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...the assumption that changes in muscle fiber length
mimic changes in musculotendon length may be invalid,

especially for highly compliant actuators,
and demands careful scrutiny.

— Felix E. Zajac
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2.11 Sampling initial muscle fascicle lengths. For 25 different initial muscle fascicle
lengths an integrator backstepping controller was used to force a pendulum con-
trolled by two muscle-like actuators that pull on compliant tendons to follow a
sinusoidal trajectory. For this simulation, the initial tendon tensions were fixed for
each trial while the initial muscle fascicle lengths were uniformly selected such
that they satisfy Eq. 2.50. Muscle lengths and velocities have been normalized by
their respective optimal muscle fascicle lengths (lm,o,i). . . . . . . . . . . . . . . . 61
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excursions and muscle fascicle length changes, but the differences do not appear
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2.15 Plotting the mean absolute error between the (ground truth) muscle fascicle length
changes and the MT excursions (expressed as a percentage of the optimal muscle
fascicle length) as a function of initial muscle fascicle lengths. These results are
consistent with the trends seen in Figures 2.8 & 2.9 for muscle 2, but we do see a
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3.1 Approximation of MT geometry as a flattened parallel bundle of pennated muscle
fascicles in series with tendon (A) such that the change in length or excursion
(∆lMT , B) is defined as the sum of tendon length change (combining the tendons
of origin and insertion, or ∆lT = ∆lT,1 + ∆lT,2) and change in the portion of
muscle fascicle length projected onto the line of action of the MT (lm(t) cos(ρ(t))−
lm(to) cos(ρ(to)), Gans and Bock, 1965; Gans, 1982; Zajac, 1989). . . . . . . . . 68
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3.2 Evolution of MT excursion equations (s) and their differences. The constant mo-
ment arm equation (purple, Valero-Cuevas, 2016; Kurse et al., 2012; An et al.,
1983) is the simplest approximation but clearly the arc length (dashed purple) does
not accurately convey the true MT excursion (black). This was extending in Hagen
and Valero-Cuevas (2017) where the true arc length was approximated by integrat-
ing the posture-specific moment arm function (orange). Even for sufficiently small
∆θ, this approach does not completely capture the true MT excursion as it ignores
the change in moment arm with respect to the joint angle. Correcting for this, we
find the true MT excursion from the equation for arc length in polar coordinates
(green). As the true MT excursion relies on the Euclidean of the moment arm and
its partial derivative, the error between the approximation proposed in Hagen and
Valero-Cuevas (2017) and the true equation derived here can be bounded by the
triangle inequality (see Eq. 3.23). . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Physiologically realistic ranges for cT and kT under the assumptions that (i) cTkT <
0.20 (red, Brown et al., 1996), and (ii), by definition, when force is negligible,
tendon length equals its slack length (i.e., f̂T ≈ 0 → l̂T ≈ 1, blue, Proske and
Morgan, 1987; Zajac, 1989; Brown et al., 1996; Magnusson et al., 2001). . . . . . 85

3.4 Contour map (left) for the percentage of MT excursion that would be incorrectly
mapped onto the line of action of the muscle fascicles (C1) as the result of assuming
some constant pennation angle as a function of the true pennation angle. For any
assumed value of constant pennation angle (ρc), the resulting plot of C1 is given by
the corresponding horizontal cross-section of the contour plot. Examples of plots
for lower and higher values of ρc are shown on the right. Note that the error is
negligible when the true pennation angle is equal to the assumed value (diagonal
line on the left, and zero-crossings on the right). Additionally, the error is less than
±5% when the assumed and actual pennation angles are less that ∼ 18◦. . . . . . 87
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3.5 Sensitivity of the relative error coefficients C1 (the proportion of MT excursion
not projected back onto the line of action of the muscle fascicles, A) and C2 (the
proportion of the initial muscle fascicle length not projected back onto the line
of action of the muscle fascicles, B) from Eq. 3.14. A small deviation (±5◦) was
applied to ρc or ρ(to), respectively, and the resulting change in the coefficients were
plotted. For (A), while the error is minimized when ρ(t) = ρc, as ρc increases the
same deviation from the true pennation angle (ρ(t) = ρc ± 5◦) will produce larger
changes in C1 and, therefore, a larger percentage of ∆lMT would be incorrectly
projected back onto the line of action of the muscle fascicles. Similarly for (B),
the error will be minimized when the pennation angle does not change from the
initial value (i.e., ρ(t) = ρ(to)), but as ρ(to) increases, the same deviation from the
initial value (ρ(t) = ρ(to)± 5◦) will result in larger changes to C2 and, therefore, a
larger proportions of the initial muscle fascicle length would be incorrectly mapped
back onto the muscle fascicles at time t. Ranges of pennation angles reported in
the literature have been provide for a few muscle groups for reference (Yamaguchi
et al., 1990; Lieber et al., 1990; Lieber and Brown, 1992; Herbert and Gandevia,
1995; Fukunaga et al., 1997; Martin et al., 2001; Ward et al., 2009; Kwah et al.,
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3.6 Contour map (left) for the percentage of initial muscle fascicle length that would
be incorrectly mapped back onto the true line of action of the muscle fascicles (C2)
as the result of assuming some constant pennation angle as a function of the initial
and current pennation angles. Regardless of the assumed constant pennation angle
value, this error will depend on the amount by which the pennation angle changes
from its initial value. Therefore, for some initial pennation angle, the resulting plot
of the coefficient C2 is given by the corresponding horizontal cross-section of the
contour plot. Examples of plots for lower and higher values of ρ(to) are shown
on the right. Note that the error is negligible when the current pennation angle is
equal to the initial pennation angle (diagonal line on the left, and zero-crossings
on the right). Additionally, the error is less than ±5% when the initial and actual
pennation angles are less that ∼ 18◦. Therefore, for muscles with small pennation
angles (< 18◦) that do not drastically change over the course of a movement, this
error will be relatively small (< ±5%). . . . . . . . . . . . . . . . . . . . . . . . 90
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3.7 Relative error in muscle fascicle length as a result of assuming inextensible ten-
dons (Eq. 3.10c) that accounts for the previously ignored tendon length change,
scaled by the tendon slack length to optimal muscle fascicle length ratio (lT,s/lm,o),
and projected back onto the line of action of the muscle fascicles. Note that the
error will be zero when the tension of the tendon is equal to the initial tension
(f̂ iT (to)—i.e., no net deformation of the tendon has occurred). Two different initial
tension values have been chosen to demonstrate that starting at lower forces (i.e.,
an intercept towards the left) creates greater sensitivity to deviations from the initial
tension, whereas at higher forces the sensitivity is lower and approaches the asymp-
totic slope (black arrows) where it will be proportional to lT,s/lm,o and inversely
proportional to cT = E · CSAT/fmax (i.e., the tendon’s normalized asymptotic
stiffness). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.8 Parallel coordinates plot for the relative error in muscle fascicle length (η) associ-
ated with assuming inextensible tendons for 10,000 random samples in the 5 pa-
rameters of interest (cT , kT , lT,o/lT,s, lT,s/lm,o, and ρ) within their reported physio-
logical ranges during random isometric force tasks (top). As MT excursion (∆lMT )
is zero during isometric contractions, assuming inextensible tendons is equivalent
to assuming that muscle fascicle length is constant at a given percentage of max-
imum voluntary contraction (MVC) and the error, therefore, will be identical to
the normalized length change of the tendon, scaled by lT,s/lm,o and lT,o/lT,s, and
divided by the cosine of the pennation angle. For higher forces (≥ 75% MVC),
we find that high errors (≥ 30% lm,o) can occur for all values of cT and kT as, by
definition, the tendon length converges to its optimal length (i.e., the error is only
proportional to lT,o/lT,s and lT,s/lm,o, second from top). Alternatively, we find that
the error can be equally large for lower forces (≤ 50% MVC) when the tendon
has low stiffness, low curvature (high radius of curvature), and larger ratios of lT,s
to lm,o and lT,o/lT,s (i.e., the “perfect storm”, second from bottom). Conversely,
if any of these conditions are not met, the errors in muscle fascicle lengths can be
low (bottom). Lastly, pennation angles do not appear to preclude any muscles from
this sort of error, but it is trivial to show that increasing ρ will increase the propor-
tion of ∆lT projected back onto the line of action of the muscle fascicles. Visit
https://daniel8hagen.com/images/tendon length change parallel coords to access
interactive parallel coordinate plot online. . . . . . . . . . . . . . . . . . . . . . . 94
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4.1 Example of types of biological sensors present in a muscle. From the spinal cord
α-motorneurons project to the muscle fascicles to activate it. From there, the
muscle spindles are responsible for sensing the resulting muscle fascicle lengths
and velocities (lm & l̇m, orange) while the Golgi tendon organs are responsible
for detecting tendon tension (fT , blue). These sensory signals may be integrated
through their spinal and supraspinal projections to form internal representations of
expected or virtual limb position (θ; Scott and Loeb, 1994; Dimitriou and Edin,
2008; Van Soest and Rozendaal, 2008; Kistemaker et al., 2013). Note that there
are additional biological sensors that detect stretch in the skin and synovial capsule
not shown here, but these do not directly encode joint position either (Kandel and
Schwartz, 2000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Schematic of tendon-driven system with 1 kinematic DOF and 2 degrees of ac-
tuation (motors) that pull on tendons with nonlinear elasticity (creating a tension,
fT,i). The motors are assumed to be backdriveable with torques (τi) as inputs. . . . 107

4.3 Proposed setup for training artificial neural networks (ANNs) on motor babbling.
Random input torques were generated from low frequency, band-limited white
noise (1-10 Hz) chosen such that the difference between the two signals has a nor-
mal distribution (0 ± 0.5 Nm). These motor babbling signals are passed through
the plant and all subsequent sensory information is recorded. Lastly, an ANN is
trained on a particular set of sensory information (~xisens) to predict joint angle (θij,pred).114

4.4 Example of how 300 ms of motor babbling signals are generated. (A) Random
motor torque inputs are uniformly sampled from the range of possible inputs and
assigned to 50 ms windows for motor 1 (red). (B) Then values for motor 2 (blue)
are selected for each window from a normal distribution centered around the values
for motor 1 with a standard deviation of 0.5 Nm (2% of the range of maximum in-
put level). These discontinuous, piecewise signals are then filtered using a forward
(C) and backward (D) finite impulse response moving average filter with a filter
lengths of 50 ms. This results in correlated band-limited, low frequency (≤ 10
Hz) white noise motor babbling signals. . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Example plots of four different types of reference trajectories where joint angle and
joint stiffness are either varied sinusoidally or in a point-to-point task. For point-to-
point tasks, transitions are limited to 0.25 seconds (2 Hz cutoff) and are designed in
a way that they are continuously differentiable up to the fourth derivative (i.e., they
leave and arrive each point with zero velocities, accelerations, jerks, and snaps). . 123
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4.6 Sample plots comparing the performance of the feedback linearization algorith
when following the four reference trajectories of interest (where joint angle and
joint stiffness are varied sinusoidal or with a point-to-point task). The resulting
motor positions and velocities, tendon tensions, and motor input torques are pro-
vided beneath the joint angle output of each trajectory. It should be noted that the
motor kinematics are not always coupled to the behavior of the pendulum (espe-
cially when the joint angle is constant during a point-to-point task but the joint
stiffness is varied sinusoidally, middle right), suggesting it would be difficult to
imply joint angle from motor measurements alone. . . . . . . . . . . . . . . . . . 128

4.7 Proposed experimental setup for a single choice of either babbling duration (Exper-
iment 1, N = 25) or the number of hidden layer nodes (Experiment 2, N = 10).
For either experiment, for each choice of the independent parameter, N motor
babbling experiments are conducted and N ANNs are trained (See. Figure 4.3).
The performance of each of these networks will be determined by their ability
to generalize to different movements (where joint angle and/or stiffness are pre-
scribed either sinusoidal (Sin) or point-to-point (P2P) trajectories; See Figure 4.5).
A feedback linearization controller then calculates the input torques needed to pro-
duce the desired movements (See Section 4.3.6), which are then passed through the
plant to produce the experimental joint angle (θj,exp) as well as the four sensory sets
of interest (~xisens). These sets are then passed through their corresponding ANNs
that were trained on babbling data to predict joint angle (θij,pred). The prediction
errors for each network are then averaged over all trials, and the performance as a
function of the independent parameter can then be evaluated. . . . . . . . . . . . . 130

4.8 Plots of the average performance (mean absolute error) versus babbling duration
(seconds) assuming 15 hidden layer nodes. For each babbling duration, 25 ANNs
were trained from babbling data and the average error for each generalization tra-
jectory was computed. The ANNs with tendon tension drastically outperform those
trained only with motor information. A log scale is provided in Figure 4.9 to dis-
cuss the performance of the Bio-Inspired Set relative to the set of All Available
States. It can be seen that for this choice for the number of hidden layer nodes
(15), babbling durations around 15 seconds are sufficient to produce the best per-
formance for the ANNs train on motor information only (although a case could be
made that the performance only narrowly improves from 7.5–15 seconds). . . . . 132
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4.9 Plots of the average performance (mean absolute error) versus babbling duration
(seconds) in log scale assuming 15 hidden layer nodes. For each babbling du-
ration, 25 ANNs were trained from babbling data and the average error for each
generalization trajectory was computed. The ANNs with tendon tension drastically
outperform those trained only with motor information (with a 3 orders of magni-
tude improvement when training on 7.5 seconds or longer). We also see that for
this choice for the number of hidden layer neurons, that the Bio-Inspired Set will
on average perform as well as our baseline set (All Available States), suggesting
that tendon tension in addition to motor positions and velocities are sufficient to
predict joint angles. Lastly, it can be seen that for this choice for the number of hid-
den layer neurons, babbling durations around 15 seconds are sufficient to produce
the best performance these all ANNs. . . . . . . . . . . . . . . . . . . . . . . . . 133

4.10 Plots of the standard deviation in the performance (mean absolute error) for each
choice babbling duration (seconds) in log scale assuming 15 hidden layer nodes.
For each babbling duration, 25 ANNs were trained from babbling data and the av-
erage error for each generalization trajectory was computed. We see trends similar
to those seen in Figure 4.9, with standard deviation generally decreasing as the du-
ration of babbling increases. Note that because this plotted on a log scale, the peaks
for both the All Available States and Bio-Inspired Set at 20 seconds of babbling are
on the order of 10−3 to 10−2, and therefore does not reflect large variations from
the average values but more likely noise. These results further justify the use of
15 seconds of motor babbling in the subsequent experiment where the number of
hidden layer nodes are varied as the standard deviation is lower at 15 seconds than
it is at 7.5 seconds across all sensory sets. . . . . . . . . . . . . . . . . . . . . . . 135

4.11 Plots of the average performance (mean absolute error) versus number of hidden
layer neuron assuming 15 seconds of motor babbling. For each choice in the num-
ber of hidden layer nodes, 10 ANNs were trained from babbling data and the av-
erage error for each generalization trajectory was computed. For any choice in the
number of hidden layer nodes, the ANNs trained with tendon tension outperform
those trained without it. However, for ANNs with fewer and fewer hidden nodes,
the performance of ANNs trained without tendon tension improves while the per-
formance of ANNs trained with tendon tension data degrade but still perform best.
As expected the performance of the ANNs trained with motor information only
worsens as the structure of the ANN becomes more complex because there is not
enough information to tune the additional weights. . . . . . . . . . . . . . . . . . 137
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4.12 Plots of the average performance (mean absolute error) versus number of hidden
layer neuron in log scale assuming 15 seconds of motor babbling. For each choice
for the number of hidden layer nodes, 10 ANNs were trained from babbling data
and the average error for each generalization trajectory was computed. For any
choice in the number of hidden layer nodes, the ANNs with tendon tension out-
perform those trained only with motor information. However, for fewer and fewer
hidden layer nodes, the performance of the ANN trained without tendon tension
improves while the performance of ANNs trained with tendon tension data degrade
but still perform best. It can be seen that the performance of the ANNs trained on
tendon tension data begin to plateau for 9+ hidden layer nodes. Therefore we are
justified in using 15 hidden layer nodes as a safety factor as the performance is
relatively consistent for similar architectures. . . . . . . . . . . . . . . . . . . . . 139

4.13 Performance (root mean squared error; RMSE in degrees) versus the number of
epochs needed to train each ANN. For each of the four sensory sets, 25 motor bab-
bling simulation of 15 seconds were performed to train ANNs with 15 hidden layer
nodes. Although it took the ANNs more than 1000 epochs for the performances
to converge (even requiring up to 10,000 epochs for the ANNs trained on tendon
tension data), the majority of the performance improvement came within the first
20–50 epochs (middle). In fact, the ANNs trained only on motor data (Motor Posi-
tion and Velocity Only and All Motor States) converge with as little as 6 epochs (as
seen by the average plot on the right). Lastly, it appears that learning from motor
information may allow for faster learning, but the performance is soon beaten by
the ANNs trained with tendon tension (which took longer to learn). . . . . . . . . 141

4.14 Average number of epochs used before training was terminated (bars: standard
deviation). For each sensory set, 25 ANNs (with 15 hidden layer nodes) were
trained on 15 seconds of motor babbling. As expected, it took longer to learn
when using tendon tension (left two sets), as there were more features to extract
from the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.15 Bar plots of the average performance of each of the four ANNs (trained on the four
sensory sets) when predicting joint angle from the four generalization movements
(plotted on a log scale). For each sensory set, 25 ANNs with 15 hidden layer nodes
were trained with 15 seconds of motor babbling (1 kHz sampling frequency) and
their performance (mean absolute error) was averaged to compare across sensory
sets and across movements. For each sensory set, there is little difference across
movements, but there is a consistent trend that the sensory sets that include ten-
don tension (All Available States and the Bio-Inspired Set) perform 3 orders of
magnitude better than the sets trained without tendon tension. . . . . . . . . . . . 143
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4.16 Radial bar plots for the log average performance for different joint angle bins (ev-
ery 15 degrees) for each sensory set across all four generalization movements. The
average performance for each ANN appears to be consistent across the joint angle
space (i.e., there is no clear dependence on the actual joint angle and error from the
predicted joint angle). While we again see that the ANNs trained with tendon ten-
sion information (left two columns) outperform the ANNs trained without it (right
two columns) by about 3 orders of magnitude, we now see that this is generally
true across the entire joint angle space regardless of movement type. . . . . . . . . 144

4.17 Heatmap of the average mean absolute error versus joint angle and joint stiffness.
It is clear that the ANNs trained on tendon tension (left two columns) can reliably
predict joint angle at any level of joint stiffness, while the ANNs trained without
tendon tension (right two columns) have difficulty at low joint stiffness values (re-
gardless of the movement task). This is because at lower joint stiffness, the tendons
are less stiff (i.e., more disproportionate lengthening per unit force) which causes
more nonlinear decoupling between motor and kinematic states. . . . . . . . . . . 146

5.1 Examples of tendon tension deformation curves for the parameters chosen for the
Parameter Sweep Experiment (red, Section 5.3.2) and the Very High Stiffness Ex-
periment (blue, Section 5.3.3). The trace seen in solid red represents the force-
length relationship for the compliant tendons used in Chapter 4. . . . . . . . . . . 159

5.2 Bar plot of the average performance (MAE) of each sensory set as function of the
frequency of the sinusoidal joint angle trajectory. The joint stiffness was either var-
ied sinusoidally or by a point-to-point task (Eqs. 5.1–5.2). The ANNs trained on
tendon tension (left two sets) appear to generalize better to higher frequency move-
ments, only worsening slightly when the movements becomes fastest. The ANNs
trained on motor information only may decrease their performance by a similar or-
der of magnitude, but there is quite a difference between producing average errors
of 10−2 and 101 degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.3 Radial bar plot of the average performance (MAE) of each sensory set as function
of both the frequency of the sinusoidal joint angle trajectory and joint angle when
the joint stiffness is varied sinusoidally as well (twice the frequency). The ANNs
trained on tendon tension (top two sets) generalize better to higher frequency move-
ments, only worsening slightly when the movements becomes fastest. For these
two sets, when movements are the fastest, the largest errors appear to occur at
the boundaries of the sinusoidal movement (which has interesting consequences to
speed/accuracy trade offs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
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5.4 Radial bar plot of the average performance (MAE) of each sensory set as func-
tion of both the frequency of the sinusoidal joint angle trajectory and joint angle
when the joint stiffness is varied with a point-to-point task. Again, ANNs on ten-
don tension (top two sets) generalize better to higher frequency movements, only
worsening slightly when the movements becomes fastest. For these two sets, when
movements are the fastest, the largest errors appear to occur at the boundaries of
the sinusoidal movement (which has interesting consequences to speed/accuracy
trade offs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.5 Comparing the average performance of ANNs designed to predict joint angles from
one of four sensory sets when tendon stiffness parameters are varied. Changes in
motor damping can also be seen here and are denoted by line styles in the legend.
It is interesting to note that the performance of ANNs trained with tendon tension
information (left two columns) perform worse as tendons become more rigid, while
the performance of ANNs trained with motor information only (right two columns)
do not appear to be affected by changes in tendon stiffness. . . . . . . . . . . . . . 168

5.6 Comparing the average performance of ANNs designed to predict joint angles from
one of four sensory sets when motor damping is varied. Changes in tendon stiffness
can also be seen here and are denoted by line styles in the legend. We again see
from the vertical separation of the lines in the left two columns that ANNs trained
with tendon tension information perform worse as tendons become more rigid—a
trend not observed in the ANNs trained with motor information only (right two
columns). Additionally, as seen in Figure 5.5, there appears to be no trends in
performance with respect to motor damping except for those ANNs trained on all
motor states (including acceleration, right column), which intuitively makes sense
as higher damping may mean more useful information in the motor acceleration
states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.7 Heatmap representation of the relationship between tendon stiffness, motor damp-
ing, and the performance of ANNs that utilize one of four sensory sets to predict
joint angle from limited-experience babbling data. The logarithm of the perfor-
mance (MAE) has been placed in each square where negative values correspond to
good performance. Note that, as seen in Figures 5.5 & 5.6, the ANNs trained with
tendon tension information (left two columns) have worse performance at higher
tendon stiffnesses while the ANNs trained on motor information do not show such
a trend. Additionally, we can see a slight correlation between motor damping and
the performance of ANNs trained with all motor states (including acceleration, left
columnn), but no identifiable trends for the other sets. . . . . . . . . . . . . . . . 171
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5.8 Bar plots of the average performance for ANNs for each sensory set when the ten-
don stiffness values are very high (See Section 5.3.3 for explanation). We find
that ANNs trained with tendon tension information (the Bio-Inspired Set and the
set of All Available States), still outperform those ANNs trained on motor infor-
mation alone (the sets of Motor Position and Velocity Only and All Motor States).
However, the difference is not nearly as large as in the previous experiments (3
orders of magnitude) because (i) the ANNs trained on motor information only im-
proved their performance by nearly one order of magnitude and (ii) the ANNs that
train with tendon tension information continue the trend of worsening performance
when tendon stiffness increases (increasing errors by nearly 1 order of magnitude). 173

5.9 The training performance versus epoch number for 50 trials for each sensory set
overlaid to show trends (left) and the average number of epochs used before ter-
minating training (right). Compared to Figure 4.13, the training does not appear
to be different for the ANNs trained with tendon tension information (with similar
convergence rate, final performance, and number of epochs used), but the train-
ing of ANNs that use the Motor Position and Velocity Only or All Motor States
sets now have longer training periods (i.e., more epochs) and better performance.
This is consistent with the notion that as the tendons become more rigid, the motor
states becomes more useful and longer training periods are needed to extract that
information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.10 Polar bar plots to demonstrate the performance of ANNs trained on each sensory
set when generalizing to different movements as a function of joint angle. Most
of the performance values are consistent across the joint angle space with the ex-
ception of the task where both the joint angle and joint stiffness were varied sinu-
soidally (with joint stiffness at twice the frequency to have maximum stiffness at
the boundaries of the movement). This would indicate that these ANNs are making
better use of the tendon tension information at higher stiffnesses (and performing
worse at lower stiffnesses where the nonlinearity of the tendon-tension deforma-
tion curve becomes more disporportionate). . . . . . . . . . . . . . . . . . . . . . 175

5.11 Average performance heat maps for each sensory set and each generalization move-
ment as a function of both joint angle and joint stiffness. As it can be seen, the
ANNs trained on tendon tension data (left two columns) still outperform the ANNs
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Abstract1

Estimates of limb posture are critical for the control of robotic systems. This is generally accom-2

plished by utilizing on-location joint angle encoders which may complicate the design, increase3

limb inertia, and add noise to the system. Conversely, some innovative or smaller robotic mor-4

phologies can benefit from non-collocated sensors when encoder size becomes prohibitively larger5

or the joints are less accessible or subject to damage (e.g., distal joints of a robotic hand or foot6

sensors subject to repeated impact). These concerns are especially important for tendon-driven7

systems where motors (and their sensors) are not placed at the joints. Here we create a novel8

framework that can utilize limited-experience to provide accurate and efficient joint angle estima-9

tion during dynamic tasks using non-collocated actuator and tendon tension measurements. We10

draw inspiration from Nature where (i) muscles and tendons have mechanoreceptors, (ii) there are11

no dedicated joint-angle sensors, and (iii) dedicated neural networks may perform sensory fusion.12

To do so, we simulated an inverted pendulum driven by an agonist-antagonist pair of motors13

that pull on tendons with nonlinear elasticity, then compared the contributions of different sets of14

non-collocated sensory information (like motor positions or tendon tensions) when training artifi-15

cial neural networks (ANNs) to estimate joint angle. By comparing performance across different16

movement tasks we were able to determine how well each ANNs (trained on the different sensory17

sets of babbling data) generalizes to unlearned tasks (sinusoidal and point-to-point). We find that18

training an ANN with motor positions and velocities as well as tendon tension data produces more19

accurate estimates of joint angles than those ANNs trained without tendon tension data across20

all generalization movements. Additionally, we find that these results are robust to changes in21

mechanical plant parameters like tendon stiffness and motor damping and performs consistently22

well across different types of movements (from slow to ballistic). We conclude that regardless of23

the tendon architecture, the actuator behavior, or the movement complexity, tendon tension infor-24

mation is useful (if not vital) when estimating joint angles from non-collocated sensory signals.25
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Additionally, this work—which shows that tendon tension information is invaluable for the esti-26

mation of joint angles by a simple neural network for a tendon-driven system—provides evidence27

to support the notion that in biological systems tendon tension information (conveyed by Golgi28

tendon organs) can be used with spindle afferents to better estimate limb posture.29
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Introduction30

Learning to move is easy. Just ask my 1 year old son. Against all odd, armed only with untrained31

neural networks and limited experience, he has somehow solved the dreaded inverted-pendulum32

problem and started walking. He has resolved redundant strategies through numerous iterations of33

trial and error and emerged victorious with a “good enough” solution to the problem, much to his34

parents’ paradoxical relief and concern.35

And yet, learning how we move is anything but easy. Physiologists have long debated how36

the nervous system resolves muscle redundancy (i.e., having more muscles than joints), usually37

invoking some global or local optimality principle to make sense of the data (Scott, 2004; Loeb,38

2012; de Rugy et al., 2012; Berret et al., 2019; Theodorou and Valero-Cuevas, 2010; Burdet et al.,39

2001; Todorov and Jordan, 2002). Meanwhile, roboticists have struggled to understand how to40

robustly control unstable, serial linkage systems when generalizing to different tasks/environments41

(Nicolescu and Matarić, 2003) or when asked to safely interact with humans (Zinn et al., 2004).42

The former can often be resolved by some model-based control strategy when sufficient informa-43

tion is available to adequately model the plant and its environment (Di Carlo et al., 2018) or by44

some machine learning approach where the input-output mapping is autonomously learned (Mar-45

janinejad et al., 2019a). The latter has been addressed by introducing compliance in the actuators46

to decrease the dangers of potentially large effective limb inertia (Hyun et al., 2010; Bicchi et al.,47

2008; Tonietti et al., 2005). Drawing inspiration from biological systems that do not appear to have48

these problems, one field is situated squarely in between these two research questions; a machine49

learning approach to understanding compliant tendon-driven systems.50
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0.1 Background51

0.1.1 Why study compliant tendon-driven systems?52

Tendon-driven robots are becoming popular due to a number of advantages these designs can pro-53

vide (Valero-Cuevas, 2016; Andrychowicz et al., 2019; Marjaninejad et al., 2019b). Elastic tendons54

can increase energy efficiency by storing potential energy and can protect actuators from impacts55

by dissipating energy upon impact (Laurin-Kovitz et al., 1991; Pratt and Williamson, 1995; Pratt,56

2002; Mazumdar et al., 2017). Additionally, tendon routing options offer flexibility to how torques57

and angular velocities at the motors are converted to torques and angular velocities at the joints58

(Lee and Tsai, 1991; Kobayashi et al., 1998; Marjaninejad and Valero-Cuevas, 2019; Marjanine-59

jad et al., 2019a). Most importantly, tendon-driven systems offer flexible placement options for60

the actuators, which eliminate the need for motors to be placed on the joints themselves. Proxi-61

mal actuator placement moves the center of mass towards the body of the robot thereby reducing62

limb inertia and allowing for more efficient displacement in quadrupeds or anthropomorphic robots63

(Jacobsen et al., 1986).64

For both biological and bio-inspired tendon-driven systems where antagonistic actuators pull65

on compliant tendons, control is often under-determined as the number of actuators exceeds the66

number of degrees of freedom (DOFs). Hidden in this redundancy problem lies another inherent67

benefit of tendon-driven systems masquerading as a obstacle; the ability to modulate joint stiffness68

by changing the amount of tension on the tendons. The ability to control both joint position and69

stiffness in these tendon-driven robots may be the key to creating compliant robots that can safely70

interact with humans and their environment, especially in the presence of uncertainty (Palli et al.,71

2008).72
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0.1.2 Statement of the Problem73

Most successful state-based robotic control strategies need to observe or approximate joint angles74

which is generally done by placing sensors on the joints (in the absence of alternatives such as75

visual feedback, Marjaninejad et al., 2019b,c). Although sensors in general have lighter mass than76

motors, this can still add unwanted inertia to the limbs. These on-location sensors are prone to77

motion noise and their wiring is often cumbersome and poses a potential risk of damage. These78

adverse effects become more pronounced for smaller, distal joints where the mechanical design79

may make the joint inaccessible (e.g., in the case of a tendon-driven finger in a robotic hand). One80

alternative solution, which biology seems to take advantage of, is to have non-collocated sensors81

(i.e., in the muscle and tendon instead of the joint) and use fusion of sensory information from82

actuators and tendons to predict joint angles. It is interesting to note that biological systems do not83

seem to have dedicated sensors that explicitly and uniquely encode joint angles. Instead, they have84

sensors for muscle (actuator) lengths and velocities (called muscle spindles; Crowe and Matthews,85

1964) and for tendon tensions (called Golgi tendon organs; Appenteng and Prochazka, 1984)1.86

Previous work has emphasized that a functional (yet indirect) relationship exists between sen-87

sory states in general (e.g., muscle fascicle lengths and tendon tensions) and kinematic states (i.e.,88

posture; Valero-Cuevas, 2016; Zajac, 1989; Hagen and Valero-Cuevas, 2017). It is therefore spec-89

ulated that these sensory signals may be integrated through their spinal and supraspinal projections90

to form internal representations of expected or virtual limb position (Scott and Loeb, 1994; Dim-91

itriou and Edin, 2008; Van Soest and Rozendaal, 2008; Kistemaker et al., 2013). The existence (and92

possible use) of this indirect relationship between sensory states and kinematic states in biology93

implies it may be possible to use sensory fusion in tendon-driven robots to infer joint angles from94

both actuator (e.g., motor angles) and structural (e.g., tendon tensions) sensors, thereby removing95

the need for on-location joint angle encoders.96

1There are additional biological sensors that detect stretch in the skin and synovial capsule, but these do not directly
encode joint position either (Kandel and Schwartz, 2000).
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While it is sometimes possible to derive analytical relationships among tendon tensions, mo-97

tor rotations, and joint posture given the precise equations for the kinematics and dynamics, in98

practice it is often impractical or impossible to obtain accurate and time-invariant models of such99

nonlinear dynamical systems (Bongard et al., 2006; Marjaninejad et al., 2019b). Furthermore,100

even if an accurate model of the system were available, these relationships (i) would not general-101

ize across changes in mechanical designs or tasks and (ii) will become increasingly inaccurate as102

the plant suffers mechanical changes due to either damage or normal wear and tear (Palli et al.,103

2012). Therefore, data-driven systems that can efficiently create mappings between sensory in-104

formation are preferred in practical applications (Bongard et al., 2006; Marjaninejad et al., 2018;105

Kwiatkowski and Lipson, 2019).106

To that end, the objective of this dissertation is to determine if it is possible to predict joint107

posture in a compliant tendon-driven system using non-collocated sensory information and artifi-108

cial neural networks (ANNs) trained on limited motor babbling experience. Limited experiences109

is critical in the autonomous control of physical robotic systems because current machine learn-110

ing algorithms require large data sets that can lead to robot body wear and damage—and timely111

performance. Furthermore, we will explore whether and how the inclusion of tendon tension infor-112

mation improves the performance of such predictions. Lastly, we will discuss how changes in (i)113

movement requirements or (ii) mechanical properties of this system will affect the utility of such114

prediction algorithms.115

0.2 Significance116

As previously stated, musculoskeletal control is under-determined, with redundancy in both the117

input (muscle redundancy) and the output (kinematic redundancy; Bernstein, 1967). Learning to118

overcome these redundancies to produce smooth, accurate movements is no small feat, yet chil-119

dren (and all terrestrial mammals, for that case) learn to walk and play relatively quickly compared120
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to their robotic imitators (Spinka et al., 2001; Spelke and Kinzler, 2007; Adolph, 2008; Adolph121

et al., 2012). It is debatable whether muscle redundancy exists at all because real-world tasks have122

many more constraints than the simple laboratory tasks studied (Loeb, 2000; Valero-Cuevas, 2016).123

When physical tasks have sufficiently many constraints (like keeping joints together while regu-124

lating limb kinematics, kinetics, impedance, and sequencing of tasks), vertebrates have evolved125

to an ubiquitous stable phenotype with apparently “too many” muscles to satisfy that many con-126

straints while meeting the desired mechanical goal of the task. Regardless, neuroscientists and127

engineers take the reductionist approach in modeling where optimization is useful (Todorov and128

Jordan, 2002; Scott, 2004), even though there is also evidence that learning a “good enough” solu-129

tion through experience, repetition, and refinement is a more realistic biological strategy (de Rugy130

et al., 2012; Marjaninejad et al., 2019b). The better question is not whether the nervous system131

can find a solution (it obviously does), but how robust and reliable control is even possible in the132

context of inaccurate or non-existent internal models, noisy state estimators, and nonlinearities in133

sensing and actuation (Loeb, 2012).134

In an effort to understand how the nervous system can controls these nonlinear, redundant135

systems, researchers have employed inverse kinematic approaches that neglect tendon elasticity136

for conceptual and mathematical convenience (Stanev and Moustakas, 2019; Hagen and Valero-137

Cuevas, 2017; Berry et al., 2017; Millard et al., 2013; Scott, 2004; Jordan and Wolpert, 1999;138

Valero-Cuevas et al., 2009). While this approach is appealing because it reduces the model com-139

plexity, it (1) fails to capture the behavior of the muscle fascicles entirely as it ignores tendon140

deformation and (2) removes the intrinsic benefits of nonlinear, elastic tendons; e.g., postural141

stability (e.g., postural stability; Milner, 2002; Mussa-Ivaldi et al., 1985), joint stiffness modu-142

lation (Perreault et al., 2002, 2001; Osu and Gomi, 1999), potential energy storage (Alexander143

and Bennet-Clark, 1977; Alexander, 1988; Shadwick, 1990), and actuator protection from impact144

(Konow et al., 2012; Roberts and Azizi, 2010). Therefore, tendon must be included in compu-145

tational models to accurately predict muscle fascicle mechanics and to take advantage of these146

dynamic features of tendon. Only then can we put ourselves in the place of the nervous system to147
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understand neuromuscular control.148

Several interesting and important consequences emerge when tendon elasticity is incorporated149

in musculoskeletal models. Assuming a simplified, parallelogram model of pennated muscle fas-150

cicles in series with elastic tendon—the functional musculotendon (MT) unit coined by Zajac151

(1989)— there exists a functional relationship between the kinematically-derived MT excursion,152

the change in muscle fascicle length, and the tension-specific tendon deformation. This relation-153

ship intuitively updates the actuator state by the resulting kinematic states and the (potentially154

latent) effects of the tendon dynamics. And while this equation is useful for updating fascicle155

length approximations, it has implications to both biological motor control, and the control and156

design of tendon-driven, bio-inspired robots. Specifically, it is possible to utilize sensory infor-157

mation (either gathered from proprioceptors in biology or transducers in hardware) to predict the158

kinematics of a system, assuming that this functional relationship is (i) well defined (even if only159

temporarily) and (ii) possible to learn.160

Machine learning algorithms provide a promising platform on which to test whether and how161

it is possible to learn and exploit this relationship for estimating kinematic states with limited162

experience (Marjaninejad et al., 2019a). These algorithms are ideal for robotic applications where163

we wish to estimate posture from sensory data as they do not have to contend with poor estimates164

of nonlinear systems (Gijsberts and Metta, 2013). For the physiological applications, these ANNs165

provide a parallel learning approach where we can speculate on whether the existence of such a166

functional relationship could be used.167

0.3 Innovation168

The main contribution of this work is that it will provide valuable information regarding the inte-169

gration of sensory information (whether that be biological or in hardware) regarding whether and170

how it can be combined to approximate kinematic states. We will systematically identify how and171
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when changes to the mechanical parameters that describe the dynamics of both sensory states and172

kinematic states break the coupling between actuator states and kinematic states. We will addi-173

tionally discuss under what dynamic task requirements certain sensory information gains or loses174

usefulness for kinematic state estimation. We will make speculations regarding the neural control175

of movement and how the existence of proprioceptors that encode both tendon tensions and muscle176

mechanics may, in fact, be integrated to allow for virtual position estimation. This research will177

also provide a limited experience machine learning algorithm by which it is possible for a sys-178

tem to learn to predict virtual limb postures from motor angle encoders and tendon tension strain179

gauges in order to either (1) remove the need for joint encoders or (2) control the system via its180

virtual posture (similar to the equilibrium point hypothesis).181

0.4 Thesis Outline182

The thesis will be broken down as into two main sections; (1) the exploration of tendon-driven183

control and the role that tendon elasticity plays in it and (2) the exploitation of this role to better184

estimate posture from ANNs trained with tendon tension information. First we will discuss how185

approximating muscle/actuator mechanics from joint kinematics does not capture the true behavior186

of a tendon-driven system nor the relationship between kinematic states and actuator states. To do187

this, we will first explore how kinematic redundancy inherently produces differences in MT behav-188

ior, even for similar movements. To better understand the relationship between muscle/actuators189

and elastic tendons, we will then explore the control of the simplest redundant tendon-driven sys-190

tem (a pendulum “tug of war”) to illustrate how nonlinear tendon elasticity decouples kinematic191

states and actuator states. We will then derive a more accurate calculation of muscle fascicle192

lengths that account for MT excursions (limb kinematics) and tendon deformation (kinetics) to193

explicitly explore the relationship between muscle (actuator) states, tendon tension, and posture.194

Exploiting the knowledge of the existence of such a functional relationship between these actu-195
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ators, tendon tensions, and posture, we then create and train ANNs to test if the addition of tendon196

tension as an observable state increases the performance when predicting posture in a compliant197

tendon driven system. To do this we will explore the use of limited experience, low-frequency,198

white-noise motor babbling to exploit the input space to produce useful training data for these199

ANNs. Next we will explore the relationship between learning rate and performance, and how it200

pertains to the discussion of an adequate choice for ANN architecture. And lastly, we will explore201

the affect that changes in (1) movement frequency, (2) motor damping, and (3) tendon stiffness202

have on the performance of these ANNs.203
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Chapter 1204

A consequence of kinematic redundancy is that similar movements205

can elicit different musculotendon states206

Muscle fascicle behavior can help explain motor control strategies, but is difficult to measure in207

vivo. Kinematics, on the other hand, are readily measurable. When assuming stiff tendons and208

constant or near-zero muscle fascicle pennation angles, muscle fascicle behavior can be conve-209

niently approximated from the kinematically-derived musculotendon (MT) behavior (i.e., the sum210

of tendon and pennated muscle fascicle lengths; Grieve, 1978; An et al., 1981; Kurse et al., 2012;211

Valero-Cuevas, 2016). This first approximation of muscle fascicle behavior has been used exten-212

sively to make speculations regarding neural control, but is severely limited in its assumptions.213

This approximation does, however provide evidence that kinematic redundancy leads to similar214

movements exhibiting different MT behavior. Research presented in the chapter was published215

in the Journal of Biomechanics under the title Similar movements are associated with drastically216

different muscle contraction velocities (Hagen and Valero-Cuevas, 2017).217

1.1 Abstract218

We investigated how kinematic redundancy interacts with the neurophysiological control mecha-219

nisms required for smooth and accurate, rapid limb movements. Biomechanically speaking, mus-220

culotendon (MT) excursions are over-determined because the rotation of few joints determines221

the lengths and velocities of many MTs. But how different are the MT velocity profiles induced222

by equally valid hand trajectories? We used an 18-muscle sagittal-plane arm model to calcu-223

late 100,000 feasible shoulder, elbow, and wrist joint rotations that produced valid basketball free224

throws with different hand trajectories (with identical initial and final hand positions and veloc-225

9



ities). As a kinematic approximation, we equated muscle fascicle velocities as musculotendon226

velocities by assuming stiff tendons and negligible muscle pennation. We found large differences227

in the eccentric and concentric fascicle velocity profiles across many trajectories; even among sim-228

ilar trajectories. These differences have important consequences to their neural control because229

each trajectory will require unique, time-sensitive reflex modulation strategies. As Sherrington230

mentioned a century ago, failure to appropriately silence the stretch reflex of any one eccentrically231

contracting muscle will disrupt movement. Thus, trajectories that produce faster or more variable232

eccentric contractions will require more precise timing of reflex modulation across motoneuron233

pools; resulting in higher sensitivity to time delays, muscle mechanics, excitation/contraction dy-234

namics, noise, errors and perturbations. By combining fundamental concepts of biomechanics235

and neuroscience, we propose that kinematic and muscle redundancy are, in fact, severely lim-236

ited by the need to regulate reflex mechanisms in a task-specific and time-critical way. This in237

turn has important consequences to the learning and execution of accurate, smooth and repeatable238

movements—and to the rehabilitation of everyday limb movements in developmental and neuro-239

logical conditions, and stroke.240

1.2 Introduction241

The pursuit of, say, the perfect basketball free throw relies heavily on practice. Yet only those of242

us capable of consistently accurate throws can be paid millions of dollars as elite athletes. But why243

is it that practice or mimicry alone do not suffice to accomplish a professional level of accuracy244

and repeatability? In recent work, we re-emphasized that the neural control of limb movements245

is in fact over-determined, where the rotations of a few joints determine length changes in many246

musculotendons (MTs) (Valero-Cuevas, 2016; Valero-Cuevas et al., 2015). While some muscles247

that are shortening during the movement can, of course, become lax, those that are lengthening248

must all do so by an appropriate amount so not to alter the desired movement.249
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As pointed out by Sir Charles Sherrington (1913), movement can be disrupted if even one mus-250

cle undergoing eccentric contraction fails to silence its stretch reflex appropriately. Sherrington251

spoke of reflex inhibition being an important factor in the coordination of movement and posture,252

where the inhibitory process is no less capable of delicate quantitative adjustment than the excita-253

tory process (Sherrington, 1932). This idea was later refined by a cohort of scientists (for overviews254

see Loeb (1984) and Prochazka et al. (1985)) as the explicit and context-dependent regulation of255

the fusimotor, or γ, system to control muscle spindle sensitivity independently of α-motoneuron256

drive. For a few decades now, it has been well accepted that the modulation of spinal reflexes,257

including the inhibition of stretch reflexes, is an intrinsic and necessary feature of the neural con-258

trol of force, posture, and movement; and often a neurophysiological mechanism responsible for259

pathological disruptions such as spasticity and clonus (Zehr and Stein, 1999; Hultborn, 2006; Hi-260

dler and Rymer, 1999; Sanger et al., 2010). But the question remains: how accurately must spinal261

reflexes be modulated in natural movement?262

Here we investigate the neuromechanical relationships between kinematic redundancy, MT263

velocity, and by extension, muscle fascicle contraction velocities—and explore its consequences264

to muscle afferentation. Specifically, given that MT excursions are over-determined, we approx-265

imate the different muscle fascicle velocity profiles induced by different, but equally valid, hand266

trajectories for a basketball free throw. This serves as the neuromechanical foundation to discuss267

how kinematic and muscle redundancy are, in fact, severely limited by the need to regulate reflex268

mechanisms in a task-specific and time-critical way. We conclude by discussing how these funda-269

mental neuromechanical concepts have important neurophysiological consequences to the learning270

and execution of accurate, smooth, and repeatable athletic movements—and to the disruption and271

rehabilitation of everyday movements in neurological conditions and stroke.272
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1.3 Material and Methods273

The goal of this study was to determine whether and how different movement trajectories that meet274

the initial and final conditions for a successful free throw produce differences in muscle fascicle275

contraction velocities.276
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Figure 1.1: Schematic of our 18 muscle, 3 degree of freedom (DOF) model which considers
sagittal-plane shoulder flexion/extension (F/E), elbow flexion/extension and wrist flexion/exten-
sion only. Forearm pronation/supination and radial-ulnar deviation were excluded from our model
as studies have shown player’s to typically keep the shoulder, elbow, wrist, and ball in the same
plane as the basket (Knudson, 1993). For an overview of the muscles used and their posture-
dependent moment arm functions see Valero-Cuevas (2016), Ramsay et al. (2009), and Holzbaur
et al. (2005).

1.3.1 Arm kinematic model277

We used an 18-muscle sagittal-plane arm model with 3 DOFs— shoulder, elbow, and wrist joints—278

to calculate a family of 100,000 valid basketball free throws with different hand trajectories (using279

identical initial and final hand positions and velocities). The free throw motion is approximated280

by a planar 3-DOF model. While studies have shown that basketball players typically keep the281

ball, wrist, elbow, and shoulder in plane with the basket (Knudson, 1993), this purely kinematic282

model does not include the neuromuscular control needed to produce such planar movement. An-283

thropometry was used to estimate physiologically-reasonable upper-limb segment lengths for a284

hypothetical 183 cm tall (6 ft) basketball player throwing from the free throw line (Winter, 2009)285
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and the forward kinematic (i.e., geometric) model of the arm was defined as286

~x = ~G(~θ) =


l1cos(θ1) + l2cos(θ1 + θ2) + l3cos(θ1 + θ2 − θ3)

−l1sin(θ1)− l2sin(θ1 + θ2)− l3sin(θ1 + θ2 − θ3)

θ1 + θ2 − θ3

 (1.1)287

~x =


Gx(~θ)

Gy(~θ)

Gα(~θ)

 (1.2)288

289

where the vector ~θ = (θ1, θ2, θ3)T contains the three arm joint angles for sagittal-plane shoulder290

rotation (θ1), elbow flexion/extension (θ2), and wrist flexion/extension (θ3)2. The upper-arm, fore-291

arm, and hand segments are denoted by link lengths l1, l2, and l3, respectively. This full geometric292

model of the limb in the sagittal plane specifies the horizontal (Gx) and vertical (Gy) position of293

the endpoint of the hand with respect to the shoulder joint, as well as the sum of all angles relative294

to rest (Gα; Valero-Cuevas, 2016). This is because a rigid body (i.e., the hand) has three DOFs on295

the sagittal plane: two positions, Gxand Gy, and one orientation, Gα.296

1.3.2 Defining initial and final arm postures, hand positions and velocities297

Initial and final arm postures for the model, ~θi and ~θf , were chosen from average measurements298

of three sample free throw motions. Passing these joint angles through Eq. 1.1 generate initial299

and final hand endpoint positions, ~xi and ~xf . As free throws begin from rest, the initial endpoint300

velocity is zero. Free throws are simple ballistic shots, and therefore the final endpoint velocity,301

~vf = (vx, vy)T , was set to the release velocity vector of the basketball necessary for a successful302

2Due to the full pronation of the forearm, the sign convention for wrist flexion/extension has been flipped in order
to consistently associate positive angular velocity with flexion throughout the model.
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throw (See Figure 1.2 for detailed formulation). Illustrated in Figure 1.3(a), the initial and final303

arm positions and velocities are therefore defined as:304

~xi = (xi, yi, αi)
T = (Gx(~θi), Gy(~θi), Gα(~θi))

T (1.3)305

~̇xi = (ẋi, ẏi, α̇i)
T = (0, 0, 0)T (1.4)306

~xf = (xf , yf , αf )
T = (Gx(~θf ), Gy(~θf ), Gα(~θf ))

T (1.5)307

~̇xf = (ẋf , ẏf , α̇f )
T = (vx, vy, 0)T (1.6)308

309

Note the final velocity of the hand as a rigid body, ~̇xf , is a twist that contains the linear velocity310

of the hand endpoint as the release velocity for the basketball, accompanied by zero net angular311

velocity (Valero-Cuevas, 2016).312
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Figure 1.2: Calculation of the final hand endpoint velocity vector (~vf ) necessary for a successful
free throw. As this throw is well modeled as a ballistic problem, the independent variables are
the angle of release (α) and the distance of the ball’s center from the basket’s center (∆x, ∆y).
(a) Utilizing the anthropometric geometric model described in Eq. 1.1, a player’s height and the
joint angles at the point of release are utilized to find the position of the hand endpoint relative to
the shoulder joint (designated here as the origin). (b) The radius of the ball and the parameters of
the basket (i.e. height of the basket and horizontal distance of the shoulder joint to the basket’s
center) are incorporated to find the necessary displacement parameters (∆x, ∆y). (c) Utilizing
these displacements and the angle of release (α), ballistics equations are rearranged and used to
solve for the necessary release velocity vector for a successful free throw.

Initial and final joint angular velocities (~̇θi and ~̇θf ) were calculated from their relationship with313

endpoint twists and the Jacobian of the limb evaluated at each respective posture (Eqs. 1.7 - 1.9;314

Valero-Cuevas, 2016), and is illustrated in Figure 1.3(b).315

J(~θ) =


∂Gx(~θ)
∂θ1

∂Gx(~θ)
∂θ2

∂Gx(~θ)
∂θ3

∂Gy(~θ)

∂θ1

∂Gy(~θ)

∂θ2

∂Gy(~θ)

∂θ3

∂Gα(~θ)
∂θ1

∂Gα(~θ)
∂θ2

∂Gα(~θ)
∂θ3

 (1.7)
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~̇x = J(~θ)~̇θ (1.8)

~̇θ = J−1(~θ)~̇x (1.9)
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Figure 1.3: Overview of trajectory generation technique. (a) Initial and final arm postures (taken
from averaged, sample measurements) were passed through the kinematic model to find the initial
and final hand endpoint positions (~xi and ~xf ) and twists (~̇xi and ~̇xf ) (See Figure 1.2 for overview of

ballistics). (b) Initial and final angular velocities (~̇θi and ~̇θf ) were calculated from their relationship
to endpoint twists by the inverse Jacobian matrix (J−1(~θ)) evaluated at their respective joint angles
(~θi and ~θf ). (c) A random break point (i.e. knot or seed) was generated for each joint angle by
uniformly sampling from the joint’s range of motion as well as from the time between initial and
final postures (0-550 ms). (d) Time histories for each joint angle were generated using clamped
cubic splines to create smooth, piece-wise polynomial trajectories with proper initial and final con-
ditions. Steps (c)-(d) were repeated if a resulting trajectory exceeded the joint’s range of motion or
if undesirable (and unrealistic) rotations or velocities were encountered. (e) Combining joint angle
time histories resulted in angle-angle-angle trajectories in configuration space. (f) Passing these
combined angle time histories through the geometric model (i.e. the forward kinematic model)
generated a hand endpoint trajectory with appropriate initial and final positions and velocities.

316

1.3.3 Generation of multiple valid hand trajectories317

We used clamped cubic splines to generate the time histories of individual joint angles which,318

when combined, produced valid hand trajectories, allowing us to fix the appropriate initial and319

final hand positions and velocities across trials while exploring multiple valid trajectories between320

them. This process is discussed and illustrated in Figure 1.3(c)-(f). In brief, to produce a joint angle321

trajectory, a random break point (i.e., knot) was found by uniformly sampling the joints range of322

motion and the time between initial and final postures (assumed to have a conservative 550 ms323

movement duration chosen from observation; Figure 1.3(c)). These three points (initial, knot, and324

final) were connected by two piece-wise cubic polynomials that produced a smooth, continuous325

trajectory with proper initial and final conditions (See Figure 1.3(d)). A trajectory was rejected if,326

at any point, it exceeded the joint’s defined range of motion. Additionally, shoulder or elbow angle327

trajectories were rejected if they produced initially negative angular velocities as this initial joint328

extension is not typically seen (i.e., players initially flex both the shoulder and elbow to bring the329

ball up from rest at the initial posture). Steps (c)-(d) in Figure 1.3 were repeated until these criteria330

were met for each joint angle.331
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These joint angle trajectories were then combined to produce a trajectory in configuration space332

(Figure 1.3(e)) and this time-history of joint angles can then be passed through Eq. 1.1 to generate333

the resulting hand trajectory (Figure 1.3(f)). Steps (c)-(f) were then repeated until 100,000 feasible334

joint rotations were properly generated for the shoulder, elbow, and wrist joints that produced335

equally many joint angle time-histories in the configuration space and realistic hand trajectories in336

the endpoint space. Figure 1.4 shows 20 such random trajectories in configuration space and the337

corresponding endpoint space trajectories.338

 0º

-90º

135º

90º 135º
0º θ1

θ2

θ3

Final

Initial

Initial

Final

(a)
Sample Configuration Space

Trajectories

(b)
Sample Endpoint Space

Trajectories

Figure 1.4: 20 trajectories in (a) configuration space and (b) endpoint space from a uniformly
sampled solution space. These trajectories serve as examples of the solution space while individual
trajectories will be explored further later in the analysis.

1.3.4 Approximation of normalized muscle fascicle velocities339

Existing literature was utilized to construct a posture-dependent moment arm matrix (R(~θ) in Eq.340

1.10; Valero-Cuevas, 2016; Ramsay et al., 2009; Holzbaur et al., 2005). The moment arms of341

these muscles at any particular joint configuration (~θ) can be used to estimate the changes in MT342

excursion (δ~s) associated with changes in joint angles (δ~θ, Eq. 1.11, An et al., 1983; Valero-343

18



Cuevas, 2016). Assuming stiff tendons, we can estimate muscle fascicle velocities for each of the344

18 muscles included in our model (~vm) as the MT excursion time derivative (~̇s, Eq. 1.12). For345

ease of comparison across muscles, muscle fascicle velocities were normalized by their respective346

optimal muscle fiber lengths (Zajac, 1989). Figure 1.5 illustrates the normalized muscle fascicle347

velocity profile for a random trial.348

R(~θ) =


r1,1(~θ) r1,2(~θ) · · · r1,18(~θ)

r2,1(~θ) r2,2(~θ) · · · r2,18(~θ)

r3,1(~θ) r3,2(~θ) · · · r3,18(~θ)

 (1.10)

δ~s ≈ −R(~θ)T δ~θ (1.11)

~vm ≈ ~vMT =
d~s

dt
≈ −R(~θ)T

d~θ

dt
(1.12)

~vm ≈ −R(~θ)T ~̇θ (1.13)

It is important to note that Eq. 1.13 represents an over-determined system of equations because349

~vm ∈ R18 (an 18-dimensional vector), ~̇θ ∈ R3 (a three-dimensional vector), and R(~θ)T ∈ R18 × 3
350

(18 equations with three variables). Therefore, the values of three angular velocities influence351

the values of 18 muscle fascicle velocities. Given that a limb movement is a sequence of joint352

angular velocities, a given limb movement is only possible if all muscles are able to adopt appro-353

priate muscle fascicle velocities as the movement progresses. For muscles undergoing concentric354

(i.e., shortening) contractions, it is possible for some of them to become lax and still allow the355

limb movement. But if any muscle that is lengthening (through either eccentric contraction or356

passive stretch) fails to do so at any time during the movements (e.g., because of failure or in-357
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ability to regulate or silence its stretch reflex; Loeb, 1984; Prochazka et al., 1985), the movement358

will be disrupted (Sherrington, 1932; Valero-Cuevas, 2016). The distinction between the under-359

determined nature of the control of joint torques (with many solutions) vs. the over-determined360

nature of the control of joint rotations (with at most one solution) is often lost in the biomechan-361

ics and neural control literature (Valero-Cuevas, 2016). When controlling individual afferented362

muscles, the neural control of limb force is fundamentally different from that of limb movement.363

Not only are the governing equations for force and motion control different (Yoshikawa, 1990;364

Valero-Cuevas, 2016), but the former requires combining muscle forces to produce specific net365

joint torques, whereas the latter requires coordinating muscle forces while regulating reflexes to366

allow eccentric/concentric contractions compatible with the desired joint angles and angular ve-367

locities (Sherrington, 1913; Loeb, 1984; Prochazka et al., 1985; Mah and Mussa-Ivaldi, 2003;368

Venkadesan and Valero-Cuevas, 2008; Valero-Cuevas, 2016).369
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Figure 1.5: Normalized muscle fascicle velocities vs. time for a randomly selected free throw
attempt both in its entirety (left) and bounded by ±5 optimal muscle fascicle lengths per second
(lm,o/s) (right) to highlight the upstroke phase. Muscles that only cross the shoulder are shown in
navy, while the biceps and triceps muscles are shown in orange. The remaining muscles that cross
the elbow and/or wrist are shown in light blue. Note that there exist two major zeros crossings
during which many of the muscles change the direction of their contractions. The first instance
occurs during the upstroke where the wrist extends as elbow flexes with similar but opposite angu-
lar velocities–while the shoulder continues to rotate upwards causing the net MT excursion time
derivative for the bi-articulating muscles of the elbow and wrist to offset each other. The second
instance defines the start of the power stroke phase where either the angular velocities of the elbow
and/or wrist create a net zero MT excursion time derivative or the muscles of the shoulder change
the direction of their contractions (if they do at all). The muscles that only cross the shoulder do
not exhibit this first zero crossing as they typically experience contraction throughout the entire
upstroke without a change in direction (i.e. constant upward rotation about the shoulder joint), but
will often exhibit the second zero crossing as a result of the cubic spline algorithm and the local
extrema generated in the shoulder angle trajectory. As the biceps and triceps muscles cross over
both the shoulder and elbow joints, they do not experience a zero crossing during the upstroke
phase (i.e. the direction of both rotations are consistent and nonzero during this phase), but they
do, however, exhibit typical zero crossings at the start of power stroke phase brought on by a major
change in the direction of elbow rotation.

1.3.5 Definition of movement phases370

We considered each throw to have three phases: the upstroke, the power stroke, and the follow-371

through (Figure 1.5). The upstroke is the initial phase of the throw where the ball is brought372

from rest at the initial posture upwards towards a cocked position (i.e., when the velocities of the373
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muscles that cross the elbow and/or wrist changed from eccentric to concentric contraction, or vice374

versa). As most muscles will undergo this change in the direction of their contraction velocity375

at different times (as dictated by their unique relationships between joint angles and moment arm376

values described in Eqs. 1.10-1.13), the upstroke is uniquely defined for each muscle during each377

trajectory. In the rare cases where none of the muscles of the shoulder exhibits this change in sign378

of contraction velocities, the upstroke is defined as the initial 520 ms of the motion. The power379

stroke is defined as the phase of the throw immediately following the upstroke. And lastly, the380

follow-through starts once the final endpoint velocity has been achieved. Here the wrist flexes as381

the ball is released. As stated previously, we do not consider this last phase as we only consider382

purely ballistic throws, and the mechanics of ball release and possible backspin are tangential to383

this study. Figure 1.5, therefore, only shows the two main phases of interest for our study.384

1.3.6 Calculation of eccentric and concentric contraction velocity costs385

Each trajectory was assigned cost values for eccentric and concentric contraction velocity mag-386

nitudes separately. Given that all trajectories had similarly large contraction velocities during the387

power stroke phase, we categorized trajectories as per their contraction velocities during the up-388

stroke phase only. These cost values were defined as the Euclidean norms of the maximal eccentric389

(Eq. 1.14) and concentric (Eq. 1.15) contraction velocities for each muscles during that phase:390

Eccentric Cost =

√√√√ 18∑
i=1

max(|vm,i|)2 (for vm,i ≥ 0) (1.14)391

392

Concentric Cost =

√√√√ 18∑
i=1

max(|vm,i|)2 (for vm,i ≤ 0) (1.15)393
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1.4 Results394

Using the computational method described above, we generated 100,000 realistic throwing mo-395

tions that can achieve successful free throw hand trajectories. Surprisingly, we found that although396

the trajectories all clustered around a stereotypical path (Figure 1.4), there was a large distribution397

in both eccentric and concentric contraction velocity costs across them. Figure 1.6 shows both the398

histograms for eccentric and concentric costs separately, and a heat map of their joint distribution.399

This demonstrates that there exists a wide range of trajectories with very different eccentric and400

concentric costs that are capable of accomplishing the final hand position velocity for a valid throw.401
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Figure 1.6: Two dimensional histogram of the eccentric and concentric costs of all trajectories as
defined by equations 1.14 and 1.15, respectively (in normalized units lm,o/s (Zajac, 1989)) with
one dimensional histogram axes overlays.

Furthermore, when sampling from these valid trajectories, we find cases where even kine-402

matically similar basketball free throws can have different contraction velocity costs (see sample403

trajectories 1, 2, and 3 in Figures 1.7). That is, the trajectory of the endpoint of the hand can be404

very similar across these three sample trajectories, but their paths in configuration space can be405

very different, as are their eccentric/concentric muscle fascicle velocity costs which can differ by406
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a factor of 3. Conversely, we find that trajectories can also vary in endpoint space while incurring407

similar costs. Figure 1.8 demonstrates this observation by showing the 20 most similar trajectories408

to our sample trajectories in terms of cost values.409
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Figure 1.7: Two dimensional histogram of the eccentric and concentric costs of all trajectories as
defined by equations 1.14 and 1.15, respectively (in normalized units lm,o/s) (bottom right) with
sample trajectories 1, 2 and 3 plotted in configuration space (top right) and endpoint space (left).

As seen in the bottom three rows of Figure 1.9, these three similar sample trajectories follow410

similar trends, but also exhibit subtle differences in individual angular trajectories (see stick figures411

at top and angle plots at bottom). Specifically, shoulder angle trajectories vary little in ranges or412

slopes, elbow angle trajectories have similar ranges with different slopes, and wrist angle trajecto-413

ries have increasingly larger ranges and slope magnitudes (cf. across columns). Given that muscle414

fascicle velocities are related to joint angular velocities, changes in the slopes of joint angles across415

trajectories have large effects on contraction velocities as seen in Figure 1.9. Across these three416
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sample trajectories, angle slopes vary little during the first third of the upstroke phase and, as a417

result, the magnitudes of muscle contractions are similar during that early period. Increasing slope418

values for both the elbow and wrist angles appear to heavily influence the magnitudes of contrac-419

tion velocities, as seen by the remainder of the upstroke phase for sample trajectories 1, 2, and420

3.421

10 cm

Figure 1.8: Endpoint space plots of sample trajectories 1, 2, and 3, overlaid with their 20 most
similar trajectories, respectively, as per eccentric and concentric cost values (gray).

We quantified how similar the 100,000 trajectories were by measuring how well they followed422

a given valid path. We took the sample trajectory 1 shown in Figures 1.7-1.9 as the reference423

trajectory, and calculated the average residual per time step (i.e., Euclidean distance in the sagittal424

plane) between it and each of the remaining 99,999 trajectories. The frequency and cumulative425

histograms of these residuals are shown in Figure 1.10(a). We find that 50% of them have mean426

residuals ≤ 14.60 cm, with a median of 11 cm. By comparison, the sample trajectories 2 and 3427

had mean residuals of 2.18 cm and 5.14 cm, corresponding to the 0.165% and 4.465% cumulative428

percentiles, respectively. Interestingly, even though sample trajectories 2 and 3 are among the 5%429

most similar to sample trajectory 1, their eccentric and concentric velocity costs differ greatly as430

show in Figure 1.7. In fact, even the 100 most similar trajectories to sample trajectory 1 (with431

average residual error per time step values ≤ 1.96 cm) have a fairly wide distribution in both432
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eccentric and concentric costs with nearly four- and two-fold increases in cost ranges, respectively,433

as seen in Figure 1.10(b)-(c).434
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Figure 1.9: Sample trajectories 1, 2, and 3 shown in endpoint space (top) with their corresponding
normalized muscle fascicle velocity profiles and joint angle trajectories (bottom 3 rows). Note that
the dotted lines in the velocity plots indicate ±5 lm,o/s, while dotted lines in the joint angle plots
indicate the allowable range of motion for each joint.
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Figure 1.10: (a) Histogram of the average residual per time step generated when comparing sample
trajectory 1 to all remaining trajectories with cumulative distribution (solid black line) overlaid.
Half of the trajectories had average residual values ≤ 14.60 cm while the mode of this distribution
was 11 cm. (b) Endpoint space plot of the 100 most similar trajectories compared to sample
trajectory 1 (green) as determined by the average residual per time step (≤ 1.96 cm). (c) The
individual distributions (axes overlays) and the joint distribution of these most similar trajectories
(in normalized units lm,o/s).

1.5 Discussion435

It is, of course, undeniable that there are many ways in which one can coordinate joint rotations436

to smoothly and accurately produce a given trajectory of the endpoint of a limb (in this case,437

the hand during a basketball free throw). A first important result from this work is that the time438

histories of muscle fascicle lengths and velocities are not necessarily obvious for the multi-joint,439

multi-muscle limb—and that a given muscle can exhibit both eccentric and concentric contractions440

during a smooth and continuous hand trajectory such as the basketball free throw. The MT length441

changes and velocities are, in fact, specified by the over-determined multi-dimensional matrix-442

vector Eqs. 1.10 - 1.13 that are a function of joint angles and angular velocities, moments arms,443

and link lengths. By assuming stiff tendons, we form an over-determined relationship between444

joint angular velocities and muscle fascicle velocities; shown graphically in Figures 1.4, 1.5, 1.7,445

and 1.9.446
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We selected a few hand trajectories to explore, in detail, the relationships among joint angles447

and angular velocities, muscle fascicle velocity profiles, and hand trajectories. In particular, we448

selected sample hand trajectories 1, 2, and 3 (Figures 1.7, 1.8, 1.9, and 1.10) to make the point449

that there exist hand trajectories that are similar to each other, yet may have very different muscle450

contraction velocities (Figure 1.7). Conversely, having similar muscle contraction velocities does451

not imply that the hand trajectories will be similar (Figure 1.8). The former point is explored452

further in Figure 1.10 by using sample trajectory 1 as a reference. Figure 1.10(a) shows how453

sample trajectory 1 is not an outlier because the median of the residual difference to all other454

99,999 trajectories is lower than the mean of that difference. We then show the 100 most similar455

trajectories to it (Figure 1.10(b)) exhibit a large spread in muscle contraction velocities. While456

we could repeat this analysis with other trajectories as a reference, Figures 1.7-1.10 suffice as457

clear counterexamples to the notion that similarity in hand trajectory implies similarity in muscle458

contraction velocities, and vice versa.459

To produce a given movement trajectory, all muscle activations must be appropriately coordi-460

nated, and afferent feedback from lengthening muscles must be appropriately tuned. Given muscle461

redundancy to produce joint torques, the efferent (outgoing) motor signals producing a limb move-462

ment may vary without changing the limb trajectory. But there is no such redundant relationship463

between limb kinematics and afferent (incoming) sensory signals. As per the over-determined464

nature of Eq. 1.13, a given limb movement fully determines the time history of muscle fascicle465

lengths and velocities and, therefore, the muscle proprioceptive signals that affect stretch reflexes.466

Thus, any muscle that fails to appropriately lengthen (either by failure to modulate or silence467

the stretch reflex, or by inappropriate activation) will disrupt the movement trajectory in some468

way (Sherrington, 1913; Loeb, 1984; Prochazka et al., 1985; Valero-Cuevas, 2016; Valero-Cuevas469

et al., 2015). Some muscles undergoing concentric contractions could, in principle, go slack so470

long as other muscles contribute to drive the limb (Valero-Cuevas et al., 2015). But the timely471

and appropriate modulation of force and afferent sensitivity in muscles which are lengthening is472

critically necessary. Therefore, each movement trajectory will require distinct and time-sensitive473
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neural strategies. Here we present a detailed analysis of kinematic redundancy in light of its con-474

sequences on muscle fascicle lengths and velocities, and by inference, on neural control.475

First, we reiterate that there are different valid hand trajectories (Figure 1.4) that produce a suc-476

cessful basketball free throw. What is less intuitive, and lacked characterization in prior literature,477

is that each valid trajectory can exhibit quite different muscle fascicle velocity profiles—which has478

unavoidable physiological consequences to muscle mechanics and muscle afferentation. Muscle479

afferentation is the physiological term used to describe proprioception that is specific to muscles.480

This involves the afferent (i.e., from the periphery inwards) sensory flow from muscle mechanore-481

ceptors to spinal, subcortical and cortical circuitry, as discussed further below. Our reasonable482

quantification of these consequences via eccentric and concentric costs (Eqs. 1.14 and 1.15) shows483

that valid trajectories are widely distributed and can differ by up to an order of magnitude in this484

cost landscape (Figure 1.6).485

This result alone suffices to revisit our understanding of kinematic redundancy. Kinematic re-486

dundancy is considered a learning and decision-making challenge for the nervous system, which487

must select a particular time history of joint angles and angular velocities from among the many488

possible ones. At first, Bernstein proposed that the problem of kinematic redundancy is solved489

via a 3-stage approach, where initially some kinematic DOFs are ’frozen’ and then gradually re-490

leased as the nervous system learns to control all DOFs (Bernstein, 1967). More recently others491

have appropriately pointed out that kinematic redundancy must be evaluated with respect to the492

dimensionality of the task itself, and not just the number of kinematic DOFs of the limb (e.g.,493

Newell and Vaillancourt, 2001; Ko et al., 2003). Along similar lines, others propose that, given494

the dimensionality of a desired task, kinematic redundancy allows for ’task-irrelevant’ joint angle495

changes and therefore gives rise to a nullspace or uncontrolled manifold for the task (e.g., Scholz496

and Schöner, 1999; Li et al., 2004). Moreover, the over-determined nature of muscle fascicle497

lengths and velocities has been implicated in the dimensionality reduction often seen in the control498

of limb function (Kutch and Valero-Cuevas, 2012; Brock and Valero-Cuevas, 2016). Along more499
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computational lines, others propose that the decision-making challenge inherent to kinematic re-500

dundancy is addressed by the nervous system as an optimization problem (e.g., Loeb et al., 1990;501

Todorov and Jordan, 2002)—where the fitness of each possible movement solution is evaluated502

via a user-specified (and often debatable (Prilutsky, 2000)) cost function—e.g., energy expenditure503

(Crowninshield and Brand, 1981), jerk (Flash and Hogan, 1985), speed-accuracy tradeoff (Fitts,504

1954).505

Our results, however, reveal an important Sherringtonian feature of kinematic redundancy by506

showing that valid trajectories are not intrinsically equivalent. Rather, they are intrinsically dis-507

tinct in their muscle fascicle velocity profiles. This has physiologiocal consequences to muscle508

mechanics and afferentation, and therefore require distinct and time-sensitive neural reflex mod-509

ulation strategies for their accurate, smooth, and repeatable execution (Sherrington, 1913, 1932;510

Loeb, 1984; Prochazka et al., 1985)—independently of any additional metabolic, state-dependent,511

or task-related cost function(s) the user may prefer to consider. In fact, we find that even very512

similar trajectories can have different muscle fascicle velocity profiles (Figures 1.7 and 1.9)3.513

Where does the need for distinct and time-sensitive neural strategies come from? Three papers514

(Loeb, 1984; Prochazka et al., 1985; Duchateau and Enoka, 2016) review the nature of muscle af-515

ferentation and its role during functional tasks. Briefly, separate neural commands control the bulk516

of the muscle (i.e., α-motoneurons), muscle spindle gains (i.e., γ-motoneurons), and stretch reflex517

pathways gains. The stretch reflexes resist muscle fascicle lengthening in a velocity-dependent518

way. Given that a movement trajectory determines the speeds at which muscles must lengthen,519

stretch reflexes must be modulated or silenced to allow such lengthening. Failure to modulate520

or silence the stretch reflex will prevent the desired joint rotations—and thus disrupt the move-521

ment trajectory unless other joint rotations compensate the disruption. Thus, different muscle522

eccentric contraction velocities (i.e., movement trajectories) will require distinct reflex modulation523

3Strictly speaking, the endpoint trajectories of the hand are very similar while their hand orientations, which are
not plotted, may differ given that the hand as a rigid body has three DOFs in the sagittal plane. Nevertheless, by
construction, all trajectories strictly meet the initial and final conditions for hand position and orientation to produce a
successful basketball free throw, as is the case in Bernstein’s hammering example (Bernstein, 1967), see Figure 1.3.
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strategies; and faster muscle fascicle velocities will require appropriately faster and more time-524

critical reflex modulation strategies (Valero-Cuevas, 2016; Valero-Cuevas et al., 2015; Duchateau525

and Enoka, 2016). The different concentric contraction velocities may also require distinct and526

time-sensitive strategies to ensure that muscles do not go slack and cease to produce force, and527

to ensure that the work loops of all muscles contribute appropriately to accomplish the task well528

(Biewener and Daley, 2007). The distinct muscle fascicle velocity profiles for each valid trajectory529

reinforce the need for strict spatio-temporal constraints on the time-history of muscle coordination530

(Rácz and Valero-Cuevas, 2013; Dingwell et al., 2010). Thus, trajectories that produce faster or531

more variable contraction velocities (i.e., higher costs, Figure 1.6) will likely require more precise532

timing of reflex modulation across motoneuron pools; resulting in higher sensitivity to time delays,533

force-length and force-velocity properties, short-range stiffness, excitation/contraction dynamics,534

noise, errors, perturbations, etc.535

This work justifies and enables future research directions by combining the Sherringtonian536

perspective with experimental (An et al., 1983) and analytical (Valero-Cuevas et al., 2015; Valero-537

Cuevas, 2016) demonstrations of the over-determined nature of muscle contraction velocities. This538

neo-Sherringtonian perspective towards kinematic redundancy has profound implications to the539

learning, execution, and rehabilitation of natural movements. For example, it leads to testable hy-540

potheses of why learning to produce accurate, smooth, and repeatable movements takes immense541

amounts of practice, even in typically developing children (Adolph et al., 2012), why so few of542

us can become elite musicians or athletes (Gladwell, 2008), and why rehabilitation requires mass543

practice (Lohse et al., 2014). Future experiments and computational simulations can also begin544

to tie neural plasticity and learning rates to the specific characteristics of a smooth movement.545

For example, do humans favor trajectories producing lower and less variable contraction veloci-546

ties? By extension, such an approach can help us understand how disruption of reflex mechanisms547

could lead to pathological movements such as spasticity, tremor and clonus (Zehr and Stein, 1999;548

Hultborn, 2006; Hidler and Rymer, 1999; Laine et al., 2016) in neurological conditions including549

cerebral palsy, stroke, Parkinsons disease and spinal cord injury (Sanger et al., 2010; De Gooijer-550
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Van De Groep et al., 2016; Phadke et al., 2016; Agapaki et al., 2016). Similarly, perhaps one can551

design arm movement trajectories that are more effective for rehabilitation because they require552

less time-critical modulation of stretch reflexes.553

We conclude that moving smoothly, repeatedly, and well is neither a redundant nor a forgiving554

problem. It requires confronting and overcoming the over-determined problem of appropriately555

regulating α- and γ-motoneuron activity in a task-specific and time-critical way across all muscles556

in the context of the nonlinearities of neurons, muscles, proprioceptors, and limb mechanics.557
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Chapter 2558

Tendon elasticity decouples kinematic states from actuator states559

2.1 Abstract560

Biological tendons deform nonlinearly with tension (Ker, 1981; Zajac, 1989; Shadwick, 1990;561

Brown et al., 1996). Interestingly, when a musculoskeletal system is made to follow the same limb562

kinematics with different control signals, muscle fascicle and musculotendon (MT) behavior could563

deviate by different amounts. In these under-determined systems, in order for different tendon564

tensions to generate the same joint rotations they must (1) share a particular solution to satisfy565

the dynamics, and (2) have a unique, homogeneous solution that has no effect on the dynamics.566

As such, this homogeneous solution is said to lie in the nullspace of the joint dynamics. And567

even though tendon tensions that lie in the nullspace have no additional effect on the kinematic568

states, that does not mean that they lie in the nullspace of the actuators’ dynamics. To explore how569

different choices in tendon tensions affect the relationship between joint kinematics and muscle570

mechanics, we simulated a simple pendulum actuated by two Hill-type muscles that pull on ten-571

dons with nonlinear stiffness. By applying one input constraint from an integrator backstepping572

algorithm to ensure that the pendulum follows a reference trajectory and by systematically vary-573

ing the second constraint, we effectively sweep the nullspace of the kinematics. This allows us to574

demonstrate that tension-specific tendon deformation functionally and nonlinearly decouples the575

relationship between MT and muscle behaviors. Additionally, we find that the choice of initial576

tension (i.e., the pretensioning) will affect the initial muscle fascicle length, which also contributes577

to the amount by which MT and muscle decouple because of the muscle’s force-length property.578

We conclude that it is not possible to accurately predict the behavior of muscle fascicles by limb579

kinematics.580
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2.2 Introduction581

The previous chapter’s experiment relied on the assumption that tendons are completely inexten-582

sible. This assumption allowed for the over-determined relationship between joint kinematics and583

musculotendon (MT) to be extended to predict muscle mechanics. And while these approximations584

allowed for valuable inferences to be made regarding the consequence of kinematic redundancy on585

MT behavior, it does not fully capture the relationship between muscle and tendon. Therefore,586

the next logical step would be to introduce compliant tendons into a MT model. By doing so, the587

purely prescriptive model described in Chapter 1 (i.e., one where muscle fascicle lengths and veloc-588

ities are over-determined by the prescribed joint kinematics) becomes a fully dynamical model that589

requires control strategies to resolve muscle redundancy (i.e., joint kinematics are now a under-590

determined function of tendon tensions). The simple inclusion of compliant tendons changes the591

problem completely— we must now consider redundancy in the control space or its nullspace.592
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Figure 2.1: Example of the nullspace of an equation in R2 and its relationship to a particular solu-
tion (red) given by some cost function (e.g., minimizing the Euclidean norm) and the homogeneous
solution (blue) which lies in the nullspace (N ) of the equation (grey)

As an example to better visualize the nullspace, consider the following under-determined equa-

tion:

x1 + x2 = 4 (2.1)

There are an infinite number of ways to solve this equation, but suppose we choose to solve this593

equation by minimizing the Euclidean norm of ~x yielding the particular solution ~xP = (2, 2)T594

(Figure 2.1, red). But if we relax this restriction that the norm be minimized, we can find additional595

solutions like ~x = (1, 3). This general solution can be rewritten as the sum of the particular solution596

and the homogeneous solution (i.e., ~x = ~xP + ~xH = (2, 2) + (−1, 1)). Notice that the left hand597

side of Eq. 2.1 evaluated at the homogeneous solution is zero, thus the addition of this solution to598

the particular solution still satisfies Eq. 2.1. This homogeneous solution (and any other that satisfy599

x1 + x2 = 0 for that matter) are said to lie in the nullspace of Eq. 2.1.600
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Extending this example to more complex, tendon-driven systems, one way to resolve the re-601

dundancy in the control signal is by optimizing some cost function to find a particular (single) so-602

lution. Physiologists often utilize this optimal control strategy to find control inputs that performs603

the desired task while minimizing cost functions like total input energy (Scott, 2004; Todorov and604

Jordan, 2002). These optimization techniques are widely used and can provide interesting infor-605

mation about motor control, but the cost functions are often not complete enough to fully describe606

physiological movement (Loeb, 2012).607

The other issue with this approach is that we find at most one solution for every cost func-608

tion/optimization so comparing different input strategies for the same movement will require differ-609

ent cost functions. Alternatively, if we consider inputs that occupy different areas of the nullspace,610

we can compare the entire cost landscape for identical movements and observe what happens when611

movements are “sub-optimal”. These nullspace strategies are kinematically equivalent as they pro-612

duce no additional net joint torques other than those needed for the desired joint task/movement613

(much like a game of “tug of war” where no movement occurs when both sides pull with the614

same force but will occur when one side pulls harder than the other). To do this, we will need to615

constrain the inputs to those that produce the desired movement and then sample the nullspace.616

Here we consider the simplest redundant tendon-driven system whereby a single degree of free-617

dom (DOF) pendulum is controlled by two Hill-type muscle-like actuators that pull on compliant618

tendons. By using an integrator backstepping control technique, we find a single constraint on the619

input when the pendulum angle is made to follow a reference trajectory (e.g., a sinusoidal task).620

This single constraint reduces the dimensionality input space from a plane to a line in R2. This621

line corresponds to the nullspace of the task and by systematically sampling along this line, we622

find different control strategies that produce the same joint movement so that we can compare how623

compliant tendons affect the relationship between muscle mechanics and MT behavior.624
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2.3 Material and Methods625

2.3.1 Pendulum Dynamics626

To understand the affect that compliant tendons have on the relationship between MT and muscle627

behavior, we will explore the simplest redundant tendon-driven system; a single pendulum con-628

trolled by two muscle-like actuators that pull on compliant tendons (Figure 2.2). The dynamics629

that govern the pendulum angle were derived using an Euler-Lagrange equation (Eqs. 2.2–2.4).630

L = T − V

=
1

2
ML2

CM θ̇
2 +MgLCM cos(θ)

(2.2a)

(2.2b)
631

632

d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= r1(θ)fT,1 − r2(θ)fT,2

MLCM θ̈ = −MgLCM sin(θ) + r1(θ)fT,1 − r2(θ)fT,2

(2.3a)

(2.3b)

633

θ̈ = − g

LCM
sin(θ) +

1

ML2
CM

(
r1(θ)fT,1 + r2(θ)fT,2

)
(2.4)

Note that M and LCM correspond to the mass and center of gravity of the pendulum (Table 2.1),634

g is the gravitational constant, and fT,i and ri are the tendon forces and the moment arms that635

each “muscle” acts on the pendulum with (∀i ∈ {1, 2}). These (and all subsequent) parameters636

were chosen to simulate a human forearm actuated solely by the antagonist pair, biceps brachii and637

triceps brachii. For simplicity, the many heads of these muscles were considered to act in parallel638

as a single unit, and as such the parameters of the individual heads (when available) were lumped639

together to represent only two muscles; an agonist and an antagonist. The moment arms for these640

MTs are functions of the pendulum angle and were approximated by the functions provided by641

Ramsay et al. (2009) for the biceps and triceps muscles (Figure 2.3).642
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Plant Parameters

Pendulum mass, M (kg) 1.6

Center of Mass, LCM (m) 0.30

Table 2.1: Pendulum parameters. Values were chosen to approximate the dynamics of a human
forearm.
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Figure 2.2: Pendulum controlled by two Hill-type muscle-like actuators that pull on nonlinearly
compliant tendons to produce tensions (fT,i) that produce torques at the joint through their moment
arms (ri).
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Figure 2.3: Posture dependent moment arm functions (ri) for “muscle 1” (biceps) and “muscle
2” (triceps) provided by Ramsay et al. (2009). The elbow angle is measured from the anatomical
position and shoulder angle is assumed to be constant.
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2.3.2 Tendon Tension Dynamics643

We then derived differential equations for the tension on the tendons by manipulating the tendon

tension-deformation equation derived in Brown et al. (1996) (Eqs. 2.5–2.6).

fT,i = fmax,i · cTkT ln

{
exp

[
lT,i/lT,o,i − LTr

kT

]
+ 1

}
(from Brown et al. (1996)) (2.5)

ḟT,i =
fmax,i · cT

lT,o,i

 exp
[
lT,i/lT,o,i−LTr

kT

]
exp

[
lT,i/lT,o,i−LTr

kT

]
+ 1

 l̇T,i

=
fmax,i · cT

lT,o,i

exp
[
lT,i/lT,o,i−LTr

kT

]
+ 1− 1

exp
[
lT,i/lT,o,i−LTr

kT

]
+ 1

 l̇T,i

=
fmax,i · cT

lT,o,i

1− 1

exp
[
lT,i/lT,o,i−LTr

kT

]
+ 1

 l̇T,i

=
fmax,i · cT

lT,o,i

(
1− exp

(
−fT,i

fmax,i · cTkT

))[
vMT,i(θ, θ̇)− l̇m,i cos(ρi)

]

= KT,i(fT,i)

[
vMT,i(θ, θ̇)− l̇m,i cos(ρi)

]

(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.6e)

where fmax,i and lT,o,i represent the maximum isometric tetanic muscle force and the optimal ten-644

don length, respectively, and the parameters cT , kT , and LTr are related to the slope, radius of cur-645

vature, and lateral shift of the normalized tendon tension-deformation relationship, respectively4.646

Even though an explicit function exists to express tendon tension as a function of tendon defor-647

mation (which can be rewritten as the difference between MT length and muscle fascicle length648

scaled by its pennation angle, ρi), we benefit from the recovered differential equation in Eq. 2.6d649

because (1) it is computationally easier to calculate the velocity of a MT instead of its length by650

4For more information on the meaning of these parameters, the reader is pointed to the Methods section of Chapter
3 where they are explicitly derived or to Brown et al. (1996) where they were originally formulated.
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the relationship between moment arms and MT excursions (see Chapter 1, Eq. 1.13) and (2) it651

removes initial MT length and LTr as a floating parameters. Table 2.2 lists the parameters used.652

Tendon Parameters

Parameter “Muscle 1”

(Biceps)

“Muscle 2”

(Triceps)

Maximum isometric tetanic muscle force, fmax,i (N) 1059.9 2047.1

Muscle pennation angle, ρi (deg) 0 12

Optimal tendon length, lT,o,i (m) 0.272 0.143

Normalized asymptotic stiffness, cT (unitless) 27.8 27.8

Tendon radius of curvature constant, kT (unitless) 0.0047 0.0047

Table 2.2: Musculotendon (MT) parameters used in the tendon tension dynamics (Eq. 2.6d). Max-
imum isometric tetanic muscle force (fmax,i), muscle pennation angle (ρi), and optimal tendon
length (lT,o,i) were taken from reported values for the biceps and triceps MTs (combining infor-
mation about different heads of the muscle as necessary, Holzbaur et al., 2005). Tendon shape
coefficients (cT and kT ) were taken from Brown et al. (1996).

2.3.3 “Muscle” Dynamics653

The muscle-like actuators were modelled after the Hill-type muscle model (Eq. 2.7;, Hill, 1953;654

Brown et al., 1996; Brown and Loeb, 1999; Brown et al., 1999; Song et al., 2008a,b) to include655

a force-length relationship (fL,i) and force-velocity relationship (fV,i) to scale the input (i.e., the656
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“activation”, ui) as well as a parallel elastic element (FPE,i) and negligible damping (bm,i).657

l̈m,i =
1

mi

(
fT,i cos(ρi)−

[
fL,i(lm,i) · fV,i

(
lm,i, l̇m,i

)
· ui

+ FPE1,i

(
lm,i, l̇m,i

)
+ bm,il̇m,i

]
fmax,i · cos2(ρi)

)
+

(l̇m,i)
2 tan2(ρi)

lm,i

(2.7)

Note thatmi represents the muscle mass. The equations for the muscle force-length, force-velocity658

relationships and parallel elastic force (as well as any parameter values) were taken from Song et al.659

(2008b) and have been reproduced below. Please see Table 2.3, for complete list of parameters660

used.661

fL,i(lm,i) = exp

(
−
∣∣∣∣(lm,i/lm,o,i)β − 1

ω

∣∣∣∣ρ) ; (β, ρ, ω > 0) (2.8)

fV,i

(
lm,i, l̇m,i

)
=



Vmax − l̇m,i
lm,o,i

Vmax +
(
cv0 + cv1

lm,i
lm,o,i

)
· l̇m,i
lm,o,i

(l̇m,i ≤ 0)

bv −
(
av0 + av1

(
lm,i
lm,o,i

)
+ av2

(
lm,i
lm,o,i

)2
)

l̇m,i
lm,o,i

bv +
l̇m,i
lm,o,i

(l̇m,i > 0)

(2.9a)

(2.9b)

FLV,i

(
lm,i, l̇m,i

)
= fL,i(lm,i) · fV,i

(
lm,i, l̇m,i

)
(2.10)

FPE1,i

(
lm,i, l̇m,i

)
= c1k1ln

{
exp

[(
lm,i

lm,o,i · L̄max
CE,i

− Lr1

)
/k1

]
+ 1

}
+ η

(
l̇m,i

lm,o,i

)
(2.11)
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Muscle Parameters

Parameter “Muscle 1”

(Biceps)

“Muscle 2”

(Triceps)

Muscle mass, mi (kg) 0.164 0.325

Optimal muscle fascicle length, lm,o,i (m) 0.116 0.134

Muscle damping, bm,i (kg/s) 0.01 0.01

Table 2.3: Muscle parameters used by Eq. 2.7. Muscle masses (mi) and optimal muscle fascicle
lengths (lm,o,i) were taken from reported values for the biceps and triceps glsplMT (combining
information about different heads of the muscle as necessary, Holzbaur et al., 2005). Muscle
damping (bm,i) was chosen to be small.

Coefficients for Eqs. 2.8-2.11

fL Coefficients β ω ρ

1.55 0.75 2.12

fV Coefficients (concentric) Vmax cv0 cv1

-9.15 -5.78 9.18

fV Coefficients (eccentric) av0 av1 av2 bv

-1.53 0 0 0.69

FPE1 Coefficients c1 k1 L1
r η L̄max

CE

23.0 0.046 1.17 0.01 1.2

Table 2.4: Muscle parameters used by Eqs. 2.8–2.11. All coefficients are taken from Song et al.
(2008b) from fast twitch muscles, except for L̄max

CE , which was estimated as a floating parameter.
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2.3.4 Integrator Backstepping Constraint662

In order to derive the integrator backstepping constraint, we first rewrite these dynamical equations

in its state space representation (Eq. 2.13) where ~x = (x1, ..., x8)T is defined by Eq. 2.12.

~x =
(
θ, θ̇, fT,1, fT,2, lm,1, lm,2, l̇m,1, l̇m,2

)T
(2.12)

~̇x =



ẋ1 = x2 = f1(~x)

ẋ2 = c1 sinx1 + c2r1(x1)x3 + c2r2(x1)x4 = f2(~x)

ẋ3 = KT,1(x3) (vMT,1(x1, x2)− c3x7) = f3(~x)

ẋ4 = KT,2(x4) (vMT,2(x1, x2)− c4x8) = f4(~x)

ẋ5 = x7 = f5(~x)

ẋ6 = x8 = f6(~x)

ẋ7 = c5x3 − c6FPE,1(x5, x7)− c7x7 +
c8x

2
7

x5

− c6FLV,1(x5, x7)u1 = f7(~x, ~u)

ẋ8 = c9x4 − c10FPE,2(x6, x8)− c11x8 +
c12x

2
8

x6

− c10FLV,2(x6, x8)u2 = f8(~x, ~u)

(2.13a)

(2.13b)

(2.13c)

(2.13d)

(2.13e)

(2.13f)

(2.13g)

(2.13h)

The constants (ci’s) were assigned for convenience and are defined in Eqs. 2.14–2.25.663
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c1 = −g/LCM (2.14)

c2 = 1/ML2
CM (2.15)

c3 = cos(ρ1) (2.16)

c4 = cos(ρ2) (2.17)

c5 =
cos(ρ1)

m1

(2.18)

c6 = fmax,1
cos2(ρ1)

m1

(2.19)

c7 = fmax,1
bm,1 · cos2(ρ1)

m1 · lm,o,1
(2.20)

c8 = tan2(ρ1) (2.21)

c9 =
cos(ρ2)

m2

(2.22)

c10 = fmax,2
cos2(ρ2)

m2

(2.23)

c11 = fmax,2
bm,2 · cos2(ρ2)

m2 · lm,o,2
(2.24)

c12 = tan2(ρ2) (2.25)

Consider the output of the system to be the joint angle (x1, Eq. 2.26) which will be made664

to follow some reference trajectory (θr). Then the deviation of the joint angle from the desired665

reference trajectory can be defined by Eq. 2.27.666

y = x1 (2.26)

z1 = θr − x1 (2.27)
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ż1 = θ̇r − ẋ1

= θ̇r − x2

(2.28a)

(2.28b)

Next, we propose the Lyapunov function candidate:667

V1 =
1

2
z2

1 (2.29)

such that,668

V̇1 = z1ż1

= z1(θ̇r − x2)

(2.30)

To address the stability of this difference variable, we must show that V̇1 is negative definite (V̇1 < 0669

for all z1 6= 0 and V̇1(0) = 0) so that for all z1 6= 0 the difference variable z1 will be decreasing670

for all time. This can be done by considering the state x2 to be a “virtual input” to the upstream671

state x1. But because we do not have direct control over what x2 will do, we define the value that672

we would like it to approach (α1, Eq. 2.31). By choosing k1 to be greater than 0, V̇1 is negative673

definite in z1.674

x2 → α1 ≡ θ̇r + k1z1; k1 > 0 (2.31)

Similar to what was done when x1 was tracking θr, we define a second difference variable z2675

(Eq. 2.32), suggest a Lyapunov function (Eq. 2.34), and find what can make its time derivative676
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(Eq. 2.35) negative definite to ensure the difference always approaches zero.677

z2 = x2 − α1 (2.32)

ż2 = ẋ2 − α̇1

= f2(~x)− α̇1

= c1 sinx1 + c2r1(x1)x3 + c2r2(x1)x4 − α̇1

(2.33a)

(2.33b)

(2.33c)

V2 = V1 +
1

2
z2

2 (2.34)

V̇2 = V̇1 + z2ż2

= z1(ṙ − α1 − z2) + z2(c1 sinx1 + c2r1(x1)x3 + c2r2(x1)x4 − α̇1)

= z1(ṙ − α1) + z2(c1 sinx1 + c2r1(x1)x3 + c2r2(x1)x4 − α̇1 − z1)

(2.35a)

(2.35b)

(2.35c)

By definition of α1 (Eq. 2.31), the first term in Eq. 2.35c is negative definite. Therefore V̇2 is678

negative definite (and the difference values z1 and z2 are guaranteed to decay to zero) if downstream679

states x3 and x4 are made to follow a new reference value (α2, Eq. 2.36).680

c2r1(x1)x3 + c2r2(x1)x4 → α2 ≡ α̇1 + z1 − c1 sinx1 − k2z2 (2.36)

Moving down the chain of states, this process is repeated again another difference variable (z3,681
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Eq. 2.37).682

z3 = c2r1(x1)x3 + c2r2(x1)x4 − α2 (2.37)

ż3 = c2r
′
1(x1)ẋ1x3 + c2r1(x1)ẋ3 + c2r

′
2(x1)ẋ1x4 + c2r2(x1)ẋ4 − α̇2

= c2r
′
1(x1)f1(~x)x3 + c2r1(x1)f3(~x) + c2r

′
2(x1)f1(~x)x4 + c2r2(x1)f4(~x)− α̇2

= c2r
′
1(x1)f1(~x)x3 + c2r

′
2(x1)f1(~x)x4 − α̇2

+ c2r1(x1)[KT,1(x3)vMT,1(x1, x2)− c3KT,1(x3)x7]

+ c2r2(x1)[KT,2(x4)vMT,2(x1, x2)− c4KT,2(x4)x8]

= c2r
′
1(x1)f1(~x)x3 + c2r

′
2(x1)f1(~x)x4 − α̇2

+ c2r1(x1)KT,1(x3)vMT,1(x1, x2) + c2r2(x1)KT,2(x4)vMT,2(x1, x2)

− c2c3r1(x1)KT,1(x3)x7 − c2c4r2(x1)KT,2(x4)x8

(2.38a)

V3 = V2 +
1

2
z2

3 (2.39)

V̇3 = V̇2 + z3ż3

= z1(ṙ − α1) + z2(c1 sinx1 − α̇1 − z1 + α2 + z3) + z3ż3

= z1(ṙ − α1) + z2(c1 sinx1 − α̇1 − z1 + α2) + z3(z2 + ż3)

(2.40a)

(2.40b)

(2.40c)

By the definitions of α1 and α2, the first two terms of Eq. 2.40c are negative definite. Therefore,683

the difference variables will converge to zero if,684

z2 + ż3 = −k3z3; k3 > 0 (2.41)
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This can be accomplished if x7 and x8 are made to follow a new reference value (α3, Eqs. 2.42-685

2.43).686

c2c3r1(x1)KT,1(x3)x7 + c2c4r2(x1)KT,2(x4)x8 → α3 (2.42)

α3 ≡ k3z3 + z2 − α̇2 + c2r
′
1(x1)f1(~x)x3 + c2r

′
2(x1)f1(~x)x4

+ c2r1(x1)KT,1(x3)vMT,1(x1, x2) + c2r2(x1)KT,2(x4)vMT,2(x1, x2) (2.43)

This process is completed one more time to reach the input level of the state space. We intro-687

duce the last difference variable, z4, Lyapunov function candidate, and the constraint on the inputs,688

~u that will guarantee all difference variables (z1, ...z4) asymptotically converge to zero producing689

stable reference tracking of the original trajectory, θr.690

z4 = c2c3r1(x1)KT,1(x3)x7 + c2c4r2(x1)KT,2(x4)x8 − α3 (2.44)
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ż4 = c2c3r
′
1(x1)ẋ1KT,1(x3)x7 + c2c3r1(x1)K ′T,1(x3)ẋ3x7

+ c2c3r1(x1)KT,1(x3)ẋ7 + c2c4r
′
2(x1)ẋ1KT,2(x4)x8

+ c2c4r2(x1)K ′T,2(x4)ẋ4x8 + c2c4r2(x1)KT,2(x4)ẋ8 − α̇3

= c2c3r
′
1(x1)f1(~x)KT,1(x3)x7 + c2c3r1(x1)K ′T,1(x3)f3(~x)x7

+ c2c3r1(x1)KT,1(x3)f7(~x) + c2c4r
′
2(x1)f1(~x)KT,2(x4)x8

+ c2c4r2(x1)K ′T,2(x4)f4(~x)x8 + c2c4r2(x1)KT,2(x4)f8(~x)− α̇3

= c2c3r
′
1(x1)f1(~x)KT,1(x3)x7 + c2c3r1(x1)K ′T,1(x3)f3(~x)x7

+ c2c4r
′
2(x1)f1(~x)KT,2(x4)x8 + c2c4r2(x1)K ′T,2(x4)f4(~x)x8 − α̇3

+ c2c3r1(x1)KT,1(x3)
[
c5x3 − c6FPE,1(x5, x7)− c7x7

+
c8x

2
7

x5

− c6FLV,1(x5, x7)u1

]
+ c2c4r2(x1)KT,2(x4)

[
c9x4 − c10FPE,2(x6, x8)− c11x8

+
c12x

2
8

x6

− c10FLV,2(x6, x8)u2

]
= c2c3r

′
1(x1)f1(~x)KT,1(x3)x7 + c2c3r1(x1)K ′T,1(x3)f3(~x)x7

+ c2c4r
′
2(x1)f1(~x)KT,2(x4)x8 + c2c4r2(x1)K ′T,2(x4)f4(~x)x8 − α̇3

+ c2c3r1(x1)KT,1(x3)

[
c5x3 − c6FPE,1(x5, x7)− c7x7 +

c8x
2
7

x5

]
+ c2c4r2(x1)KT,2(x4)

[
c9x4 − c10FPE,2(x6, x8)− c11x8 +

c12x
2
8

x6

]
− c2c3c6r1(x1)KT,1(x3)FLV,1(x5, x7)u1

− c2c4c10r2(x1)KT,2(x4)FLV,2(x6, x8)u2

(2.45a)

(2.45b)

(2.45c)

(2.45d)

V4 = V3 +
1

2
z2

4 (2.46)
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Such that,691

V̇4 = V̇3 + z4ż4

= z1(ṙ − α1) + z2(c1 sinx1 − α̇1 − z1 + α2)

+ z3

(
z2 − α̇2 + c2r

′
1(x1)f1(~x)x3 + c2r

′
2(x1)f1(~x)x4

+ c2r1(x1)KT,1(x3)vMT,1(x1, x2)− z4

+ c2r2(x1)KT,2(x4)vMT,2(x1, x2)− α3

)
+ z4ż4

= z1(ṙ − α1) + z2(c1 sinx1 − α̇1 − z1 + α2)

+ z3

(
z2 − α̇2 + c2r

′
1(x1)f1(~x)x3 + c2r

′
2(x1)f1(~x)x4

+ c2r1(x1)KT,1(x3)vMT,1(x1, x2)

+ c2r2(x1)KT,2(x4)vMT,2(x1, x2)− α3

)
+ z4(ż4 − z3)

(2.47a)

(2.47b)

(2.47c)

By the definitions of α1, α2, and α3, the first three terms of Eq. 2.47c are negative definite.692

Therefore, stability of the entire system (from the asymptotic stability for all zi) can be obtained if,693

ż4 − z3 = −k4z4; k4 > 0 (2.48)

which creates the constraint on the input given by Eq. 2.49.694
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c2c3c6r1(x1)KT,1(x3)FLV,1(x5, x7)u1 +

c2c4c10r2(x1)KT,2(x4)FLV,2(x6, x8)u2 = c2c3r
′
1(x1)f1(~x)KT,1(x3)x7 (2.49)

+ c2c3r1(x1)K ′T,1(x3)f3(~x)x7

+ c2c4r
′
2(x1)f1(~x)KT,2(x4)x8

+ c2c4r2(x1)K ′T,2(x4)f4(~x)x8

+ c2c3c5r1(x1)KT,1(x3)x3

− c2c3c6r1(x1)KT,1(x3)FPE,1(x5, x7)

− c2c3c7r1(x1)KT,1(x3)x7

+ c2c3c8r1(x1)KT,1(x3)
x2

7

x5

+ c2c4c9r2(x1)KT,2(x4)x4

− c2c4c10r2(x1)KT,2(x4)FPE,2(x6, x8)

− c2c4c11r2(x1)KT,2(x4)x8

+ c2c4c12r2(x1)KT,2(x4)
x2

8

x6

− α̇3 − z3 + k4z4

This equation produces one equation to constrain two inputs. In order to resolve the redundancy695

in this system, another constraint must be provided. By forcing the pendulum to follow a simple696

1 Hz sinusoidal reference trajectory (θr(t) = 7.5 cos(2πt) + 90 in degrees) with this integrator697

backstepping constraint and by choosing one of the input signals (u1) to be a 1 Hz signal with698

variable amplitude, offset, and/or phase shift, it is possible to systematically sample the nullspace699
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of this redundant system (Figure 2.4). This choice of “muscle activations” may not be exactly what700

Nature would choose and is generally sub-optimal by definition for most cost functions, but this701

control example resolves redundancy in a systematic way to explore the effect of “sub-optimal”702

movement commands like these have on how the resulting muscle mechanics relate to the MT703

behavior with respect to the induced tendon tensions.704
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Figure 2.4: Example of the integrator backstepping approach to sampling the nullspace of a com-
pliant tendon-driven system (A,B), made to follow a reference trajectory (C), by prescribing the
activation of one actuator (D). The resulting states are shown in the bottom panel (E).

Lastly, it is important to discuss how these simulations are initialized. As with any forward in-705

tegration problem, the initial value is critical for the behavior of the system. This is especially im-706

portant for systems with muscle-like actuators because the choice of initial muscle fascicle length707

and initial muscle activation will be influenced by the level of pretensioning in the system which708

is, by definition, redundant. That is to say when the pendulum begins from rest (i.e., θ̈ = θ̇ = 0),709

there are an infinite number of tendon forces that produce the net joint torque needed to negate the710

gravitational torque (Eq. 2.50), implying that there are an infinite number of valid initial muscle711

fascicle lengths and activations. If we assume that the muscle states are also in equilibrium (i.e.,712

l̈m,i = l̇m,i = 0), there (intuitively) exists an explicit relationship between the initial activation,713
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the amount of pretensioning on the tendon, and the initial muscle fascicle length (Eqs. 2.51–2.52).714

For initial muscle fascicle lengths near the optimal length, the range of initial activations that715

produces the initial equilibrium tendon tension is quite small (near zero slope in Figure 2.5 when716

lm,i ≈ lm,o,i). However, when the initial muscle fascicle lengths becomes smaller (lm,i < lm,o,i), the717

muscle moves down the ascending curve of its force-length relationship (FL) which dominates the718

denominator thereby requiring larger initial muscle activations to produce the same initial tendon719

tension. Alternatively, when the muscle becomes increasingly stretched (lm,i > lm,o,i), the passive720

elasticity of the muscle dominates (FPE1), requiring less initial muscle activation to produce the721

same initial tendon tension.722

g

LCM
sin (θ(to)) = r1(θ(to))fT,1(to)− r2(θ(to))fT,2(to) (2.50)

fT,i(to) = fmax,i cos(ρi)

[
fL,i
(
lm,i(to)

)
ui(to) + FPE1

(
lm,i(to), 0

)]
(2.51)

u(to) =

fT,i(to)

fmax,i cos(ρi)
− FPE1

(
lm,i(to), 0

)
fL,i
(
lm,i(to)

) (2.52)
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Figure 2.5: Relationship between initial muscle fascicle lengths and initial muscle activations for
a given initial equilibrium tendon tension. Note that for initial muscle fascicle lengths near the
optimal muscle fascicle length the range of compatible initial activations is quite small. However,
when the muscle fascicle length becomes smaller (lm,i < lm,o,i), the muscle is on the descend-
ing curve of its force-length relationship (FL) which dominates the denominator causing larger
required activations to produce the same tendon tension. Alternatively, when the muscle becomes
increasingly stretched (lm,i > lm,o,i), the passive elasticity of the muscle dominates (FPE1), requir-
ing less muscle activation to produce the same initial tendon tension.

The previous chapter compared similar movements to understand the effect that kinematic723

redundancy has on MT behavior. By introducing the dynamics of tendon and a controller into724

the problem, we can now compare identical movements to see how changes in pretensioning or725

activation levels alters the relationship between MT and muscle fascicles. To this end, we will726

perform tasks where either the initial tensions or the initial muscle fascicle lengths are fixed while727

systematically changing the prescribed input signal (u1).728
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2.4 Results729

2.4.1 Fixed Initial Muscle Fascicle Lengths730

To determine the effect, if any, the level of pretensioning has on the relationship between MT731

and muscle behavior, a 15◦ sinusoidal joint movement simulation was performed where the initial732

muscle fascicle lengths were held constant while the initial tensions were varied. To minimize733

integration errors associated with transitioning from (near) rest conditions to a continuously differ-734

entiable sinusoidal reference trajectory, the movement was chosen to begin in the flexed position735

(97.5◦) and follow a cosine trajectory (extending down to 82.5◦ before returning to the flexed posi-736

tion). As such, it was reasonably determined from the size of their respective moment arms and the737

amplitude of the movement that the initial muscle fascicle lengths should be slightly shortened for738

muscle 1 (the flexor, 0.95 lm,o,1) and lengthened muscle 2 (the extensor, 1.025 lm,o,2). Initial tendon739

tensions were chosen by selecting 10 equidistant points along the initial equilibrium constraint (Eq.740

2.50) subject to 0.15fmax,i ≤ fT,i ≤ 0.5fmax,i for i ∈ {1, 2}. From Figure 2.5 we expect that for a741

fixed initial muscle fascicle length, increasing initial tendon tension will increase the resulting ini-742

tial muscle activation. Figure 2.6 shows the resulting states for all 10 initial tendon tension settings743

while Figure 2.7 shows the performances of the controller of all 10 trials (i.e., θr(t)− θ). The con-744

trol errors for these 10 trials are (i) very small (≤ 0.33◦) and (ii) consistent across different choices745

of initial tendon tension (i.e., pretensioning does not affect the performance of the controller).746
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Figure 2.6: Sweeping tendon pretensioning levels. For 10 different baseline tensions an integrator
backstepping controller was used to force a pendulum controlled by two muscle-like actuators that
pull on compliant tendons to follow a sinusoidal trajectory. For this simulation, the initial muscle
fascicle lengths were fixed for each trial while the initial tendon tensions were selected such that
they satisfy Eq. 2.50 and 0.15fmax,i ≤ fT,i ≤ 0.5fmax,i for i ∈ {1, 2}. Muscle lengths and
velocities have been normalized by their respective optimal muscle fascicle lengths (lm,o,i).
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Figure 2.7: Error between reference trajectory (θr(t)) and the actual joint angle (θ) (controlled via
an integrator backstepping approach) when pretensioning is systematically varied. All 10 trials
are superimposed on top of one another, so it is clear that the performance was not affected by
the choice of initial tendon tension. For this simulation, initial muscle fascicle lengths were fixed
while the initial tendon tensions were selected such that they satisfy Eq. 2.50 and 0.15fmax,i ≤
fT,i ≤ 0.5fmax,i for i ∈ {1, 2}.

Figure 2.8 compares the MT velocities to muscle fascicle velocities normalized to the optimal747

muscle fascicle length. Previous work equated these values but ignored the effect of compliant ten-748

dons and the pennation angle of the muscle. The error between these two value (Figure 2.8 right)749

shows that these values not only differ but also that the pretensioning as well as the time history of750

tendon tension affect this difference. Interestingly, approximating muscle fascicle velocity as MT751

velocity incurs larger errors for higher pretensioning for muscle 1, while the opposite is seen in752

muscle 2. This may be due to the effects of gravity as muscle 1 must compete with the additional753

gravitational torques.754
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Figure 2.8: Comparing normalized muscle fascicle velocities to the MT velocities associated with
the movement (normalized by optimal muscle fascicle lengths) for muscles 1 (blue) and 2 (red)
for 10 trials with different levels of pretensioning. The error between these two measurements is
explicitly plotted on the right. It is interesting that increasing the level of pretensioning (and as
a result, the average amount of tension on each tendon) appears to increase the error for muscle
1, but decreases the error for muscle 2. This may be due to the effects of muscle 1 overcoming
the additional gravitational torque to produce the movement. Regardless, the assumption that MT
velocity can be used to approximate muscle fascicle velocity may incur tension and muscle specific
errors.

We extend this analysis to the assumption that MT excursions (i.e., change in MT length) can755

approximate muscle fascicle length changes (Figure 2.9). Consistent with the data shown in Figure756

2.8, we see an overestimate of the magnitude of muscle fascicle length change when there is high757

pretensioning in muscle 1, but also when there is low pretensioning in muscle 2. If we plot the758

mean absolute error of the comparison between MT excursion and muscle fascicle length change759

(normalized by optimal muscle fascicle length), we see these trends more clearly (Figure 2.10).760

This relationship does not appear to be linear, but does appear to be well defined, implying that761
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there may exist an explicit form for the difference between MT and muscle behavior.762
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Figure 2.9: Comparing normalized muscle fascicle length changes (with respect to the initial mus-
cle fascicle length) to the MT excursions (i.e., length changes) associated with the movement
(normalized by optimal muscle fascicle lengths) for muscles 1 (blue) and 2 (red) for 10 trials with
different levels of pretensioning. The error between these two measurements is explicitly plotted
on the right. Consistent with the data seen in Figure 2.8, increasing the level of pretensioning
(and as a result, the average amount of tension on each tendon) appears to increase the magnitude
of the error for muscle 1, but decreases the the magnitude of the error for muscle 2. This may
be due to the effects of muscle 1 overcoming the additional gravitational torque to produce the
movement. Regardless, the assumption that MT excursions can be used to approximate muscle
fascicle length changes (and by extension, muscle fascicle lengths themselves) may incur tension
and muscle specific errors.
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Figure 2.10: Plotting the mean absolute error between the (ground truth) muscle fascicle length
changes and the MT excursions (expressed as a percentage of the optimal muscle fascicle length)
as a function of the level of pretensioning on the tendons. These results are consistent with the
trends seen in Figures 2.8 & 2.9 where we see a positive relationship between the error and the
pretensioning for muscle 1, but a negative relationship for muscle 2. This relationship does not
appear to be linear, but does appear to be well defined, implying that an explicit form of the error
may exist.

2.4.2 Fixed Initial Tendon Tensions763

The force of mammalian skeletal muscle depends on its current length and velocity (Blix, 1894;764

Stevens and Snodgrass, 1932; Joyce et al., 1969; Rack and Westbury, 1969; Hatcher and Luff,765

1986; Gareis et al., 1992; Herzog et al., 1992). Therefore, producing the same movement when766

starting from different initial muscle fascicle lengths will require different muscle mechanics and767

activations that may affect the relationship between MT and muscle behavior. To that end, the768

same sinusoidal joint movement from Section 2.4.1 (15◦ sinusoidal) was simulated with uniformly769

sampled initial muscle fascicle lengths (assuming constant pretensioning value). Figure 2.11 shows770

the resulting states for 25 different trials where initial muscle fascicle lengths were varied while771

Figure 2.12 shows the performances of the controller for all 25 trials (i.e., θr(t) − θ). Similar to772

the previous simulation, the control errors for these 25 trials are (i) very small (≤ 0.33◦) and (ii)773
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consistent across different choices of initial muscle fascicle lengths.774
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Figure 2.11: Sampling initial muscle fascicle lengths. For 25 different initial muscle fascicle
lengths an integrator backstepping controller was used to force a pendulum controlled by two
muscle-like actuators that pull on compliant tendons to follow a sinusoidal trajectory. For this
simulation, the initial tendon tensions were fixed for each trial while the initial muscle fascicle
lengths were uniformly selected such that they satisfy Eq. 2.50. Muscle lengths and velocities
have been normalized by their respective optimal muscle fascicle lengths (lm,o,i).
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Figure 2.12: Error between reference trajectory (θr(t)) and the actual joint angle (θ) (controlled via
an integrator backstepping approach) when initial muscle fascicle lengths are uniformly sampled.
All 25 trials are superimposed on top of one another, so it is clear that the performance was not
affected by the choice of initial muscle fascicle lengths. For this simulation, initial tendon tensions
were fixed while the initial muscle fascicle lengths were uniformly sampled subject to Eqs. 2.51-
2.52.

Figure 2.13 compares the MT velocities to muscle fascicle velocities normalized to the optimal775

muscle fascicle length. While it is clear that an error between these two value exists (Figure 2.13776

right), it does not appear to be affected by the initialization of the muscle fascicle lengths.777

62



−0.25

0

0.25

−0.10

0

0.10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

0.0

0.25

0.00

0.10

0.20

v m
,1
 (l

m
,o

,1
/s

)
^

v m
,2
 (l

m
,o

,2
/s

)
^

Low 

High

l m
,1
(t

o)

Low 

High

l m
,2
(t

o)

Normalized Error
vm,i - vMT,i/lm,o,i   (in lm,o,i/s)^

Normalized Muscle Velocity
Normalized Musculotendon Velocity

Figure 2.13: Comparing normalized muscle fascicle velocities to the MT velocities associated with
the movement (normalized by optimal muscle fascicle lengths) for muscles 1 (blue) and 2 (red).
The error between these two measurements is explicitly plotted on the right. While there clearly
exists a difference between MT and muscle fascicle velocities, it does not appear that any obvious
relationship exists between the initial muscle fascicle length and this difference.

This trend is also observed when MT excursions are compared muscle fascicle length changes778

(Figure 2.14). However, it should be noted that a slight trend may exist for the error in muscle 1779

and the choice of its initial muscle fascicle length that is not present in muscle 2. This can be seen780

more clearly when comparing the mean absolute error of the comparison between MT excursion781

and muscle fascicle length changes as a function of the initial muscle fascicle lengths (Figure 2.15).782

This is an artifact of the way in which the activation for muscle 1 was prescribed. By uniformly783

sampling initial muscle fascicle lengths, initial activations are found by solving Eq. 2.52. Sampling784

from a reasonable range of initial muscle fascicle lengths results in a small range of initial muscle785

activations sampled from the flat region of Figure 2.5 (i.e., lm,1 ≈ lm,o,1). The activation signal for786

muscle 1 is then prescribed to be a slightly phase-delayed cosine wave with constant amplitude.787
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Therefore, there is not a considerable difference between the activation signals for muscle 1 across788

trials, even though initial muscle fascicle lengths vary between 0.8 and 1.0 lm,o,1. This means that789

muscle 1 will produce slightly less tension (because of the ascending curve of the force-length790

relationship, Eq. 2.8), when initialized at a shorter initial muscle fascicle length forcing muscle791

2 to compensate through the integrator backstepping constraint (Eq. 2.49) to produce the desired792

movement. And as discussed in Section 2.4.1, the difference between MT and muscle fascicle793

behavior appears to depend on tendon tension.794
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Figure 2.14: Comparing normalized muscle fascicle length changes (with respect to the initial
tendon tensions) to the MT excursions (i.e., length changes) associated with the movement (nor-
malized by optimal muscle fascicle lengths) for muscles 1 (blue) and 2 (red). The error between
these two measurements is explicitly plotted on the right. Consistent with the data seen in Fig-
ure 2.8, there are differences between MT excursions and muscle fascicle length changes, but the
differences do not appear to depend on the choice of initial muscle fascicle length.
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Figure 2.15: Plotting the mean absolute error between the (ground truth) muscle fascicle length
changes and the MT excursions (expressed as a percentage of the optimal muscle fascicle length)
as a function of initial muscle fascicle lengths. These results are consistent with the trends seen in
Figures 2.8 & 2.9 for muscle 2, but we do see a slight positive trend for muscle 1.

2.5 Discussion795

The interaction between muscle and tendon required to produce smooth movements is anything796

but simple. An important consequence of muscle redundancy is that the same movement can be797

accomplished with an infinite combination of tendon tensions, so long as they produce the same net798

joint torques. But this redundancy at the tendon level translates to redundancy at the muscle level,799

where it can be equivalently stated that for the same movement there are an infinite number of800

choices for muscle activation that exist that each produce their own unique muscle fascicle lengths801

and velocities so long as they stretch the tendon enough to produce the required tension. Therefore,802

it is impossible to infer muscle (or tendon) behavior based solely on joint kinematics because803

choices from the nullspace of equivalent tendon tensions require different muscle mechanics. And804

while it is useful to approximate muscle fascicle lengths and velocities from the kinematically-805

derived MT behavior, the degree to which this approximation deviates from the true underlying806

muscle behavior needs to be explored.807
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In this chapter we begin to elucidate the role that compliant tendon plays in the relationship808

between muscle mechanics and MT behavior (and by extension, joint kinematics). By exploring809

the tendon tension nullspace that exists for this simple redundant tendon-driven system, it was810

demonstrated that muscle fascicle lengths and velocities deviate from MT behavior. Perhaps more811

importantly, it was determined that the differences between MT and muscle behaviors appear to812

be (i) tendon tension specific and (ii) nonlinear. This is a direct consequence of nonlinear tendon813

elasticity and the nullspace of the task—i.e., the same movement can require completely different814

tendon tensions which must be produced by muscles that change their lengths appropriately to pull815

on compliant tendons. While the difference between MT and muscle behaviors was not signifi-816

cantly large for such a simple movement task that required low tendon forces (and small tendon817

force derivatives), it will be important to quantify the relationship between muscle fascicle lengths818

and joint kinematics as changes in movement dynamics or tendon elasticity may further decouple819

muscle and MT.820
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Chapter 3821

Accurate musculotendon modeling requires tendon tension... some-822

times823

3.1 Abstract824

Accurate predictions of tendon forces must consider musculotendon (MT) mechanics, and specif-825

ically muscle fascicle lengths and velocities. This is predicted explicitly by simulating the dynam-826

ical equations of the musculoskeletal system, or approximated from measured limb kinematics.827

The latter is complicated by the fact that tendon lengths and pennation angles vary with both limb828

kinematics and tendon tension. Therefore, approximating muscle mechanics from joint kinematics829

does not capture the true behavior of a tendon-driven system, or the relationship between kinematic830

states and actuator states. We now quantify the error in kinematically-approximated muscle fasci-831

cle lengths as a general function of muscle geometry and tendon tension. This equation enables832

researchers to objectively evaluate the significance of this error in muscle fascicle lengths—which833

we find can be on the order of 80% of the optimal muscle fascicle length—with respect to the834

scientific or clinical question being asked. Although this equation provides a detailed functional835

relationship between muscle fascicle length and tendon tension, the parameters used to characterize836

MT architecture are subject-, muscle-, and potentially rate-specific. Therefore, uncertainty in these837

parameters limits the accuracy of any generic musculoskeletal model that hopes to explain subject-838

specific phenomena. Alternatively, these computational hurdles have profound implications to839

proprioception. In particular, they argue that muscle spindles cannot, on their own, reliably reflect840

joint kinematics. This points to the necessity of knowing tendon tensions in addition to muscle fas-841

cicle lengths to accurately estimate joint angles, which strongly suggests that Golgi tendon organs842

compliment muscle spindles to provide more accurate estimates of body configurations to enable843
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effective control of movement.844

3.2 Introduction845

lm

ρ
l m

co
s(ρ

)

lMT  = lT + lmcos(ρ)

lT,1 lT,2

lm (to )
lm (t)

ρ(to)

ρ(t)

BA

Figure 3.1: Approximation of musculotendon (MT) geometry as a flattened parallel bundle of
pennated muscle fascicles in series with tendon (A) such that the change in length or excursion
(∆lMT , B) is defined as the sum of tendon length change (combining the tendons of origin and
insertion, or ∆lT = ∆lT,1 + ∆lT,2) and change in the portion of muscle fascicle length projected
onto the line of action of the MT (lm(t) cos(ρ(t))− lm(to) cos(ρ(to)), Gans and Bock, 1965; Gans,
1982; Zajac, 1989).

Musculotendon (MT) complexes, as the name suggests, are composed of both muscle fascicles and846

tendons (Zajac, 1989). These three-dimensional (often overlapping) bundles of muscle fascicles847

bulge, twist, and change lengths during contractions, but are conceptualized for simplicity as a848

flattened parallel bundle of muscle fascicles in series with an elastic element. This parallelogram849

simplification states that all muscle fascicles act in parallel but askew from the line of action by850

some pennation angle, ρ. This compartmentalizes the contributions of muscle fascicle length (lm)851

and tendon length (lT ) to MT behavior (Figure 3.1, Gans and Bock, 1965; Gans, 1982; Zajac,852

1989). Thus, MT length (lMT ) is defined as the sum of tendon length (combining the tendons853

of origin and insertion, or lT = lT,1 + lT,2) and muscle fascicle length (lm) projected onto the854

line-of-action of the MT (Figure 3.1A, Eq. 3.1, Zajac, 1989).855

lMT (t) = lT (t) + lm(t) cos(ρ(t)) (3.1)856

The excursion of the MT (∆lMT ) at a given time point is then the difference in lengths between t857

and to (Eq. 3.2), such that the length of the muscle fascicles lm at that time point can be calculated858
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by Eq. 3.3.859

∆lMT (t) = ∆lT (t) + lm(t) cos(ρ(t))− lm(to) cos(ρ(to)) (3.2)860

861

lm(t) =
1

cos(ρ(t))

[
∆lMT (t)−∆lT (t)

]
+

cos(ρ(to))

cos(ρ(t))
lm(to) (3.3)862

In practice, MT excursion can be approximated from the measured kinematics of a movement863

by tracing the tendon routing from origin to insertion across postures (Grieve, 1978), or by calcu-864

lating the integral of the moment arm functions for all joints crossed (Valero-Cuevas, 2016; Kurse865

et al., 2012; An et al., 1983). However, values for lm, lT , and ρ are difficult to measure in vivo866

for a given subject, so databases of average values from imaging or cadaver studies are often used867

as approximations (Rankin and Neptune, 2012; Menegaldo et al., 2004; Grieve, 1978; Arampatzis868

et al., 2006; Muraoka et al., 2005; Roy and Edgerton, 1992; Lichtwark and Wilson, 2008; Magnus-869

son et al., 2001; Ward et al., 2009; Amis et al., 1979; An et al., 1981; Brand et al., 1981; Edgerton870

et al., 1990; Friederich and Brand, 1990; Huijing, 1985; Jacobson et al., 1992; Lieber and Brown,871

1992; Scott et al., 1993; Wickiewicz et al., 1983; Yamaguchi et al., 1990). This makes kinematics-872

based approximations for muscle fascicle lengths the most practical and most commonly used.873

These approximations further rely on the fundamental assumptions that tendons are inextensible874

(i.e., ∆lT (t) ≈ 0) or that ρ is either constant (ρ(t) ≈ ρc) or negligible (ρ(t) ≈ 0).875

When only assuming inextensible tendons (IT ), Eq. 3.3 simplifies to:876

l̃ ITm (t) ≡ ∆lMT (t)

cos(ρ(t))
+

cos(ρ(to))

cos(ρ(t))
lm(to) (3.4)877

Alternatively, in the case where tendon stretch is included but ρ is assumed constant (CP ), Eq. 3.3878

simplifies to:879

l̃ CPm (t) ≡ 1

cos(ρc)

[
∆lMT (t)−∆lT (t)

]
+ lm(to) (3.5)880

More often, however, both assumptions are made and the kinematics-based approximation to mus-881
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cle fascicle length simplifies Eq. 3.3 to:882

l̃m(t) ≡ ∆lMT (t)

cos(ρc)
+ lm(to) (3.6)883

which, in effect, has led the field to often equate muscle fascicle length changes to MT excursions884

for small pennation angles (Valero-Cuevas et al., 2009).885

Such approximations have greatly facilitated and enabled inferences regarding muscle fascicle886

lengths, velocities, or spindle (afferent) activity for multiple tasks (Stanev and Moustakas, 2019;887

Hagen and Valero-Cuevas, 2017; Berry et al., 2017; Valero-Cuevas et al., 2015) as well as joint888

torque vs. angle and joint torque vs. angular velocity studies, where muscle fascicle length/velocity889

are assumed to be bijective functions of joint angle/angular velocity (Pain et al., 2013; Hahn et al.,890

2011). Alternatively, the neuromechanical simulation software OpenSim offers a “stiff tendon”891

mode that makes similar assumptions (Millard et al., 2013). In the aforementioned approaches,892

pennation angle is generally ignored or assumed constant. This practical approach to MT function893

has enabled computational studies to infer the neural control strategies of musculoskeletal systems894

(Zajac, 1989; Scott, 2004; Jordan and Wolpert, 1999; Todorov and Jordan, 2002; Valero-Cuevas895

et al., 2009), even though such models of muscle are known to be prone to parameter sensitivity896

(Perreault et al., 2003; Scovil and Ronsky, 2006).897

Here we explore how these approximations and sensitivities affect the conclusions that can be898

drawn from such muscle models—independently of the assumed contractile element. It is impor-899

tant to note that our analysis has implications to most lumped-parameter models (e.g., Hill-type900

models, Hill, 1953) and population-of-muscle-fibers models (e.g., the Fuglevand model, Fugle-901

vand et al., 1993) because such models tend to ignore tendon mechanics and consider pennation902

angles to be negligible. We first explicitly derive equations for the errors produced when making903

a variety of assumptions to enable the reader to make informed decisions about their impact on904

the particular scientific question or clinical condition studied. We then derive a novel equation to905
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better approximate MT lengths and velocities that considers the effect of changes in moment arm906

values across postures—something that previous equations fails to capture. And lastly, we will907

explore the consequences to inter-muscle and inter-subject variability, and its impact on studies of908

neuromuscular control.909

3.3 Material and Methods910

3.3.1 Derivation of Tendon Deformation as a Function of Tendon Forces911

The elastic properties of collagen are such that tendon force (fT ) depends on tendon length (lT ),912

with a characteristic nonlinear “toe” region at low forces followed by a linear region at higher913

forces (Ker, 1981; Zajac, 1989; Shadwick, 1990; Brown et al., 1996). To generalize this rela-914

tionship across muscles, Brown et al. (1996) modelled the normalized tendon force-length curve915

(Eq. 3.7a) whereby fT was normalized by the maximum isometric force of the muscle (i.e.,916

f̂T = fT/fmax) and lT was normalized by the optimal tendon length (i.e., l̂ ′T = lT/lT,o). Ad-917

ditionally, Brown et al. (1996) used the parameters cT , kT , and LTr to fit the asymptotic slope,918

curvature, and lateral-shift, respectively. We will explicitly derive the relationships these parame-919

ters have with the tendon force-length curve in Section 3.3.4, but for now it suffices to state that920

cT and kT are proportional to the asymptotic slope and radius of curvature in the “toe” region,921

respectively. Additionally, note that Brown et al. (1996) decided to normalize lT by the optimal922

tendon length (lT,o — the tendon length when the muscle produces its maximal isometric force)923

instead of the slack length (lT,s – tendon length when tendon force is negligible) as it produced924

more “congruent curves.” However, the literature reports the ratio between tendon slack length925

and optimal muscle fascicle length (Proske and Morgan, 1987; Zajac, 1989), so we preferred to926

normalize lT by the slack length. The same relationship can be rewritten as Eq. 3.7b for when lT927

is normalized by lT,s instead (i.e., l̂ ′T = (lT,s/lT,o)l̂T ).928

71



f̂T (t) = cTkT ln

{
exp

[
l̂
′
T (t)− LTr

kT

]
+ 1

}

= cTkT ln

exp


(
lT,s
lT,o

)
l̂T (t)− LTr
kT

+ 1


(3.7a)

(3.7b)

929

This relationship, albeit muscle- and subject-specific, can be inverted to provide tendon length as930

a function of tendon force (Eq. 3.8)5.931

l̂T (t) =

(
lT,o
lT,s

)(
kT ln

{
exp

[
f̂T (t)

cTkT

]
− 1

}
+ LTr

)
(3.8)

Therefore, the normalized change in tendon length can be rewritten as a function of both the current932

and initial forces on the tendon (Eq. 3.9).933

∆l̂T (t) = kT
(
lT,o
lT,s

)
ln


exp

[
f̂T (t)

cTkT

]
− 1

exp

[
f̂T (to)

cTkT

]
− 1

 (3.9)

3.3.2 Error in Fascicle Length Approximations934

To allow for better comparison across muscles, we define the relative errors in kinematically-935

approximated muscle fascicle lengths as the differences between Eq. 3.3 and Eqs. 3.4-3.6, nor-936

malized by optimal muscle fascicle length (lm,o). When only assuming IT , the error is defined by937

Eq. 3.10. Intuitively, this error will be equal to the tendon length change that was ignored (Eq.938

3.9), projected back onto the line of action of the muscle fascicles.939

5Assuming that rate-specific phenomenon like hysteresis, creep, force-relaxation and short-range stiffness are
negligible.
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ηIT (t) =
(
lm(t)− l̃ ITm (t)

)/
lm,o

= −
(
lT,s
lm,o

)
∆l̂T (t)

cos(ρ(t))

= −
(
lT,s
lm,o

)(
lT,o
lT,s

)
kT

cos(ρ(t))
ln


exp

[
f̂T (t)

cTkT

]
− 1

exp

[
f̂T (to)

cTkT

]
− 1



(3.10a)

(3.10b)

(3.10c)

940

Alternatively, when including tendon length changes but assuming CP the error is defined by Eq.941

3.11.942

ηCP (t) =
(
lm(t)− l̃ CPm (t)

)/
lm,o

= C1

(
ρ(t), ρc

)(∆lMT (t)−∆lT (t)

lm,o

)
+ C2

(
ρ(t), ρ(to)

)
l̂m(to)

(3.11a)

(3.11b)943

Where C1 reflects the proportion of ∆lMT − ∆lT that was not projected back onto the line of944

action of the muscle fascicles but instead some other axis given by ρc (Eq. 3.12) and C2 represents945

the proportion of lm(to) incorrectly projected back onto the current line of action of the muscle946

fascicles (Eq. 3.13).947

C1(ρ(t), ρc) =
cos(ρc)− cos(ρ(t))

cos(ρc) cos(ρ(t))
(3.12)

C2(ρ(t), ρ(to)) =
cos(ρ(to))− cos(ρ(t))

cos(ρ(t))
(3.13)

These now allow the relative error in kinematically-approximated muscle fascicle lengths, η(t), to948
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be defined as Eq. 3.14. Note that this error accounts for the proportions of ∆lMT and lm(to) that949

were not mapped onto the line of action of the muscle fascicles (CP assumption) as well as the950

ignored tendon length change (IT assumption).951

η(t) =
(
lm(t)− l̃m(t)

)/
lm,o

= C1

(
ρ(t), ρc

)(∆lMT (t)

lm,o

) }
Error due to incorrectly projecting

MT excursion back onto the
line of action of the muscle fascicles

+ C2

(
ρ(t), ρ(to)

)
l̂m(to)

}
Error due to incorrectly projecting

initial muscle fascicle length back onto
the line of action of the muscle fascicles

+ ηIT (t)

}
Error due to ignoring
tendon length change

(3.14a)

(3.14b)
952

Finally, correcting for this error provides a more accurate approximation of normalized muscle953

fascicle length that takes both limb kinematics and tendon tension in account (Eq. 3.15).954

l̂m(t) =

(Joint Kinematics)
Relative MT excursion projected

back onto the line of action
of the muscle fascicles︷ ︸︸ ︷
1

cos(ρ(t))

(
∆lMT (t)

lm,o

)
+

Initial muscle fascicle length
mapped onto the line

of action of the muscle fascicles︷ ︸︸ ︷
cos(ρ(to))

cos(ρ(t))
l̂m(to)955

−
(
lT,s
lm,o

)(
lT,o
lT,s

)
kT

cos(ρ(t))
ln


exp

[
f̂T (t)

cTkT

]
− 1

exp

[
f̂T (to)

cTkT

]
− 1

︸ ︷︷ ︸
(Tendon Tension)

Relative tendon length change projected back
onto the line of action of the muscle fascicles

(3.15)956

957
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3.3.3 New and Improved Equations for Musculotendon Length and Velocity958

When simulating muscle fascicle and tendon behavior it is paramount to use accurate equations959

for MT length (lMT ) and velocity (vMT ). Historically, lMT has been calculated either by tracing960

the MT routing from origin to insertion across postures (Grieve, 1978), or by approximating the961

MT excursion (s) induced by joint rotations at every joint crossed (Valero-Cuevas, 2016; Kurse962

et al., 2012; An et al., 1983). The latter approach assumes constant moment arms such that the963

MT excursion produced by a joint’s rotation from neutral (θ− θo) would be equal to the arc length964

of a sector of a circle with radius equal to the moment arm (r, Eq. 3.16). Therefore, lMT is965

approximated as the sum of some neutral MT length (lMT,o) and the MT excursions of all joints966

crossed (Eq. 3.17). Note that the negative sign in the MT excursion equation ensures that for a967

positive joint rotation from neutral, a MT with a positive moment arm will shorten.968

s ≈ −r(θ − θo) (3.16)

lMT ≈ lMT,o −
∑
i

ri(θi − θi,o) (3.17)

Musculotendon velocity (vMT ) is defined as the change in excursion due to joint rotation(s)969

over time (Eq. 3.18a). For constant moment arms, this is approximated as the linear combination970

of joint velocities (θ̇i) scaled by their moment arms (Eq. 3.18b).971

vMT = lim
∆t→0

∑
i

∆si
∆t

≈ −
∑
i

lim
∆t→0

ri∆θi
∆t

= −
∑
i

riθ̇i

(3.18a)

(3.18b)
972

However, moment arms are not constant, and the equations for lMT and vMT must account for
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changes in moment arms with respect to joint angles. As a first approximation, previous work

evaluated Eq. 3.18b with posture dependent moment arms (ri(θi), Eq. 3.19, Hagen and Valero-

Cuevas, 2017).

vMT ≈ −
∑
i

ri(θi)θ̇i (3.19)

Integrating Eq. 3.19 with respect to time reveals that this approximation equates si to the integral973

of the moment arm function (ri(θi)) across some joint rotation from neutral (θi − θi,o, Eq. 3.20).974

lMT ≈ lMT,o −
∫ t

to

∑
i

ri(θi)θ̇idt = lMT,o −
∑
i

∫ θi

θi,o

ri(θi)dθi (3.20)

While Eqs. 3.20 & 3.19 better approximate lMT and vMT , respectively, they fail to capture975

how moment arm values change with respect to joint angles. To capture this, we propose a new976

equation for lMT that relies on the definition of arc length in polar coordinates (Eq. 3.21).977

lMT = lMT,o −
∑
i

∫ θi

θi,o

sgn
(
ri(θi)

)√
(ri(θi))

2 +

(
∂ri
∂θi

)2

dθi (3.21)

Note that when moment arms are constant, Eq. 3.17 is recovered. The sgn(rij(θj)) function returns978

+1 if rij(θj) > 0 and -1 if rij(θj) < 0 to recover the original relationship between joint rotations979

and excursion changes (i.e., positive joint rotation would shorten a MT with a positive moment980

arm). From Eq. 3.21 we derive the new equation for vMT as Eq. 3.22b.981

vMT = −
∑
i

∂

∂θi

∫ θi

θi,o

sgn
(
ri(θi)

)√
(ri(θi))

2 +

(
∂ri
∂θi

)2

dθi

 dθi
dt

= −
∑
i

sgn
(
ri(θi)

)
· θ̇i

√
(ri(θi))

2 +

(
∂ri
∂θi

)2

(3.22a)

(3.22b)

982

The relationship between excursions used in Eq. 3.17 (purple), Eq. 3.20 (orange), & Eq. 3.21983
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(green) can be explained graphically in Figure 3.2.984

r(
θ o

)

r(θf)∆θ

y

x

Polar Arc Length Equation

s = lim
∆θ    0

∑
j =0

n-1

(r(θj)sin(∆θ))2 + (r(θj+1)-r(θj))2 

= lim
∆θ    0

∑
j =0

n-1

(r(θj+1)-r(θj))2

∆θ(r(θj))2 + ∆θ 

= ∫
θo

θf

(∂r)2

∂θ(r(θ))2 + dθ  

Previous MT Equation

s ≈ lim
∆θ    0

∑
j =0

r(θj)∆θ
n-1

Constant Moment Arm Equation
s ≈ r(θo)(θf - θo)

Lo

Figure 3.2: Evolution of MT excursion equations (s) and their differences. The constant moment
arm equation (purple, Valero-Cuevas, 2016; Kurse et al., 2012; An et al., 1983) is the simplest
approximation but clearly the arc length (dashed purple) does not accurately convey the true MT
excursion (black). This was extending in Hagen and Valero-Cuevas (2017) where the true arc
length was approximated by integrating the posture-specific moment arm function (orange). Even
for sufficiently small ∆θ, this approach does not completely capture the true MT excursion as it
ignores the change in moment arm with respect to the joint angle. Correcting for this, we find the
true MT excursion from the equation for arc length in polar coordinates (green). As the true MT
excursion relies on the Euclidean of the moment arm and its partial derivative, the error between
the approximation proposed in Hagen and Valero-Cuevas (2017) and the true equation derived here
can be bounded by the triangle inequality (see Eq. 3.23).

By exploiting the limit definition of the integral terms for MT excursion, it is easy to show that985

the magnitude of the error between Eqs. 3.21 & 3.20 (εMT ) for each joint will be bounded by the986

triangle inequality (Eq. 3.23).987
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εMT = −
∑
i

∫ θi

θi,o

sgn
(
ri(θi,j)

)√
(ri(θi))

2 +

(
∂ri
∂θi

)2

dθi −
∫ θi

θi,o

ri(θi) dθi


= −

∑
i

sgn
(
ri
) ∫ θi

θi,o

√(ri(θi))
2 +

(
∂ri
∂θi

)2

−
∣∣ri(θi)∣∣

 dθi

=
∑
i

εMT,i

∴ |εMT,i| ≤

∣∣∣∣∣
∫ θi

θi,o

∣∣∣∣∂ri∂θi

∣∣∣∣ dθi
∣∣∣∣∣

≤ |ri(θi)− ri(θi,o)| (when ri is monotonic on [θi,o, θi])

(3.23a)

(3.23b)

(3.23c)

(3.23d)

(3.23e)

988

Note that the sign of the error will depend on the sign of the moment arm as well as the989

direction of the joint rotation such that sign of the error will be consistent with the sign of the990

MT behavior (i.e., positive for lengthening and negative for shortening). Therefore, errors of this991

type are always underestimates bounded between zero and Eq. 3.23d (the order of which depends992

on whether the joint rotation induced MT lengthening or shortening, Table 3.1). Lastly, when ri993

is either increasing or decreasing only during the joint rotation then this error is simply bounded994

between zero and the difference between the moment arm function evaluated at the initial and final995

posture (Eq. 3.23e).996
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∆θi > 0 ∆θi < 0

ri(θi) > 0 −
∫ θi
θi,o

∣∣∣∣∂ri∂θi

∣∣∣∣ dθi ≤ εMT,i ≤ 0 0 ≤ εMT,i ≤ −
∫ θi
θi,o

∣∣∣∣∂ri∂θi

∣∣∣∣ dθi
ri(θi) < 0 0 ≤ εMT,i ≤

∫ θi
θi,o

∣∣∣∣∂ri∂θi

∣∣∣∣ dθi ∫ θi
θi,o

∣∣∣∣∂ri∂θi

∣∣∣∣ dθi ≤ εMT,i ≤ 0

Table 3.1: When calculating the MT excursionexcursion induced by the rotation of a joint, ignor-
ing how much the moment arm (ri) changes with respect to the joint angle (θi) will result in an
underestimate of how much the MT has either shortened (red) or lengthened (blue). Whether or
not a given joint rotation will caused shortening or lengthening depends on the sign of moment
arm (ri(θi)) as well as the sign of the change in joint angle (∆θi Valero-Cuevas, 2016). Therefore,
the associated error in the MT excursion (εMT,i) will have the same sign as the MT excursion and
will be bounded by the interesection of this condition and Eq. 3.23d – which both change with the
signs of ri(θi) and ∆θi.

3.3.4 Defining cT and kT997

The tendon force-length relationship (given by Brown et al. (1996), Eq. 3.7) has fitting constants998

cT , kT , and LTr . As described in Brown et al. (1996), these parameters affect the asymptotic slope999

of the linear region, the curvature of the plot, and the lateral-shift of the relationship, respectively.1000

Additionally, by restricting cT and kT to cTkT < 0.20, LTr can be approximated as LTr ≈ 1− 1/cT1001

with≈ 0.04% error inLTr , allowing for the often-unknown fitting parameter space to be constrained1002

to R2. It can be shown from the limit of the slope of the normalized tendon force-length curve (Eq.1003

3.7) as l̂T →∞ that cT is proportional to the asymptotic slope (Eq. 3.24).1004

lim
l̂T→∞

df̂T

dl̂T
= lim

l̂T→∞
cT
(
lT,s
lT,o

)1 + exp

LTr −
(
lT,s
lT,o

)
l̂T

kT

−1

= cT
(
lT,s
lT,o

)
(3.24)

Another generalization of the tendon force-length relationship is the stress-strain curve where1005

stress is given by the force normalized by the tendon’s physiological cross-sectional area (σ =1006
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fT/CSAT ) and strain is given by the deformation of the tendon, normalized by the tendon’s slack1007

length (ε = (lT − lT,s)/lT,s, Herrick et al., 1978; Ker, 1981; Zajac, 1989; Magnusson et al., 2001).1008

This representation is useful for calculating the elastic modulus of tendon (ET , Young’s modulus1009

for tendinous tissue) as the slope of the linear region.1010

ET =
∆σ

∆ε
=

∆fT · lT,s
CSAT ·∆lT

=
fmax

CSAT

∆f̂T

∆l̂T
(3.25)

As the slope of the linear region of Eq. 3.7 is given by cT (lT,s/lT,o), we can rewrite cT as Eq. 3.26.1011

This equation expands upon the definition of cT as the “linear stiffness” parameter and provides1012

physical intuition about how changes in physiological parameters like tendon cross sectional area1013

and muscle force producing capabilities will affect it.1014

cT =

(
lT,o
lT,s

)
ET · CSAT

fmax

(3.26)

As the result of this relationship, tendon length changes at high forces can be approximated as1015

∆l̂T =
1

cT

(
lT,o
lT,s

)
∆f̂T

=
fmax

E · CSAT
∆f̂T

(3.27a)

(3.27b)
1016

How the fitting parameter kT relates to the curvature of “toe” region of the normalized tendon1017

force-length relationship is not explicitly clear. To explore the effect that changes in these param-1018

eters have on curvature, we define curvature as Eq. 3.28. This definition considers the amount1019

of change that the tangent vector along a curve has in the direction of the normal vector. In the1020

case where the curve is a circle, the curvature is defined as the inverse of the radius. Thus, as the1021

radius decreases, the curvature increases and the “sharpness” of the curve increases. In the case1022
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where the radius becomes very large, the curvatures goes to zero as the circle locally approaches1023

a straight line. Therefore, large curvature values (κ) are associated with sharp changes along the1024

curve. In mechanical systems, this is often approximated as the second derivative of the curve.1025

κ =
∂2f̂T

/
∂l̂ 2
T(

1 +
(
∂f̂T

/
∂l̂T

)2
)3/2

=

(
1

cTkT

) (cT (lT,s/lT,o))2
exp

[
LTr −

(
lT,s

/
lT,o

)
l̂T

kT

](
1 + exp

[
LTr −

(
lT,s

/
lT,o

)
l̂T

kT

])
(1 + exp

[
LTr −

(
lT,s

/
lT,o

)
l̂T

kT

])2

+
(
cT
(
lT,s
/
lT,o
))2

3/2

=

(
CT
cTkT

)
z (1 + z)(

(1 + z)2 + CT
)3/2

(
where, z = exp

[
LTr −

(
lT,s
/
lT,o
)
l̂T

kT

]
and CT =

(
cT
(
lT,s
/
lT,o
))2

)

(3.28a)

(3.28b)

(3.28c)

1026

As kT is defined as the variable that affects curvature (which varies along the continuous curve),1027

we derive the maximum curvature of the tendon force-length curve in order to see the influence1028

that kT has on it. To do so, we take the derivative of Eq. 3.28 with respect to l̂T and find its zeros.1029

∂κ

∂l̂T
=
∂κ

∂z

∂z

∂l̂T

= −
(
CT
cTkT

)(
lT,s
lT,o

)
z ·

 (1+2z)((1+z)2+CT )
3/2
−3z(1+z)2((1+z)2+CT )

1/2

((1+z)2+CT )3



=
−
(
CT
cT kT

) ( lT,s
lT,o

)
z(

(1 + z)2 + CT
)5/2︸ ︷︷ ︸

6= 0

·
[
(1− z)(1 + z)2 + CT (1 + 2z)

]
︸ ︷︷ ︸

maxκ when equal to zero.

(3.29a)

(3.29b)

(3.29c)

1030
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Therefore the curvature is at a maximum when1031

(1− z)(1 + z)2 + CT (1 + 2z) = 01032

which will occur when,

z∗ =
3
√

2(6CT + 4)

3 3

√
9CT + 16 + j3

√
3
√

32C3
T + 61C2

T + 32CT

(3.30)

+

3

√
9CT + 16 + j3

√
3
√

32C3
T + 61C2

T + 32CT

3 3
√

2
− 1

3

Representing Eq. 3.30 in terms of magnitude and phase allows us to remove the imaginary com-1033

ponent.1034

z∗ =

3
√

2(6CT + 4) 3

√
9CT + 16− j3

√
3
√

32C3
T + 61C2

T + 32CT

3 3
√

(9CT + 16)2 + 27(32C3
T + 61C2

T + 32CT )

+
1

3 3
√

2

3

√
9CT + 16 + j3

√
3
√

32C3
T + 61C2

T + 32CT −
1

3

=
1

3 3
√

2

(√
4(6CT + 4)3e−jφ

)1/3

+
1

3 3
√

2

(√
4(6CT + 4)3ejφ

)1/3

− 1

3

=
2

3

√
6CT + 4 cos

(
φ

3

)
− 1

3

≈
√

6CT + 4

3
− 1

3
≈
√

2CT = cT
(
lT,s
lT,o

)√
2

(
where φ = tan−1

(√
27(32C3

T + 61C2
T + 32CT )

(9CT + 16)2

)
≈ π/2

)

(3.31a)

(3.31b)

(3.31c)

(3.31d)

(3.31e)

1035
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Therefore the maximum curvature is given by plugging the Eq. 3.31c into Eq. 3.28c.1036

maxκ = κ
∣∣
z∗

=

(
CT
cTkT

)
z∗ (1 + z∗)(

(1 + z∗)2 + CT
)3/2

(3.32a)

(3.32b)
1037

The approximate maximum curvature is found by instead evaluating the curvature at the approxi-1038

mate value for z∗ (Eq. 3.31e). Considering cT >> 10 (see Section 3.3.5), we can manipulate the1039

equation for maximal κ to find,1040

maxκ ≈
(
CT
cTkT

) √
2CT

(
1 +
√

2CT
)((

1 +
√

2CT
)2

+ CT

)3/2

=

(
CT
cTkT

)
2CT +

√
2CT(

3CT + 2
√

2CT + 1
)3/2

=

(
CT
cTkT

) 2
(√

CT +
√

2
4

)2

− 1
4

33/2

((√
CT +

√
2

3

)2

+ 1
9

)3/2

≈
(
CT
cTkT

)(
2

3
√

3

)
1

√
CT +

√
2

3

≈
(√

CT
cTkT

)(
2

3
√

3

)

∴ maxκ ≈

(
2
√

3

9

)(
lT,s
lT,o

)
1

kT

(3.33a)

(3.33b)

(3.33c)

(3.33d)

(3.33e)

(3.33f)

1041

(maxκ)−1 = minR ≈

(
3
√

3

2

)(
lT,o
lT,s

)
kT (3.34)

Therefore, as Eq. 3.33f suggests, the value of kT is inversely proportional to the curvature and1042

therefore proportional to the radius of curvature of the “toe” region (R), where small values of kT1043

83



correspond to high curvature or low radius of curvature (i.e., would exhibit sharp transitions from1044

the “toe” region to the “linear” region). Additionally, Eq. 3.33f and its reciprocal, Eq. 3.34, could1045

be used to help find the hard-to-measure kT constant from an experimental, normalized tendon1046

force-length curve by either calculating the curvature and finding its maximum or by measuring1047

the smallest radius of curvature, respectively.1048

3.3.5 Defining Physiological Ranges for cT & kT1049

The parameters that are used to characterize the normalized tendon force-length curve—asymptotic1050

stiffness, the radius of curvature constant, and lateral shift (cT ,kT , and LTr , respectively)—greatly1051

influence the behavior of the tendon and vary across muscles, subjects, and sometimes tension1052

rates (Maganaris and Paul, 2000; Finni et al., 2013). In order to determine the effects that chang-1053

ing these fitting parameters have on overall MT behavior, we define the physiological range for cT1054

and kT from (i) the condition that cTkT < 0.20 (Brown et al., 1996), and (ii) the condition that,1055

by defintion, the tendon must be at its slack length (l̂T = 1) when normalized tendon force (f̂T )1056

is near zero (Proske and Morgan, 1987; Zajac, 1989; Brown et al., 1996; Magnusson et al., 2001).1057

The first constraint on cT and kT comes from Brown et al. (1996), who stated that restricting val-1058

ues to cTkT < 0.20 allows LTr in Eq. 3.7 to be approximated as LTr ≈ 1 − 1/cT while incurring1059

only a 0.04% error in LTr (red region excluded in Figure 3.3). The second constraint produces a1060

range of acceptable values of cT and kT when satisfying Eq. 3.8 for f̂T ≈ 0 and l̂T = 1 and for1061

lT,s/lT,o ∈ [1.03, 1.0.7] (blue regions excluded in Figure 3.3, Magnusson et al., 2001; Maganaris1062

and Paul, 2002).1063
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Figure 3.3: Physiologically realistic ranges for cT and kT under the assumptions that (i) cTkT <
0.20 (red, Brown et al., 1996), and (ii), by definition, when force is negligible, tendon length
equals its slack length (i.e., f̂T ≈ 0 → l̂T ≈ 1, blue, Proske and Morgan, 1987; Zajac, 1989;
Brown et al., 1996; Magnusson et al., 2001).

To validate the ranges produced by these constraints, we explore the reported ranges for cT1064

as (i) we can calculated cT from Young’s modulus (E), the tendon’s physiological cross-sectional1065

area (CSAT ), and the maximum isometric force of the muscle (fmax) from Eq. 3.26 and (ii)1066

the values of kT are less often reported. Young’s modulus has been reported to be conserved1067

across muscles with the average E reported to be around 1.2 GPa (Bennett et al., 1986; Zajac,1068

1989; Magnusson et al., 2001; Pollock and Shadwick, 2017) and, therefore, changes to cT can be1069

attributed to changes in CSAT and fmax. These two parameters change across MTs as well as with1070

training, injury, or pathology and help to explain the large variability in tendon stiffness seen across1071

muscle and subjects (Hof, 1998; Maganaris and Paul, 2002; Lichtwark and Wilson, 2005). As an1072

example, Magnusson et al. (2001) calculated E, CSAT , and fmax for the medial gastrocnemius1073

of 5 individuals during isometric contraction tasks and the cT values calculated from Eq. 3.261074

ranged from 23.23 to 65.70 (37.47 ± 14.88). Therefore, the range of cT values produced by the1075

two constraints described above are consistent with values reported in the literature and are good1076
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first approximations of the range of physiological values when exploring the affect they have on1077

tension-specific tendon deformation.1078

3.4 Results1079

3.4.1 Error from Ignoring Fascicle Pennation1080

As the first two terms of Eq. 3.14b illustrate, assuming that pennation angle is either constant or1081

negligible will result in errors when approximating muscle fascicle lengths kinematically (Maga-1082

naris et al., 1998). The coefficient of the first term (C1) reflects the percentage of ∆lMT that was1083

not projected back onto the line of action of the muscle fascicles, but instead some other axis given1084

by ρc (Eq. 3.12, Figure 3.4). We define the sensitivity of this coefficient to be the partial derivative1085

with respect to ρ evaluated at ρ = ρc as this describes how much the coefficient would change for1086

pennation angle changes near the assumed constant value.1087

∂C1

∂ρ

∣∣∣∣
ρ=ρc

= tan(ρc) sec(ρc) (3.35)

And while its obvious that errors of this type will be negligible when ρ(t) ≈ ρc, it becomes1088

more sensitive to small changes in pennation angle as ρc increases (i.e., tan(ρc) sec(ρc) → ∞ as1089

ρc → π/2; Figure 3.5A). Therefore, when assuming CP for muscles with larger pennation angles,1090

the same deviation (ρ = ρc ± δρ1) will result in a larger percentage of ∆lMT that was incorrectly1091

projected back onto the line of action of the muscle fascicles.1092
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Figure 3.4: Contour map (left) for the percentage of MT excursion that would be incorrectly
mapped onto the line of action of the muscle fascicles (C1) as the result of assuming some constant
pennation angle as a function of the true pennation angle. For any assumed value of constant pen-
nation angle (ρc), the resulting plot of C1 is given by the corresponding horizontal cross-section of
the contour plot. Examples of plots for lower and higher values of ρc are shown on the right. Note
that the error is negligible when the true pennation angle is equal to the assumed value (diagonal
line on the left, and zero-crossings on the right). Additionally, the error is less than ±5% when the
assumed and actual pennation angles are less that ∼ 18◦.
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Figure 3.5: Sensitivity of the relative error coefficients C1 (the proportion of MT excursion not
projected back onto the line of action of the muscle fascicles, A) and C2 (the proportion of the
initial muscle fascicle length not projected back onto the line of action of the muscle fascicles, B)
from Eq. 3.14. A small deviation (±5◦) was applied to ρc or ρ(to), respectively, and the resulting
change in the coefficients were plotted. For (A), while the error is minimized when ρ(t) = ρc, as
ρc increases the same deviation from the true pennation angle (ρ(t) = ρc ± 5◦) will produce larger
changes inC1 and, therefore, a larger percentage of ∆lMT would be incorrectly projected back onto
the line of action of the muscle fascicles. Similarly for (B), the error will be minimized when the
pennation angle does not change from the initial value (i.e., ρ(t) = ρ(to)), but as ρ(to) increases,
the same deviation from the initial value (ρ(t) = ρ(to)±5◦) will result in larger changes to C2 and,
therefore, a larger proportions of the initial muscle fascicle length would be incorrectly mapped
back onto the muscle fascicles at time t. Ranges of pennation angles reported in the literature have
been provide for a few muscle groups for reference (Yamaguchi et al., 1990; Lieber et al., 1990;
Lieber and Brown, 1992; Herbert and Gandevia, 1995; Fukunaga et al., 1997; Martin et al., 2001;
Ward et al., 2009; Kwah et al., 2013).

The coefficient of the second term of Eq. 3.14b (C2) reflects the percentage of lm(to) incorrectly1093

projected back onto the line of action of the muscle fascicles as the result of assuming constant1094

pennation angle (Figure 3.6). Similar to C1, we define the sensitivity of C2 as the partial derivative1095

with respect to ρ evaluated at ρ = ρ(to) to capture the effect of changes in pennation angle near1096
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the initial pennation angle.1097

∂C2

∂ρ

∣∣∣∣
ρ=ρ(to)

= tan(ρ(to)) (3.36)

Errors of this type will likewise be negligible when the pennation angle does not deviate from1098

the initial value (ρ(t) ≈ ρ(to)), but the sensitivity to changes in pennation angle increases as ρ(to)1099

increases (i.e., tan ρ(to) → ∞ as ρ(to) → π/2; Figure 3.5B). Therefore, when assuming CP for1100

muscles with larger pennation angles that also undergo larger pennation angle changes, the same1101

deviation (ρ(t) = ρ(to) ± δρ2) will result in a larger percentage of lm(to) that was not projected1102

back onto line of action of the muscle fascicles.1103
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Figure 3.6: Contour map (left) for the percentage of initial muscle fascicle length that would be
incorrectly mapped back onto the true line of action of the muscle fascicles (C2) as the result of
assuming some constant pennation angle as a function of the initial and current pennation angles.
Regardless of the assumed constant pennation angle value, this error will depend on the amount
by which the pennation angle changes from its initial value. Therefore, for some initial pennation
angle, the resulting plot of the coefficient C2 is given by the corresponding horizontal cross-section
of the contour plot. Examples of plots for lower and higher values of ρ(to) are shown on the right.
Note that the error is negligible when the current pennation angle is equal to the initial pennation
angle (diagonal line on the left, and zero-crossings on the right). Additionally, the error is less than
±5% when the initial and actual pennation angles are less that ∼ 18◦. Therefore, for muscles with
small pennation angles (< 18◦) that do not drastically change over the course of a movement, this
error will be relatively small (< ±5%).
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Reported average pennation angles vary across muscles in humans; from ∼ 1.3◦ to ∼ 46.1◦1104

in the lower limb (Ward et al., 2009; Fukunaga et al., 1997; Yamaguchi et al., 1990; Martin et al.,1105

2001) and from ∼ 2.0◦ to ∼ 33.0◦ in the upper limb (Lieber et al., 1990; Lieber and Brown,1106

1992; Herbert and Gandevia, 1995; Kwah et al., 2013) with large variability reported across sub-1107

jects. Additionally, pennation angles have been reported to change by 120% to 175% from rest1108

when the muscle is fully activated (Herbert and Gandevia, 1995; Narici et al., 1996a,b; Kawakami1109

et al., 1998; Maganaris and Baltzopoulos, 1999; Kurokawa et al., 2001). Therefore, for some mus-1110

cles and movements, the percentage of either ∆lMT or lm(to) that can be excluded or incorrectly1111

mapped back onto the line of action of the muscle fascicles can be quite large (∼ ±20%). As an ex-1112

ample, Kurokawa et al. (2001) reported that the medial gastrocnemius experienced a ∆lMT ≈ −21113

cm during a maximum squat jump, where the pennation angle increased from 20◦ to 35◦. If the1114

pennation angle had been assumed to be constant and equal to the initial pennation angle (i.e.,1115

ρc = ρ(to) = 20◦), then 15.7% of ∆lMT and 14.7% of lm(to) would have been incorrectly mapped1116

back onto the muscle fascicle, resulting in an normalized error of around -6.5% (−3.13mm) and1117

17.2% (8.24mm), respectively, given lm(to) = 5.6 cm and lm,o = 4.8cm (Kurokawa et al., 2001).1118

3.4.2 Error from Assuming Inextensible Tendon1119

The third term of Eq. 3.14b represents the error associated with assuming inextensible tendons1120

(Hoffer et al., 1989). Figure 3.7 shows Eq. 3.14b evaluated at two initial tendon tensions. Note1121

that when f̂T = f̂T (to) (i.e., the normalized tendon force intercept), the tendon will have undergone1122

a net zero length change and the error will be zero. However, notice that the slope at the intercept1123

(red lines) demonstrates that starting at lower forces (i.e., an intercept towards the left) creates1124

greater sensitivity to deviations from the initial tension, whereas at higher forces the sensitivity1125

is lower and approaches the asymptotic slope (black arrows). Therefore, tasks that simulate non-1126

isotonic tendon forces at low levels (like most activities of daily living) are at the greatest risk1127

of errors of this type. However, the parameters used to characterize the shape of the curves in1128
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Figure 3.7 (i.e., cT , kT , lT,o/lT,s, and lT,s/lm,o) vary across muscles and subjects and can change1129

with exercise, injury, or pathology (Lichtwark and Wilson, 2007, 2008; Arampatzis et al., 2006;1130

Muraoka et al., 2005; Roy and Edgerton, 1992; Hof et al., 2002; Magnusson et al., 2001; Maganaris1131

and Paul, 2002). Additionally, ρ changes across muscles and subjects, as well as under different1132

force levels for a given muscle (as previously stated) and will affect the error proportionally.1133
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Figure 3.7: Relative error in muscle fascicle length as a result of assuming inextensible tendons
(Eq. 3.10c) that accounts for the previously ignored tendon length change, scaled by the tendon
slack length to optimal muscle fascicle length ratio (lT,s/lm,o), and projected back onto the line
of action of the muscle fascicles. Note that the error will be zero when the tension of the tendon
is equal to the initial tension (f̂ iT (to)—i.e., no net deformation of the tendon has occurred). Two
different initial tension values have been chosen to demonstrate that starting at lower forces (i.e., an
intercept towards the left) creates greater sensitivity to deviations from the initial tension, whereas
at higher forces the sensitivity is lower and approaches the asymptotic slope (black arrows) where
it will be proportional to lT,s/lm,o and inversely proportional to cT = E · CSAT/fmax (i.e., the
tendon’s normalized asymptotic stiffness).
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Figure 3.8: Parallel coordinates plot for the relative error in muscle fascicle length (η) associated
with assuming inextensible tendons for 10,000 random samples in the 5 parameters of interest (cT ,
kT , lT,o/lT,s, lT,s/lm,o, and ρ) within their reported physiological ranges during random isomet-
ric force tasks (top). As MT excursion (∆lMT ) is zero during isometric contractions, assuming
inextensible tendons is equivalent to assuming that muscle fascicle length is constant at a given
percentage of maximum voluntary contraction (MVC) and the error, therefore, will be identical to
the normalized length change of the tendon, scaled by lT,s/lm,o and lT,o/lT,s, and divided by the
cosine of the pennation angle. For higher forces (≥ 75% MVC), we find that high errors (≥ 30%
lm,o) can occur for all values of cT and kT as, by definition, the tendon length converges to its
optimal length (i.e., the error is only proportional to lT,o/lT,s and lT,s/lm,o, second from top). Al-
ternatively, we find that the error can be equally large for lower forces (≤ 50% MVC) when the
tendon has low stiffness, low curvature (high radius of curvature), and larger ratios of lT,s to lm,o
and lT,o/lT,s (i.e., the “perfect storm”, second from bottom). Conversely, if any of these conditions
are not met, the errors in muscle fascicle lengths can be low (bottom). Lastly, pennation angles do
not appear to preclude any muscles from this sort of error, but it is trivial to show that increasing ρ
will increase the proportion of ∆lT projected back onto the line of action of the muscle fascicles.
Visit https://daniel8hagen.com/images/tendon length change parallel coords to access interactive
parallel coordinate plot online.

1134

Therefore, we explored how changes in these parameters affect the magnitude of the error in1135

muscle fascicle lengths by simulating isometric force tasks from rest. By doing so, MT excursion1136

will be zero such that kinematically-approximated muscle fascicle lengths will be constant and the1137

subsequent error will be identical to the normalized length change of the tendon, scaled by lT,s/lm,o1138

and divided by the cosine of the pennation angle. Figure 3.8A shows 10,000 random isometric1139

force tasks (between 0-100% of maximum voluntary contraction, MVC) with the 5 parameters of1140

interest uniformly sampled within their reported physiological ranges (Santos et al., 2009)6. Based1141

on the reported range for lT,o/lT,s (and the definitions of lT,s and lT,o) the maximal normalized1142

tendon deformation we can expect at MVC will be1143

max
MV C

∆l̂T =
lT,o − lT,s

lT,s
=
lT,o
lT,s
− 1 ∈ [0.03, 0.07]1144

such that the maximal error in muscle fascicle length for this task will be the maximal tendon de-1145

6The range for ρ was chosen to be < 40◦ (See Section 3.4.1), the range for lT,o/lT,s was chosen to be 1.03-1.07
(Cheng et al., 2000; Magnusson et al., 2001; Maganaris and Paul, 2002), and the range for lT,s/lm,o has been reported
to be ≤ 11.25 (Zajac, 1989; Hoy et al., 1990). For an explanation of the physiological levels of cT and kT see Section
3.3.5.
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formation scaled by the ratio lT,s/lm,o and divided by the cosine of the pennation angle for a given1146

muscle. For physiological ranges of these values, the maximal error in muscle fascicles can reach1147

magnitudes of ∼80% lm,o. As expected, for higher tendon forces (≥ 75% of MVC) where l̂T con-1148

verges to lT,o/lT,s, those trials with larger errors (≥ 30% lm,o) shows no clear dependence on cT or1149

kT , but instead are determined by the product of lT,o/lT,s and lT,s/lm,o (Figure 3.8B). Surprisingly,1150

for lower tendon forces (≤ 50% of MVC), errors in muscle fascicle lengths ≥ 30% (Figure 3.8C)1151

typically occur for MTs with lower normalized asymptotic tendon stiffness (lower cT ), lower “toe”1152

region curvature in the tendon’s force-length curve (higher kT ), and higher ratios of tendon slack1153

length to optimal muscle fascicle length (lT,s/lm,o > 6) and optimal tendon length to tendon slack1154

length (lT,o/lT,s > 1.04). These parameters corresponds to a tendon that (i) is substantially longer1155

than the muscle (i.e., larger lT,s/lm,o), (ii) can undergo relatively larger overall deformations (i.e.,1156

larger lT,o/lT,s), and (iii) has a flatter “toe” region in the tendon force-length curve. This “perfect1157

storm” elicits disproportionately greater tendon deformations per unit force at lower forces. Con-1158

versely, if any of these conditions are not met, the errors in muscle fascicle lengths can be low1159

(≤ 5% lm,o, Figure 3.8A). Lastly, it is of course trivial to show from Eqs. 3.2 & 3.3 that increasing1160

the pennation angle will increase the proportion of ∆lT projected back onto the line of action of1161

the muscle fascicles (i.e., a 1/ cos(ρ(t)) function), and thus increase the magnitude of this error.1162

However, we see that even muscles with low pennation angles are not immune to high errors (see1163

second column from right in Figure 3.8B,C). To further explore the consequences of varying these1164

parameters during an isometric task, the reader is pointed to the online interactive version of Figure1165

3.8, available at https://daniel8hagen.com/images/tendon length change parallel coords.1166

3.5 Discussion1167

Biomechanics and neuromuscular control depend uniquely on the assumed properties of muscle.1168

Chief among them is the dependence of muscle force for a given amount of neural drive on the1169

lengths and velocities of its muscle fascicles. Our detailed analysis of how muscle fascicle lengths1170
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(and, by extension, velocities) are approximated from experimental data or simulations points to1171

assumptions regarding MT architecture (i.e., pennation angle and tendon elasticity) as the source1172

of three dominant types of uncertainty and error (Eq. 3.14b). More importantly, the magnitude of1173

these errors is highly sensitive to the parameters characterizing MT architecture. The significance1174

of these potentially large errors is ultimately left to the modeller and their audience. To guide these1175

decisions in practice, however, we provide a detailed presentation of the interactions between MT1176

architecture, MT force magnitude, as well as its dependence on the ratios of tendon slack length to1177

optimal muscle fascicle length and of optimal tendon length to tendon slack length. These high-1178

dimensional interactions show that some combinations of parameters will produce (i) relatively1179

low errors vs. (ii) a “perfect storm” where errors will be unacceptably large by any measure, even1180

for relatively low force magnitudes. Our work highlights that extreme care must be taken when1181

making such approximations in the context of the scientific question being asked, the muscles and1182

tasks being studied, and the available experimental data.1183

We began by showing that, when approximating muscle fascicle lengths from the kinemat-1184

ics, separately assuming either constant pennation angle or inextensible tendons will incur distinct1185

errors with respect to the ground truth. The magnitude of these errors are themselves highly sen-1186

sitive to the parameters that characterize the MT (i.e., muscle fascicle pennation angle and tendon1187

elasticity).1188

It is intuitively obvious that assuming zero or constant pennation angle will incorrectly map1189

the changes in MT length and the initial muscle fascicle length onto the current line of action of1190

the muscle fascicles. Our community has often assumed that this error is negligible for “small”1191

pennation angles, which may be true (Figure 3.5A). However, we show that starting at reasonably1192

modest pennation angles of 20◦, the sensitivity of the errors escalates exponentially to the point1193

where a ±5◦ deviation from the assumed constant pennation angle can lead to > 5% of the MT1194

excursion to be unaccounted for in the muscle fascicle length approximation—with potentially1195

important consequences to force-length and force-velocity calculations. Similarly, it is known that1196
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some muscles with modest pennation angles nevertheless undergo large changes in pennation angle1197

during everyday movements (c. 120–175%, Herbert and Gandevia, 1995; Narici et al., 1996a,b;1198

Kawakami et al., 1998; Maganaris and Baltzopoulos, 1999; Kurokawa et al., 2001). In these cases,1199

the amount of initial muscle fascicle length that is incorrectly mapped back onto the line of action1200

of the muscle fascicles can be >> 4% as calculated for a ±5◦ change in pennation angle (Figure1201

3.5B) and can reach magnitudes on the order of ∼ 20% (see Kurokawa et al. (2001) example in1202

Section 3.4.1). Both of these errors increase greatly for more pennate (and highly studied) muscles1203

such as tibialis anterior, triceps bracchi, medial gastrocnemius, or soleus. This highlights the need1204

for perhaps unrealistically or impractically accurate measurements of muscle pennation angle (and1205

their change during a task) to accurately simulate force production in these muscles when they1206

are operating away from the plateau of the force-length curve, and most everywhere in the force-1207

velocity curve.1208

Additionally, if one wanted to assume inextensible tendons, one must note that the errors in1209

estimated muscle fascicle lengths are exacerbated at lower forces (≤ 50% of MVC) if the com-1210

bination of parameters that characterize the tendon’s normalized force-length relationship (i.e., its1211

asymptotic stiffness, cT , and its curvature constant, kT ) and the ratios of the tendon’s slack length1212

to the optimal muscle fascicle length (lT,s/lm,o) and optimal tendon length to tendon slack length1213

(lT,o/lT,s) meet the “perfect storm” criteria (e.g., soleus muscle, Magnusson et al., 2001; Zajac,1214

1989; Hoy et al., 1990). That is, errors can be quite large for more compliant tendons (i.e., low1215

values of cT and high values of kT ) with moderately high values of lT,s/lm,o and lT,o/lT,s (Figure1216

3.8C). Conversely, if any of these “perfect storm” conditions are not met, the error can poten-1217

tially be small, as can be seen by the wide distribution of parameters that produce less than 5%1218

error in muscle fascicle lengths for the isometric force task illustrated in Figure 3.8D. Therefore,1219

it is important to understand how a particular choice of parameters can affect the robustness of a1220

kinematics-based muscle fascicle length approximation by understanding how they will effect the1221

shape of the tendon’s force-length relationship and how deformations of tendon will subsequently1222

produce scaled changes in muscle fascicle length.1223
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The limitations of this study do not necessarily affect the validity of our results. For example,1224

we did not consider more complex MT architectures that do not reflect the simple parallelogram,1225

and we ignored hysteresis, tendon creep, short-range stiffness, and force-relaxation. In fact, the1226

added nonlinearities and state-dependence of these omissions suggest that we may, in fact, be un-1227

derestimating these uncertainties and errors. By correcting for the errors explicitly derived here, we1228

arrive at a more accurate approximation of muscle fascicle length that relies on both limb kinemat-1229

ics and tendon dynamics (Eq. 3.15). This equation creates a functional relationship, through the1230

limb kinematics, between muscle fascicle lengths and tendon tensions for concentric, eccentric and1231

isometric contractions. However, in practice, its sensitivity to parameter values makes it all-but-1232

impossible to use to recover specific MT behavior without accurate subject- and muscle-specific1233

parameters.1234

Another apparent limitation to this study may be the exclusion of muscle activations in the1235

determination of muscle fascicle lengths and velocities. It is well established that muscle mechan-1236

ics can be approximated by a second order dynamical system, where muscle activation produces1237

state-dependent muscle force to change the length and velocity of the muscle fascicles, ultimately1238

pulling on the tendon to actuate the joints. As discussed in Chapter 2, careful consideration must1239

be made when designing a controller with muscle activations as the inputs, and changes in inputs1240

can change the overall behavior of the muscle fascicles. But these activation changes likewise1241

change the tendon tensions that result from such activations, preserving the relationship between1242

tendon tension, muscle fascicle lengths, and the resulting kinematics (if it exists). So while this1243

work excluded the explicit use of so called Hill-type models in our discussion, it does not preclude1244

the use of our purely descriptive model which captures this functional relationship between mus-1245

cle and MT through the tension-specific deformation of tendon. More specifically, the results from1246

this chapter are built upon the assumptions that (i) MT excursions are fully determined by the joint1247

kinematics and (ii) muscle fascicle and tendon lengths must always sum to MT length (thereby1248

accounting for the rotation/excursion that the tendon forces ultimately induced). Ultimately, any1249

simulation study that utilizes Hill-type muscle models will encounter similar errors if muscle fas-1250
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cicle lengths are not updated by this relationship (i.e., the role of tendon deformation or pennation1251

angle in MT excursion are ignored).1252

These results also raise further important issues relevant to the role of muscle spindles to pro-1253

vide proprioception for neuromuscular control. In Nature, proprioception provides animals a ro-1254

bust awareness of the state of their body and of their relation to the environment. The muscle1255

spindles embedded in the intrafusal fibers of muscle are known to provide information about the1256

velocity and length of a muscle. Muscle spindles, by sensing along the line of action of the muscle1257

fascicles, are nevertheless subject to similar uncertainties and errors to those described above when1258

estimating the length of the MT. However, it stands to reason that the nervous system can learn1259

to interpret and integrate spindle signals to estimate the posture of the limb because their afferent1260

signals are implicitly functions of the subject- and muscle-specific MT parameters. Nevertheless,1261

Eq. 3.15 points to the physical necessity of knowing tendon tension in addition to muscle fascicle1262

length to accurately estimate the length (and velocity) of the MT—and therefore limb posture. We1263

speculate that this obligatory functional relationship between muscle fascicle lengths and tendon1264

tensions may point to an additional evolutionary pressure for Golgi tendon organs (mechanorecep-1265

tors for tendon tension) whose projection to the same spinal, sub-cortical and cortical areas would1266

critically enable more accurate estimates of limb posture.1267

And if this relationship exists in Nature, could we use this information to our advantage for1268

robotic design? More specifically, can we design an algorithm that predict joint angles from non-1269

collocated sensory signals in a compliant tendon-driven robot?1270
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Chapter 41271

Measuring tendon tension allows limited-experience neural networks1272

to better predict posture in tendon-driven systems1273

Previous chapters have explored the effect that compliant tendons have on the control of redundant,1274

antagonistically-actuated tendon-driven systems and the relationship between the muscles, muscu-1275

lotendons, and, by extension, joint kinematics. We have shown that it is impossible to estimate1276

muscle behavior from joint kinematics alone and that tendon tension can be used to reconcile this1277

difference if the muscle- and subject-specific musculotendon parameters are known. While this1278

parametric uncertainty presents a difficult (if not impossible) hurdle for computational modelling1279

of subject-specific neuromuscular control, the mere existence of a functional relationship between1280

muscle mechanics, tendon tensions, and joint kinematics for any given set of (unknown) parame-1281

ters enables an interesting line of questioning and provides the foundation for the final two chapters1282

of this dissertation. Mainly, could we use the knowledge that such functional relationships exist1283

in compliant tendon-driven systems to design an artificial neural network (ANN) algorithm that1284

utilizes information from actuators and tendon tensions to predict joint angles? And if so, what1285

does that say about how the nervous system might integrate sensory information for the internal1286

modeling of posture?1287

The importance of the observability of tendon tensions and actuator states has been emphasized1288

in biology as there are sensors that encode tendon tension (Golgi tendon organs) as well as muscle1289

fascicle lengths and velocities (spindle secondary and primary afferents, respectively) whose spinal1290

and supraspinal projections may integrate to form internal representations of expected or virtual1291

limb position. In tendon-driven robotics, this implies that it may be possible to infer joint angles1292

from motor angles and tendon tensions, thus potentially removing the need for on-location joint1293

encoders (and their contribution to joint inertia, design and construction complications, noise, etc.).1294
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Therefore it is both useful and necessary to understand if the relationships between kinematic1295

states, actuator states, and/or tendon tensions can be learned to improve our understanding of1296

biological proprioception in biology, and improve the design and control of bio-inspired, tendon-1297

driven robots.1298

In this chapter, we begin by considering a simple tendon-driven robotic model and exploring1299

how ANNs trained with different amounts of non-collocated sensory information (like tendon ten-1300

sion or motor position) perform when predicting joint angle. The goal of this experiment will be to1301

identify a minimal set of sensory information needed to provide a good estimate of joint angle and1302

if tendon tension information enables more accurate estimates. The final chapter will then address1303

how changes in mechanical properties of the plant (i.e., the tendon’s stiffness or the motor’s damp-1304

ing) affect our findings and whether changes in the dynamic task requirements change the utility1305

of these sensory data in these algorithms.1306

4.1 Abstract1307

Estimates of limb posture are critical for the control of robotic systems. This is generally accom-1308

plished by utilizing on-location joint angle encoders which may complicate the design, increase1309

limb inertia, and add noise to the system. Conversely, some innovative or smaller robotic mor-1310

phologies can benefit from non-collocated sensors when encoder size becomes prohibitively larger1311

or the joints are less accessible or subject to damage (e.g., distal joints of a robotic hand or foot1312

sensors subject to repeated impact). These concerns are especially important for tendon-driven1313

systems where motors (and their sensors) are not placed at the joints. Here we create a framework1314

for joint angle estimation by which artificial neural networks (ANNs) use limited-experience from1315

motor babbling to predict joint angles. We draw inspiration from Nature where (i) muscles and1316

tendons have mechanoreceptors, (ii) there are no dedicated joint-angle sensors, and (iii) dedicated1317

neural networks may perform sensory fusion. We simulated an inverted pendulum driven by an1318
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agonist-antagonist pair of motors that pull on tendons with nonlinear elasticity. We then compared1319

the contributions of different sets of non-collocated sensory information (like motor positions or1320

tendon tensions) when training ANNs to predict joint angle. By comparing performance across1321

different movement tasks we were able to determine how well each ANNs (trained on the differ-1322

ent sensory sets of babbling data) generalizes to unlearned tasks (sinusoidal and point-to-point).1323

Lastly, we evaluated performance both as a function of motor babbling duration and the number of1324

hidden layer nodes used in each network. We find that training an ANN with actuator states (i.e.,1325

motor positions/velocities/accelerations) as well as tendon tension data produces more accurate es-1326

timates of joint angles than those ANNs trained without tendon tension data. Moreover, we show1327

that ANNs trained on motor positions/velocities and tendon tensions (i.e., the Bio-Inspired Set) (i)1328

can reliably estimate joint angles with as little as 15 seconds of motor babbling and (ii) generalizes1329

well across tasks. We demonstrate a novel framework that can utilize limited-experience to provide1330

accurate and efficient joint angle estimation during dynamic tasks using non-collocated actuator1331

and tendon tension measurements. This enables novel designs of versatile and data-efficient robots1332

that do not require on-location joint angle sensors.1333

4.2 Introduction1334

Tendon-driven robots are becoming popular due to a number of advantages these designs can1335

provide (Valero-Cuevas, 2016; Andrychowicz et al., 2019; Marjaninejad et al., 2019b). Elastic1336

tendons can increase energy efficiency by storing potential energy and can protect actuators from1337

impacts by dissipating energy upon impact (Laurin-Kovitz et al., 1991; Pratt and Williamson, 1995;1338

Pratt, 2002; Mazumdar et al., 2017). Additionally, tendon routings offer flexibility to how torques1339

and angular velocities at the motors are converted to torques and angular velocities at the joints1340

(Lee and Tsai, 1991; Kobayashi et al., 1998; Marjaninejad and Valero-Cuevas, 2019; Marjaninejad1341

et al., 2019a). Most importantly, tendon-driven systems offer flexible placement options for the1342

actuators, which eliminate the need for motors to be placed on the joints themselves. Proximal1343
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actuator placement moves the center of mass towards the body of the robot thereby reducing limb1344

inertia and allowing for more efficient displacement in quadrupeds or anthropomorphic robots1345

(Jacobsen et al., 1986).1346

However, most successful state-based robotic control strategies need to observe or approximate1347

joint angles which is generally done by placing sensors on the joints (in the absence of alternatives1348

such as visual feedback; Marjaninejad et al., 2019b,c). Although sensors in general have lighter1349

mass than motors, this can still add unwanted inertia to the limbs. These on-location sensors are1350

prone to motion noise and their wiring is often cumbersome and poses a potential risk of damage.1351

These adverse effects become more pronounced for smaller, distal joints where the mechanical1352

design may make the joint inaccessible (e.g., in the case of a tendon-driven finger in a robotic hand).1353

One alternative solution, which biology seems to take advantage of, is to have non-collocated1354

sensors (i.e., in the muscle and tendon instead of the joint) and use fusion of sensory information1355

from actuators and tendons to predict joint angles. It is interesting to note that biological systems1356

do not seem to have dedicated sensors that explicitly and uniquely encode joint angles. Instead,1357

they have sensors for muscle (actuator) lengths and velocities (called muscle spindles, Figure 4.11358

orange; Crowe and Matthews, 1964) and for tendon tensions (called Golgi tendon organs, Figure1359

4.1 blue; Appenteng and Prochazka, 1984)7.1360

7There are additional biological sensors that detect stretch in the skin and synovial capsule, but these do not directly
encode joint position either (Kandel and Schwartz, 2000).
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α lm,lm
.

fT

θ

Figure 4.1: Example of types of biological sensors present in a muscle. From the spinal cord
α-motorneurons project to the muscle fascicles to activate it. From there, the muscle spindles
are responsible for sensing the resulting muscle fascicle lengths and velocities (lm & l̇m, orange)
while the Golgi tendon organs are responsible for detecting tendon tension (fT , blue). These
sensory signals may be integrated through their spinal and supraspinal projections to form internal
representations of expected or virtual limb position (θ; Scott and Loeb, 1994; Dimitriou and Edin,
2008; Van Soest and Rozendaal, 2008; Kistemaker et al., 2013). Note that there are additional
biological sensors that detect stretch in the skin and synovial capsule not shown here, but these do
not directly encode joint position either (Kandel and Schwartz, 2000).

In previous chapters we established that a functional (yet indirect) relationship exists between1361

sensory states in general and kinematic states (like posture; Valero-Cuevas, 2016; Zajac, 1989;1362

Hagen and Valero-Cuevas, 2017). It is therefore speculated that these sensory signals may be inte-1363

grated through their spinal and supraspinal projections to form internal representations of expected1364

or virtual limb position (Scott and Loeb, 1994; Dimitriou and Edin, 2008; Van Soest and Rozen-1365

daal, 2008; Kistemaker et al., 2013). The existence (and possible use) of this indirect relationship1366

between sensory states and kinematic states in biology implies it may be possible to use sensory1367

fusion in tendon-driven robots to infer joint angles from actuator (e.g., motor angles) and structural1368

(e.g., tendon tensions) sensors, thereby removing the need for on-location joint angle encoders.1369
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While it is sometimes possible to derive analytical relationships among tendon tensions, motor1370

rotations, and joint posture given the precise equations for the kinematics and dynamics (see Chap-1371

ter 3), in practice it is often impractical or impossible to obtain accurate and time-invariant models1372

of such nonlinear dynamical systems (Bongard et al., 2006; Marjaninejad et al., 2019b). Further-1373

more, even if an accurate model of the system were available, these relationships (i) would not1374

generalize across changes in mechanical designs or tasks and (ii) will become increasingly inac-1375

curate as the plant suffers mechanical changes due to either damage or normal wear and tear (Palli1376

et al., 2012). Therefore, data-driven systems that can efficiently create mappings between sensory1377

information are preferred in practical applications (Bongard et al., 2006; Marjaninejad et al., 2018;1378

Kwiatkowski and Lipson, 2019).1379

Here we introduce a framework to train artificial neural networks (ANNs) from limited expe-1380

rience via motor babbling to be able to predict joint angles from sets of non-collocated sensory1381

information. As a proof of concept, we simulated an inverted pendulum (controlled by two motors1382

that pull on tendons with nonlinear elasticity), trained ANNs on different sets of sensory infor-1383

mation (i.e., actuator and/or tendon tension data) for different durations of motor babbling and1384

different network architectures, and evaluated the performance of the ANNs and their ability to1385

generalize their performance to different unlearned movement tasks.1386

4.3 Material and Methods1387

The main goal of this experiment is to train ANNs to predict joint angles from 4 different sets of1388

non-collocated sensory information (~xisens) generated from limited-experience motor babbling to1389

see whether the inclusion of tendon tension information improves the joint angle prediction accu-1390

racy. We will first discuss the dynamics of the proposed plant and the compliance of the tendons1391

that actuate it. Then we will discuss how we generate training data through the use of limited-1392

experience motor babbling (strategic nullspace searching) and how the ANNs were constructed1393

105



and trained to predict joint angles from the four sets of sensory information. Lastly, we will dis-1394

cuss how four different movements (and the resulting sensory information) were generated to be1395

able to test the generalizability of these ANNs.1396

4.3.1 Definition of the Plant and its Dynamics1397

In order to determine the utility of observing different sets of sensory information in a tendon-1398

driven system it is important to have a consistent model across trials—such as a standard numerical1399

simulation. As we aimed to conduct a thorough and systematic experiment, it was also impractical1400

to use a physical system that is prone to imperfect modelling and time-varying changes to physical1401

parameters. For those reasons, we have simulated a simple 1 degree of freedom (DOF) tendon-1402

driven system with 2 actuators that pull on tendons with nonlinear stiffness (Fig. 4.2) such that we1403

can know/control the parameters that govern the system’s dynamics and we can reliably conduct1404

many experiments on the same plant. We modelled the actuators as brushed DC motors with no1405

gearing to allow for the motors to be backdriveable and we considered the input to be motor torques1406

(τi). Similar to the approach taken in Palli et al. (2007), the tension on a tendon (fT,i, Eq. 4.1a) was1407

modeled to be an exponential function of tendon deformation (∆lT,i) with positive scaling coeffi-1408

cient (kT ) and rate constant (bT ) to fit the shape and slope of this relationship. Tendon deformation1409

is calculated as the difference between joint angle (θj) and motor angle (θm,i) excursions.1410
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Figure 4.2: Schematic of tendon-driven system with 1 kinematic DOF and 2 degrees of actuation
(motors) that pull on tendons with nonlinear elasticity (creating a tension, fT,i). The motors are
assumed to be backdriveable with torques (τi) as inputs.

fT,i(θm,i, θj) =

 kT
(

exp(bT∆lT,i)− 1
)
; (∆lT,i ≥ 0)

0; (∆lT,i < 0)

(4.1a)

(4.1b)

where ∆lT,i =

{
rmθm,1 − rjθj; i = 1

rmθm,2 + rjθj; i = 2

and bT > 0, kT > 0 are shape constants.


θ̈j =

1

Ij

[
−Dj θ̇j −G(θj) + rj

(
fT,1(θj , θm,1)− fT,2(θj , θm,2)

)]
θ̈m,i =

1

Im,i

[
−Dmθ̇m,i − rmfT,i(θj , θm,i) + τi

]
(for i ∈ {1, 2})

(4.2a)

(4.2b)

Therefore, the equations of motion for this system without contact are given by Eq. 4.2 whereG1411

is the torque due to gravity8, and I , D, and r represent the moment of inertia, damping coefficient,1412

and moment arm of either the joint or the motors (denoted by the subscripts j andm, respectively).1413

The values of the parameters used in Eqs. 4.1a–4.2 have been provided in Table 4.1. We can then1414

rewrite the system of equations for contactless dynamics in its state space representation, (Eqs.1415

4.3–4.5), where ~x = [θj, θ̇j, θm,1, θ̇m,1, θm,2, θ̇m,2]T , ~u = [τ1, τ2]T , and ~y = h(~x) is the desired1416

8Torque due to gravity: G(θj) = −mjgLCM sin(θj)
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output (e.g., y = θj).1417

 ~̇x = f(~x) + g(~x)~u

~y = h(~x)

(4.3a)

(4.3b)

f(~x) =



x2

1

Ij

[
−Djx2 −G(x1) + rj

(
fT,1(x1, x3)− fT,2(x1, x5)

)]
x4

1

Im,1

[
−Dmx4 − rmfT,1(x1, x3)

]
x6

1

Im,2

[
−Dmx6 − rmfT,2(x1, x5)

]



(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4e)

(4.4f)

g(~x) =



0 0

0 0

0 0

1/Im,1 0

0 0

0 1/Im,2


(4.5)

108



Plant Parameters

Pendulum Inertia, Ij (kg m2) 1.15× 10−2

Center of Mass, LCM (m) 0.085

Pendulum Length, L (m) 0.30

Pendulum Mass, mj (kg) 0.541

Tendon Scaling Coefficient, kT (N) 100

Tendon Rate Constant, bT (m−1) 20

Joint Damping, Dj (Ns/m) 1× 10−3

Joint Moment Arm, rj (m) 0.05

Motor Inertia, Im,i (kg m2) 6.6× 10−5

Motor Damping, Dm (Ns/m) 4.62× 10−3

Motor Moment Arm, rj (m) 0.02

Table 4.1: List of plant parameters for simple 1 DOF pendulum joint, actuated by two backdrive-
able motors that pull on nonlinearly compliant tendons. Tendon stiffness values (kT and bT ) were
conservatively chosen to cause large, but reasonable tendon deformations for some maximum ten-
sion (See Section 4.3.2 for further explanation). Additionally, moment arm values (rj and rm) were
approximated to reflect the overall scale of the pendulum. All other parameters were either taken
or modified from those provided in Palli et al. (2008).

However, this is a model of a physical system that is allowed to come into contact with its1418

boundaries (±90◦ from vertical) which will require a separate set of dynamical equations to be1419

enforced during contact (or impact). To approximate contact dynamics at the boundaries, we in-1420

cluded “hard stops” whenever the joint angle attempted to leave the range of motion when obeying1421

the dynamics that assumed no contact (Eq. 4.2). This is equivalent to preventing any rotation past1422
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the boundaries while introducing a restoring joint torque that is equal but opposite to any torque1423

applied against the boundary (s.t. the right hand side of Eq. 4.2a is zero when pushing on the1424

boundaries at ±π/2). This approach allowed us to avoid using high impedance boundary func-1425

tions to model contact dynamics as these would require a variable time step integrator for stability,1426

but it did require a small enough time step to handle the “impact” (∆t = 10−3 sec).1427

After using Eq. 4.2 to calculate ~x at time tn+1 through Forward Euler integration:

|θj(tn+1)| > π

2
=⇒ θj(tn+1) = sgn

(
θj(tn+1)

)π
2

=⇒ θ̇j(tn+1) =
θj(tn+1)− θj(tn)

tn+1 − tn

(4.6a)

(4.6b)

Note that if the system is already at a boundary (|θj(tn)| = π/2), any attempt to go into the1428

boundary (i.e., |θj(tn+1)| > π/2) will result in the joint staying at that boundary with zero angular1429

velocity and acceleration, while it is free to rotate back into the middle of the range of motion. And1430

while the dynamics of the joint angle must account for this impact, the motor dynamics only “see”1431

this impact through the resulting tendon tensions.1432

4.3.2 Tendon Stiffness Parameters1433

The parameters kT and bT in Eq. 4.1a determine the shape of the exponential tendon tension-1434

deformation relationship. Defining instantaneous tendon stiffness to be the derivative of Eq. 4.1a1435

with respect to tendon deformation (∆lT,i), we find that kT bT approximates tendon stiffness for1436

small deformations (∆lT,i ≈ 0) and b2
T will heavily influences tendon stiffness for larger deforma-1437

tions (Eq. 4.7).1438

So how should we choose these parameters and how stiff should our tendons be? As we want1439
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to explore what types of sensory information are needed to accurately predict joint angles in a1440

compliant tendon-driven system, it is useful to consider the extreme case where tendons are very1441

compliant to address if tendon tension information is crucial for this estimation. More simply put,1442

if knowing tendon tension does not improve joint angle predictions for highly compliant tendon-1443

driven systems (where there is large decoupling between motor and joint behavior), then we would1444

not expect this information to be useful in less compliant systems where motor behavior becomes1445

more coupled to that of the joint. Therefore we will begin in this chapter by exploring a very com-1446

pliant system, but we will consider the effect of increasing tendon stiffness in Chapter 5 as these1447

results will be influenced by our choice of tendon stiffness parameters. We know from previous1448

work that tendon compliance decouples the relationship between muscle and musculotendon in1449

vivo and suspect that for a mechanical system this decoupling makes it difficult to predict joint1450

angles from motor angle and angular velocity measurements.1451

KT,i =
∂fT,i

∂(∆lT,i)
= kT bT exp(bT∆lT,i) ≈ kT bT (1− bT∆lT,i) (when ∆lT,i << 1) (4.7)

Choosing values for these parameters requires careful consideration of (i) the range of tendon1452

tensions that the motors will produce during movements and (ii) the amount by which the tendons1453

should deform as a result. As it is difficult to determine the required tendon tensions (and therefore1454

tendon deformations) for any redundant tendon-driven system (as illustrated in Chapter 2), an1455

alternative approach is to consider a conservative range of joint stiffness values. For a tendon-1456

driven system with nonlinear tendon elasticity we can define joint stiffness as the partial derivative1457

of the net joint torque produced by the tendons with respect to the joint angle (Eq. 4.8).1458
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Kj =
∂

∂θj

[
rj
(
fT,1(θm,1, θj)− fT,2(θm,2, θj)

)]
= kT bT r

2
j

(
exp

(
bT∆lT,1

)
+ exp

(
bT∆lT,2

)) (
Assuming ∆lT,i ≥ 0 for i ∈ {1, 2}

)
= bT r

2
j

(
fT,1(θm,1, θj) + fT,2(θm,2, θj) + 2kT

)
(4.8a)

(4.8b)

(4.8c)

Note that because of the nature of exponential functions and their derivatives, by assuming that1459

tendons are not allowed to go slack (i.e., ∆lT,i ≥ 0 for i ∈ {1, 2}), we can rewrite the expression1460

for joint stiffness as a function of tendon tensions. Additionally, if no tension is applied to the1461

tendons, the minimum joint stiffness is given by Kmin
j = 2kT bT r

2
j . Based on the range of joint1462

stiffness values tested in Palli et al. (2008), if we assume a conservative range of [10,50] Nm/rad1463

and consider the case where the pendulum is in equilibrium in the vertical position, then we know1464

that because of the plant’s symmetry that the tendon tensions and deformations must be equal1465

and we can solve for reasonable values of kT and bT by choosing a conservative range of tendon1466

deformations for a very compliant tendon; ∆lT,i ∈ [0, 0.08] cm (Eq. 4.9).1467


Kmin
j = 10

Nm
rad

= 2kT bT r
2
j

Kmax
j = 50

Nm
rad

= 2kT bT r
2
j exp

(
bT · 0.08 m

) =⇒


bT =

ln(50/10)

0.08 m
≈ 20 m−1

kT =
10 Nm
2bT r2

j

≈ 100 N
(4.9)

Lastly, it should be noted that for this choice of kT and bT , tendon tension reaches ∼ 400 N1468

at the maximum tendon deformation (∼ 0.08 m, by Eq. 4.1a). If we assume a cylindrical tendon1469

with a diameter (d) of 0.001 m and a slack length (lT,s,i) between 0.01–0.04 m, then Young’s1470

modulus (E) at the maximum deformation can range from 0.127 to 0.509 GPa (i.e., rubberband-1471
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like material).1472

E =
KT,i(0.08 m) · lT,s,i

CSA
=

(9906.0 N/m) · lT,s,i
2.5π × 10−7 m2

∈ [0.127, 0.509] GPa (4.10)

However, in Chapter 5 we evaluate the performance of these ANN joint predictor algorithms as1473

tendon stiffness increases. Two additional choices for the parameters of kT and bT are derived1474

using the above technique for maximum tendon deformations around 0.0267 m and 0.0125 m1475

(i.e., 33% and 16% of the current conservative maximum deformation, respectively). Assuming1476

similar tendon architecture, the range of Young’s moduli for these stiffness parameters when∼ 4001477

N are applied to the tendons will increase 2.6x and 5.2x, respectively. These values are more1478

consistent with the observed range of Young’s moduli for physiological tendon (1.2–1.7 GPa),1479

allowing observations to be made about the utility of physiological tendon sensors (i.e., Golgi1480

tendon organs) and their role in sensory fusion (Bennett et al., 1986; Zajac, 1989; Pollock and1481

Shadwick, 2017).1482

4.3.3 Description of Motor Babbling1483

As previously discussed, in addition to designing an algorithm that can accurately predict joint1484

angles from non-collocated sensory signals, it is important that it do so in a data- and time-efficient1485

manner. Minimizing the amount of time and data that is needed to train these ANNs (i) decreases1486

the chances of significant wear and tear on the physical system and (ii) increases the usefulness1487

of the algorithm by promising quick and accurate state estimation (i.e., no long calibration times1488

needed). In order to efficiently learn a mapping from a particular sensory set (~xisens) to joint angles,1489

we performed a motor babbling trial whereby we (i) passed a series of random input torques to1490

the motors, (ii) recorded all subsequent sensory information, and then (iii) trained an ANN on that1491

specific sensory set to predict joint angle (Fig. 4.3). The motor babbling input torques are con-1492

tinuous signals generated from low frequency, band-limited white noise (1-10 Hz) that uniformly1493
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sample the input torque range (0-10 Nm). Additionally, as the motors effectively fight each other1494

in a game of “tug of war” where the joint only moves if there is a net torque, we determined that1495

the most efficient form of motor babbling would be onethat simultaneously explores the task space1496

(i.e., joint angle) and its nullspace (i.e., joint stiffness). Therefore, the babbling signal prescribed1497

to one motor was made to be similar to the signal prescribed to the other such that the difference1498

between them would form a normal distribution with zero mean and a standard deviation of 0.51499

Nm (or 2% the maximum input level). As a result, this approach would effectively sample the1500

configuration space near the nullspace whenever the input levels were consistent with movement1501

(i.e., the tendon tensions were offset similar to cocontraction in biological systems).1502

τmin

τmax

1s

Input
Generator

Plant

τbab

θj,exp x sens
i

iANN

x sens
i θj,pred 

i

(Generate Motor Babbling)

( Train Artifical Neural Networks)on Four Main Sensory Sets
to Predict Joint Angle

Figure 4.3: Proposed setup for training ANNs on motor babbling. Random input torques were
generated from low frequency, band-limited white noise (1-10 Hz) chosen such that the difference
between the two signals has a normal distribution (0± 0.5 Nm). These motor babbling signals are
passed through the plant and all subsequent sensory information is recorded. Lastly, an ANN is
trained on a particular set of sensory information (~xisens) to predict joint angle (θij,pred).
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To generate motor babbling signals of a particular duration, the signals are first divided into1503

50 ms windows. For each 50 ms window, a random motor torque is uniformly selected from the1504

range of inputs and assigned to the first motor (Figure 4.4 A). Values for the second motor for each1505

window are then randomly selected from normal distributions centered around the first motor’s1506

input values with a standard deviation of 0.5 Nm (Figure 4.4 B). These discontinuous, piecewise-1507

constant input signals are then filtered with a 50 ms moving average, finite-impulse response filter1508

both forward and backwards to produce random motor babbling signals that are smooth, low fre-1509

quency (≤ 10 Hz), and slightly correlated with each other (Figure 4.4 C,D). These motor babbling1510

inputs are then used to drive the plant in a feedforward simulation where the resulting joint angles1511

are recorded along with all of the motor states (angles, angular velocities, and angular accelera-1512

tions) and the tendon tension states (including their first and second derivatives).1513
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Figure 4.4: Example of how 300 ms of motor babbling signals are generated. (A) Random motor
torque inputs are uniformly sampled from the range of possible inputs and assigned to 50 ms
windows for motor 1 (red). (B) Then values for motor 2 (blue) are selected for each window from
a normal distribution centered around the values for motor 1 with a standard deviation of 0.5 Nm
(2% of the range of maximum input level). These discontinuous, piecewise signals are then filtered
using a forward (C) and backward (D) finite impulse response moving average filter with a filter
lengths of 50 ms. This results in correlated band-limited, low frequency (≤ 10 Hz) white noise
motor babbling signals.
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4.3.4 Training & Testing Artificial Neural Networks1514

For each babbling trial, four different sets of sensory information were generated from the collected1515

motor and tendon tension states and used to train ANNs to predict joint angles. As a baseline set,1516

we first consider the set of all motor and tendon tension states as in Eq. 4.11 (called the set of All1517

Available States).1518

All Available States

~x 1
sens =

[
~θ Tm

~̇θ Tm
~̈θ Tm

~f T
T

~̇f T
T

~̈f T
T

]T
∈ R12 (4.11)

We then consider the Bio-Inspired Set, which observes motor position and velocities and tendon1519

tensions (Eq. 4.12). This set is reminiscent of the sensory signals available to biological systems1520

from the non-collocated muscle spindles and Golgi tendon organs, respectively.1521

Bio-Inspired Set

~x 2
sens =

[
~θ Tm

~̇θ Tm
~f T
T

]T
∈ R6 (4.12)

The last two sets, given by Eqs. 4.13 & 4.14, consider the sensory sets that do not include tendon1522

tensions in any form. The first considers motor position and velocities only (this set parallels a1523

hypothetical biological system that only uses spindle information to determine joint posture; called1524

the set of Motor Position and Velocity Only), and the second incorporates motor acceleration to see1525

if it can provide useful information about the plant dynamics not captured by kinematics alone1526

(called the set of All Motor States).1527
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Motor Position
and Velocity Only

~x 3
sens =

[
~θ Tm

~̇θ Tm

]T
∈ R4 (4.13)

All Motor States

~x 4
sens =

[
~θ Tm

~̇θ Tm
~̈θ Tm

]T
∈ R6 (4.14)

For each of these sensory sets, an ANN was trained to predict joint angles. To do this, MAT-1528

LAB’s Deep Learning toolbox was used to reliably create feedforward neural networks while main-1529

taining direct control over the parameters of the network9. Specifically, we were able to control (i)1530

the number of nodes in our hidden layer, (ii) the way in which the weights and biases of the activa-1531

tion functions were initialized, and (iii) what optimizer was use. This type of neural network uses1532

backpropagation to approximate the gradient of the cost function (the mean squared error) with1533

respect to the weights after each input-output pass in order to tune the weights of the networks1534

such until the cost is (locally) minimized. For each ANN created, the number of input layer nodes1535

equals the number of states in the sensory set and the number of output layer nodes is one. Each1536

network will have one hidden layer and the number of hidden layer nodes will be explored in later1537

sections to determine the effect that it has on the performance of each network.1538

The function used to initialize the weights and biases of the network was changed from the de-1539

fault function (Nguyen-Widrow initialization algorithm) to one that ensure the weights and biases1540

are initialized randomly each trial. The Nguyen-Widrow algorithm is designed to reduce training1541

time by distributing the initial weights and biases in such a way that the active region of each neu-1542

ron in the hidden layer is evenly distributed across the input space. As the goal of this experiment1543

is to compare how well and how quickly ANNs trained on different sensory sets can learn to pre-1544

9https://www.mathworks.com/help/deeplearning/ref/feedforwardnet.html
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dict joint angles, the Nguyen-Widrow algorithm is a poor candidate for initialization function as it1545

may influence the average performance differently across ANNs trained on the four sensory sets.1546

The optimizer was chosen to be the Levenberg-Marquardt algorithm (a nonlinear least squares op-1547

timization technique) as it is very robust for minimizing mean squared error (MSE). As we wish to1548

compare how well these ANNs trained on the four sensory sets are able to predict the joint angle1549

for a simple 1 DOF system, we will use the mean absolute error (MAE) to discuss performance,1550

but for systems with higher DOFs a mean squared error (or root mean squared error, RMSE) would1551

be more appropriate. Therefore, this choice of optimizer is appropriate to find the (locally) optimal1552

performance for these ANNs.1553

For each babbling trial and each sensory set, the babbling data is randomly divided into three1554

sets; training (70%), validation (15%), and testing (15%). The training sets will be used to cal-1555

ibrate the weights of the ANN using backpropagation, while the validation data will be used to1556

ensure that the network does not overfit to the data. Validation checks are performed after each1557

epoch (i.e., one full pass of the training data) and will terminate the training if (i) the performance1558

has gotten worse for 6 consecutive epochs or (ii) if the gradient of the performance is below a cer-1559

tain threshold (10−7, i.e., if the performance curve has flattened out and is near a minimum). The1560

number of epochs that the networks can train on can also be modified to prevent overfitting (as well1561

as to reduce training time), but because we are interested in the best performance possible by ANNs1562

trained on these sensory groups, the epoch limit was set to 10,000 to allow (most) networks to con-1563

verge by means of the aforementioned validation checks instead. Once a network has converged,1564

it then uses the testing data to calculate the performance of each network (effectively testing on1565

data that has been previously “unseen” by the ANN). Because this training algorithm utilizes time1566

histories of sensory information, it is to be expected that each ANN perform as well on the testing1567

data set as it does on the training data set, because there will be little difference between randomly1568

chosen data points that may be separated by as little as 1 ms in time (i.e., if a ANN was trained1569

on data collected at time t then testing on data collected at time t + 0.001 s should not be all that1570

different in a continuous system and the performance should be similar to the testing performance).1571
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Therefore it will be critical that we additionally test how each network performs when generalizing1572

to different movement tasks. The next section will discuss how these generalization movements1573

were generated.1574

4.3.5 Defining Different Movements to Test Generalizability1575

While it is important to understand how these limited experience ANNs performed on the test data1576

(random 15% sample of babbling data) to identify whether different sensory sets can be used to1577

predict joint angles sufficiently, it is perhaps more important to understand if these networks can1578

generalize to different types of movements. To adequately address each ANNs ability to gener-1579

alize, we needed to identify movement tasks that were representative of most typical movements.1580

An enabling feature of tendon-driven system with tendons with nonlinear stiffness is the ability1581

to control joint angle independently of joint stiffness (Kj , Eq. 4.8) by choosing different tendon1582

tensions in the nullspace of the joint dynamics. Therefore, by defining four different movement1583

tasks where joint angle and stiffness are prescribed either sinusoidal or random point-to-point tra-1584

jectories within the range of these values, we are able to generate movement tasks that categorized1585

most typical movements.1586

In the next section we will discuss how a feedback linearization algorithm can be used to con-1587

trol both the joint angle and stiffness of this system in order to generate the states associated with1588

each of these generalization movements, but for now it is important to know that because the con-1589

trol policy will depend on up to the fourth derivative of joint angle and the second derivative of1590

joint stiffness, these reference trajectories must be at least differentiable up to the fourth derivative1591

to avoid unwanted transients in the control (i.e., be C4 differentiable). This will not be an issue1592

for sinusoidal trajectories, but when prescribing point-to-point tasks, this will become more impor-1593

tant. To address this, a modified minimum-jerk trajectory was derived such that it was possible to1594

smoothly leave and arrive a point in either joint angle or stiffness space with zero velocity, accel-1595
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eration, jerk, and snap (i.e., all derivatives up to the fourth order will be zero, Eq. 4.15; Flash and1596

Hogan, 1985). For a desired output variable yχ to transition between some initial (i) and final (f )1597

point:1598

yχ = yχ,i + (yχ,f − yχ,i)
(
126τ 5 − 420τ 6 + 540τ 7 − 315τ 8 + 70τ 9

)
dyχ
dτ

= (yχ,f − yχ,i)
(
630τ 4 − 2520τ 5 + 3780τ 6 − 2520τ 7 + 630τ 8

)
d2yχ
dτ 2

= (yχ,f − yχ,i)
(
2520τ 3 − 12600τ 4 + 22680τ 5 − 17640τ 6 + 5040τ 7

)
d3yχ
dτ 3

= (yχ,f − yχ,i)
(
7560τ 2 − 50400τ 3 + 113400τ 4 − 105840τ 5 + 35280τ 6

)
d4yχ
dτ 4

= (yχ,f − yχ,i)
(
15120τ − 151200τ 2 + 453600τ 3 − 529200τ 4 + 211680τ 5

)

(4.15a)

(4.15b)

(4.15c)

(4.15d)

(4.15e)

where τ = (t− ti)/(tf − ti) and χ ∈ {θj, Kj}. By limiting the amount of time it takes to transition1599

between points (tf−ti) to a conservative (2·2 Hz)−1 = 0.25 sec we can limit the frequency content1600

of the reference trajectory to be below 2 Hz. The output variable can then be held constant for a1601

given duration (minus the transition time), before transitioning to another point.1602

Therefore, we define the four movement trajectories used to test generalization trajectories as1603

follows. When both joint angle and joint stiffness were made to follow sinusoidal trajectories, the1604

joint angle was prescribed a sinusoidal trajectory of ±45◦ from vertical with a frequency of 1 Hz,1605

while the joint stiffness was prescribed a cosine trajectory with twice the frequency such that max-1606

imum stiffness occurred at the extremes of the movement (or minimum stiffness when swinging1607

across the configuration space, Eq. 4.16, Figure 4.5, left). For this and all other trajectories, the1608

range of joint stiffness values was chosen to be [20,50] Nm/rad. The length of this reference trajec-1609

tory was chosen to be 10 seconds (10 periods of joint rotations), but once the controller converged1610

on this trajectory, so too did the states associated with it. Therefore, because the sensory states1611
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will be periodic, the performance of each ANNs will be periodic as well and only one period is1612

needed to capture the performance behavior. However, we will use the last three periods to ensure1613

we capture the average behavior.1614

Angle Sinusoidal / Stiffness Sinusoid

θrj =
π

4
sin(2πt)

Kr
j =

50 + 20

2
− 50− 20

2
cos(4πt)

(4.16a)

(4.16b)

When the joint angle was made to follow a sinusoidal trajectory but the joint stiffness was1615

made to follow a point-to-point task, the joint angle trajectory was prescribed as described above1616

(1 Hz oscillation, ±45◦ from vertical), and the joint stiffness point-to-point task was chosen such1617

that (i) the point-to-point values uniformly sampled the stiffness range and (ii) the step duration1618

was equal to 3 times the period of the joint angle trajectory (Figure 4.5, middle left). This ensured1619

that the maximum positive angular velocity has two periods where it does not coincide with the1620

transition to another stiffness point. Therefore, for each new random joint stiffness value, Eq. 4.15a1621

was used to generate a smooth transition from the previous value with the appropriate boundary1622

conditions, where it will be held constant for 2.75 seconds before transitioning to the next value1623

(step duration minus the transition time, Eq. 4.17). To adequately sample the joint stiffness space,1624

we will complete 100 point-to-point steps for this trajectory (300 seconds total).1625

Angle Sinusoidal / Stiffness Point-to-Point

θrj =
π

4
sin(2πt)

Kr
j =


Eq. 4.15a for smooth transitions
Otherwise, constant hold phase
at random stiffness values
for 3 periods minus
transition time (2.75 seconds)

(4.17a)

(4.17b)
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Similarly, when the joint stiffness was made to follow a sinusoidal reference trajectory, but the1626

joint angle was made to perform point-to-point tasks, we prescribed a 1 Hz cosine trajectory for1627

the joint stiffness that spanned the joint stiffness range and chose random point-to-point joint angle1628

values that uniformly sampled the entire range of motion with a step duration 3 times the period of1629

the joint stiffness trajectory (Eq. 4.18, Figure 4.5, middle right). As before, to adequately sample1630

the joint angle space, we will complete 100 point-to-point tasks for this trajectory (300 seconds).1631

Angle Point-to-Point / Stiffness Sinusoidal

θrj =


Eq. 4.15a for smooth transitions
Otherwise, constant hold phase
at random angle values
for 3 periods minus
transition time (2.75 seconds)

Kr
j =

50 + 20

2
− 50− 20

2
cos(2πt)

(4.18a)

(4.18b)

Lastly, when both joint angle and stiffness were made to follow point-to-point trajectories, the1632

random values were uniformly selected from the full range of motion and the joint stiffness range,1633

respectively (Figure 4.5, right). The step duration was set to 1 second (minus the transition time),1634

to ensure that the plant had ample time to converge to the point in joint angle and joint stiffness1635

space. As described above when the joint angle and stiffness followed sinusoidal trajectories, once1636

the behavior of the plant converges, so too will the performance. Therefore this step duration1637

is adequate to capture the behavior of a “ramp-and-hold” task because the controller was able1638

to converge to this static point within the alotted step duration. For this trajectory, 200 separate1639

point-to-point tasks were completed (200 seconds total).1640
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Angle Point-to-Point / Stiffness Point-to-Point

θrj =


Eq. 4.15a for smooth transitions
Otherwise, constant hold phase at
random angle values for 1 second
minus transition time (0.75 seconds)

Kr
j =


Eq. 4.15a for smooth transitions
Otherwise, constant hold phase at
random stiffness values for 1 second
minus transition time (0.75 seconds)

(4.19a)

(4.19b)

Point-to-Point

Point-to-PointPoint-to-Point
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Figure 4.5: Example plots of four different types of reference trajectories where joint angle and
joint stiffness are either varied sinusoidally or in a point-to-point task. For point-to-point tasks,
transitions are limited to 0.25 seconds (2 Hz cutoff) and are designed in a way that they are con-
tinuously differentiable up to the fourth derivative (i.e., they leave and arrive each point with zero
velocities, accelerations, jerks, and snaps).

4.3.6 Controlling for Joint Angle and Stiffness via Feedback Linearization1641

In order to test how well each ANN generalizes to the four movement tasks derived in the previ-1642

ous section, we need the sensory sets associated with each movement. To do this, we will control1643

the system so that it adequately follows the reference trajectories described above and record the1644
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resulting sensory information. As we are controlling both the position and stiffness of the joint,1645

control is possible via a feedback linearization algorithm (Palli et al., 2007). If we consider the1646

outputs of the system to be y = h(~x) = [θj, Kj]
T , then feedback linearization completely trans-1647

forms the nonlinear system of equations, (Eq. 4.3), into a linear system that can be controlled by1648

feedback.1649

A condition for the use of this tool is that the sum of the elements of the relative vector degree1650

be equal to the number of states. The relative degree of one of the output variables is found by1651

differentiating that variable until the input variable appears. We find that we must differentiate the1652

joint angle 4 times and the joint stiffness 2 times in order for the input torques to appear, which1653

corresponds to a total relative degree of 6 for a system of equations with 6 states (Eqs. 4.20– 4.22).1654

Note that Lnfhθj and LnfhKj represent the n-th Lie derivatives of the functions hθj(~x) = θj and1655

hKj(~x) = Kj along f(~x), respectively. Additionally, LgL3
fhθj(~x) and LgLfhKj(~x) are the Lie1656

derivatives of L3
fhθj(~x) and LfhKj(~x) along g(~x), respectively, where Lghθj(~x), LgLifhθj(~x) for1657

i ∈ {1, 2}, and LghKj(~x) equal zero.1658

yθj = hθj(~x) = θj

ẏθj =

(
∂hθj
∂~x

)T (
f(~x) + g(~x)~u

)
= Lfhθj(~x) +���

���:
0

Lghθj(~x)~u = θ̇j

ÿθj =

(
∂Lfhθj
∂~x

)T (
f(~x) + g(~x)~u

)
= L2

fhθj(~x) +
���

���
�:0

LgLfhθj(~x)~u = f2(~x)

y
[3]
θj

=

(
∂L2

fhθj
∂~x

)T (
f(~x) + g(~x)~u

)
= L3

fhθj(~x) +
���

���
�:0

LgL
2
fhθj(~x)~u =

(
∂f2

∂~x

)T
f(~x)

y
[4]
θj

=

(
∂L3

fhθj
∂~x

)T (
f(~x) + g(~x)~u

)
= L4

fhθj(~x) + LgL
3
fhθj(~x)~u

=

(
f(~x)T

(
∂2f2

∂~x2

)
+

(
∂f2

∂~x

)T (
∂f

∂~x

))(
f(~x) + g(~x)~u

)

(4.20a)

(4.20b)

(4.20c)

(4.20d)

(4.20e)

(4.20f)
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yKj = hKj(~x) = Kj

ẏKj =

(
∂hKj
∂~x

)T (
f(~x) + g(~x)~u

)
= LfhKj(~x) +���

���:
0

LghKj(~x)~u

=

(
∂Kj

∂θj

)
θ̇j +

(
∂Kj

∂θm,1

)
θ̇m,1 +

(
∂Kj

∂θm,2

)
θ̇m,2

ÿKj =

(
∂LfhKj
∂~x

)T (
f(~x) + g(~x)~u

)
= L2

fhKj(~x) + LgLfhKj(~x)~u

=

(
f(~x)T

(
∂2Kj

∂~x2

)
+

(
∂Kj

∂~x

)T (
∂f

∂~x

))(
f(~x) + g(~x)~u

)

(4.21a)

(4.21b)

(4.21c)

(4.21d)

(4.21e)

We then rewrite the system using the derivatives of the output where the input first appears1659

(Eq. 4.22). By choosing ~u to satisfy Eq. 4.23, we can choose ~v = [vθj , vKj ]
T such that the now1660

linear system stabilizes around the prescribed reference trajectories (Eq. 4.24). The values for1661

this equation were derived solving an algebraic Ricatti equation for continuous time (Palli et al.,1662

2008) and have been reproduce below (Table 4.2). Sample plots for the results of following the1663

generalization trajectories with this feedback linearization controller are provided in Figure 4.61664

where the joint angle output is plotted alongside the positions and velocities of the motors, tendon1665

tensions, and motor input torques.1666

y
[4]
θj

= L4
fhθj(~x) + LgL

3
fhθj(~x)~u

ÿKj = L2
fhKj(~x) + LgLfhKj(~x)~u

(4.22a)

(4.22b)

~u =

[
LgL

3
fhθj(~x)~u

LgLfhKj(~x)~u

]−1([
vθj
vKj

]
−

[
L4
fhθj(~x)

L2
fhKj(~x)

])
(4.23)
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 vθj = θ
r[4]
j + cθj ,3(θ

r[3]
j − y[3]

θj
) + cθj ,2(θ̈rj − ÿθj) + cθj ,1(θ̇rj − ÿθj) + cθj ,0(θrj − yθj)

vKj = K̈r
j + cKj ,1(K̇r

j − ẏKj) + cKj ,0(Kr
j − yKj)

(4.24a)

(4.24b)

Coefficients for Equation 4.24

Output Variable (y) cy,0 cy,1 cy,2 cy,3

Joint Angle (θj) 3162.3 1101.9 192.0 19.6

Joint Stiffness (Kj) 316.2 25.1

Table 4.2: List of variables for Eq. 4.24 that solve an algebraic Ricatti equation for continuous
time. Derived in Palli et al. (2008) and reproduced here.
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Figure 4.6: Sample plots comparing the performance of the feedback linearization algorith when
following the four reference trajectories of interest (where joint angle and joint stiffness are varied
sinusoidal or with a point-to-point task). The resulting motor positions and velocities, tendon
tensions, and motor input torques are provided beneath the joint angle output of each trajectory. It
should be noted that the motor kinematics are not always coupled to the behavior of the pendulum
(especially when the joint angle is constant during a point-to-point task but the joint stiffness is
varied sinusoidally, middle right), suggesting it would be difficult to imply joint angle from motor
measurements alone.

1667

It is important to note that the use of a feedback linearization controller (that relies on an1668

accurate model of the system) was used to (i) prescribe desired movement trajectories and (ii) fully1669

observe the internal sensory states. As such, it is not a part of the proposed framework to build1670

ANNs to predict joint angle but instead a tool used to generate systematically varied movements1671

and the associated sensory sets needed to test the performance and generalizablity of the proposed1672

ANNs.1673

4.3.7 Description of Experiments1674

With the general framework for training an ANN on a given sensory set defined, we must now1675

consider how (i) motor babbling duration and (ii) number of hidden layer nodes affect the per-1676

formance of these ANNs. The general setup for either experiment is shown in Figure 4.7 where1677

the four sensory sets (Eqs. 4.11–4.14) generated from the four generalization movements (Eqs.1678

4.16–4.19) are used to test the performance of ANNs trained on motor babbling information where1679

either the duration of the babbling or the number of hidden layer nodes are varied.1680

To observe the effect (if any) that the duration of the motor babbling has on the performance1681

of ANNs trained on these four sensory groups, we will select babbling durations between 1–251682

seconds ({1} ∪ {2.5, 5, ..., 25}) and conduct 25 motor babbling experiments for each duration1683

chosen. For each babbling duration, the sensory data collected from each of the 25 babbling trials1684

will be divided into the four sensory sets and used to train new ANNs. For each of the four sensory1685

sets, the performance of each ANN for each of the four generalization movements is calculated as1686
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the mean absolute error between the actual and predicted joint angles and represents how well the1687

ANN generalized to each task. For each babbling duration, the average mean absolute error for1688

each sensory set is calculated for each of the four generalization movements. For this experiment,1689

we initially consider 15 hidden layer nodes as previous work has shown that to be sufficient when1690

controlling the joint angles of a tendon-driven system with rigid tendons (Marjaninejad et al.,1691

2019a). The results from this experiment (discussed in more detail below) lead to the observations1692

that (i) average performance converged after 7.50–10 seconds when using 15 hidden layer nodes1693

and (ii) that for each sensory set, the standard deviation generally decreased as babbling duration1694

increased.1695

From these observations, a separate experiment was conducted where the babbling duration1696

was fixed at 15 seconds while the number of hidden layer nodes was swept from 1–19 with a1697

resolution of 2 nodes to observe how this performance may change if the network architecture1698

changed as well. We chose to use 15 seconds of motor babbling instead of observed 7.5–10 second1699

threshold to provide a safety factor so that changes in performance could only be attributed to1700

changes in the number of hidden layer nodes and not because the choice of babbling duration was1701

near the threshold for “good enough” performance. Because the standard deviations between trials1702

is quite low for any choice of hidden layer nodes, only 10 motor babbling trials were conducted1703

and 10 ANNs were subsequently trained for each sensory set. Again, the performance of each1704

network was determined by how well it generalized to the four movement tasks as described above1705

and the average performance of all 10 trials was be calculated for each sensory set and each choice1706

for the number of hidden layer nodes.1707
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Figure 4.7: Proposed experimental setup for a single choice of either babbling duration (Exper-
iment 1, N = 25) or the number of hidden layer nodes (Experiment 2, N = 10). For either
experiment, for each choice of the independent parameter, N motor babbling experiments are con-
ducted and N ANNs are trained (See. Figure 4.3). The performance of each of these networks
will be determined by their ability to generalize to different movements (where joint angle and/or
stiffness are prescribed either sinusoidal (Sin) or point-to-point (P2P) trajectories; See Figure 4.5).
A feedback linearization controller then calculates the input torques needed to produce the desired
movements (See Section 4.3.6), which are then passed through the plant to produce the experimen-
tal joint angle (θj,exp) as well as the four sensory sets of interest (~xisens). These sets are then passed
through their corresponding ANNs that were trained on babbling data to predict joint angle (θij,pred).
The prediction errors for each network are then averaged over all trials, and the performance as a
function of the independent parameter can then be evaluated.

4.4 Results1708

4.4.1 Sweeping Motor Babbling Duration1709

For the first experiment, where the duration of motor babbling was varied between 1–25 seconds1710

(for a fixed number of hidden layer nodes; 15), we find that for all motor babbling durations and1711

for all movement types ANNs trained on tendon tension data (i.e., the set of All Available States1712

and the Bio-Inspired Set), drastically outperform those ANNs that were trained without it (i.e., the1713

sets of Motor Position and Velocity Only and All Motor States). Figure 4.8, which plots the average1714

ANN performance (mean absolute error) of each sensory set against the babbling durations used1715

to train the ANNs for each of the four generalization movements, demonstrates this clearly as the1716

performances of the ANNs trained on tendon tension information are too low to even be seen on1717

the same scale as the performances of the ANNs trained only with motor information. Plotting1718
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this same graph on a log scale (Figure 4.9) reveals that the performance of the ANNs trained on1719

tendon tension in addition to motor information perform nearly 2 to 3 orders of magnitude better1720

than those ANNs trained only with motor information and does so (i) for any babbling duration1721

and (ii) across all movements. Interestingly, ANNs trained on the Bio-Inspired Set performed1722

as well as (if not better than) those trained on the set of All Available States, which speaks to1723

both the importance of knowing tendon tension when predicting joint angles from non-collocated1724

sensors and the potential lack of utility (or possible redundancy) of higher derivative tendon tension1725

states. Additionally, when comparing the performances of the ANNs trained on motor information1726

only, the inclusion of motor acceleration does initially compensate for the lack of tendon tension1727

information and increases the performance, as expected, when babbling durations are low. But this1728

improvement is not significant and becomes smaller as the duration of motor babbling increases1729

(i.e., motor acceleration information is useful if and only if data is limited, but not nearly as useful1730

as tendon tension information).1731
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Figure 4.8: Plots of the average performance (mean absolute error) versus babbling duration (sec-
onds) assuming 15 hidden layer nodes. For each babbling duration, 25 ANNs were trained from
babbling data and the average error for each generalization trajectory was computed. The ANNs
with tendon tension drastically outperform those trained only with motor information. A log scale
is provided in Figure 4.9 to discuss the performance of the Bio-Inspired Set relative to the set
of All Available States. It can be seen that for this choice for the number of hidden layer nodes
(15), babbling durations around 15 seconds are sufficient to produce the best performance for the
ANNs train on motor information only (although a case could be made that the performance only
narrowly improves from 7.5–15 seconds).
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Figure 4.9: Plots of the average performance (mean absolute error) versus babbling duration (sec-
onds) in log scale assuming 15 hidden layer nodes. For each babbling duration, 25 ANNs were
trained from babbling data and the average error for each generalization trajectory was computed.
The ANNs with tendon tension drastically outperform those trained only with motor information
(with a 3 orders of magnitude improvement when training on 7.5 seconds or longer). We also
see that for this choice for the number of hidden layer neurons, that the Bio-Inspired Set will on
average perform as well as our baseline set (All Available States), suggesting that tendon tension
in addition to motor positions and velocities are sufficient to predict joint angles. Lastly, it can
be seen that for this choice for the number of hidden layer neurons, babbling durations around 15
seconds are sufficient to produce the best performance these all ANNs.
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Obviously, these result are subject to changes in the number of hidden layer nodes. In an effort1732

to elucidate the effect that this floating parameter has on performance, the next experiment will1733

train ANNs with different numbers of hidden layer nodes on the same amount of babbling data.1734

Therefore, a reasonable choice for the duration of motor babbling to be used in the next experiment1735

must be made. We can see from Figure 4.9 that performance converges for some sensory sets with1736

as little as 7.5–10 seconds of motor babbling. However, a closer look at Figure 4.8 reveals that the1737

performances of ANNs trained only on motor information will actually converge after 15 seconds1738

of motor babbling. Therefore, we conclude that for the choice of 15 hidden layer neurons, 151739

seconds of motor babbling is sufficient to produce relatively good performance (i.e., near optimal)1740

for ANNs trained on each of the sets of sensory information.1741

To further validate this choice, when exploring the standard deviations of the performances of1742

each sensory set across babbling durations, we see that the standard deviation generally decreases1743

as the babbling duration increases until it saturates after 10–15 seconds of motor babbling (Figure1744

4.10). It should be noted that because these relationships are plotted on a logarithmic scale, varia-1745

tions in either the average performance (Figure 4.9) or the performance standard deviation (Figure1746

4.10) for the ANNs trained with tendon tension information will be exaggerated (i.e., these plots1747

show variations relative to each other, when in reality the difference between values in on the order1748

of 10−3 to 10−2). Therefore, based on the observation that average performance as well as the1749

performance standard deviation for all sensory sets converges after 15 seconds of motor babbling1750

(across all movement tasks), we conclude that 15 seconds is a reasonable value to use to explore1751

the effect that changes in the number of hidden layer nodes may have on performance.1752
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Figure 4.10: Plots of the standard deviation in the performance (mean absolute error) for each
choice babbling duration (seconds) in log scale assuming 15 hidden layer nodes. For each babbling
duration, 25 ANNs were trained from babbling data and the average error for each generalization
trajectory was computed. We see trends similar to those seen in Figure 4.9, with standard deviation
generally decreasing as the duration of babbling increases. Note that because this plotted on a log
scale, the peaks for both the All Available States and Bio-Inspired Set at 20 seconds of babbling
are on the order of 10−3 to 10−2, and therefore does not reflect large variations from the average
values but more likely noise. These results further justify the use of 15 seconds of motor babbling
in the subsequent experiment where the number of hidden layer nodes are varied as the standard
deviation is lower at 15 seconds than it is at 7.5 seconds across all sensory sets.

135



4.4.2 Sweeping Number of Hidden Layer Nodes1753

By fixing the duration of motor babbling to 15 seconds and sweeping the number of hidden layer1754

nodes, it is possible to see if changes in the structure of the ANN will change the performance1755

of these ANNs. Figure 4.11 reveals and interesting consequence of ANN structure and the type1756

of information encoded by these sensory states—networks trained with motor information only1757

actually perform best with only one hidden layer node and have increasing poorer performance as1758

the number of hidden nodes increases. If we consider the results from the previous experiment1759

(where motor acceleration is only useful when babbling durations are less than 10 seconds), these1760

results present an interesting interpretation of the information encoded by the positions and veloc-1761

ities of the motors; mainly that the best approximation that ANNs trained without tendon tension1762

can provide is captured by a single equation of motor positions and velocities. Adding nodes1763

without providing any additional information will result in worse performance as more floating1764

parameters (i.e., weights and biases) must be set to recapture what was best described by a simple1765

equation, but must do so with limited data. This is single equation approximation is reminiscent of1766

the “stiff tendon” approximation used in Chapter 1 and refuted in Chapter 3, where changes in the1767

kinematically-derived musculotendon excursions are used to approximate muscle fascicle length1768

changes (only here it is the other way around).1769
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Figure 4.11: Plots of the average performance (mean absolute error) versus number of hidden layer
neuron assuming 15 seconds of motor babbling. For each choice in the number of hidden layer
nodes, 10 ANNs were trained from babbling data and the average error for each generalization
trajectory was computed. For any choice in the number of hidden layer nodes, the ANNs trained
with tendon tension outperform those trained without it. However, for ANNs with fewer and
fewer hidden nodes, the performance of ANNs trained without tendon tension improves while the
performance of ANNs trained with tendon tension data degrade but still perform best. As expected
the performance of the ANNs trained with motor information only worsens as the structure of
the ANN becomes more complex because there is not enough information to tune the additional
weights.
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Conversely, the performance of ANNs trained with tendon tension information increases across1770

all movements when the number of nodes increases. Intuitively, if the number of nodes is too1771

small, features of the data will be discarded as there are fewer available equations to capture it. It1772

is important, however, to note that while the performance of ANNs trained with tendon tension data1773

decrease with fewer nodes, the performance never becomes worse than that of the ANNs trained1774

without tendon tension. This is further illustrated in Figure 4.12 where the same relationships are1775

plotted on a log scale. Interestingly, it appears that the ANNs trained on tendon tension information1776

will start to lose performance for a feedforward network with less than 9 hidden layer nodes (even1777

though using as little as 3 nodes still results in approximation errors less than 10−2 degrees on1778

average). From this plot we can see that the original choice of 15 nodes for experiment 1 was1779

reasonable (albeit superfluous) as it provided a safety factor so that changes in motor babbling1780

duration would not have changes in performance that could be attributed to the number of nodes1781

in the hidden layer.1782
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Figure 4.12: Plots of the average performance (mean absolute error) versus number of hidden
layer neuron in log scale assuming 15 seconds of motor babbling. For each choice for the number
of hidden layer nodes, 10 ANNs were trained from babbling data and the average error for each
generalization trajectory was computed. For any choice in the number of hidden layer nodes, the
ANNs with tendon tension outperform those trained only with motor information. However, for
fewer and fewer hidden layer nodes, the performance of the ANN trained without tendon tension
improves while the performance of ANNs trained with tendon tension data degrade but still per-
form best. It can be seen that the performance of the ANNs trained on tendon tension data begin
to plateau for 9+ hidden layer nodes. Therefore we are justified in using 15 hidden layer nodes as
a safety factor as the performance is relatively consistent for similar architectures.
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4.4.3 Neural Network Performance Across Sensory Sets and Movements1783

From the results of experiments 1 and 2, it was determined that the performance of ANNs with1784

15 hidden layer nodes trained on 15 seconds of motor babbling produced reliably good estimates1785

for joint angle from ANNs trained on tendon tension data. While we saw in experiment 2 that for1786

ANNs trained only with motor information (using 15 seconds of motor babbling) the performance1787

is actually best when the number of nodes is lowest (i.e., 1), improvement was (i) not enough1788

to outperform the ANNs trained with tendon tension data and (ii) only slightly better than the1789

performance of ANNs with 10+ hidden layer nodes (∼ 0.4◦ vs. ∼ 0.8◦, respectively). Therefore,1790

in the final chapter, where we consider how changes to movement dynamics or to the motor or1791

tendon properties affect the utility using tendon tension to predict joint angles, we will consider1792

ANN with 15 hidden layer nodes, trained on 15 seconds of motor babbling for all sensory sets. As1793

such, we will discuss in this section the training and performance of ANNs trained for this duration1794

and with this architecture.1795

As previously discussed, for each sensory set, 25 ANNs were trained on the appropriate set1796

of motor babbling data to predict joint angles. Each ANN would refine its weights and biases to1797

increase the accuracy of this prediction by using backpropagation to minimize the mean squared1798

error. The training stopped whenever (i) the performance improvement was sufficiently small1799

between epochs, (ii) the performance actually got worse for 6 consecutive epochs, or (iii) the1800

epoch limit was reached. As the epoch limit was chosen to be sufficiently large, very few ANNs1801

reached this limit before terminating from one of the other two conditions. The left panel in1802

Figure 4.13 shows the training performance after each epoch for all 25 trial for each sensory set.1803

Networks trained on motor information alone terminated their training after less than 1000 epochs1804

on average, while the Bio-Inspired Set and the set of All Available States utilized 2917 and 52841805

epochs on average, respectively (Figure 4.14). However, it can be seen from the middle panel in1806

Figure 4.13 that the performance of the ANNs trained with tendon tension already perform 2 orders1807
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of magnitude better than their tension-less counterparts after 100 epochs.1808

In fact, if we average the training performance for the first ten epochs for each sensory set1809

(Figure 4.13,right), two main observations can be made. The first observation is that ANNs trained1810

on motor information alone will only marginally improve after the 6th epoch and the second is that1811

before the 6th epoch the performance of the ANNs trained with tendon tension information is1812

worse. These observations imply that it is easier to learn the relationship between motor position1813

and velocity information but the relationship is fundamentally incomplete and further training1814

cannot rectify this. Conversely, it takes longer to learn the complex relationship between motors,1815

tendons, and the joints that they actuate, but the performance is drastically better. These results1816

further strengthen the argument that tendon tension information critically enables the accurate1817

prediction of joint angles from non-collocated sensory information.1818
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Figure 4.13: Performance (root mean squared error; RMSE in degrees) versus the number of
epochs needed to train each ANN. For each of the four sensory sets, 25 motor babbling simulation
of 15 seconds were performed to train ANNs with 15 hidden layer nodes. Although it took the
ANNs more than 1000 epochs for the performances to converge (even requiring up to 10,000
epochs for the ANNs trained on tendon tension data), the majority of the performance improvement
came within the first 20–50 epochs (middle). In fact, the ANNs trained only on motor data (Motor
Position and Velocity Only and All Motor States) converge with as little as 6 epochs (as seen by
the average plot on the right). Lastly, it appears that learning from motor information may allow
for faster learning, but the performance is soon beaten by the ANNs trained with tendon tension
(which took longer to learn).
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Figure 4.14: Average number of epochs used before training was terminated (bars: standard devi-
ation). For each sensory set, 25 ANNs (with 15 hidden layer nodes) were trained on 15 seconds of
motor babbling. As expected, it took longer to learn when using tendon tension (left two sets), as
there were more features to extract from the data.

While it is important to understand how an ANN performs on training data, it is perhaps more1819

important to understand how the ANN can generalize to data that is not similar to the data used1820

to train it. To that end we will discuss how these ANNs perform when predicting joint angles1821

for the four generalization movements discussed in Section 4.3.5. It can be seen from the traces1822

in Figures 4.9 & 4.12 or from the bar plots presented in Figure 4.15 that the performance of the1823

ANNs trained with tendon tension information consistently outperform the ANNs trained without1824

it and that this trend is fairly well preserved across the different movement types when comparing1825

average performance. This is more easily seen in Figure 4.15 where, for each sensory set, there is1826

little difference between the average ANN performance across the four different movement types.1827
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Figure 4.15: Bar plots of the average performance of each of the four ANNs (trained on the four
sensory sets) when predicting joint angle from the four generalization movements (plotted on a log
scale). For each sensory set, 25 ANNs with 15 hidden layer nodes were trained with 15 seconds
of motor babbling (1 kHz sampling frequency) and their performance (mean absolute error) was
averaged to compare across sensory sets and across movements. For each sensory set, there is
little difference across movements, but there is a consistent trend that the sensory sets that include
tendon tension (All Available States and the Bio-Inspired Set) perform 3 orders of magnitude better
than the sets trained without tendon tension.

To explore how these ANNs perform across the movement space we will explore average per-1828

formance as a function of joint angle (Figure 4.16) and as a joint function of joint angle and joint1829

stiffness (Figure 4.17) to better understand how the ANN trained on each sensory set perform1830

across the output space on average.1831
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Figure 4.16: Radial bar plots for the log average performance for different joint angle bins (every
15 degrees) for each sensory set across all four generalization movements. The average perfor-
mance for each ANN appears to be consistent across the joint angle space (i.e., there is no clear
dependence on the actual joint angle and error from the predicted joint angle). While we again see
that the ANNs trained with tendon tension information (left two columns) outperform the ANNs
trained without it (right two columns) by about 3 orders of magnitude, we now see that this is
generally true across the entire joint angle space regardless of movement type.
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Figure 4.16 represents a radial bar plot where the average performance for joint angles in each1832

sector (every 15 degrees) are plotted (on a log scale) to identify any dependence of the performance1833

on the expected joint angle for any of the generalization movements. As the average performance1834

for each sensory set do not differ greatly from the average value shown in Figure 4.15 across1835

the joint angle space, we can conclude that there is no clear dependence of performance on the1836

expected joint angle. However, a small deviation from this behavior can be seen in the ANNs that1837

are trained without tendon tension (right two columns) when performing movements where the1838

joint angle is allowed to go towards to edges of the range of motion (second and fourth row) where1839

the performance becomes slightly better at the edges of the range of motion. This can be attributed1840

to the fact that the motor babbling experiments spend more time at the boundaries of the range1841

of motion than they do exploring the interior angles, so it makes sense that these ANNs are “data1842

rich” for these postures resulting in better estimates. These additional data do not appear to affect1843

the performance of the ANNs trained with tendon tension information (left two columns) because1844

their estimates appear to be are accurate everywhere.1845
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Figure 4.17: Heatmap of the average mean absolute error versus joint angle and joint stiffness. It
is clear that the ANNs trained on tendon tension (left two columns) can reliably predict joint angle
at any level of joint stiffness, while the ANNs trained without tendon tension (right two columns)
have difficulty at low joint stiffness values (regardless of the movement task). This is because
at lower joint stiffness, the tendons are less stiff (i.e., more disproportionate lengthening per unit
force) which causes more nonlinear decoupling between motor and kinematic states.
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While it is useful to consider performance as a function of joint angle, these movements also1846

sampled the joint stiffness space. Therefore we similarly plot the average performance as a heat1847

map for different values of joint angle and joint stiffness for each sensory set across all movements1848

(Figure 4.17). It can be clearly seen that the ANNs trained with tendon tension perform equally1849

well across all values of joint angle and joint stiffness across all movements (left two columns). Ad-1850

ditionally, the previous observation made regarding better performance for ANNs trained without1851

tendon tension information (right two columns) at the boundaries of the joint’s range of motion can1852

be seen again here (second and fourth row). What was previously unexplored was how changing1853

the values of joint stiffness affect the performance of these ANNs. We can now see that the ANNs1854

trained without tendon tension appear to perform worse at low values of joint stiffness across all1855

movements (with the set containing Motor Position and Velocity only exhibiting slightly higher1856

errors at these values). This is consistent with the expected results because lower joint stiffness can1857

be attributed to the tendons operating at regions of lower tendon stiffness (called the “toe region”1858

for physiological tendon) where we see more disproportionate lengthening per unit force, which1859

causes more nonlinear decoupling between motor and kinematic states.1860

4.5 Discussion1861

In this Chapter we created a framework for joint angle estimation by which ANNs use limited1862

experience from motor babbling to estimate joint angles. Vertebrate animals apparently seamlessly1863

learn to control redundant tendon-driven limbs with (i) no dedicated joint-angle sensors by (ii)1864

combining different non-collocated sensory information (e.g., muscle fascicle length via muscle1865

spindles and tendon tension via Golgi tendon organs). We therefore explored whether and how1866

ANNs (an analog to trial-and-error learning based on limited experience) can predict joint angles1867

on the basis of proprioceptive data similar to that available in tendon-driven limbs. We find that for1868

different durations of motor babbling (i.e., amount of data) and different ANN architectures (i.e,1869

network structures), the ANNs trained with tendon tension outperform the ANNs trained without1870
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it (Figures 4.8–4.12) and that those ANNs trained on the Bio-Inspired Set perform as well (if not1871

better than) the baseline set of all motor and tendon tension states (All Available States).1872

We also conclude that 15 seconds of motor babbling are sufficient to produce consistent results1873

for each of the four sensory sets when used to train ANNs with 15 hidden layer nodes. The per-1874

formance of each ANNs converged near these parameter values when sweeping across both motor1875

babbling duration and the number of hidden layer nodes with small standard deviations in the per-1876

formance between trials. While it was also observed that ANNs trained only on motor information1877

would perform better with only had one hidden layer node, this increase in performance was not1878

large. Comparing the training performance for ANNs with 15 hidden layer nodes trained with1879

15 seconds of motor babbling also revealed that the ANNs trained on motor information alone (i)1880

needed fewer epochs to converge to their best performance and (ii) reached a performance similar1881

to the final value after as few as 6 epochs. These observations are consistent with the notion that the1882

relationship between actuators and kinematics is easy to learn but that it is fundamentally limited1883

by its lack of tendon tension information.1884

On the computational side, our results reveal that, as expected given the prior chapters, the1885

inclusion of tendon tension improves the estimates of joint angles from those using motor infor-1886

mation alone. But specifically (and perhaps intuitively), we also illustrated that those ANNs that1887

only utilize motor information struggle to predict joint angles the most when the tendon operates1888

in the more nonlinear toe regions of its tension-deformation relationship. This region is associated1889

with larger tendon deformation and therefore larger decoupling between motors and joint angles.1890

Networks trained with tendon tension data, however, did not have any problem generalizing to1891

different motor tasks. The root cause of this improvement in the estimates of joint angles is that1892

the musculotendon (MT) has an internal degree of freedom: MT length alone does not define ac-1893

tuator position (or muscle fascicle length). And tendon tension is a means to estimate this internal1894

degree of freedom. Therefore, we conclude that it is possible to train an ANN on limited non-1895

collocated measurements of motor position, motor velocity, and tendon tension only to reliably1896
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estimate joint angles during a variety of movements. Importantly, this novel bio-inspired posture1897

estimation framework with non-collocated sensors in tendon-driven systems (called insideOut) can1898

provide accurate joint angle estimation during dynamical tasks with limited data if tendon tension1899

measurements are available.1900

There are of course limitations, both conceptual and practical, that need to be pointed out.1901

Chief among them is the conceptual quicksand of what ’state’ means in the biological context. In1902

engineering, the concept of state is central to the Newtonian, Lagrangian, Kanesian, and Hamilto-1903

nian approaches to rigid body dynamics and their control: the ‘states of a system‘ are the minimal1904

set of kinematic DOFs (sometimes called generalized coordinates) that suffice to explain the en-1905

ergy transformations the system can undergo, and how to control them. In this context, state,1906

observability, and state estimation are clearly defined.1907

In biology, the question of what is the state and what is state estimation are fraught. In fact, they1908

are best posed from an information-theoretical perspective agnostic to any particular formulation1909

that is likely to anthropomorphize the question. That is why we were careful not to call joint angle1910

the ‘state’ and we do not call our approach ‘state estimation.’ Rather we used the ANN approach as1911

a generic means to answer the information-theoretical question of whether and how well different1912

sets of afferent information can—in principle—estimate joint angle.1913

Therefore, this work has the important consequence of illuminating a glaring gap in spinal1914

neurophysiology: Why do vertebrates have Golgi tendon organs? When discussing the ability of1915

the nervous system to estimate the state of the body for the purpose of control, high-level concepts1916

such as Figure 4.1 are invoked to propose that afferent signals clearly provide such information.1917

But what information do these mechanoreceptors provide and how is it processed? In fact, does1918

the information they provide suffice in principle?1919

The field has been operating under the assumption that, in the absence of direct joint angle1920

sensors, muscle spindles (Mileusnic and Loeb, 2006; Edin and Vallbo, 1990; Ting, 2007) and skin1921
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stretch afferents (Edin and Abbs, 1991; Edin, 2001; Hulliger et al., 1979) provide kinematic in-1922

formation which, in principle, should enable estimating and controlling joint angles. Zajac, Loeb,1923

Zahalak, Hatze, Hill, and others who initiated the computational approach to muscle modeling1924

did—from the start—point out that detailed work was needed to understand the interaction be-1925

tween muscle stretch and fascicle length (Zajac, 1989; Loeb, 1984; Zahalak, 1990; Hatze, 1977;1926

Hill, 1953). Muscle spindles, by providing direct estimates of fascicle length and velocity, became1927

the mechanoreceptor of choice because of (i) the availability of heroic experimental recordings1928

from Ia and II afferents in cats and humans around the time these computational approaches came1929

about; and (ii) because those data could be collected in the anesthetized animal or relaxed hu-1930

man. Controlling and measuring tendon tension while recording from Ib afferents in experimental1931

preparations is more difficult. At the time, Loeb conjectured that muscle spindle afferents needed1932

to be informed by Golgi tendon organ afferents to be useful (Scott and Loeb, 1994; Mileusnic and1933

Loeb, 2006). This makes sense for two reasons. First, muscle spindle signals are ‘tuned’ by the1934

fusimotor γ−drive and are a floating, relative measure of fascicle length and velocity. And second,1935

even if correct, the measurements do not account for tendon stretch.1936

This was, in fact, the precedent logic for our hypothesis that the Bio-Inspired Set of afferent data1937

should in principle be better than kinematic data alone. Our results now bring computational rigor1938

to this longstanding question and answer it in the positive: We provide strong evidence that Golgi1939

tendon organs (a kinetic afferent) likely improve kinematic estimates of limb posture. We hope this1940

work catalyzes a new wave of neurophysiological research to continue to close this information-1941

theoretical gap in our understanding of sensorimotor physiology—and how spinal, brainstem and1942

somatosensory neurons process afferent information to enable versatile physical function.1943
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Chapter 51944

Parameter Sensitivity Analysis: How would changes to the movement1945

task or the plant change these results?1946

5.1 Abstract1947

How do changes in tendon elasticity or other mechanical parameters affect the minimum amount1948

of sensory information needed to infer kinematic states? This critical question lies at the heart1949

of this chapter. We have established that for a very compliant tendon-driven system, tendon ten-1950

sion information must be included in the minimum set of sensory information used to predict joint1951

angles from a artificial neural network (ANN), increasing the accuracy by nearly 3 orders of mag-1952

nitude and producing errors on average below 10−3 degrees. But it is critical that we understand1953

how these results extend to a system with different series compliance or perhaps to different move-1954

ments that may require more of less demanding length changes to be incurred by the tendon. To1955

that end, this chapter will explore three different paradigms to quantify how robust the perfor-1956

mance of these ANNs are. First we compare ANNs performance for each sensory set when asked1957

to predict joint angles for sinusoidal movements of different frequencies and conclude that ANNs1958

trained with tendon tension generalize better to higher frequencies. Next, we perform a param-1959

eter sensitivity analysis for changes in motor damping and tendon stiffness parameters. We find1960

that ANNs trained with tendon tension lose performance when the tendon stiffness increases, but1961

still outperform those ANNs trained without it. Additionally, we find no relationship between the1962

amount of motor damping and the performance of these ANNs for the range of damping param-1963

eters chosen. Lastly, we conduct an experiment on a system with very rigid tendons to see how1964

useful tendon tension information is when tendons do not deform by very much. We find that1965

even for this extreme example, ANNs trained with tendon tension information perform better than1966
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those trained without it (even though the difference in performance is much smaller). We conclude1967

that the usefulness of tendon tension is well conserved across different mechanical parameters and1968

across different dynamic constraints.1969

5.2 Introduction1970

In the previous chapter, we utilized a computational model of a tendon-driven pendulum to ex-1971

plore how observing different sensory states (e.g., motor positions or tendon tensions) affects the1972

performance of artificial neural networks (ANNs) designed to predict joint angle from limited1973

experience motor babbling. We concluded that reasonable predictions can be made from ANNs1974

trained only on motor information (i.e., positions, velocities and/or accelerations), but the inclu-1975

sion of tendon tension information drastically improves the prediction, enabling reliably accurate1976

estimates of joint angles to be made from what was called the Bio-Inspired Set of non-collocated1977

sensory information. While these results are promising and serve as a valuable proof of concept1978

for an algorithm that can predict joint angles in tendon-driven systems using motor positional data1979

and tendon tension measurements (called insideOut), it is important to understand how changes in1980

movement dynamics or changes in the physical characteristics of the plant will affect these results.1981

Therefore, the purpose of the final chapter of this dissertation will be to explore the robustness of1982

these results through parameter sensitivity for tendon stiffness and motor damping parameters and1983

by changing the dynamic constraints of the system (by changing the movement frequency/speed).1984

We will begin by conducting an experiment where the pendulum described in the previous1985

chapter is made to follow a series of sinusoidal movement tasks with the same movement amplitude1986

but variable frequencies. By keeping the joint angles trajectory constant in space and varying the1987

rate at which that trajectory is carried out, we will impose larger dynamic constraints on the system.1988

It is our expectation that because faster movements require larger tendon tensions to overcome1989

larger pendulum torques, tendon deformations will become larger at higher frequencies therefore1990
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altering the performance of these ANNs in a frequency dependent way. As such we will show that1991

the performance of ANNs trained on motor information alone will become worse as movements1992

become faster, while those ANNs trained with tendon tension information will not lose much1993

accuracy.1994

Next we will explore the consequences of changes to the mechanical parameters of the plant1995

by varying both motor damping and tendon stiffness. We conclude that for the choices of motor1996

damping used there was no discernible difference in the performance of ANNs trained with tendon1997

tension data. However, there is a slight correlation between the performance of ANNs trained on1998

the set of All Motor States and motor damping. This result is reasonable as larger motor damping1999

will induce larger motor accelerations which may increase the usefulness of a ANN that utilizes this2000

data to predict joint angles. Additionally, we find that increasing tendon stiffness actually decreases2001

the performance of ANNs train with tendon tension while the performance of ANNs trained only2002

on motor information remain relatively unchanged. This is contrary to what we would expect—as2003

tendons become more stiff the tendons deform less so the motor and joint rotations become more2004

coupled, thereby increasing the performance of ANNs trained only on motor information.2005

In a final experiment, we will further explore this relationship between performance and tendon2006

stiffness by choosing parameters that correspond to very high tendon stiffness (near the upper2007

limit of what the feedback linearization algorithm can handle). By calculating how this plant2008

can generalize to novel movements we can finally address how useful tendon tension and motor2009

information becomes when tendons become increasingly rigid. These results align more with our2010

previous intuition where we see an increase in the performance of ANNs trained solely on motor2011

information (i.e., motor behavior → joint behavior in the limit as tendon stiffness→ ∞) and a2012

decrease in the performance of ANNs trained with tendon tension data (i.e., tension becomes less2013

useful when stiffness is too steep).2014

Finally, we conclude that the results of these experiments are fairly robust to changes in move-2015

ment dynamics and mechanical parameters and that more accurate estimates of joint angles can be2016
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made when tendon tension information is used. However, we do see that the error associated with2017

using motor information only can be quite manageable when tendon stiffness is sufficiently high,2018

which would suggest that for some applications (where tendon tension data is perhaps too difficult2019

to measure) it is possible to use motor information only to produce a reasonable approximation of2020

joint angle.2021

5.3 Material and Methods2022

These experiments build off of the methods proposed in the previous chapter. When necessary fig-2023

ures and equations have been reproduced, but the reader is directed to those sections for reference.2024

5.3.1 Sweeping Movement Frequency2025

The goal of this experiment was to see how ANNs trained on the four different sensory sets per-2026

formed when the frequency of the sinusoidal joint angle movements used to test generalizability2027

increase. In the previous chapter, we derived two movement tasks where the joint angle was varied2028

sinusoidally while the joint stiffness was either covaried sinusoidally or varied with a point-to-2029

point tasks with step durations equal to three times the period of the oscillation. Similarly, in this2030

chapter we will define 8 separate movements (4 joint angle movement frequencies with either si-2031

nusoidal or point-to-point joint stiffness tasks) to test how well these ANNs can generalize to faster2032

movements and, by extension, more dynamic or ballistic movement conditions. Equations 5.1–5.22033

will define the 8 trajectories for f ∈ {0.5, 1, 2, 4} Hz.2034

Angle Sinusoidal / Stiffness Sinusoidal

θrj =
π

4
sin(2πft)

Kr
j =

50 + 20

2
− 50− 20

2
cos(2πft)

(5.1a)

(5.1b)
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Angle Sinusoidal / Stiffness Point-to-Point

θrj =
π

4
sin(2πft)

Kr
j =


Eq. 4.15a for smooth transitions
Otherwise, constant hold phase at
random stiffness values for 3/f second
minus transition time (0.25 seconds)

(5.2a)

(5.2b)

For each of these movements, the feedback linearization algorithm defined in Section 4.3.62035

is used to (i) follow the desired reference trajectory while (ii) recording the associated motor and2036

tendon tension states. These states will be divided into into the four main sensory groups of interest2037

(See Eqs. 4.11–4.14 for reference) and subsequently used to test each ANN’s generalizability at2038

each frequency.2039

We then conduct 50 trials whereby (feedfoward) ANNs with 15 hidden layer nodes are trained2040

on 15 seconds of motor babbling for each sensory set (as done in the previous chapter) and then2041

asked to predict joint angles for each of the 8 generalization movements. The performance of each2042

ANN for each movement is calculated as the mean absolute error and the overall generalizability2043

of each sensory set (for each movement) is calculated as the average across trials.2044

5.3.2 Sweeping Tendon Stiffness and Motor Damping2045

The next experiment will sweep across both tendon stiffness and motor damping parameters to2046

better understand the affect the these parameters have on the results from the previous chapter.2047

The approach used for each choice of parameter values will be similar to the approach taken in the2048

previous chapter, whereby ANNs for each sensory set will be trained on motor babbling data and2049

their overall performance will be determined by their ability to generalize to different movement2050

tasks. However, whenever the plant is changed, the control needed to produce the generalization2051

trajectories will change too. As a result, the feedback linearization tool must be used for each2052
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of the 9 parameter settings described below (3 motor damping and 3 tendon stiffness) in order to2053

generate the sensory sets associated with the reference trajectories derived in Section 4.3.5. Once2054

the generalization trajectories have been created, 50 ANNs (with 15 hidden layer nodes) are built2055

for each sensory set and trained on random motor babbling (15 seconds) to predict joint angle.2056

These ANNs are then asked to predict the joint angle from the generalization trajectory data and2057

their performance is measured by the mean absolute error. The overall generalizability is again2058

calculated as the average performance across all 50 trials for all movements and all sensory sets.2059

Therefore for each of the 9 parameter choices, a single metric is provided for each sensory set2060

which indicates how well each ANN trained on the new plant, allowing us to identify any trends2061

across either parameter.2062

While this is fundamentally the same experiment as previously conducted in Chapter 4 with2063

the only difference being changes to the plant itself, it is important to discuss how changes in the2064

parameters themselves influence the behavior of the plant and why the parameters were chosen in2065

the ranges that they were.2066

As previously discussed, the original choice of tendon stiffness was quite low in order to deter-2067

mine if tendon tension information would be useful for predicting joint angles in a very compliant2068

tendon-driven system. However, to address whether this extreme choice of compliance affects2069

the results, we desired more stiff tendons to compare the results. A fundamental limitation when2070

choosing the tendon stiffness parameters kT and bT came when deciding to compare the same ref-2071

erence trajectories (with the same range of joint stiffness values). At some point, when the tendons2072

become too stiff (for a given choice of motor damping) it is impossible for the system to follow2073

the reference trajectory because the joint stiffness values between [20,50] Nm/rad will be associ-2074

ated with tendon tensions incompatible with the desired joint angle movement. It was determined2075

for the sake of this experiment that it would be best to compare different ANNs which learned on2076

different plants while performing the same task. Therefore, for the range of joint stiffness values2077

chosen for the reference trajectories (defined in Section 4.3.5), we selected tendon stiffness pa-2078
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rameters that would exhibited roughly 33% (∼ 0.0267 m) and 16% (∼ 0.0125 m) of the original2079

range of tendon deformations (∼ 0.08 m) seen in the compliant tendon example. As discussed2080

in Section 4.3.2, values of kT and bT were derived by solving the minimum joint stiffness con-2081

straint (2kT bT r2
j = 10 Nm/rad) and a second constraint that considers when the pendulum is in2082

the vertical position at maximum joint stiffness and the tendons are maximally deformed (i.e., if2083

KT,1 = KT,2, then Kmax
j = 2kT bT r

2
j exp(bT∆lmax

T,i )). The values derived for this experiment are2084

presented in Table 5.1 and the respective tension-deformation plots are shown in red in Figure 5.1.2085

fT,i(θm,i, θj) =

 kT
(

exp(bT∆lT,i)− 1
)
; (∆lT,i ≥ 0)

0; (∆lT,i < 0)

(5.3a)

(5.3b)

where ∆lT,i =

{
rmθm,1 − rjθj; i = 1

rmθm,2 + rjθj; i = 2

and bT > 0, kT > 0 are shape constants.

KT,i =
∂

∂∆lT,i
fT,i = kT bT exp(bT∆lT,i) ≈ kT bT (1− bT∆lT,i) (when ∆lT,i << 1) (5.4)

To compare the stiffness of these tendons, we can compare the Young’s modulus for each ten-2086

don when under∼ 400 N of tension (assuming that this tension corresponds to the same percentage2087

of maximum stress, σmax
T,i = fmax

T,i /CSA, for each tendon). If we consider a cylindrical tendon with2088

diameter (d) of 0.001 m and a slack length (lT,s,i) between 0.01 and 0.04 m, then Young’s modulus2089

at this stress level (400 N/CSA) can be calculated by equation Eq. 5.5. The approximate ranges2090

of E for the parameters chosen are provided in the last columns of Table 5.1.2091
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E
∣∣
fT,i=400 N =

(
KT,i

∣∣
fT,i=400 N

)
· lT,s,i

CSA

=
bT (400 N + kT ) · lT,s,i

CSA

(5.5a)

(5.5b)

Note that the range of Young’s moduli for the stiffness parameters that produce the Medium and2092

High tendon stiffness are 2.6x and 5.2x the range of the default Low stiffness parameters used in2093

the previous experiments, respectively. These higher stiffness values are more consistent with the2094

observed range of Young’s moduli for physiological tendon (1.2–1.7 GPa), allowing observations2095

to be made about the utility of physiological tendon sensors (i.e., Golgi tendon organs) and their2096

role in sensory fusion (Bennett et al., 1986; Zajac, 1989; Pollock and Shadwick, 2017).2097

Experiment Tendon Stiffness kT bT Approx. E Range (GPa)∗

Parameter Sweep
(Section 5.3.2)

Low
(default) 100 20 [0.127, 0.509]

Medium 33.3 60 [0.331, 1.324]

High 16 125 [0.662, 2.648]

Very High Stiffness
(Section 5.3.3)

Very High 2 1000 [5.118, 20.474]

Table 5.1: List of parameters chosen to describe tendon tension-deformation relationship (defined
in Section 4.3.2 and reproduced in Eq. 5.4) and the relative stiffness (compared to the default value
used in Chapter 4) for the experiments described in Sections 5.3.2 (Parameter Sweep) & 5.3.3 (Very
High Stiffness). Note that in order to make the minimum joint stiffness consistent across trials the
value kT bT (i.e., the minimum tendon stiffness given by Eq. 5.4) was conserved for each choice
of tendon stiffness parameters. (*) The approximate range of Young’s moduli values (E) were
calculated from a conservative 0.001 m wide tendon with resting lengths between 0.01 and 0.04 m
when under 400 N of tension.
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Figure 5.1: Examples of tendon tension deformation curves for the parameters chosen for the
Parameter Sweep Experiment (red, Section 5.3.2) and the Very High Stiffness Experiment (blue,
Section 5.3.3). The trace seen in solid red represents the force-length relationship for the compliant
tendons used in Chapter 4.

Choosing different values for the motor damping parameter (bm) has large effects on the plant2098

(and its simulation) behavior and therefore limited the range of values explored and required care-2099

ful consideration. For motor damping values that were too low, simulations of contact at the2100

boundaries became unstable when the pendulum was allowed to more rapidly flip back from one2101

boundary to the other. As discussed at length in the previous chapter, the way in which contact2102

forces are handled in this simulation is by allowing the pendulum to “enter into” the boundary2103

for a single time step before being instantaneously moved back to the boundary while applying2104

a restorative force to the pendulum (equal and opposite to the applied torque) to prevent it from2105

going further into the boundary (i.e., any attempts to move into the boundaries will force the pen-2106
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dulum to remain at the boundary). When the contacts were this rapid and the motors were allowed2107

to rotate more freely with less damping, the boundaries became very unstable and the simulation2108

broke. To account for this we ran the simulation at 50 times the sampling frequency (decreasing2109

the time step by a factor of 50) to avoid large contacts at the boundaries and then proceeded to2110

down-sample that data by a factor of 50 once the simulation was complete so that the ANNs would2111

still be training on the same duration (and amount) of sensory data.2112

At the other end of the spectrum however, making the motor damping too large came with its2113

own complications. Because of the way in which we have defined motor babbling to be slightly2114

coupled by forcing some level of cocontraction, when motor damping is too large the pendulum2115

is incapable of moving from one side of the configuration to the other resulting in poor motor2116

babbling data. This is because larger values of motor damping effectively filter the activation2117

signals and remove what little difference they had been prescribed. Therefore, the tensions on the2118

tendons produced by both motors are closer together in magnitude and will not be able to produce2119

a net torque sufficient to overcome gravity. Of course it is possible to remove gravity for this2120

simulation and then any net difference in tendon tensions would result in movement, but as it is2121

our intention to compare physical plants, we instead chose a value that allowed us to still conduct2122

useful motor babbling trials. Therefore the motor babbling values of interest were chosen to be2123

0.5x, 1x, and 2x the nominal value provided in Table 4.1 (0.00462 Ns/m).2124

5.3.3 Very High Tendon Stiffness Experiment2125

As we were limited in how stiff we could make the tendons while still maintaining the reference2126

joint angle trajectory and a joint stiffness range of [20,50] Nm/rad, a separate experiment was con-2127

ducted where the tendon stiffness is chosen near the upper limit of what is allowed by a feedback2128

linearization controller and new generalization trajectories were generated from a more reasonable2129

joint stiffness range for this choice of tendon stiffness. This allowed us to answer the question,2130
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“What happens when tendon stiffness approaches infinity and the tendons become rigid?” To do2131

this, we began by choosing a set of tendon stiffness parameters (kT and bT ) that would describe a2132

tendon that deforms roughly a tenth as much as the Low stiffness example used in Chapter 4 and2133

Section 5.3.2 while still conserving the minimum stiffness value (kT bT ). We found that choosing2134

kT = 2 and bT = 1000 satisfied these conditions, resulting at a deformation of roughly 5.3 mil-2135

limeters when exposed to 400 N of tension. If we consider the dimensions of tendon described in2136

the Section 5.3.2, we can approximate the range of Young’s modulus for this tendon to be between2137

5.118 and 20.474 GPa (Table 5.1).2138

When conducting a preliminary motor babbling experiment with these new tendon stiffness2139

parameters, it was observed that the range of induced joint stiffness values was quite large with2140

a maximum of around 2000 Nm/rad. Therefore, the reference trajectories that will be used to2141

test ANN generalizability should occupy a portion of this range. It was determined that keeping2142

the joint stiffness between 150 and 650 Nm/rad for the four generalization trajectories would (i)2143

better represent the typical joint stiffness values the plant will experience during babbling while2144

(ii) allowing the feedback linearization algorithm to adequately control these trajectories.2145

As we did for the previous experiments, generalization trajectories are generated using the2146

feedback linearization controller (See Section 4.3.6) and th resulting sensory information is divided2147

into the four sensory sets. Then 50 ANNs were generated for each sensory set (15 hidden layer2148

nodes) and trained on random babbling data (15 seconds) to predict joint angle. The ability of2149

each ANN to generalize was measured as the mean absolute error for each of the four movement2150

trajectories and the average performance was then calculated to identify how these performances2151

compare to the considerably lower stiffness examples seen in previous experiments.2152
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5.4 Results2153

5.4.1 Sweeping Movement Frequency2154

Results from the previous chapter showed that ANNs trained with tendon tension information (i.e.,2155

the Bio-Inspired Set and the set of All Available States) outperform those ANNs that trained with-2156

out it (i.e., the sets of Motor Position and Velocity Only and All Motor States) when predicting joint2157

angles from a subset of generalization movements that sample the joint angle and joint stiffness2158

task space. While these results provided evidence to support the notion that tendon tension mea-2159

surements critically enables accurate joint angle estimation (in both biological and artificial neural2160

networks), it was limited in its scope by neglecting the affect that changes in movement constraints2161

like speed have on the results. It is expected that as a movement becomes more frequent or bal-2162

listic, that larger tendon tensions (and therefore tendon deformation) will be needed to accelerate2163

and brake the movement appropriately. Therefore we expect that (i) the performance of the ANNs2164

trained only on motor information will generalize poorly to these more demanding, more rapid2165

movements and (ii) the ANNs that train with tendon tension information should generalize well as2166

they can correct for large changes in tendon behavior responsible for decoupling motor and joint2167

angle states.2168

Figure 5.2 demonstrates the average performance of 50 ANNs for each sensory set when asked2169

to generalize to sinusoidal joint angle tasks with frequencies of 0.5, 1, 2, and 4 Hz (where joint2170

stiffness is either covaried sinusoidally or varied in a point-to-point task, Eqs. 5.1–5.2). The re-2171

sults here are consistent with our expectations, where we see that the ANNs trained only on motor2172

information will see average errors increase from ∼ 100 to ∼ 101 degrees as the frequency of the2173

joint angle trajectory increases (regardless of the joint stiffness trajectory), while the performance2174

of the ANNs trained with tendon tension information will only decrease from ∼ 10−3 to ∼ 10−2.2175

Note that while the error for all ANNs will increase by one order of magnitude as the frequency2176
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increases, the performance of ANNs trained with tendon tension are still very reasonable at high2177

frequencies, but the errors incurred from estimating joint angles from motor information alone be-2178

come quite large (suggesting ANNs trained without tendon tension information could not reliably2179

be used in practice).2180
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Figure 5.2: Bar plot of the average performance (MAE) of each sensory set as function of the fre-
quency of the sinusoidal joint angle trajectory. The joint stiffness was either varied sinusoidally or
by a point-to-point task (Eqs. 5.1–5.2). The ANNs trained on tendon tension (left two sets) appear
to generalize better to higher frequency movements, only worsening slightly when the movements
becomes fastest. The ANNs trained on motor information only may decrease their performance by
a similar order of magnitude, but there is quite a difference between producing average errors of
10−2 and 101 degrees.

It is, however, interesting that the performance of ANNs trained with tendon tension informa-2181

tion decreased as the movements became faster (even if only slightly) as the working hypothesis is2182

that tendon tension information is used in these ANNs to reconcile the tension-specific deforma-2183

tion that decouples the motor angles from the joint angle, providing useful estimates at any tendon2184

tension. To explore this further, for each movement task and each sensory set, the movement was2185

divided into joint angle bins (every 15 degrees) and the average performance was calculated for2186

each bins to see if errors in joint angle estimation have any dependence on joint angle itself when2187

the frequency is increased. The results across frequencies were plotted for each sensory set as2188
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radial bar plots in Figures 5.3 and 5.4 for the movements where joint stiffness was varied sinu-2189

soidally or in a point-to-point task, respectively. First, it is important to note that regardless of the2190

choice of joint stiffness reference trajectory, the ANNs trained on motor information only (bottom2191

row for both figures) are relatively consistent across the joint angle space (implying that the perfor-2192

mance of these ANNs does not depend on the joint angle itself for this task—it is consistently poor2193

everywhere). Secondly, and perhaps more interestingly, the performance for ANNs trained with2194

tendon tension information (top row for both figures) appears to be consistent for lower frequency2195

movements, but develops some asymmetry when the movement becomes increasingly fast. It can2196

be seen in both figures that the performance of these ANNs gets worse at high frequencies when2197

the pendulum approaches the boundaries of the oscillations. This apparent speed-accuracy trade2198

off has important consequences to the observed physiological phenomenon of the same name. That2199

is, if the nervous system were to somehow utilize tendon tension information from the Golgi ten-2200

don organs to better estimate posture and subsequently use this internal model for control, when2201

point-to-point tasks becomes too fast, the internal representation begins to fail near the movement2202

amplitude which could account for poor accuracy in the controller. In the robotic analogue, a simi-2203

lar consequence exists where accuracy at the target amplitude of a movement could decrease when2204

movements become too fast as the controller may not be able to stably track the movement.2205
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Figure 5.3: Radial bar plot of the average performance (MAE) of each sensory set as function
of both the frequency of the sinusoidal joint angle trajectory and joint angle when the joint stiff-
ness is varied sinusoidally as well (twice the frequency). The ANNs trained on tendon tension
(top two sets) generalize better to higher frequency movements, only worsening slightly when the
movements becomes fastest. For these two sets, when movements are the fastest, the largest errors
appear to occur at the boundaries of the sinusoidal movement (which has interesting consequences
to speed/accuracy trade offs).
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Figure 5.4: Radial bar plot of the average performance (MAE) of each sensory set as function of
both the frequency of the sinusoidal joint angle trajectory and joint angle when the joint stiffness is
varied with a point-to-point task. Again, ANNs on tendon tension (top two sets) generalize better to
higher frequency movements, only worsening slightly when the movements becomes fastest. For
these two sets, when movements are the fastest, the largest errors appear to occur at the boundaries
of the sinusoidal movement (which has interesting consequences to speed/accuracy trade offs).

5.4.2 Sweeping Plant Parameters2206

Another limitation of the experiments from the previous chapter stems from the use of a fixed com-2207

putational model of the mechanical plant. In order to address the usefulness of this algorithm, it is2208

therefore necessary to perform parameter sensitivity on the model to compare the how the results2209

change with changes to the plant. As discussed previously, 9 separate models were made from 32210

selections of tendon stiffness parameters and 3 selections of motor damping. For each plant, 502211
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ANNs were generated for each of the sensory sets, trained on motor babbling, and asked to predict2212

joint angles for the same four generalization trajectories (identical in joint angle and stiffness tra-2213

jectories, not in the motor and tension states that produce it; see Section 5.3.2). Therefore, for each2214

choice of tendon stiffness and motor babbling parameters, the generalizability of the four sensory2215

sets was calculated as the average performance for each movement task.2216

Figure 5.5 plots all 9 of these data point for each sensory set and each movement task as a func-2217

tion of tendon stiffness (designated Low, Medium, and High). It can be seen that the performance of2218

ANNs trained on tendon tension information actually decreases as the tendons become more rigid,2219

but still outperform the ANNs trained only on motor information by roughly 2 orders of magni-2220

tude. These results are counter-intuitive as we expected the performance of the ANNs trained on2221

motor information to improve as the tendons became more rigid as the decoupling between motor2222

and joint states would decrease. These results indicate (i) that tendon tension information becomes2223

less useful (but not useless) when tendon stiffness increases, causing the ANNs performance to2224

degrade from training on data that is redundant and (ii) that these tendon stiffness values are still2225

largely nonlinear at the range of joint stiffness values chosen for the reference trajectories (both of2226

these will be addressed in the next experiment).2227
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Log Average Performance (MAE) vs. Tendon Sti�ness
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Figure 5.5: Comparing the average performance of ANNs designed to predict joint angles from
one of four sensory sets when tendon stiffness parameters are varied. Changes in motor damping
can also be seen here and are denoted by line styles in the legend. It is interesting to note that the
performance of ANNs trained with tendon tension information (left two columns) perform worse
as tendons become more rigid, while the performance of ANNs trained with motor information
only (right two columns) do not appear to be affected by changes in tendon stiffness.
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To better observe any affects that motor babbling has on performance, a similar plot was gener-2228

ated where all 9 of the performance values for each sensory set and each movement task are plotted2229

as a function of motor damping (designated Low, Medium, and High). An interesting consequence2230

to viewing the data from this perspective is that we see another clear separation of the performance2231

of ANNs trained with tendon tension information when the tendon stiffness is increased (i.e., the2232

separation of the horizontal lines in the plots of the left two columns). There does not appear to be2233

any clear trends, however, when comparing performance and the amount of motor damping used.2234

There may be a slight positive trend (negative slope) between the performance of the ANNs trained2235

on the All Motor States and the amount of motor damping, as can be seen in the last column of Fig-2236

ure 5.6, but it is not significant. Similarly, it could be argued that the same trend exists for ANNs2237

trained on the set of All Available States when the tendons are compliant (i.e., Low stiffness), but2238

disappears when the stiffness increases. Interestingly (but not surprisingly), these sensory sets are2239

the only ones that include motor acceleration, and it would be expected that higher motor damp-2240

ing would cause more useful motor acceleration information leading to better performance in the2241

ANNs that utilize it. This trend may only be seen in the low tendon stiffness case for the set of All2242

Available States because the decrease in the usefulness of tendon tension information at higher ten-2243

don stiffness values (discussed above and seen in Figure 5.5) may outweigh this marginal increase2244

in the usefulness of motor acceleration information. The combined data from these two figures is2245

additionally presented as a heat map in Figure 5.7 where it these trends can be more clearly seen.2246
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Figure 5.6: Comparing the average performance of ANNs designed to predict joint angles from
one of four sensory sets when motor damping is varied. Changes in tendon stiffness can also be
seen here and are denoted by line styles in the legend. We again see from the vertical separation of
the lines in the left two columns that ANNs trained with tendon tension information perform worse
as tendons become more rigid—a trend not observed in the ANNs trained with motor information
only (right two columns). Additionally, as seen in Figure 5.5, there appears to be no trends in
performance with respect to motor damping except for those ANNs trained on all motor states
(including acceleration, right column), which intuitively makes sense as higher damping may mean
more useful information in the motor acceleration states.
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Log Average Performance (MAE) vs. Tendon Sti�ness and Motor Damping
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Figure 5.7: Heatmap representation of the relationship between tendon stiffness, motor damping,
and the performance of ANNs that utilize one of four sensory sets to predict joint angle from
limited-experience babbling data. The logarithm of the performance (MAE) has been placed in
each square where negative values correspond to good performance. Note that, as seen in Figures
5.5 & 5.6, the ANNs trained with tendon tension information (left two columns) have worse perfor-
mance at higher tendon stiffnesses while the ANNs trained on motor information do not show such
a trend. Additionally, we can see a slight correlation between motor damping and the performance
of ANNs trained with all motor states (including acceleration, left columnn), but no identifiable
trends for the other sets.
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5.4.3 Very High Tendon Stiffness Experiment2247

This last experiment tested the extreme case of very stiff tendons to see how the performance of2248

ANNs trained on these four sensory sets changed. Figure 5.8 demonstrates the average perfor-2249

mance of 50 ANNs trained for each sensory set when generalizing to the novel movement tasks2250

with joint stiffness ranges that are appropriate for these very stiff tendons. It is clear that the per-2251

formance of ANNs trained with tendon tension information still outperform those ANNs trained2252

without it but the difference in performance is much smaller. These results are also consistent with2253

the observations made in the previous experiment, where the performance of ANNs trained with2254

tendon tension information decreases when the tendons becomes increasingly stiff, and yet they2255

still outperform the ANNs trained with motor information only (i.e., tendon tension information2256

becomes less useful and redundant when tendons become more rigid, but not useless!). Addition-2257

ally, we see a large increase in the utility of motor information as the ANNs trained without tendon2258

tension increased their performance from ∼ 100 to ∼ 10−1, consistent with the original hypothesis2259

that ANNs that trained on systems with more rigid tendons should see an increase in their per-2260

formance because the behavior of the motors and the joint should be more coupled. This sudden2261

increase in motor information utility may be largely due to changes in the range of joint stiffness2262

values used to generate the generalization movements. More specifically, higher joint stiffness2263

ranges correspond to smaller tendon deformations per unit force applied to the tendon and there-2264

fore higher coupling between motor and joint behaviors which would allow for better joint angle2265

predictions to be made from ANNs that only use motor information.2266
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Figure 5.8: Bar plots of the average performance for ANNs for each sensory set when the tendon
stiffness values are very high (See Section 5.3.3 for explanation). We find that ANNs trained with
tendon tension information (the Bio-Inspired Set and the set of All Available States), still outper-
form those ANNs trained on motor information alone (the sets of Motor Position and Velocity Only
and All Motor States). However, the difference is not nearly as large as in the previous experiments
(3 orders of magnitude) because (i) the ANNs trained on motor information only improved their
performance by nearly one order of magnitude and (ii) the ANNs that train with tendon tension
information continue the trend of worsening performance when tendon stiffness increases (increas-
ing errors by nearly 1 order of magnitude).

Comparing the training performance after each epoch and the average number of epochs needed2267

to train each ANN helps support the claims that tendon tension information becomes less useful2268

while motor information becomes more useful when tendons becomes very stiff. In Figure 5.92269

(right), the average number of epochs for each sensory set is plotted in a bar graph. Comparing2270

these results to the previous experiment where tendons were very compliant (Figure 4.14 for refer-2271

ence) reveals that (i) training ANNs only on motor information requires nearly double the number2272

of epochs (i.e., more information requires more training to extract the relationship) and (ii) the2273

ANNs that train on tendon tension data require fewer epochs on average the previous experiment2274

(i.e., less information can be extracted and a minimum is reached sooner). This can also be seen2275

when the training performance after each epoch for each ANN are overlapped on the same plot2276
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(Figure 5.9, left). However, even though the motor information is becoming more useful, the addi-2277

tional information provided by the tendons still clearly produces better training performance (i.e.,2278

tendon tension may become less useful, but it is not useless!).2279
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Figure 5.9: The training performance versus epoch number for 50 trials for each sensory set over-
laid to show trends (left) and the average number of epochs used before terminating training (right).
Compared to Figure 4.13, the training does not appear to be different for the ANNs trained with ten-
don tension information (with similar convergence rate, final performance, and number of epochs
used), but the training of ANNs that use the Motor Position and Velocity Only or All Motor States
sets now have longer training periods (i.e., more epochs) and better performance. This is consistent
with the notion that as the tendons become more rigid, the motor states becomes more useful and
longer training periods are needed to extract that information.

Figure 5.10 demonstrates the average performance of ANNs trained on each sensory set across2280

the new generalization movements with respect to joint angle by calculating the average perfor-2281

mance of angular bins (every 15 degrees) and plotting them as radial bar plots. Other than the2282

performance of ANNs trained on either the set of All Available States or the Bio-Inspired Set when2283

performing the task where both joint angle and joint stiffness are varied sinusoidally (first row),2284

there does not seem to be any dependence on the performance of these ANNs and the joint angles2285

they are predicting. The bizarre decrease in performance near the vertical pendulum position for2286

these two ANNs is largely due to the fact that these ANNs have trouble generalizing at lower stiff-2287

ness values and this movement by design has minimal stiffness when crossing the vertical position.2288
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Figure 5.10: Polar bar plots to demonstrate the performance of ANNs trained on each sensory set
when generalizing to different movements as a function of joint angle. Most of the performance
values are consistent across the joint angle space with the exception of the task where both the joint
angle and joint stiffness were varied sinusoidally (with joint stiffness at twice the frequency to have
maximum stiffness at the boundaries of the movement). This would indicate that these ANNs are
making better use of the tendon tension information at higher stiffnesses (and performing worse
at lower stiffnesses where the nonlinearity of the tendon-tension deformation curve becomes more
disporportionate).
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Figure 5.11 evaluates bins of both joint angle and joint stiffness and represents the average per-2289

formance of the bins as a heat map for each sensory set and each movement task. While the errors2290

for the ANNs trained only on motor information are roughly an order of magnitude less than the2291

compliant tendon example presented in Chapter 4, the overall trends are still the same. Intuitively,2292

the ANNs trained only on motor information have the most difficulty when joint stiffness is low2293

(i.e., tendon stiffness is low and tendon deformation is more disproportionate per unit force). The2294

ANNs trained with tendon tension data do not appear to have this difficulty (or at least not to this2295

extent, as we know from the first row of Figure 5.10 that marginally higher errors occur at lower2296

joint stiffness values).2297
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Figure 5.11: Average performance heat maps for each sensory set and each generalization move-
ment as a function of both joint angle and joint stiffness. As it can be seen, the ANNs trained on
tendon tension data (left two columns) still outperform the ANNs trained only on motor informa-
tion (right two columns) and appears to better generalize at (i) lower stiffness values and (ii) joint
angles that neither correspond to the vertical position or the boundaries of the range of motion.
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5.5 Discussion2298

The goal of this experiment was to provide parameter sensitivity analysis to support the notion that2299

observing tendon tension information critically enables reliably accurate joint angle estimation2300

by ANNs that train on non-collocated sensory data. The experiments from the previous chapters2301

highlighted the importance of tendon tension; this often forgotten variable that holds invaluable2302

information about joint stiffness, muscle/actuator behavior, and control constraints. The ultimate2303

goal for this chapter, and this dissertation, was to flip this problem upside down or, better yet,2304

insideOut to explore how useful tendon tension information could be when used to predict the joint2305

angle of a compliant tendon-driven system. And while the previous chapter laid the foundation for2306

this work, revealing that ANNs that want to predict joint angles from sensory measurements are2307

drastically improved by the inclusion of tendon tension information, the question still remained,2308

“How well does this algorithm generalize across (i) different dynamic movements and (ii) different2309

plants?” Therefore, this chapter naturally serves as an extension of this previous work where we2310

systematically explore changes to movement constraints (e.g., slow versus ballistic movements) as2311

well as changes to the mechanical parameters that would likely change the results of a system that2312

relies on motor and tendon behavior (i.e., motor damping and tendon stiffness, respectively).2313

We began by expanding upon the previous chapter’s experimental paradigm by training 502314

ANNs for each sensory set (with 15 hidden layer nodes and 15 seconds of motor babbling) and2315

then asked them to predict the joint angle for various sinusoidal movements where the frequency2316

was varied between 0.5 and 4 Hz. We found that the ANNs that train with tendon tension infor-2317

mation in addition to motor information (e.g., the Bio-Inspired Set of sensory states) generalize2318

better to faster movements than ANNs that train without tendon tension data, producing average2319

prediction errors as large as 10−2 degree. Interestingly, it was also observed that for high frequency2320

movements, the performance of ANNs trained with tendon tension information decreased at the2321

target amplitude of the oscillation; exhibiting what appears to be a speed accuracy trade-off. This2322
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type of trade-off has been well established in humans where faster movements come at the cost2323

of lower accuracy at the movement target (Fitts, 1954). If there exists a similar neural network in2324

biological systems that utilizes tendon tension information from the Golgi tendon organs as well2325

as muscle fascicle length and velocity information from muscle spindles to predict joint angles and2326

these estimates are subsequently used for control, then these results present an interesting inter-2327

pretation of Fitts’ law, whereby poor accuracy is the result of poor state estimation. Regardless,2328

these results indicate that ANNs trained on both motor position and tendon tension information are2329

robust to changes in movement speed.2330

Next, the effect of changes in motor damping and tendon stiffness were simultaneously ex-2331

plored. We concluded that increasing tendon stiffness naturally decreases the usefulness of tendon2332

tension information because the amount of tendon deformation per unit force is lower. We did not2333

see a significant increase in performance when motor damping was increase, although a slight in-2334

crease was observed in ANNs trained with motor acceleration (i.e., more motor damping increases2335

the usefulness of motor acceleration data).2336

Lastly, we tested an extreme case where the tendons were very stiff. We find that even in this2337

rigid example, including tendon tension information increases the accuracy of the prediction. It2338

is important to mention however, that in the case where tendon stiffness increases substantially,2339

while the performance of ANNs trained with tendon tension is better than the performance of2340

ANNs trained without it, the ANNs trained only on motor information now only produce errors in2341

the sub-degree range. It is therefore possible, that for tendon-driven systems with rigid tendons,2342

it may not be necessary to observe the hard-to-measure tendon tension information as predictions2343

made from motor information are sufficient. In the end, we conclude that regardless of the tendon2344

architecture, the actuator behavior, or the movement complexity, tendon tension information is2345

useful (if not at times vital) when predicting joint angles from non-collocated sensory signals.2346
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Conclusion and Future Work2347

This thesis was broken down as into two main sections; (1) the exploration of tendon-driven control2348

and the role that tendon elasticity plays in it and (2) the exploitation of this role to better estimate2349

posture from ANNs trained with tendon tension information. In the first section, we illustrated that2350

approximating muscle/actuator mechanics from joint kinematics does not capture the true behav-2351

ior of a tendon-driven system nor the relationship between kinematic states and actuator states. In2352

Chapter 1, we first explored how kinematic redundancy inherently produces differences in muscu-2353

lotendon (MT) behavior, even for similar movements, but as this system excluded tendon elasticity2354

in its analysis, we were compelled to extend this research to tendon-driven systems with compliant2355

tendons. Therefore, in Chapter 2, a simple, redundant tendon-driven system (i.e., a pendulum “tug2356

of war”) was simulated and controlled via an integrator backstepping algorithm to systematically2357

explore the relationship between muscle/actuators and elastic tendons. This approach highlighted2358

that even for identical movements, the internal states of the actuators (e.g., muscle fascicle lengths2359

and velocities) will differ from the kinematically-derived MT states in a nonlinear, tendon tension2360

dependent fashion. This research naturally led to the research presented in Chapter 3; can we2361

explicitly derive the amount by which changes in muscle fascicle lengths deviate from MT excur-2362

sions (i.e., when and how should muscle fascicle lengths be approximated from the kinematics?).2363

A more accurate calculation of muscle fascicle lengths is therein derived to account for MT ex-2364

cursions (limb kinematics) and tendon deformation (kinetics)—exposing an explicit relationship2365

between muscle (actuator) states, tendon tension, and posture. We conclude from the research2366

conducted thus far that (i) kinematics alone are not enough to capture the true behavior of muscle2367

fascicles but instead (ii) kinematics and tendon tensions (i.e., kinetics) complete the picture—2368

allowing for a more accurate equation of muscle fascicle lengths to be derived—implying that (iii)2369

there exists a functional relationship between muscle lengths, tendon tensions, and posture.2370

In the second half of this dissertation, we exploited this relationship to design ANNs that can2371
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predict joint angles from motor and/or tendon tension information and limited training. In Chapter2372

4, we train ANNs with different amounts (i.e., duration of motor babbling) and types (i.e., sensory2373

sets) of information and different network structures to determine what sensory information is crit-2374

ical for joint angle estimation and find that the inclusion of tendon tension information drastically2375

improves the joint angle estimate when compared to those made with actuator states alone. We2376

additionally found that those ANNs trained with tendon tension information could generalize bet-2377

ter to different unlearned movements. Finally, in Chapter 5, we perform parameter sensitivity and2378

find that these results are robust to changes in tendon stiffness level and motor damping as well2379

as across different movement constraints (from slow to rapid). We conclude that the sufficient set2380

of sensory information needed to predict joint angles in a tendon-driven system contained motor2381

positions/velocities and tendon tensions (called the Bio-Inspired Set), and ANNs trained on this2382

set of information produce reliably and robustly accurate estimates of joint angles. The research2383

described here additionally facilitates future work to be conducted where this insideOut algorithm2384

for utilizing bio-inspired sensor information to predict joint posture in tendon-driven systems can2385

be extended to multi-joint, multi-articulating systems in both simulation and in hardware.2386

By extension, these results also provide strong evidence that, for biological tendon-driven sys-2387

tems, incorporating Golgi tendon organs information (i.e., tendon tension) with muscle spindle in-2388

formation (i.e., muscle fascicle lengths and velocities) likely improves kinematic estimates of limb2389

posture. This biological implication enables a new wave of neurophysiological research to continue2390

to close this information-theoretical gap in our understanding of sensorimotor physiology—and2391

how spinal, brainstem and somatosensory neurons process afferent information to enable versatile2392

physical function.2393

In the end, one fundamental truth can be drawn from this research: Tendon tension should2394

never be overlooked.... It demands careful scrutiny.2395
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Glossary2396

actuator The component that receives input and drives the system dynamics. For biological2397

tendon-driven systems, this is the muscle, while for robotic tendon-driven systems this is2398

a motor. xiii, xv, xxvii, 1, 2, 3, 5, 7, 33, 36, 37, 38, 40, 52, 56, 61, 100, 102, 103, 104, 105,2399

106, 148, 178, 179, 1802400

actuator state A state that describe the actuator’s position or velocity (or acceleration). For mus-2401

cle this corresponds to length and velocity, while for motors this corresponds to motor angle2402

and angular velocity. 6, 7, 100, 101, 102, 180, 181, 1832403

artificial neural network (Abbr. ANN) An artificial network of nodes (or neurons) that can be2404

tuned/trained from data to create valuable input-output mappings or categorization algo-2405

rithms. For the purpose of this dissertation, this term is synonymous with a feedforward2406

neural network with three layers (input, hidden, and output) that utilizes back propagation to2407

tune the weights and biases of the sigmoidal activation functions of the nodes in the hidden2408

layer. xix, xx, xxi, xxii, xxiii, xxiv, xxv, xxvii, 4, 6, 7, 8, 100, 101, 102, 105, 106, 113, 114,2409

116, 117, 118, 119, 121, 123, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,2410

140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 160, 161,2411

162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,2412

180, 1812413

DOF Abbr. for degree of freedom. Usually referenced as the number of degrees of freedom, this2414

refers to the dimensionality of the configuration space (e.g., joint angle space in tendon-2415

driven systems). ix, xi, xix, 2, 12, 13, 29, 30, 36, 106, 107, 109, 118, 1492416

joint stiffness The amount by which a rotational joint (like a pendulum) resists perturbations,2417

calculated as the partial derivative of the joint torque with respect to the joint angle. xix,2418

xx, xxiii, xxiv, xxv, 2, 111, 112, 114, 119, 120, 121, 122, 123, 124, 128, 143, 146, 147, 154,2419
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156, 157, 160, 161, 162, 163, 164, 165, 166, 167, 172, 174, 175, 176, 177, 1782420

kinematic redundancy The concept that serial linkage systems (like biological limbs or robotic2421

arms) have more internal degrees of freedom (i.e., joint angles) than the number of degrees2422

of interest at the endpoint (e.g., 3D position of 6D wrench), and therefore there are an infinite2423

number of ways to orient the system to meet this requirement at the endpoint. This can be2424

extended to entire movements (like initial value problems) where it can be said there are2425

an infinite number of ways to complete a task in space (e.g., hitting the same spot with a2426

hammer; Bernstein (1967)). 4, 7, 9, 10, 11, 29, 30, 31, 34, 54, 1802427

kinematic state Any state used to describe the limb dynamics (i.e., joint angles, angular veloci-2428

ties, and angular accelerations). xxiii, 3, 6, 7, 33, 101, 104, 146, 147, 151, 180, 1832429

mechanical parameter Those parameters that describe the system that governs the behavior of2430

both sensory states (actuator states and tendon tensions) and kinematic states. These include,2431

but are not limited to, joint inertia, tendon elasticity, motor damping. 72432

motor babbling The process of learning a redundant input-output mapping by applying a limited2433

amount of random inputs and recording the outputs. In biological systems, this is a proposed2434

learning paradigm for infants when first learning to move. When discussing motor babbling2435

as a means of training an artificial neural network to predict joint angle in a tendon-driven2436

system, motor babbling refers to the low frequency, bandlimited white noise babbling de-2437

scribed in Section 4.3.3. xix, xx, xxi, xxii, 4, 8, 101, 102, 105, 113, 114, 115, 128, 129,2438

130, 131, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 147, 148, 152, 155, 156,2439

160, 161, 167, 169, 1782440

muscle redundancy The concept that mammals have more muscles than they do controllable2441

degrees of freedom (e.g., joints), requiring some form of dimensionality reduction like opti-2442

mization to resolve this redundancy. 1, 4, 5, 10, 11, 28, 34, 652443

musculotendon (Abbr. MT) The combination of both tendon and (pennated) muscle in series. ix,2444
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xiv, xv, xxvi, 6, 7, 9, 10, 11, 27, 33, 34, 36, 37, 39, 40, 52, 54, 55, 57, 58, 59, 60, 62, 63, 64,2445

65, 66, 67, 68, 70, 71, 75, 76, 78, 79, 84, 85, 95, 96, 98, 99, 148, 180, 205, 206, 207, 208,2446

210, 2112447

musculotendon excursion The length change of the entire musculotendon complex as the direct2448

result of joint rotations. In the assumption that musculotendon moment arms are functions of2449

joint angles alone (i.e., not tension dependent), then musculotendon excursion is completely2450

defined by the joint kinematics (See Section 3.3.3). ix, xii, xiv, xv, xvi, xvii, xviii, 6, 7, 9,2451

11, 18, 19, 21, 40, 58, 59, 60, 63, 64, 65, 68, 69, 70, 75, 76, 77, 79, 87, 88, 94, 96, 98, 99,2452

180, 206, 2112453

non-collocated Refers to sensors or sensory information that is not explicitly measured near the2454

joint (e.g., motor angles are non-collocated measurements of pendulum angle in a rigid2455

tendon-driven system). xxvii, 3, 4, 101, 102, 103, 105, 113, 116, 131, 141, 147, 148,2456

149, 152, 178, 1792457

nullspace The subspace of the redundant variables that has no affect on the dynamics of a system.2458

In the case of tendon-driven systems, the set of all tendon tensions that produce a net-zero2459

torque on the limb(s). xiii, 33, 34, 35, 36, 51, 52, 65, 66, 105, 114, 1192460

over-determined A term used to describe a system where there may be at most one viable solu-2461

tions. Another way of visualizing this relationship is a mapping from few inputs to many2462

outputs. 9, 10, 11, 19, 20, 27, 28, 29, 31, 32, 342463

pennation angle Denoted in the text as ρ, this parameter represents the angle between the line of2464

action of the muscle fascicles and the musculotendon. Muscles that are more pennated will2465

therefore exert large forces in a direction perpendicular to the tendon force. ix, xv, xvi, xvii,2466

xviii, xxvi, 6, 9, 10, 39, 40, 57, 67, 68, 70, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 99, 205,2467

206, 2072468

relative degree The number of times we must differentiate the output before the input appears. If2469
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this number is less than the order of the system dynamics then the system will have (poten-2470

tially unstable) zero dynamics, which cannot be controlled by feedback linearization. See2471

also zero dynamics, 1852472

sensory state A state relating to the actuator/tendon complex and not the joint itself (e.g., muscle2473

lengths in biology or tendon tension in tendon-driven robots). Alternatively, a state that2474

describes either tendon tension information or is an actuator state. 3, 7, 104, 120, 128, 136,2475

152, 178, 1832476

under-determined A term used to describe a system where there are infinitely many viable so-2477

lutions (in different parts of the nullspace). Commonly used when referencing muscle re-2478

dundancy where there are more muscles than joints and therefore an infinite combination2479

of tendon forces that create the same net joint torques. Another way of visualizing this2480

relationship is a mapping from many inputs to fewer outputs. 2, 4, 20, 33, 34, 352481

zero dynamics The dynamics of a system that are not controllable by feedback control. The2482

dimensionality of the zero dynamics will be equal to the order of the system dynamics less2483

the relative degree See also relative degree, 1852484
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Rácz, K. and Valero-Cuevas, F. J. (2013). Spatio-temporal analysis reveals active control of both2819

task-relevant and task-irrelevant variables. Frontiers in Computational Neuroscience.2820

Ramsay, J. W., Hunter, B. V., and Gonzalez, R. V. (2009). Muscle moment arm and normal-2821

ized moment contributions as reference data for musculoskeletal elbow and wrist joint models.2822

Journal of Biomechanics, 42(4):463–473.2823

Rankin, J. W. and Neptune, R. R. (2012). Musculotendon lengths and moment arms for a three-2824

dimensional upper-extremity model. Journal of Biomechanics, 45(9):1739–1744.2825

Roberts, T. J. and Azizi, E. (2010). The series-elastic shock absorber: tendons attenuate muscle2826

power during eccentric actions. Journal of Applied Physiology, 109(2):396–404.2827

Roy, R. R. and Edgerton, V. R. (1992). Skeletal Muscle architecture and performance. Strength2828

and Power in Sport, pages 115–129.2829

Sanger, T. D., Chen, D., Fehlings, D. L., Hallett, M., Lang, A. E., Mink, J. W., Singer, H. S., Alter,2830

K., Ben-Pazi, H., Butler, E. E., Chen, R., Collins, A., Dayanidhi, S., Forssberg, H., Fowler, E.,2831

Gilbert, D. L., Gorman, S. L., Gormley, M. E., Jinnah, H. A., Kornblau, B., Krosschell, K. J.,2832

Lehman, R. K., MacKinnon, C., Malanga, C. J., Mesterman, R., Michaels, M. B., Pearson, T. S.,2833

Rose, J., Russman, B. S., Sternad, D., Swoboda, K. J., and Valero-Cuevas, F. (2010). Definition2834

and classification of hyperkinetic movements in childhood.2835

200



Santos, V. J., Bustamante, C. D., and Valero-Cuevas, F. J. (2009). Improving the fitness of high-2836

dimensional biomechanical models via data-driven stochastic exploration. IEEE Transactions2837

on Biomedical Engineering.2838
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Appendices2909

A Integrator Backstepping Example Source Code2910

The code used in this study and additional figures can be accessed through the project’s Github2911

repository at:2912

https://github.com/danhagen/NonlinearControl.2913

B Addressing the Limitations of the “Parallelogram” Muscle Assumption2914

In Chapter 3, a reasonable assumption about the architecture of the musculotendon (MT) was made2915

in order to better understand the relationship between muscle fascicle, tendon, and MT. Mainly,2916

that the shape of the MT (or more specifically, the muscle “belly”) resembled a parallelogram with2917

a constant height to ensure constant muscle “volume” (here approximated as area) and to ensure2918

that pennated muscle fascicles produce the same work as the entire muscle (Fick, 1904). This2919

assumption was made for the sake of computational simplicity and because it allowed for a simple2920

comparison to be made with models that typically use this approximation, but it neglects the fact2921

that muscles will twist and bulge during contractions and that the aponeurosis or internal segment2922

of the tendon is not always parallel to the external tendon (Figure .12).2923
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lm

lMT  = lT,1 + lT,2 + lT,intcos(β) + lmcos(ρ)
  = lT,ext  + Lmb

lT,1 lT,2

d (const.)

ρβl T,int
 (c

onst.)

l T,int
 (c

onst.)
Lmb

Figure .12: Approximation of MT geometry as a flattened parallel bundle of pennated muscle
fascicles in series with tendon such that the (constant) internal tendon length is not necessarily
parallel to the external tendon (askew by angle β). The muscle fascicles are still askew from the
line of action of the MT by the pennation angle, ρ. The projected length of the entire muscle
“belly” is defined as Lmb and is equal to the internal tendon and the muscle fascicle length (lm)
being projected back onto the line of action (Gans and Bock, 1965; Gans, 1982; Otten, 1988; Zajac,
1989).

From this relationship, it is easy to see that the change in MT (i.e. , its excursion) can be2924

calculated as the sum of the changes in external tendon length (lT,ext) and the muscle “belly” length2925

(Lmb). Note that in Chapter 3, we lump the internal segment of the tendon in with the external2926

segment (as they are parallel) and the entire tendon length was denoted as lT . This inclusion is also2927

supported by the claims that the aponeurosis has a similar stiffness to the external tendon stiffness2928

and the entire tendon, therefore, stretches relatively consistently across its entire length(Scott and2929

Loeb, 1995). However, in the work documented in Otten (1988), this internal tendon length (lT,int)2930

is considered constant, which allowed them to calculate an explicit relationship between muscle2931

fascicle lengths and the muscle belly length. The derivation from Otten (1988) is reproduced below2932

and extended to discuss the change in muscle “belly” length. First we consider that the work of2933

the muscle fascicles (Wm) is equal to the work of the entire muscle (Wmb).2934
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Wm = Wmb

fm∆lm = fmb∆Lmb

fm∆lm = fT∆Lmb

(B.6a)

(B.6b)

(B.6c)

However, the force of muscle belly is equal to the tendon tension and equal to the muscle fascicle2935

force projected back onto the line of action of the MT by the cosine of the pennation angle.2936

fT = fm cos(ρ) (B.7)

We therefore rewrite Eq. B.6 as,2937

fm∆lm = fm cos(ρ)∆Lmb

∆lm = cos(ρ)∆Lmb

(B.8a)

(B.8b)

From Figure .12, we can redefined the cosine of ρ by the rule of cosine (Eq. B.9).2938

cos(ρ) =
l2m + L2

mb − l2T,int

2lmLmb
(B.9)

Therefore, Otten arrived at the following equation relating the muscle fascicles to the muscle2939

belly.2940

∆lm(2lmLmb) = ∆Lmb(l
2
m + L2

mb − l2T,int) (B.10)

They rewrote this equality in the infinitesimal form (Eq. B.11) and solved it to produce the2941
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relationship given in Eq. B.12.2942

∂lm(2lmLmb) = ∂Lmb(l
2
m + L2

mb − l2T,int) (B.11)

Lmb = c+
√
c2 + l2m − l2T,int (B.12)

where c =
l2T,int − l2m,o + L2

mb,o

2Lmb,o

where the subscript “o” indicates measurements taken at the muscles optimal length.2943

This relationship can be further expanded from what was presented in Otten (1988) to present2944

a more intuitive interpretation of this equation. First, we rewrite c as Eq. B.13 to show that it is the2945

internal segment of the tendon projected back onto the line of action of the MT by the cosine of2946

the angle, βo.2947

c =
l2T,int − l2m,o + L2

mb,o

2Lmb,o

= −
(
l2m,o − l2T,int − L2

mb,o

2Lmb,o

)

= −
(
l2m,o + L2

mb,o − l2T,int

2Lmb,o
− Lmb,o

)
= Lmb,o − lm,o cos(ρo) = lT,int cos(βo)

(B.13a)

(B.13b)

(B.13c)

(B.13d)

We can similarly manipulate Eq. B.12 to find a more intuitive relationship between the muscle2948

belly length and the muscle fascicle lengths (Eq. B.14).2949
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Lmb = c+
√
c2 + l2m − l2T,int

= c+
√
c2 + l2m − l2T,int

= c+

√
c2 + 2lmLmb

(
l2m + L2

mb − l2T,int

2lmLmb

)
− L2

mb

= c+
√
c2 + 2lmLmb cos(ρ)− L2

mb

= c+
√
c2 −

(
l2m cos2(ρ)− 2lmLmb cos(ρ) + L2

mb

)
+ l2m cos2(ρ)

= c+

√
c2 −

(
Lmb − lm cos(ρ)

)2
+ l2m cos2(ρ)

= c+
√
l2T,int cos2(βo)− l2T,int cos2(β) + l2m cos2(ρ)

= c+
√
l2T,int

(
cos2(βo)− cos2(β)

)
+ l2m cos2(ρ)

= Lmb,o − lm,o cos(ρo) +
√
l2T,int sin(βo + β) sin(βo − β) + l2m cos2(ρ)

(B.14a)

(B.14b)

(B.14c)

(B.14d)

(B.14e)

(B.14f)

(B.14g)

(B.14h)

(B.14i)

Therefore, we can rewrite this equation to generalize to the change in muscle belly length;2950

∆Lmb =
√
l2T,int sin(βo + β) sin(βo − β) + l2m cos2(ρ)− lm,o cos(ρo)

= lm cos(ρ)− lm,o cos(ρo) (when β = βo is constant)

(B.15a)

(B.15b)

Note that the approximation used in Chapter 3 is recovered when (i) the angle by which the aponeu-2951

rosis is askew, β, is zero everywhere (the original assumption) as well as when (ii) β is constant.2952

This relationship can be seen in Figure .13.2953
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Figure .13: Contour plot depicting the value of the coefficient of l2T,int in Eq. B.15a (sin(βo +
β) sin(βo−β)), which captures the vector contribution of the internal segment of the tendon as the
angle by which it is askew (β) changes with respect to muscle contraction. Note that this value is
near zero when the angles do not change by very much.

∆lMT −∆lT = ∆Lmb

=
√
l2T,int sin(βo + β) sin(βo − β) + l2m cos2(ρ)− lm,o cos(ρo)

∴ lm =
1

cos(ρ)

√(
∆lMT −∆lT + lm,o cos(ρo)

)2 − l2T,int sin(βo + β) sin(βo − β)

(B.16a)

(B.16b)

(B.16c)

Therefore the real assumptions made in Chapter 3 with respect to the MT architecture were2954

that (i) the internal tendon did not change length (to satisfy the constant volume condition and the2955
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condition that muscle work is equal to the muscle fascicle work) and (ii) the angle by which the2956

internal tendon is askew from the line of action of the MT (or the amount by which it changes2957

with respect to muscle contraction) was negligible. If we assume that the belly of the muscle must2958

shorten by some amount ∆Lmb (given by the MT excursion minus the external tendon deforma-2959

tion), then if β > βo (i.e., the muscle bulges with a concentric contraction and the internal tendon2960

deflects more from the MT line of action) the value of sin(βo + β) sin(βo − β) is negative and the2961

equation derived in Chapter 3 would estimate the muscle fascicle length to be shorter than it really2962

is (i.e., overestimate the amount of shortening). Similarly, if the muscle was to lengthen by some2963

value of ∆Lmb, then if β < βo (i.e., the muscle narrows with an eccentric contraction) the value of2964

sin(βo+β) sin(βo−β) is positive and the equation derived in Chapter 3 would estimate the muscle2965

fascicle length to be longer than it really is (i.e., overestimating the amount of lengthening). This2966

overestimation of the change in muscle fascicle length could create an overestimation in muscle2967

activations if the actual muscle fascicle lengths are closer to the plateau of the muscle fascicle’s2968

force-length relationship.2969

This analysis extends loosely to the modelling of muscle fibers that are allowed to bow with2970

contraction to satisfy the minimal changes in volume seen in Nature. Mainly, it stands to reason2971

that a model that lumps all muscle fascicle fibers into one that does not consider the amount by2972

which the orientation of the fibers relative to the internal tendon change with contraction will2973

likely exaggerate the behavior of the fascicles as the shortest path is the one between the two plates2974

of tendinous tissue.2975

Therefore, we find that the “better” muscle fascicle length equation derived in Chapter 3 is2976

just that, “better”. It has limitations in the assumptions that were made which prevent it from2977

completely describing the behavior of muscle fascicles during contraction but it does provide a2978

better approximation when using the common assumption that tendons are parallel to the line of2979

action of the MT.2980

211



C insideOut Algorithm Source Code2981

The code used in this study (including the feedback linearization algorithm) and some additional2982

figures can be accessed through the project’s Github repository at:2983

https://github.com/danhagen/insideOut.2984
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