the feasible
object wrench set, we can compute a grasp quality based on that set.
The user can specify their own grasp quality metric of choice. We
chose as an example the wrench-direction-independent grasp quality
metric known as the radius of the largest ball. It was originally
proposed in [22]. Determination of this grasp quality metric involves
calculating the minimum offset (from the origin) of the halfspaces
that define the convex hull of feasible grasp wrenches. The minimum
of these offsets is equal to the radius of the largest ball, centered at

3The union limits the sum of finger forces (i.e., if one finger is exerts more
force at a given time, then the other cannot produce as much force), while the
Minkowski sum limits each finger force (i.e., the feasible object force sets are
independent). While the union is computationally easier and still can provide
important information about a grasp, for this study we concentrated on the
more realistic Minkowski sum. For more discussion see [18].



the origin, that the hull can contain. The metric, in effect, is equal to
the maximal magnitude of a wrench that can be applied to the object
in all directions in wrench space without it losing force closure (i.e.,
causing the grasp to fail). A wrench vector whose magnitude is less
than the grasp quality can be applied to the object in any direction
in 6-D wrench space without losing force closure. These calculations
have been completed for independent and identical contact points in
[18].

We use the Qhull vertex enumeration algorithm for the calculation
of grasp quality and it can also easily be implemented for 2-D or
3-D visualizations of the feasible object wrench set [19].

B. Computing grasp quality metrics for specific manipulator designs

Here we describe the specifications of the designs we analyzed and
the parameters that we used in the computations and Monte Carlo
simulations presented in the results section.

1) Finger topology: We performed this analysis on the two differ-
ent finger topologies in Fig. 5a and 5b. Both of them had 4 kinematic
DOFs: one universal joint at the base of the finger and 2 parallel hinge
joints distally. For the purposes of kinematic clarity, the finger ad-
abduction (i.e., side-to-side) axis was considered to be immediately
proximal to the perpendicular axis of the first flexor-extensor joint, as
demonstrated in Fig.5a. The first finger topology had a “2N” tendon
arrangement, in which there are 2 opposing (or antagonistic) tendons
for each degree of freedom, Fig. 5a. This topology is similar to
that in the Utah/MIT, DLR, and Shadow Hands [1], [3], [4] 4 The
second finger topology had an “N+1” tendon arrangement, which
has one more tendon than degree of freedom, and it is the minimum
number of tendons that can be used to fully control the finger [10] .
N+1 topologies are analyzed for isotropic transmission in [11], [13]
and analyzed for implementation in the Stanford-JPL hand [2]. The
particular N+1 topology we analyzed (there are many possible N+1
topologies) is in Fig. 5b.

For the baseline results, each of the three links of each finger had
length of 2 cm. The posture of the finger was 0° ad-abduction, 45°
extension on joint 2, and 45° flexion on both joints 3 and 4. This
is the posture in Fig. 5. The link lengths and the posture were used
to calculate the Jacobian matrix for these fingers. All of the moment
arms for both topologies and all joints were given a value of 5 mm,
which, along with the tendon configuration, defined the R matrix.
This matrix was either 4 X 8 (2N design) or 4 x 5 (N+1 design).
The sum of the maximal tendon tensions was 1000 N and divided up
evenly among the tendons. This defined the Fp matrix, which was a
diagonal 8 x 8 (2N topology) or 5 x 5 (N+1 topology) matrix. The
J, R, and Fy matrices were then used to calculate the feasible force
sets of the fingers.

The sum of maximal tendon tensions being equal is an important
constraint due to the size, weight, and motor torque (and therefore
tendon tension) limitations inherent in dextrous hands. For example,
the torque capacity of motors is roughly proportional to motor
weight, and minimization of weight was an important consideration
in the design of the DLR Hand II [42]. In addition, the maximal
force production capabilities of McKibben-style muscles are roughly

4These hands are not all fully actuated, and some have coupled joints.
However, they are 2N designs in the sense that they use 2 antagonistic,
symmetrically routed tendons to actuate each independent joint. It should also
be noted that there are many possible 2N, symmetric, antagonistic designs,
and that we simply chose this particular one for demonstration purposes.

SAny more than N+1 tendons is considered tendon redundancy, and
typically not more than 2N tendons are used in dexterous robotic fingers.
Manipulators or fingers with more than 2N tendons can have very interesting
redundancy properties, as in [41], and can be analyzed using our method as
well.
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Fig. 5. Grasp configurations analyzed. (a) 4-DOF robotic finger, 2N tendon
arrangement, with endpoint wrench description. (b) 4-DOF robotic finger, N+1
tendon arrangement.

Fig. 6. Grasp configurations analyzed. (a) Isometric view of 2-finger grasp.
(b) Front view of 2-finger grasp. (c) Side view of 3-finger grasp.

proportional to cross-sectional area [43]. Since the actuators typically
will be located in the forearm, then the total cross-sectional area will
be limited to the forearm cross-sectional area. In this first presentation
of the methodology, we do not consider alternative constraints on the
actuation system (e.g., electrical current capacity, tendon velocities,
etc).

2) Grasp configuration: Both two- and three-finger grasps were
analyzed for each of the two topologies, and the finger placements are
in Fig. 6. The two-finger grasp simply had both fingertips on opposite
sides of a sphere of radius 6 cm. The two-finger configuration is in
Fig. 6a and 6b. The three-finger grasp had one fingertip at the bottom
and the other two fingers were placed so that they were 30° from a
vertical line going through the bottom finger, Fig. 6c.

3) Calculating grasp quality: For the two-finger grasps, the linear
coefficient of friction was set to 0.5. The rotational coefficient of
friction was set to 2.5 times the linear coefficient of friction (in mm).
This corresponds to a very-soft finger contact radius of 5 mm [39].

The grasp analysis was performed in MATLAB© (R2010a, The
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MathWorks) on an Apple desktop computer (2 x 2.66 GHz Dual-Core
Intel® Xeon™) running OS X Version 10.6.4. The programs Qhull
(floating-point arithmetic vertex enumeration), LRS (exact arithmetic
vertex enumeration), and Qslim (edge collapse operations) were
used as compiled binaries for Mac OS X and were called through
the MATLAB ‘system’ command [38], [44], [45]. The rest of the
computations were completed using custom MATLAB code.

4) Monte Carlo simulations: To demonstrate the computational
utility of our method, the baseline parameters of moment arms, max-
imal tendon tensions, and link lengths were perturbed simultaneously
and independently [46]. To do so, we drew from uniform distributions
with the lower bound being 20% below each particular baseline
parameter value and the upper bound being 20% above the baseline
parameter value, for a total range of 40% variation, Fig. 7. For each
finger there are 14 non-zero moment arm values, 3 link lengths and 8
(for 2N topology) or 5 (for N+1 topology) maximal tendon tensions,
for a total of 25 (2N topology) or 22 (N+1 topology) total independent
parameters that were perturbed for each iteration. We performed 1000
iterations (each having their own set of parameters) for each of the
2 topologies and each of the 2 grasp configurations. This number
of iterations was found to be sufficient for convergence, as in [47]
(discussed further in Results).

5) Regression analysis: To demonstrate the utility of these Monte
Carlo simulations for design and analysis purposes, the grasp quality
was regressed on the independent parameters that were varied during
the simulations. Stepwise regression on only the linear terms was
performed (i.e., no interaction or higher-order terms were used) using
an initial model with no predictors, and predictors were added to the
model with a cutoff p-value of 0.05. This was performed in MAT-
LAB. Prior to the regression analysis, the independent parameters
were normalized so that the baseline value was equal to 1. In addition,
the dependent parameters were normalized so that their average was
also 1. Therefore, the regression coefficients represent the expected
percentage increase in the grasp quality with a 1% increase in the
independent parameter.

III. RESULTS
A. Baseline results

Table I shows the grasp quality results for the two “baseline”
topologies (i.e., those with the nominal values for each design
parameter) for the two- and three-finger grasps. Despite the fact that
both topologies have the same sum of maximal tendon tensions (i.e.,
system input), the 2N topology is clearly superior to the N+1 topology
(using the nominal parameters) in grasp quality, and hence can resist
wrenches of higher magnitude in all directions.

In addition, as expected, the grasp quality is higher for the
three-finger grasp than the two-finger grasp for both topologies.
These baseline results were verified using the exact arithmetic vertex

2N Topology (N) | N+1 Design (N)
2-finger 2.59 1.71
3-finger 8.66 5.60
TABLE I

BASELINE GRASP QUALITY RESULTS. COEFFICIENT OF STATIC FRICTION
s = 0.5. UNITS OF GRASP QUALITY ARE IN NEWTONS.

2N Topology (s) | N+1 Topology (s)
2-finger 1.46 (0.30) 1.29 (0.42)
3-finger 9.79 (1.98) 9.77 (2.66)
TABLE II

AVERAGE EVALUATION TIMES (STANDARD DEVIATIONS) DURING MONTE
CARLO SIMULATIONS, IN SECONDS.

enumeration code LRS [44], where the evaluation time was around
100 times greater than the Quickhull algorithm [45].

B. Monte Carlo simulations

Given that computation times for the baseline cases were fairly
long (about 30 s), especially for the 3-finger grasp, we simplified the
feasible object force sets to make Monte Carlo simulations feasible.
We found that simplifying the feasible object force set down to 12
vertices reduced computation time by a minimum of 46% (reduction
from 23.7 seconds to 12.7 seconds for N+1, 3-finger case) and a
maximum of 77% (reduction from 39.9 seconds to 9.10 seconds for
2N, 3-finger case) out of the 4 baseline cases, and resulted in less
than 2% error in grasp quality.

The 1000 Monte Carlo simulations reached “convergence” in the
sense that the running mean and coefficient of variation varied less
than 2% in the last 20% of iterations, similar to the criteria used
in [47]. Average evaluation time for each of the 4 configurations is
shown in Table II. Fig. 8 shows histograms of the Monte Carlo grasp
quality results for 2-finger grasp. The different finger topologies for
this grasp certainly have different mean characteristic lengths (p <
0.00001) when the parameter values are perturbed by 20%. However,
for the N+1 topology we find that 19 parameter combinations exceed
the grasp quality of the 2N topology with baseline parameter values.
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Fig. 8. Histogram of grasp quality values from Monte Carlo simulations for
two-finger grasp, 2N and N+1 designs, with Gaussian curves overlaid. The
N+1 topologies exceeding the baseline 2N topology are shaded gray.



C. Regression analysis

The significant regression coefficients at a cutoff p-value of 0.05
for grasp quality for the N+1, 2-finger case are shown in Table III,
grouped by parameter type. The coefficient of determination R? is
0.930, signifying a good fit for the linear model. Link lengths, maxi-
mal tendon tensions, and moment arms should be adjusted according
to Table III to produce the N+1 topologies that exceed the baseline
2N topology. We find that decreasing the link lengths understandably
increases grasp quality (because it improves the moment-arm:lever-
arm ratio of the tendons), and decreasing the length of link 2 has the
greatest predicted effect on grasp quality. As would be expected, the
one significant regression coefficient for maximal tendon tension is
positive (i.e., grasp quality can never be worsened by increasing one
of the maximal tensions). However, not all maximal tendon tensions
improve this grasp quality metric if increased. While all maximal
tendon tensions change the size and shape of the feasible grasp
wrench set, some have insignificant effects on grasp quality because
increasing them increases the size of the feasible grasp wrench set in
directions that do not increase the weakest wrench capability of the
grasp. That is, they do not push out the boundary of the feasible grasp
wrench set that is closest to the origin. However, the maximal tension
of tendon 1 does affect that boundary and increasing it enhances
this metric of grasp quality. Therefore, one of the “weak links” in
this topology is the maximal tension of tendon 1, which if increased
leads to better performance. Moment arms exhibit both positive and
negative regression coefficients in their effect on grasp quality, as they
affect the direction and magnitude of the wrench basis vectors [17].
The best N+1 topology from the Monte Carlo simulations (grasp
quality of 3.31-94% greater than the N+1 baseline) has maximal
tension of tendon 1 15% higher than the baseline and the moment
arm of tendon 1 across the ad-abduction axis is 16% above baseline.
These parameters have the greatest effect on grasp quality, as can be
seen in Table III.

Table IV shows the effects of adjusting the significant moment
arm parameters individually by 10% in the direction that increases
grasp quality while keeping all the other parameters at baseline levels.
We see that the predictions from even a simple linear regression are
validated.

IV. DISCUSSION

In this work, we have demonstrated a novel synthesis of computa-
tional approaches for evaluating the grasp quality of arbitrary tendon-
driven hand designs. Our formulation is efficient enough to consider
all finger design parameters (number and routing of tendons, tension
limits, and posture) and grasp (number and configuration of fingers,
friction characteristics, and object shape and size) and computes
the full feasible grasp wrench set, from which a variety of grasp
quality metrics can be obtained. In this first demonstration of our
methodology, we compared the wrench-direction-independent grasp
quality for two topologies, two grasp configurations, and thousands
of parameter combinations when grasping a sphere, and we present
the steps for extending this methodology to completely arbitrary hand
designs, objects, and finger placements.

Our Monte Carlo exploration of the design space demonstrates the
computational efficiency and utility of our method and shows that, as
expected, the 2N topology is generally superior to the N+1 topology
in grasp quality and hence can resist wrenches of higher magnitude
in all directions. This is because this 2N topology can exert a wider
range of forces on the object than the N+1 topology, resulting in
higher grasp quality. Importantly, however, our parameter exploration
found certain designs (within the allowed £20% variability) for
which the N+1 topology can outperform the nominal 2N topology.

Expected Percentage
Increase in Quality
for a 1% Increase 95% Confidence
Parameter in Parameter Value Interval
Link 2 -0.436 (-0.466, -0.406)
Link length Link 1 -0.333 (-0.363, -0.302)
Link 3 -0.290 (-0.320, -0.260)
Tendon 1 0.995 (0.265, 1.03)
Tendon 2 - -
Max tension | Tendon 3 - -
Tendon 4 - -
Tendon 5 - -
1,1 1.01 (0.975, 1.04)
1,5 -0.593 (-0.623, -0.564)
2,5 0.553 (0.522, 0.583)
2.4 0.272 (0.243, 0.302)
1,4 -0.259 (-0.289, -0.228)
Moment arm 2,3 0.159 (0.128, 0.190)
1,3 -0.143 (-0.174, -0.112)
1,2 - -
2,2 - -
3,3 - -
3,4 - -
3,5 - -
44 - -
4,5 - _
TABLE III

SIGNIFICANT NORMALIZED REGRESSION COEFFICIENTS FOR GRASP
QUALITY WITH 95% CONFIDENCE INTERVALS ON N+1 TOPOLOGY,
2-FINGER GRASP. ‘—” DENOTES NOT SIGNIFICANT AT THE CUTOFF

P-VALUE OF 0.05. MOMENT ARMS EXPRESSED AS (JOINT
NUMBER,TENDON NUMBER). RZ = 0.930.

Grasp Normalized | Expected Actual
Quality | Coefficient Increase Increase
[ Baseline [ 1709 ] — [ - [ - |
Moment arm 1,1 (+10%) 1.880 1.01 10.1% 10.0%
Moment arm 1,5 (-10%) 1.812 -0.593 5.93% 6.03%
Moment arm 2,5 (+10%) 1.809 0.553 5.53% 5.88%
Moment arm 2,4 (+10%) 1.756 0.272 2.72% 2.79%
Moment arm 1,4 (-10%) 1.758 -0.259 2.59% 2.86%
Moment arm 2,3 (+10%) 1.733 0.159 1.59% 1.40%
Moment arm 1,3 (-10%) 1.734 -0.143 1.43% 1.47%
TABLE IV

EXPECTED (FROM LINEAR REGRESSION ON MONTE CARLO ITERATIONS)
AND ACTUAL (FROM COMPUTATIONAL METHOD IMPLEMENTATION)
EFFECTS OF MOMENT ARM ADJUSTMENTS BY 10% ON GRASP QUALITY OF
N+1 DESIGN, 2-FINGER GRASP. MOMENT ARMS EXPRESSED AS (JOINT
NUMBER,TENDON NUMBER).

If a designer favors the N+1 topology due to actuator/space/weight
constraints, there are N+1 topologies that can meet or exceed the
performance of a nominal 2N topology (which may have less design
flexibility because of more tendons). These results would apply to
most objects of similar size since the main difference would be a
small change in finger contact angle.

In addition, the extensive exploration of the high dimensional
parameter spaces (i.e., 22 or 25 dimensions) allows us to identify
some critical design parameters for grasp quality (i.e., with a high
R? value of 0.930, noted in Table III). Regressions for our N+1, 2-
finger case (Table III), for example, it is clear that one tendon and
one moment arm are, from among 22 parameters, the most critical
individual parameters in the design; altering them in isolation has
the greatest effect on characteristic length. Exploring second and
third order parameter sensitivities is likely intractable with this or
most other techniques because of the geometric growth of iterations



needed. Second order terms in a regression would bring the number
of regressed independent variables to over 400, and third order terms
would raise that number to over 8000.

Nevertheless, our approach demonstrates sufficient computational
efficiency to enable, for the first time, exploring large-dimensional de-
sign spaces. Optional adjustments in mesh simplification procedures
or friction cone approximations can and do bring improvements to
speed with minimal loss in accuracybut they are not central to our
methodology. Additionally, other techniques, such as hull approx-
imation or Voronoi filtering, could be used to simplify the grasp
wrench set. Importantly, we tested and found that our computationally
streamlined floating-point computations produced results equivalent
to the 100 times slower exact arithmetic calculations.

This approach is innovative because it now enables optimizing the
design of dexterous tendon-driven hands by testing hundreds or thou-
sands of alternative hand topologies quickly. For anthropomorphic
hands or prosthetic hands, link geometry is relatively fixed, but all
tendon routing and moment arm values can be varied. For general-
purpose manipulators, everything from number and arrangement of
fingers, to DOFs and link lengths of each finger, to number, routing
and strength of tendons may be varied and evaluated. Any number
of optimization algorithms, including gradient-descent, genetic, or
random search algorithms, could be employed with this methodology
to explore the design space and optimize the topology of dexterous
hands. The efficacy and efficiency of random search algorithms are
being explored in current research.

This method can also be used to determine the optimal grasping
points of a particular object for a particular set of tendon-driven hand
design parameters. If this is desired, then many finger placements can
be tested to determine the one with the optimal grasp quality.

We calculate the grasp quality for precision grasp (i.e., grasp by
the fingertips) in this study. This is the grasp that is necessary to
manipulate an object. Power grasp capabilities (where the fingers are
wrapped completely around an object) could be calculated with a
modified version of this algorithm. However, in general, power grasp
quality and precision grasp quality will tend to be highly correlated
due to the fact that a high flexion force in the fingers is desirable for
both grasps.

The shaping of the feasible output of a robotic system via variation
of mechanical design parameters has been of interest for several
decades [2], [10]-[14]. Our novel synthesis of computational ap-
proaches now enables its pursuit for large dimensional, tendon-driven
systems. Grasp quality, manipulability metrics, and hand complexity
metrics such as number of fingers, number of joints per finger, and
number of tendons could also be integrated into a multi-objective
optimization algorithm.

Many other grasp quality metrics are easily computed using the
basic procedure we have described. One example is the volume
of the feasible wrench set [18]. Qhull can be easily queried to
calculate this volume at the same time it is calculating the weakest
wrench metric we analyzed in this study. Another example is task-
specific grasp quality metrics such as those used in [25], [48], [49].
Once the grasp wrench set is calculated, the straightforward linear
programming technique used in [25] can be used to calculate this
metric for polytopes or using singular value decomposition [49] for
ellipsoids.

Future work will use this methodology to design dexterous, tendon-
driven hands with higher grasp capabilities than are currently avail-
able, and simpler hands with specific capabilities. Furthermore, this
work on static grasp can be extended to manipulability sets or feasible
acceleration sets, which quantify the velocities or accelerations with
which an object can be manipulated. This methodology could also
be used in grasp planning, where an optimal or near-optimal grasp

found for a specific tendon-driven hand may actually be a bad grasp
for another tendon-driven hand. This methodology also enables the
quantitative analysis of biological hands and grasps (including human
[37]), and also can help to answer questions about its anatomical
structure, so we can perhaps draw inspiration from it for novel
robotic designs. Lastly, this analysis can also be applied to design
and optimize arbitrary tendon-driven and reconfigurable robots, such
as tensegrity structures, to perform complex manipulation and loco-
motion tasks [50], [51].

APPENDIX A
CALCULATION OF THE FEASIBLE FORCE SETS OF
TENDON-DRIVEN MANIPULATORS

Fundamental to feasible force set analysis is the calculation of the
posture-dependent manipulator Jacobian, J(q). q is the vector of
joint angles (i.e., finger posture). The Jacobian represents a linear
mapping from angular velocities of the joints to endpoint velocity as
shown in the following equation:

x=J(q)q 3

where x is the endpoint velocity vector (it can include both transla-
tional and rotational components, and so can be up to 6-dimensional,
see [34] for more details), J(q) is the manipulator Jacobian, q is
the vector of joint angles (i.e., finger posture), and q is the vector of
joint angle velocities.

If an underactuated finger is being analyzed, then the Jacobian
is only constructed with columns that correspond with joint angles
that can be independently actuated, and the analytical expressions
for each entry of the Jacobian matrix, which would normally include
all joint angles, will only include the actuated joint angles. If the
last 2 joints are coupled such as in the human hand or Shadow
Hand [3], [52], then the last joint angle g4 would be a (presumably)
linear function of ¢3 (e.g., g2 = ¢3/2). The Jacobian could be
reduced from 4 to 3 columns, and the analytical expressions for
each entry of the Jacobian matrix could be constructed as a function
of 3 joint angles by substituting in for the last joint angle (e.g.,
substituting ¢3/2 in for q4). The Jacobian would then be 3 x 3
(instead of 3 x 4) even though there are 4 joint angles. Advanced
kinetostatic analysis of underactuated fingers is performed in [53],
although the simple procedure just described should be sufficient for
the calculation of feasible force sets for most robotic applications.
Furthermore, minimally underactuated hands with, for example, one
tendon for flexion and springs for extension could be analyzed in
the torque domain and appropriate dimensionality reduction of the
Jacobian matrix.

Once the Jacobian is calculated, using the principle of virtual work,
we can find the linear mapping between endpoint wrench (i.e., gen-
eralized forces which can include force and torque components and
therefore can be up to 6-dimensional, depending on the formulation of
the Jacobian used), w, and joint torques, 7, as shown in the following
equation:

r=J"w @)

Since we are analyzing tendon-driven systems, we also need the
moment arm matrix, R, which contains the values of the moment
arms for each of the tendons across each of the joints. It is an n X ¢
matrix, where n is the number of joints and ¢ is the number of
tendons of the manipulator. The entries are r; ;, which is a signed
moment arm value (positive values indicate positive torque generated
at a joint when tension is applied to the tendon, and v-v), i is the
joint number and ranges from 1 to n, and j is the tendon number,



which ranges from 1 to ¢. The moment arm matrix can be used to
transform tendon tensions, T, to joint torques using the following
equation:

T =RT )

We can use an activation vector, a, to represent the degree to
which a tendon is activated. Each element of a ranges between 0 (no
activation) and 1 (full activation). Further discussion may be found
in [17]. If we define Fy as a diagonal matrix of maximal tendon
tensions, then we get the following relation between activations and
tendon tensions:

T = Foa (6)

The first step to calculating the feasible force set is to find the
feasible torque set by taking the convex hull of points generated by

mapping each vertex of the feasible activation set to joint torque
space by combining Eq. 5 and 6:

T = RFpha (@)

The feasible 3-D force set can be found from this feasible torque
set by intersecting the feasible torque set with the linear subspace
spanned by the columns of J T [25], [54]. This can be accomplished
with any vertex enumeration algorithm. The vertices of this reduced-
dimensionality set can then be transformed to endpoint force space
using the Moore-Penrose pseudoinverse so that

w=J"Tr

(®)

where J*7T denotes the Moore-Penrose pseudoinverse of J7 ©.

If the 3-D feasible force set is being calculated (as in this study),
then the wrench vector in Eq. 8 will be of length 3 and will have
components of F,, F, and F..
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