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Abstract: 

Estimating tendon excursion-joint angle relationships that 
define moment arm variations is a critical part of 
biomechanical modeling. The conventional approach has 
been to assume a specific mathematical form for these 
relationships and use experimental data to regress the 
parameters of these assumed mathematical functions. In 
contrast, here we propose a novel method that uses symbolic 
regression to simultaneously determine both the appropriate 
topology, i.e. the form of the mathematical expression, and 
the parameter values that best fit the experimental data. We 
demonstrate this method with synthetic data generated using 
a known model of the human index finger. Cross validation 
with realistic noise levels shows that this method can extract 
the correct form and parameter values for nonlinear tendon 
excursion-joint angle relationships even in the presence of 
noise.  

Introduction: 

Musculotendon routing determines how muscles interact with 
joints. Mathematically, this is defined by the moment-arm 
relationship (either constant or posture dependent) that maps 
muscle forces to joint torques, as well as tendon excursions to 
joint angle changes. While building anatomically realistic 
models of the musculotendon pathways is useful in studying 
human movement, obtaining analytical expressions 
describing the moment arm relationship is necessary to 
develop computationally efficient models to study dynamics 
and control of biomechanical systems (Eg. [1]). Posture-
dependent moment arm variation is obtained from tendon 
excursion vs. joint angle relationships as described in [2]. 
Current methods of modeling assume a specific mathematical 
form for this relationship, usually a polynomial of a specific 
degree, and regress the parameters of this assumed model 
from experimental data. Here we present a technique that 
does not assume a specific mathematical model a priori, but 
simultaneously estimates both the topology, i.e. the 
elementary building blocks forming the mathematical 
expression, and the parameters, i.e. the coefficients and other 
constants accompanying each building block of the 
mathematical expression, from experimental data. We have 
demonstrated this concept of simultaneous exploration of 
model topologies and parameters in our earlier work on 
modeling tendon networks of the hand [3]. Here we perform 
this exploration using a software called EUREQA[4] to 

determine the functional mapping from joint angles to tendon 
excursions in a simulated model of an index finger. EUREQA 
implements a machine learning technique called symbolic 
regression that uses genetic programming to evolve 
mathematical expressions to model the available data. A 
population of models is evaluated iteratively to find a set of 
models that best map the inputs to the outputs (Figure 1). 
Using symbolic regression to model tendon excursion-joint 
angle relationships has the unique advantage that the results 
are analytical expressions, which are computationally simple 
to model and are anatomically interpretable. This is unlike 
other machine learning techniques that use a ‘black box’ 

approach to model input-output relationships. See [5] for the 
merits of different machine learning techniques. 

Methods: 

We generated data consisting of joint angles and 
corresponding tendon excursions for the human index finger 
using nonlinear expressions based on Landsmeer’s models I 
(constant moment arm) and III (bowstringing tendon) which 
have been used previously in the literature [1]. Each of these 
expressions formed the hidden target system, which was then 
inferred using symbolic regression. A single test or data point 
consisted of four inputs: the joint angles corresponding to ad-
abduction (θadd) of the metacarpo-phalangeal joint (MCP) and 

 
Figure 1: Symbolic regression using EUREQA 

 



flexion extension of the MCP (θmcp), the proximal-
interphalangeal (PIP) (θpip) and the distal-interphalangeal 
(DIP) (θdip) joints; and one output corresponding to the 
tendon excursion of each of the seven tendons actuating the 
index finger taken individually (s). A data set consisted of 
300 such data points. This data set was presented to the 
symbolic regression software which ran in a parallel 
programming environment consisting of 15 quad-core 
computers.  

To study the robustness of the algorithm to noise, we 
repeated the estimation by injecting experimentally realistic 
noise to the dataset (5% noise to the joint angle data and 1% 
noise to the tendon excursions). 

Results: 

Here we will present results for one of the seven tendons 
(FDP) to illustrate our point. The algorithm was successfully 
able to find accurate expressions for the other tendons as 
well. As expected, the algorithm found multiple feasible 
solutions that mapped the joint angle inputs to the tendon 
excursions. 

Tab. 1 shows the hidden target expression along with one 
sample evolved model for each noise level. Tab. 2 shows the 
errors obtained on evaluation of these models with training, 
interpolation and extrapolation test data. 

Discussion: 
These results show that symbolic regression can effectively 
estimate non-linear tendon excursion vs. joint angle relation- 
ships, even with noisy data. Understandably, the cross 
validation errors with extrapolation data are larger, indicating 
that it is important for us to collect experimental data for the 
entire range of interest.  

We are currently working on estimating the moment arm 
relationships in the human index finger using experimental 
data collected from cadaveric specimens (Figure 2). 

Extraction of such analytical relationships is important to 
develop computationally efficient dynamic models for 
simulation and control. 
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Table 1: Tendon excursion-joint angle expressions for the FDP. 

 

 
Table 2: Root mean squared errors for the evolved model. 

 
 

 
Figure 2: Experimental data collection from a cadaveric index finger 
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