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Abstract 
Numerous observations of structured motor variability indicate that the sensorimotor system 

preferentially controls task-relevant parameters while allowing task-irrelevant ones to fluctuate. 

Optimality models show that controlling a redundant musculo-skeletal system in this manner 5 

meets task demands while minimizing control effort. Although this line of inquiry has been very 

productive, the data are mostly behavioral, with no direct physiological evidence on the level of 

muscle or neural activity. Furthermore, biomechanical coupling, signal-dependent noise and 

alternative causes of trial-to-trial variability confound behavioral studies. Here we address those 

confounds and present evidence that the nervous system preferentially controls task-relevant 10 

parameters on the muscle level. We asked subjects to produce vertical fingertip force vectors of 

prescribed constant or time-varying magnitudes while maintaining a constant finger posture. We 

recorded intramuscular electromyograms (EMG) simultaneously from all seven index finger 

muscles during this task. The experiment design and selective fine-wire muscle recordings 

allowed us to account for a median of 91% of the variance of fingertip forces given the EMG 15 

signals. By analyzing muscle coordination in the seven-dimensional EMG signal space, we find 

that variance-per-dimension is consistently smaller in the task-relevant subspace than in the task-

irrelevant subspace. This first direct physiological evidence on the muscle level for preferential 

control of task-relevant parameters strongly suggest the use of a neural control strategy 

compatible with the principle of minimal intervention. Additionally, variance is non-negligible in 20 

all seven dimensions, which is at odds with the view that muscle activation patterns are 

composed from a small number of synergies. 
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Introduction 

The nature of and causes for asymmetries in variability during motor performance is an 

integral part of the study of motor redundancy. This line of research has been fruitful in 

proposing several theories for computational mechanisms underlying sensorimotor function such 

as the uncontrolled manifold, minimal intervention, and optimal feedback control. A 5 

characteristic feature of these proposed neural control strategies is the presence of larger variance 

in task-irrelevant directions for a wide range of motor behaviors (Bernstein 1967; Li et al. 1998; 

Scholz and Schoner 1999; Todorov 2004; Todorov and Jordan 2002). This observed asymmetry 

in motor variability is often quantified using the “uncontrolled manifold” method for comparing 

task-relevant and task-irrelevant variance (Scholz and Schoner 1999). For example, there is 10 

compelling evidence that the nervous system uses a strategy that compensates for variability in 

forces produced by individual fingers to reduce variability in the task-relevant target of total 

force (e.g., (Latash et al. 2002, 2001; Scholz and Schoner 1999)). Such asymmetry in variability 

is also predicted by the “minimal intervention” principle whereby the neural controller corrects 

deviations from the average behavior only when they interfere with the task goals (Liu and 15 

Todorov 2007; Todorov 2004; Todorov and Jordan 2002). Although these neural control 

strategies are demonstrated in behavioral measures and not electrophysiological measures such 

as EMG (e.g., fingertip forces or during shifts in the center of pressure of a standing subject), the 

origin of behavioral variability presumably lies in muscle forces and EMGs.  

 20 

Given that previous studies were mostly restricted to behavioral and kinematic 

measurements, a direct link to physiology remains to be made. The only exception in this regard 

is an uncontrolled manifold analysis of postural muscle activity during shifts in the center of 

pressure of a standing subject (Krishnamoorthy et al. 2003). However, that EMG analysis was 

performed by first projecting the EMG data to a low-dimensional subspace and so it remains 25 

unclear whether the full covariance in muscle activity was consistent with the hypothesis of task-

relevant control. Furthermore, by not recording from all the muscles of the system, the nature 

and properties of the full motor command and the subspaces wherein its variability resided could 

not be studied. These limitations arise because it is practically impossible to record from all 

muscles involved in a sit-to-stand motion. Therefore we chose to examine the physiological 30 
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causes of variability in motor performance in a simpler task in which all relevant muscle 

activities could be measured. 

It is important to note that even when motor variability is convincingly shown to be 

structured, it can originate without any task-relevant control, or it can be structured for a number 

of reasons. We now underscore several previously unaddressed confounds unrelated to task-5 

relevant control. (1) Musculo-skeletal coupling, especially in the tendons of the hand (Valero-

Cuevas et al. 2007; Valero-Cuevas et al. 1998), can induce complex correlations on the 

behavioral level without correlated drive to individual muscles. We avoid this confound by 

recording muscle activity, as approximated by fine-wire electromyograms (EMG). (2) Motor 

noise is known to be signal-dependent (Harris and Wolpert 1998; Sutton and Sykes 1967) and 10 

can therefore create structure in the variability that does not directly reflect the control law. For 

example, endpoint errors in reach are larger in the movement direction (Gordon et al. 1994), not 

because that direction is task-irrelevant but because muscles pulling along the movement axis are 

more active and therefore more strongly affected by signal-dependent noise. Here we rule out 

such confounds by showing that a signal-dependent noise model does not capture the variability 15 

pattern in our experimental data. (3) The motor system may purposefully vary task-irrelevant 

aspects of the movement from trial to trial, so as to minimize fatigue or explore different control 

strategies. Such trial-to-trial variability can inflate measures of task-irrelevant variability without 

having any origins in the control strategy. This type of confound is avoided here by analyzing the 

moment-to-moment fluctuations in motor output within a trial. 20 

 

In this work we use fine-wire electrodes to simultaneously record the electrical activity in 

all muscles of a finger to test the hypothesis that the structure in the variability of muscle 

activations reduces variability in a task-relevant manner. 

 25 

Methods and Apparatus 
Experimental design and data recording 

Eight healthy volunteers (age 18-27 yrs., 5m, 3f) first performed a finger-tapping 

experiment unrelated to the present study (Venkadesan and Valero-Cuevas 2008), followed by 

the experiment described here. This study was approved by Cornell University’s Committee on 30 

Human Subjects. All analyses were performed using MATLAB (The MathWorks, Inc., Natick, 
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MA, USA). As shown in Figure 1a, subjects grasped a metallic dowel fixed to ground with their 

thumb, middle, ring, and little finger, and placed the fingertip of the index finger on center of the 

recording surface of the rigidly held force sensor, with the distal phalanx in a vertical orientation. 

The force sensor was held by a robotic arm (AdeptSix 300, Adept Technologies, Inc) and 

adjusted for each subject to replicate the finger posture of 30° of flexion at the 5 

metcarpophalangeal joint, 30° of flexion at the proximal interphalangeal joints, and 15° of 

flexion of the distal phalangeal joints measured with a clinical goniometer. Defining the location 

of the hand and fingertip in 3D, plus the orientation of the distal phalanx in this way, suffices to 

replicate the posture of the fingers across trials in this isometric task. 

 10 

Electromyograms 

Fine-wire intramuscular electrodes were placed in all seven muscles acting on the index 

finger, as described elsewhere (Burgar et al. 1997). The seven muscles actuating the index finger 

are flexor digitorum profundus, flexor digitorum superficialis, extensor indicis proprius, extensor 

digitorum communis, first lumbrical, first dorsal interosseous and first palmar interosseous. We 15 

recorded and digitally processed EMG using fine-wire intramuscular electrodes from all seven 

muscles using previously reported techniques (Valero-Cuevas et al. 1998; Venkadesan and 

Valero-Cuevas 2008). Amplified EMGs were each sampled at 2000Hz  and, to avoid aliasing, 

band-pass filtered (20-800 Hz) using the filters in the pre-amplifiers (Neurodata Amplifier 

System, Model 15A, Grass-Telefactor, West Warwick, RI) before storing them for processing as 20 

described in the following section. Maximal voluntary contractions of individual muscles were 

done immediately before and after fingertip force production, with the index finger braced in the 

same posture used during the study. As in prior work, we asked subject to perform three MVC 

trials to maximally activate each muscle while we provided EMG feedback as a sound delivered 

through speakers, with increasing sound level indicating an increasing level of EMG amplitude 25 

from the target muscle. Activating muscles maximally in isolation can be difficult for subjects 

given the complexity of the hand, and obtaining maximal EMG activity in each muscle does not 

necessitate eliminating EMG activity from other muscles. All subjects reported that their 

contractions were maximal, and we looked through all MVC trials to find the maximal activation 

of each muscle in any task as in prior work (Burgar et al. 1997; Valero-Cuevas et al. 1998; 30 

Venkadesan and Valero-Cuevas 2008). 
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Signal processing. 

Our analysis required estimating the instantaneous tension generated by each muscle, 

which was then used to estimate the contribution of that muscle to fingertip force. Using either 

the raw or full-wave rectified and unit-normalized EMG voltage by itself would distort the 5 

relationship between that estimated neural command and fingertip force because small and large 

muscles appear to contribute equally to fingertip force. Therefore we focused on estimating 

“normalized muscle tension” (i.e., the percentage of maximal force each muscle is producing), 

where muscle tension is known to be a low-pass filtered version of EMG due to activation-

contraction dynamics (Zajac 1989). To arrive at estimates of normalized muscle tension, the raw 10 

EMG voltages collected at 2000Hz and band-pass filtered 20Hz-800Hz were full-wave rectified 

each channel was normalized by the peak value of the band-passed EMG voltage recorded 

during maximal voluntary contractions of that muscle.  This normalization is an accepted means 

to compensate across EMG channels for differences in amplifiers setting, proximity to the active 

motor unit pools, electrode impedance, etc. It provides a signal that is scaled to the maximal 15 

output of that muscle (Burgar et al. 1997; Valero-Cuevas et al. 1998; Valero-Cuevas 2000; 

Venkadesan and Valero-Cuevas 2008). To emulate the low-pass filtering effect of activation-

contraction dynamics, we then passed the full-wave-rectified, band-pass filtered, normalized 

EMG signals through a 4th order Butterworth causal filter with time constants 0.03s and 0.23s. 

These two time-constants were found by an algorithm minimizing the mismatch between 20 

measured fingertip forces and fingertip forces predicted from the processed EMGs (the 

prediction method is described below). We also used cross-correlation to analyze the time-lag of 

the force predictions, and found that the lag was indistinguishable from zero for the chosen time 

constants. Note that the 0.23s time constant is unusually large for isolated muscles. However 

finger muscles tend to have long tendons relative to their fiber lengths, which are known to 25 

increase the effective time constant of the musculo-tendon actuator (Zajac 1989). We then down-

sampled from 2000Hz to 100Hz by averaging within non-overlapping bins of 0.01s, and 

expressed in % MVC (Figure 1c). The fingertip force data were also down-sampled to 100Hz by 

averaging within 0.01s bins. Henceforth “EMG” and “force” refer to these 100Hz processed 

data. Obtaining this envelope of the normalized muscle tension by regressing an optimally low-30 

pass filtered version of the EMG signal on the fingertip force produces the best input-output 



Structure in variability of muscle activations 

7 

mapping (in the least-squares sense) that suffices to study the structure of motor variability. This 

‘black-box’ approach circumvents the problems caused by introducing large numbers (~ 50) of 

unknown parameters necessary to perform the same analysis using a detailed physiological 

model. 

 5 

Fingertip force measurement and analysis 

The index fingertip was fitted with a thimble which had a small polished Teflon sphere 

(~3mm diameter) attached to it. The sphere made contact with a force-sensing plate which 

recorded the 3D isometric force vector. The plate was covered with 300-grit sand paper, 

explicitly defining an isometric force production task with a friction cone of ~30° half-angle. 10 

Seven EMGs (see Signal Processing section) and three fingertip force components were recorded 

at 2000Hz. The task was to produce an instructed pattern of force, normal to the sensor surface, 

without deviating from a prescribed, comfortable finger posture (neutral abduction, proximo-

distal joint angles of 30°, 45° and 15° flexion, respectively). The instructed force pattern was 

displayed on a monitor as a function of time. It was randomly generated for every subject and 15 

trial, and consisted of three phases: (i) an initial hold phase of 2N for 4s (t=0 to 4s), (ii) a 

random, slowly-varying phase for 10s (t=4 to 14s), and (iii) a final hold phase for 10s (t=14 to 

24s). The slowly-varying phase was generated as follows. We drew 5 random numbers from the 

uniform distribution over the interval [0,1] and formed a sequence of 6 numbers by prefixing the 

5 random numbers with 0. These 6 numbers represent normalized force values (between 0 and 1) 20 

at every 2s in the interval t=4 to 14s. Then, we used a cubic spline interpolation to calculate a 

normalized force value at every millisecond for t=4 to 14s (i.e., 10000 samples). Finally, we 

scaled this smooth normalized time-series to lie between 2N and 15N. The value of this slowly-

varying force at t=14s was set as the force-level for the final hold-phase. For an example of one 

such randomly generated target-force time-series, see Figure 1b. The instantaneous normal force 25 

produced by the subject was also displayed – as a small cross moving over the instructed pattern. 

This enabled subjects to perform the task accurately (a typical trial is shown in Figure 1b). Note 

that while the normal force (Z) had to match the instructed pattern, the forces tangential to the 

sensor surface (X,Y) had to remain within a large friction cone defined by the thimble on sand 

paper in order to avoid slip. The friction cone was large enough that we never saw slips. Only the 30 

component normal to the surface was shown to the subject. The tangential components were only 
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constrained by the friction cone. Thus the subject was required to control all three force vector 

components, the normal component to track the instructed pattern—while maintaining the 

tangential components low enough to stay within the friction cone. In recent study using a 

similar finger-pressing task, Cole (2006) has shown that young adults will control the direction 

of the fingertip force to be close to the surface normal, even though there was no feedback 5 

provided on the tangential components. Contrast this with a hypothetical rigid coupling between 

the fingertip and the force sensor where only the normal force would have to be controlled (we 

did not test this case). We collected 5-6 usable trials per subject (for a total of 44 trials across all 

subjects). The usable trials were defined as trials without recording artifacts (identified by visual 

inspection of the raw EMG voltages).  Then we performed a test for maximal voluntary 10 

contraction (MVC) in the same posture as the experiment – by asking subjects to push against 

the experimenter’s hand as hard as possible, in different directions chosen to elicit maximal 

activity in each muscle. 

 

Prediction of force given normalized muscle tension 15 

The prediction of fingertip force given EMG was based on the linear model 

fn(t) = An * en(t) + bn 

where fn(t) is the measured 3D fingertip force, en(t) is the 7D vector of measured normalized 

muscle tensions, An is a 3x7 time-invariant matrix mapping normalized muscle tensions to 

fingertip force, bn is a time-invariant 3D force bias vector (to account for the finger’s weight, 20 

preloading, etc.), t is the time index within the trial (varying from 0s to 20s in discrete steps of 

0.01s), and the subscript n denotes the trial number. Recall that normalized muscle tension refers 

to the estimates of instantaneous percentage of maximal force generated by each muscle, as 

inferred from electromyograms. Linearity and time-invariance of the biomechanical structure of 

the finger as well as force-length and force-velocity properties of muscle are valid assumptions 25 

as long as the muscle moment arms or posture are not changing, which is the case here (Valero-

Cuevas 2000; Valero-Cuevas et al. 1998). The unknown model parameters An and bn should be 

constant for a given subject. However, in order to avoid over-fitting, we computed these 

parameters using leave-one-out cross-validation – that is, we used data from all trials performed 

by the same subject except for the trial n being analyzed. The variations in An and bn were small, 30 

and repeating all analyses with the average values A and b produced results that were almost 
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identical to those shown in the paper. The same results were also found using a Bayesian 

analysis (see supplementary notes). As in our previous work, the linear model predicted the 

measured fingertip force rather well (Valero-Cuevas et al. 1998). For each trial we computed the 

R2 between the measured and predicted normal force. The median over trials was 0.91, meaning 

that the measured normalized muscle tension variance explained 91% of the variance in the 5 

measured normal fingertip force. This is not surprising in principle given that changes in force 

are caused by muscle activation. However, this remarkable predictive ability of measured 

normalized muscle tension is not typical in the literature because EMG recordings often do not 

include all muscles, are not selective enough (especially surface recordings) or are too noisy to 

allow such accurate prediction. 10 

 

Analysis of variability patterns 

The goal of this analysis was to test whether the variance in the normalized muscle 

tension across all seven muscles had a structure indicative of task-relevant preferential 

attenuation. In this work, we use the qualitative term “variability” to mean the temporal changes 15 

in normalized muscle tension, and the quantitative term “variance” to mean the statistical metric 

of dispersion (i.e., standard deviation squared). We performed this analysis of variability 

separately for the constant (Figure 2a-c) and time-varying phases (Figure 2d-f). In each 

condition we tested three alternative metrics of variance: “Full” which considers interactions 

within- and across-muscles, calculated by the covariance matrix; “Diagonal” which only 20 

considers within-muscle interactions, calculated by the auto-covariance matrix (the 

multidimensional version of autocorrelation with diagonal elements identical to the Full 

covariance and all off-diagonal elements set to zero); and “Signal-dependent-noise” (SDN) 

which estimates the variance attributable to mean muscle activation level. These covariance 

matrices were calculated as follows. 25 

In the constant phase we simply took the normalized muscle tension data for each trial 

(en) and computed three trial-specific 7x7 matrices: First, the covariance matrix Pn (i.e., Full 

variance); second, the matrix Dn (i.e., Diag variance) whose diagonal elements were the same as 

in Pn but the off-diagonal elements were set to 0. Dn is therefore the covariance of normalized 

muscle tensions that are individually as variable as the recorded signals but are uncorrelated with 30 

each other (i.e., diagonal variance or auto-covariance); finally, we formed a diagonal matrix Sn 
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(i.e., SDN variance) with diagonal elements proportional to the mean muscle activations squared. 

This is the covariance matrix expected from signal-dependent noise –a well-documented 

characteristic of the motor system (Harris and Wolpert 1998; Sutton and Sykes 1967). This 

proportionality constant was determined separately for each subject, by fitting a linear model that 

predicts the standard deviations of the normalized muscle tensions given their means. Averaged 5 

over subjects, the standard deviation of the normalized muscle tension was 8% of the mean. 

 

In the time-varying phase the calculation of these covariance matrices was complicated 

by the fact that the mean was time-varying and could not be measured directly (the instructed 

patterns were not repeated, so as to avoid rote motor pattern repetition by the subjects and 10 

explore a richer set of motor commands). However it was possible to estimate the time-varying 

mean using the fact that, as we have shown in the same experimental paradigm (Valero-Cuevas 

2000; Venkadesan and Valero-Cuevas 2008), subjects scale the activity of all muscles together in 

order to modulate the force. For each muscle we computed what the “ideal” pattern should be 

according to this scaling strategy. To do so, we fitted another linear model predicting each 15 

muscle’s normalized tension as a function of the instructed force. That model had two unknown 

scalar parameters computed separately for each subject and muscle. The predicted normalized 

muscle tension was then subtracted from the actual normalized muscle tension, and the residuals 

were used to compute the matrices Pn, Dn, Sn. 

 20 

The second step in our analysis consisted of calculating how the output force was 

affected by the variance in the muscle coordination pattern estimated using the Pn, Dn, Sn 

matrices. More specifically, our hypothesis is expressed mathematically as testing whether the 

variance in normalized muscle tension (as quantified Pn, Dn, Sn matrices) is preferentially 

channeled into the nullspace of the biomechanical transformation (i.e., the matrix An). See 25 

(Valero-Cuevas 2009) and (Strang 1980) for a review of these concepts. Briefly, if the variability 

of muscle activations is structured in such a way to reduce its effect on the relevant elements of 

the task (in this case, the magnitude of the three component of force), then the majority of the 

variability in normalized muscle tension is part of the family of motor commands that do not 

cause a change in the force normal to the surface (i.e., they belong to the nullspace of the 30 

biomechanical transformation An). The nullspace can be described intuitively as the task-
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irrelevant subspace: the set of all possible normalized muscle tension combinations that do not 

produce a fingertip force output. Thus, normalized muscle tension variations in that task-

irrelevant subspace do not affect the fingertip force. Once the Pn, Dn, Sn matrices for the constant 

and time-varying phases were computed, we compared the projected variance-per-dimension in 

the task-relevant subspace (row space of the An matrix) versus task-irrelevant subspace (i.e., 5 

nullspace of the An matrix) of the 7D normalized muscle tension space, separately for each trial. 

The task-relevant subspace is found directly as the subspace spanned by the three 7D row vectors 

of the matrix An. Recall that An maps 7D normalized muscle tension signals into the three 

components of the fingertip force vector (one normal and two tangential to the surface). Note 

that this task-relevant 3D subspace1 is by definition embedded in the 7D normalized muscle 10 

tension space, and the three row vectors define the set of all possible normalized muscle tension 

combinations that produce a fingertip force output (Valero-Cuevas 2009; Valero-Cuevas et al. 

1998). Thus, this is the subspace in which normalized muscle tension variations cause variations 

in fingertip force. The task-irrelevant subspace is the 4D complement of the 3D task-relevant 

subspace, namely, the 4D nullspace2 of An. Lastly, we compared how the variances (either Pn, 15 

Dn, or Sn) project onto the task-relevant vs. the task-irrelevant subspaces.  For each subspace we 

formed an orthonormal coordinate frame, computed the projection of the variance of the 

normalized muscle tension data projected on each axis of this coordinate frame, and averaged 

over the number of axes (3 for the task-relevant, and 4 for the task-irrelevant subspaces) to 

obtain a scalar variability index for the corresponding subspace, as done in (Scholz and Schoner 20 

1999). The projected variance is calculated by the formula: uT * V * u, where V is a covariance 

matrix (either Pn, Dn, or Sn) and u is a unit vector from the orthonormal bases (i.e., one of the 

axes of the coordinate frame). An important mathematical fact is that the variability index 

computed this way does not depend on the choice of coordinate frame for a given subspace, but 

only on the subspace itself; in other words the variability index is coordinate-free. Finally, we 25 

divided the task-relevant variability index by the task-irrelevant index. The resulting 

                                                             
1 By 3D we do not mean Cartesian space. Rather, that three seven-dimensional vectors (each a 
row vectors of the A matrix) define a subspace in seven-dimensional space whose dimensionality 
is 3 (Strang, 1980). 
2 Similarly, by 4D we mean that four seven-dimensional vectors (each a row vector of the 
nullspace of the A matrix) define a subspace in seven-dimensional space whose dimensionality is 
4. 
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dimensionless variability ratio should be statistically smaller than 1 to support the hypothesis that 

the nervous system preferentially controls task-relevant parameters. 

 

Results 

Variability structure reveals preferential control of task-relevant parameters 5 

The results in Figure 2a,d confirm our hypothesis for both the constant and time-varying 

phases, respectively. The graphs show the means and standard errors of the ratio defined in the 

Methods for each type of covariance matrix. The mean ratios for the 8 individual subjects were 

averaged to produce the grand mean and SEs shown in Figure 2a,d. Black bars are cases where 

the ratio was significantly lower than 1 (t-test, p<0.01), gray bars are cases where the difference 10 

was not statistically significant. In agreement with our hypothesis, both the full covariance Pn 

and the diagonal covariance D are structured such that variance-per-dimension is smaller in task-

relevant compared to task-irrelevant subspaces. This is not the case for the signal-dependent 

noise covariance matrix S, therefore the task-relevant reduction in variance is not a trivial 

consequence of signal-dependent noise. In the constant phase (Figure 2a) the ratio (0.73 ± 0.08) 15 

was significantly smaller for the full covariance compared to the diagonal covariance (paired t-

test, p<0.01), therefore correlations among muscles contributed to the effect. The latter 

difference was not statistically significant in the time-varying phase (Figure 2d). But, recall that 

our calculation was based on additional assumptions in the time-varying phase, and is therefore 

less reliable. Nevertheless this result shows the same trend for both constant and time-varying 20 

phases, and confirms that the variability ratios for both phases are statistically lower than 1. 

Figures 2c,f and Figure 3a,b show the loadings for all principal components for both the 

constant and time-varying phases. The loadings for each principal component indicate only the 

trends in variance among muscles (but not on their mean values in the coordination pattern) in 

order of decreasing importance (from 1st though 7th).  Note that both the variance explained by 25 

each principal component agree in spite of the need to make additional assumptions to perform 

this analysis on the time-varying phase (see Methods). The loadings of the first principal 

component also agree for both phases, with some differences in magnitude (but not in sign) for 

mostly the first palmar interosseous, the extensor digitorum communis and flexor digitorum 

superficialis. Lastly, Figure 4 shows the histogram composed of the ratio of task-relevant:task-30 

irrelevant variance for the Full covariance matrix from all trials. This figure shows that the 
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variability ratio was less than 1 for 80% of the trials. Thus we can conclude that our hypothesis 

holds for the neural control of both constant and time-varying force production. 

 

Fluctuations in muscle “coactivation” are the largest source of variability 

We also performed Principal Component Analysis (PCA) on the full covariance matrix 5 

(Pn) averaged over all trials in the constant phase of force production. We found one large 

component (Figure 2b) accounting for over 50% of the variance, a second for 14%, followed by 

five smaller components each accounting for ~7% on average (Figure 3a). Figure 2c shows the 

loading of the first principal component on the seven muscles. The fact that all loadings are all 

the same sign suggests that a substantial source of variability is positively correlated 10 

fluctuations—a form of muscle “coactivation.” Note however that hand muscles do not have a 

simple agonist-antagonist arrangement (Valero-Cuevas 2005; Valero-Cuevas 2009; Valero-

Cuevas et al. 1998), and furthermore the loadings in Figure 2c are far from being equal, so the 

term “coactivation” should not be taken literally to mean simply joint stiffening via agonist-

antagonist co-contraction. Rather, the loadings of the first principal component for both the 15 

constant and time-varying phases indicate that all muscles contribute to the overall variance, and 

this variance has a structure favoring its prevalence in the task-irrelevant subspace (Figure 2a,d). 

There is, of course, some amount of joint stiffening naturally due to this muscle coactivation, but 

as we have shown before (Valero-Cuevas 2005; Valero-Cuevas 2009; Valero-Cuevas et al. 

1998), the biomechanical arrangement of finger muscles is such that, for example, coactivation 20 

of flexors and extensors is biomechanically necessary to direct the fingertip force well, and not 

indicative of a “stiffening strategy”. 

 Our analysis using PCAs was based on covariance matrices that can at most capture 

second-order correlations (i.e., in the off-diagonal elements). It is possible, however, that the 

variance of muscle activations has more complex statistical structure. Thus we also applied 25 

Independent Component Analysis (FastICA with tanh nonlinearity (Hyvarinen et al. 2001)), 

which looks for linear projections of the data that are statistically independent and not merely 

uncorrelated. PCA and ICA are based on different mathematical models and tend to find 

different solutions – which is why ICA has become so popular recently despite the increased 

computational requirements (Hyvarinen et al. 2001). In our data, however, the first PCA and first 30 

ICA components were very similar (Figure 2c), indicating that the dominant component we 
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found represents not only the direction of maximal variance but also an independent source of 

variation. There are differences between the two methodologies, mostly for extensor indices 

proprius, but the loadings of the first component for the two methods were of the same sign. The 

agreement of PCA and ICA on higher components was not as good, but those components 

explain comparatively little variance. 5 

 

For completeness, we also report the magnitude and direction of the fingertip force 

vectors. For the constant phase, the mean normal force was 8.88±0.42N, and the mean tangential 

force was 0.83±0.12 N. The angular deviation of the fingertip force vector from the vertical was 

2.77±0.59°. The mean maximal angular deviation was 5.72°. For the time-varying phase, the 10 

mean normal force was 9.20±3.15 N (the large standard deviation reflects the time-varying 

target), and the mean tangential force was 0.75±0.31 N. The angular deviation of the fingertip 

force vector from the vertical was 2.34±0.67°. The mean maximal angular deviation was 4.92°. 

Note that in all cases, subjects stayed well within the large friction cone of ~30°, the half angle 

afforded by the 300-grit sand paper covering the force sensing surface. 15 

 

Discussion 

Our hypothesis of smaller variance in the task-relevant subspace was confirmed, and the 

possibility that the phenomenon is a trivial consequence of signal-dependent noise was ruled out. 

Unlike previous behavioral measurements where the structure of the variability is affected by 20 

biomechanical coupling, such coupling was not an issue here. The possibility that trial-to-trial 

variability in the task-irrelevant subspace is inflated by fatigue-related or exploratory strategies 

was not an issue either, because we computed variance within trials. Therefore, this work is the 

first direct physiological evidence for preferential control of task-relevant parameters that 

strongly suggest the use of a neural control strategy compatible with the principle of minimal 25 

intervention. 

 

The main result of the present study is an extension of a similar preliminary finding 

originally detected in data from our previous experiment (Valero-Cuevas 2000). That finding 

was reported in a conference format (Valero-Cuevas and Todorov, Neural Control of Movement 30 

13, 2003), and served as motivation to conduct this expanded study. The previous experiment 
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only included a constant phase, with shorter duration (about 2s), however the number of trials 

was larger and the directions of instructed force were varied. In that preliminary report, the 

variance ratio for the Full covariance was 0.62 ± 0.08 (mean ± standard error), which was 

significantly different from 1 (t-test, p<0.01). The corresponding ratio in the present study is 

given by the leftmost bar in Figure 2a; which is 0.73 ± 0.08. 5 

 

Our experiment has some limitations, which point to directions for future work but do not 

challenge the validity of our results. First, the limited time-window of opportunity, characteristic 

of experiments with fine-wire electrodes, prevented us from repeating the dynamic templates. 

This complicated the variance analysis in the time-varying phase. Second, subjects had to control 10 

the fingertip forces in all three directions accurately, and so the task-relevant 3D subspace was 

quite generic. This issue could be addressed in future work by rigidly fixing the fingertip to the 

target surface – making the fine control of tangential forces unnecessary, and thus creating a less 

generic 1D task-relevant subspace. However, investigating motor variability in unloaded finger 

movements and during object manipulation task would be stronger tests of whether this approach 15 

to understanding variability is useful in tasks of daily life. Third, in isometric tasks it is difficult 

to separate state variables from control variables – a separation which is essential if feedback 

control analyses are to be applied (recall that a feedback control law is a mapping from states to 

controls). Movement tasks would be more suitable for such analyses. Near-isometric tasks or 

posture maintenance tasks in which small postural fluctuations are recorded are also suitable, and 20 

may allow estimates of stiffness modulation. Lastly, the assumptions in the analysis of the time-

varying phase could be relaxed by embedding an identical time-varying pattern within a 

sequence of random patterns. However, such an approach would be open to the criticism that our 

results may not apply in general (i.e., to a rich variety of random force patterns as done here), 

and would unavoidably lengthen these invasive experiments. These are all extensions which we 25 

hope to explore in future work. More generally speaking, this work also underscores the need to 

develop methods to study physiological causes of motor output variability for general motor 

tasks without the need to record from all relevant muscles. The limitations of the use of EMG 

recordings are well known, and we have discussed them in this context before (Valero-Cuevas et 

al. 1998; Venkadesan and Valero-Cuevas 2008). For example, if the estimate of normalized 30 

muscle tension from fingertip force has a bias there could be an offset in the normalized muscle 
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tension estimate that would artificially increase the apparent variance. However, EMG 

recordings are the best tool we have at the moment to estimate descending drive to muscles and 

our results are strong enough to suggest that the limitations of EMG did not overwhelm the effect 

we detected. 

 5 

 On a related note, one might think that correlated drive to motor units of hand muscles 

(for a review of this extensive literature see (Schieber and Santello 2004)) is a confound in this 

study. However, this is not so. Correlated drive is a mechanistic explanation of the same 

phenomenon we are trying to explain in computational terms. Every computational model must 

have an underlying neural mechanism. Indeed if the control laws used by the sensorimotor 10 

system were task-specific in the way we envision (Liu and Todorov 2007; Todorov 2004), their 

neural implementation would involve the kind of correlated drive that has been reported – with 

the caveat that the correlations would have to be task-specific. So these two explanations are 

complementary: one tells us what the control law is and why, the other tells us how that control 

law is implemented. 15 

 

We avoid discussing the individual off-diagonal entries (i.e, pair-wise interactions) or 

rows (i.e, muscle groups) of the Full covariance matrix. This is because it is imperative to note 

that considering the low-dimensional trends in data represented by those entries (such as pair-

wise or group-wise correlations) can lead to over-interpretation of the causality behind muscle 20 

interactions. Even if such correlations are detected on a restricted subset of the entire data, the 

causal reasons for them cannot be interpreted in a mechanically sound manner. This is because 

the complicated musculo-skeletal structure of the hand obviates certain traditional notions of 

agonist-antagonist pairs, flexor vs. extensor muscle groups, co-contraction, etc. (Valero-Cuevas 

et al. 1998; Valero-Cuevas et al. 2000; Valero-Cuevas 2005; Valero-Cuevas 2009). For example, 25 

vector contribution of action of the extrinsic flexors (FDP and FDS) to fingertip force in a flexed 

posture is actually not in the direction normal to the surface, but rather tilted proximally; whereas 

the intrinsic muscles have lines of action better aligned with the surface normal (Valero-Cuevas 

et al. 2000; Cole 2006; Valero-Cuevas 2005; Valero-Cuevas 2009). The fact that the flexors do 

not have the highest loadings in Figures 2c,f is therefore biomechanically reasonable. These 30 

complex biomechanical interactions, however, are difficult to interpret via the loadings in the 
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principal components or individual entries of the covariance matrices. Figure 5 further 

reinforces this idea using a representative trial. The data in Figure 5 correspond to the same trial 

as in Figure 1, but instead of showing the 7D normalized muscle tension space as spanned by 

each muscle, it shows the projection of the 7 normalized muscle tensions onto the task-relevant 

(top 3 traces) and task-irrelevant (bottom 4 traces) subspaces. These subspaces can only be 5 

calculated using the Full covariance matrix. Therefore, these are not the traces of variability in 

individual muscles, but of variability within two disjoint subspaces that are defined by specially 

oriented coordinate systems in the 7D normalized muscle tension space. The variability in these 

subspaces either will (top 3 traces) or will not (bottom 4 traces) affect the fingertip force output. 

Even though specific off-diagonal elements in the Full covariance represent the coactivation of 10 

specific muscle pairs, the true nature of the variability that is embedded in a 7D space cannot be 

captured unless analyzing all elements of the Full covariance matrix simultaneously. The same 

applies when considering only restricted muscle groups, i.e., specific rows of the Full covariance 

matrix. Moreover, even in Figure 5 it is difficult to assess differences in variability across the 

two subspaces by comparing across traces. The full calculation of variance per dimension (see 15 

Methods) is necessary to detect the effect by calculating the ratio of task-relevant:task-irrelevant 

variance, which in this particular trial is strong at 0.48 (i.e., much lower than 1).  

 

Lack of evidence for dimensionality-reducing muscle “synergies” in within-trial variability 

We find that our results speak to motor control issues beyond our hypothesis – 20 

particularly to the issue of motor synergies. The idea that related motor behaviors may be 

constructed by recombining a small set of “synergies” has been around for a long time (Bernstein 

1967). Recently it has been instantiated on the muscle level, by using linear decomposition 

methods like PCA on the normalized muscle tension signals to identify dimensionality-reducing 

“synergies” for the control of redundant musculature (e.g., (d'Avella et al. 2006; Krishnamoorthy 25 

et al. 2003; Li et al. 1998; Soechting and Lacquaniti 1989; Torres-Oviedo and Ting 2007; Tresch 

et al. 2006)). For example, it was shown that 4 or 5 different muscle synergies can explain most 

of the EMG variance in 3D reaching movements to/from a variety of targets in 3D (d'Avella et 

al. 2006). 

The existing literature on synergies and dimensionality reduction has focused on 30 

explaining between-trial variability. In contrast, the focus of our study is within-trial variability. 
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If we assume that all muscle activity (including within-trial variability) is generated by 

recombining a small set of synergies, then the variability structure we observed during the 

production and regulation of this task is inconsistent with the notion of synergies, for the 

following reasons. If we were to count the number of hypothetical muscle synergies by drawing 

a cut-off line somewhere in Figures 2b,e, the only logical place is after the first principal 5 

component. This would leave more than 40% of the variance unaccounted for, and would imply 

that either: (i) there is only one synergy, making it impossible for the CNS to utilize the 

compositionality property of multiple synergies. Furthermore, given that all coefficients of the 

first principal component have the same sign (which to our knowledge has never been observed 

in previous studies), this first principal component may simply reflect overall modulation of 10 

fingertip force as well as stiffness. Or (ii) there was no dimensionality reduction because each of 

the seven principal components explains a non-trivial amount of variance. 

This finding can be reconciled with the existing literature by noting that there may be 

differences between open-loop and closed-loop control, as well as between planning and 

execution. Previous studies, focusing on between-trial variability which is mostly driven by 15 

changes in task parameters, have emphasized planning and open-loop control. Even though these 

movements were executed under closed-loop control, averaging over multiple trials in the same 

condition is likely to eliminate within-trial variability. In contrast, our analysis emphasizes 

variability within a trial, where the task conditions are kept constant and the only fluctuations are 

internally generated—presumably reflecting noise as well as closed-loop corrections. So it may 20 

be that planning and open-loop control rely on synergies while execution and closed-loop control 

do not. Of course it is also possible that our task is too simple and the closed-loop controller is 

not as rich as it may be in other tasks where synergies might be revealed. However, to the extent 

that synergies are low-level mechanisms that are mostly task-independent, we should see 

evidence for them in every task. 25 

Both the open-loop and closed-loop point of view of synergies are in principle valid, and 

a more thorough comparison between the two is likely to be illuminating. Since prior studies 

have almost exclusively emphasized the former approach, here we present some arguments in 

favor of the latter, with the hope of stimulating a more balanced treatment in future work. In 

analyses of between-trial variability it is difficult to dissociate the unavoidable consequences of 30 

task variation and musculo-skeletal structure from the intrinsic properties of the neural 
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controller. For example, consider the EMG patterns during a center-out reaching task. Suppose 

for a moment that there is no inherent variability in the sensorimotor system and all variability is 

imposed by the task – meaning that reaches in different directions require different EMG 

patterns. Suppose also that the control strategy is such that small changes in target location 

correspond to small changes in EMG and the mapping between the two is smooth. Then the 5 

observed EMG patterns will lie on a 1-dimensional manifold embedded in the high-dimensional 

EMG space, simply because the reach targets lie on a 1-dimensional manifold (i.e., a circle). An 

ideal and necessarily nonlinear dimensionality reduction algorithm will be able to explain all 

EMG data in this hypothetical experiment with a single muscle synergy. Linear dimensionality 

reduction algorithms such as PCA are not ideal, so we should expect them to find a subspace 10 

with more than one dimension—but still it should be a very low-dimensional subspace. The 

same reasoning applies to tasks like locomotion, where the behavior is very complex but 

nevertheless remains close to a 1-dimensional limit cycle embedded in some high-dimensional 

space. The findings from such studies are useful in the sense that they tell us what the low-

dimensional space is, but the fact that the space is low-dimensional is hardly surprising given the 15 

low-dimensionality inherent in the task. This confound is largely avoided in analyses of within-

trial variability. 
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Figure 1 

(a) Experimental paradigm. As in (Venkadesan and Valero-Cuevas 2008), the subject grasped a 

metallic dowel fixed to ground with their thumb, middle, ring, and little finger, and placed 

the fingertip of the index finger on center of the recording surface of the rigidly held force 

sensor, with the distal phalanx in a vertical orientation. Defining the location of the hand and 5 

fingertip in 3D, plus the orientation of the distal phalanx, in this way suffices to replicate the 

posture of the fingers during across trials in this isometric task. 

(b) Measured fingertip forces (thick, red), predicted forces from the linear normalized muscle 

tension-to-force model (dotted, black), and instructed normal force (thin, blue) for a typical 

trial. Each trial stated with a brief pre-loading phase which is not shown (and is not used in 10 

the analyses). 

(c) Processed normalized muscle tensions for the seven muscles acting on the index finger, for 

the same trial shown in subplot (a). The muscle abbreviations are: FDP – flexor digitorum 

profundus (slip to the index finger), FDS – flexor digitorum superficialis (slip to the index 

finger), EIP – extensor indicis proprius, EDC – extensor digitorum communis (slip to the 15 

index finger), LUM – first lumbricals, DI – first dorsal interosseous, and PI – first palmar 

interosseous. 

 

Figure 2 

(a) Ratio of task-relevant to task-irrelevant variance indices, computed from the full covariance 20 

(Full, P), diagonal covariance (Diag, D), and signal-dependent noise covariance (SDN, S) in 

the constant phase (last 10s of each trial). The bars show the grand mean ± standard error, 

computed from the means from the 8 individual subjects. Black bars are significantly 

different from 1 (t-test, p<0.01). Gray bar is not significantly different from 1. 

(b) Variance accounted for by each principal component. PCA is applied to the Full covariance 25 

matrix averaged over all trials for the constant phase. 

(c) Loadings of the first principal component on all muscles (gray bars) for the constant phase. 

Note that all values are positive, indicating positive correlation among muscles or 

“coactivation”. Circles show the loadings of the first independent component, extracted via 

ICA from the pooled data (all trials, constant phase). Trial-specific means were subtracted 30 

before pooling the data. 
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(d, e, f) Same as in subplots (a, b, c) but for the time-varying phase of each trial (first 10 s after 

the constant preloading phase). 

 

Figure 3 

Loadings of the 2nd through 7th principal component for (a) constant and (b) time-varying phases. 5 

This Figure show the strong similarity in the percent variance explained and the loadings 

obtained for both phases despite the assumptions made for the time-varying analysis.  

 

Figure 4 

Histogram and cumulative histogram of the ratio of task-relevant to task-irrelevant variance for 10 

both constant and time-varying phases for the Full covariance matrix. Note that 80% of the trials 

have a ratio < 1, in support of our hypothesis. 

 

Figure 5 

Projection of the normalized muscle tension variance onto the task-relevant (top 3 red traces) vs. 15 

task-irrelevant (bottom 4 traces) subspaces. The data are for the same trial as shown in Figure 1. 

Note that this Figure highlights the fact that the multidimensional interactions across muscles is a 

complex phenomenon that is nor readily detectable by studying individual muscle signals or, 

more importantly, when one records only from a subset of muscles as was done in prior studies. 

An important motivation for this study is that, to our knowledge, this is the first time this 20 

analysis is performed on EMG signals collected simultaneously from all muscles of a 

musculoskeletal system, in this case a finger. 
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1 Introduction

In the main text of this manuscript, we esti-
mated the linear mapping from recorded electromyo-
grams (EMGs) to fingertip force outputs using a least
squares algorithm (i.e., linear regression). Through-
out this supplement and the main text we denote this
mapping by A, a 3×7 matrix that transforms muscle
EMGs into fingertip forces. Subsequent analysis of
variance in muscle EMGs was carried out using this
matrix A. Specifically, the row-space and null-space
of A were used to parse the variability in EMGs into
task-relevant and task-irrelevant portions. However,
estimating A using a least squares process could be
biased. In particular if the EMGs for some muscles
are more noisy than others, the corresponding entries
in A could be smaller than the actual moment arms,
which in turn could affect our conclusions regarding
variability structure. Yet another reason for bias in
using a least squares estimate of A arises from the
fact that a least-squares procedure specifically tries
to find A that minimizes errors in estimated fingertip
∗Corresponding author
†Currently at School of Engineering & Applied Sciences,

Harvard University, Cambridge, MA, USA

forces, i.e., noise in EMGs may be selectively dumped
into the null-space of A. However, it is possible to
work around these forms of bias in estimation by not
only estimating the best-fit A, but finding a probabil-
ity distribution for A. Here, we use Bayesian analysis
to estimate the probability distribution for A using
a numerical sampling scheme calling the Metropolis
algorithm. This is in contrast to the point-estimate
we found in the main text. We find that our con-
clusions about the structure of variability in muscle
activations remain the same as when using a point-
estimate of A. Therefore, we conclude that the least-
squares estimation procedure presented in the main
text did not bias the results of this study. We rel-
egated the Bayesian analysis to this supplementary
note for ease of reading the main text given greater
familiarity with linear regression than with Bayesian
techniques for several readers.

2 Methods

We pool together all trials for a given subject, drop
the trial index, and also subtract the mean so that
the offset b introduced earlier (in the main text) is

1



no longer needed. The procedure described below is
repeated separately for every subject.

2.1 Bayesian Estimation

Instead of taking the data at face value, we consider
the force (f(t)) and measured EMG (e(t)) as noisy
versions of some underlying signals which correspond
to the true fingertip force (f̄(t))and true muscle ac-
tivation (ē(t)):

f(t) = f̄(t) + γ(t) (1a)
e(t) = ē(t) + ω(t) (1b)

where the noise terms γ(t) and ω(t) are indepen-
dent, zero-mean, multivariate, Gaussian white noise
variables with diagonal covariance matrices Q and R.
These two matrices along with the matrix A consti-
tute the model parameters which we will estimate
from the data. Note that A now relates the underly-
ing signals (f̄ , ē) and not the measured signals (f ,
e):

f̄(t) = Aē(t) (2)

We do not know the underlying signals, but for-
tunately it is not necessary to know them. Indeed,
multiplying the two noise models (Equation 1) by A
and subtracting yields:

Ae(t)− f(t) = Aω(t)− γ(t) (3)

The expression on the left (i.e., the residual) can be
computed from the data for an assumed (guessed) A.
The expression on the right however, is a Gaussian
white random variable with zero mean and covariance
matrix ARAT + Q. Thus using the formula for the
probability density function of a multivariate normal
distribution, the likelihood of the measured residual
at time t for given (or guessed) model parameters A,
R, Q is

pt(θ) =
e(−

1
2 (Ae(t)−f(t))T(ARAT+Q)−1(Ae(t)−f(t)))

(2π)
3
2
√
|ARAT + Q|

(4)
where θ, the parameters to be estimated using the
data, are simply the elements of A, Q and R strung
out as a long vector. Because, A has 21 elements

(3× 7), Q has 3 elements (a 3× 3 diagonal matrix),
and R has 7 elements (a 7× 7 diagonal matrix), the
total number of parameters to be estimated (i.e., size
of θ) is 31. Given that our data are in the form
of discrete measurements, the total likelihood of the
measured data time-series is simply the product over
all t of the likelihood given by Equation 4:

p(θ) =
∏

t

pt(θ) (5)

2.1.1 Numerical sampling of the posterior
distribution

In the absence of a prior probability distribution1

for θ (i.e., a uniform prior), the posterior distribu-
tion2 for θ (the product of p(θ) and the uniform
prior) is then proportional to the likelihood (p(θ)).
The key idea in Bayesian analyses is to use the pos-
terior distribution instead of a single parameter es-
timate. When this distribution is too complex to
handle analytically, as is the case here, one can use
Markov Chain Monte Carlo (MCMC) sampling. The
specific algorithm we use is the Metropolis algorithm,
which uses the following iterative scheme to gener-
ate sample the posterior distribution. Let θk denote
the kth parameter sample. Generate a candidate new
sample θ′ = θk + ε, where ε is drawn from a zero-
mean multivariate Gaussian distribution. Then, we
compute the probability ratio:

a =
p(θ′)
p(θ)

(6)

where p is given by Equation 5 and is proportional
to the target distribution (posterior) from which we
want to sample. If a ≥ 1, make the deterministic
update θk+1 = θ′. Otherwise make the stochastic

1The prior probability distribution or simply, the prior, is
the name given to the uncertainty in the variable we want to
estimate before any data are taken into account.

2The posterior probability distribution or simply, the pos-
terior, is the name given to the conditional probability distri-
bution of the variable we want to estimate after taking into
account the data and a known prior. According to Bayes’ the-
orem, this is simply the product of the prior and the likelihood
of observing the measured data.
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update

θk+1 =

{
θ′ with probability a
θk with probability 1− a

(7)

After an initial “burn-in” period, the sequence of
samples generated in this way is guaranteed to match
the target distribution. To ensure that the Markov
chain has enough time to converge we allowed a large
number of updates (10 million), and furthermore re-
peated the entire process 3 times with different ini-
tial values (θ0). Visual inspection confirmed that for
7 out of the 8 subjects, the chain always converged
in less than 4 million updates. Thus we discarded
the first half of each chain. To speed up processing
we kept only 1 out of each 100 consecutive samples –
which is motivated by the fact that MCMC generates
samples that are correlated over time. Combining the
results from the 3 chains, we thus analyzed 150,000
samples from the posterior distribution over the pa-
rameters for each subject. For one of the 8 subjects
we did not observe convergence. Furthermore for this
subject the matrix A estimated with linear regres-
sion had substantially larger elements compared to
the other subjects. Thus we decided to exclude this
subject from the present analysis, even though this
subject’s (unreliable) results were actually consistent
with our hypothesis. This left us with a total of 41
trials from 7 subjects.

2.2 Variability ratio

We briefly recall how we quantified the ratio of
task-irrelevant to task-relevant variability in EMGs.
A detailed description is found in the main text.
From the trial EMG data, we calculated three co-
variance matrices: Λ – the full covariance matrix, D
– the diagonal covariance matrix, with diagonal el-
ements identical to Λ and all off-diagonal elements
set to zero, and finally S – the diagonal signal depen-
dent noise covariance matrix such that the diagonal
terms were proportional to the mean muscle activa-
tions squared. For a given A, the three rows of A
span the task-relevant subspace of A and the four
basis vectors of the nullspace of A span the task-
irrelevant subspace of A. For every basis vector û

and covariance matrix V (where V is one of Λ, D,
or S), the projected variance is given by the scalar
quantity, ûTVû. Then, the variability index for each
of the task-relevant and -irrelevant subspaces is just
the average of the variance projected onto each of
their respective basis vectors. The ratio of the vari-
ability index of the task-relevant to that of the task-
irrelevant subspace is the quantity of interest (we call
it the variability ratio). In the main text we found
that for a least squares estimation of A, this ratio was
smallest for Λ and specifically, it was smaller than 1
(both results were statistically significant). Here we
repeat the same analysis using the 150,000 samples
of A generated by the Metropolis algorithm. In ad-
dition to the average value of this ratio, the Bayesian
method yields the posterior distribution of the vari-
ability ratio for a single trial, thus enabling single-
trial hypothesis testing.

3 Results and discussion

We found that samples of the posterior distribu-
tions of A, R and Q, and therefore, the posterior
distribution of the variability ratio, all converged. In
other words, all three chains of the MCMC led to very
similar distributions for the estimated mapping from
EMGs to forces (A) (see Figure 1a) and the variabil-
ity index (see Figure 1c). The estimated noise vari-
ances (R for EMG and Q for force) however, were typ-
ically non-Gaussian and differed to a greater degree
between chains (see Figure 1b). This is not surprising
because variances are typically harder to estimate.
Finally, we found the linear regression estimates to
be surprisingly close to the Bayesian estimates.

Using single-trial hypothesis testing we found that
for 30 out of 41 trials, the variability ratio was statis-
tically significantly smaller than 1 (filled, blue data
points in Figure 2a). Recall that our hypothesis is
that the variability index is below 1. For each trial,
the Bayesian method gives us a sample from the pos-
terior distribution of the variability ratio. Thus, hy-
pothesis testing is performed by simply counting how
many samples agree with the hypothesis and check-
ing that the percentage is above a desired significance
level (say 0.95). Of the 41 trials analyzed, in 30 cases
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Figure 1: Examples of posterior distributions of A, R (EMG variance), and the calculated variability ratio.
(a) Histograms generated using 50,000 samples (number of samples per chain) of one element of A for one
subject and two different chains (different initial values) of the Metropolis algorithm. Note that the two
distributions are almost identical and near-Gaussian. This was typical for all 21 elements of A. For this
element, the linear regression estimate was 11.4, which is close to the mean of the histograms (11.9). (b)
Histograms from two different chains for one of the EMG noise magnitudes (expressed as standard deviation
rather than variance) for one subject, one trial. Here the distributions are no longer Gaussian and tend to
differ more between chains. (c) Histograms of the variability ratio for one trial in one subject for two different
chains of the sampling algorithm. Again we have similar and near-Gaussian shapes. For this trial/subject,
the entire posterior distribution lies below 1, supporting our hypothesis about task-relevant:task-irrelevant
variability.

Figure 2: Variability ratios for Bayesian vs. least squares estimates of A. (a) Histogram of the variability
index from 41 trials for the Bayesian (filled-in, blue circles) and the least squares (open, red circles) estimates.
In case of the Bayesian estimates, the histogram represents the mean of the posterior distribution of the
variability ratio. (b) Scatter plot comparing the variability ratio found using least squares vs. that found
using the Bayesian method.
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the index was significantly smaller than 1, in 9 cases
it was significantly larger than 1, and in the remain-
ing 2 cases the result was not significant (meaning
that the distribution was centered near 1 and the
spread was too large to reach significance in either
direction). Note that compared to standard statisti-
cal tests, Bayesian tests such as this are much more
intuitive as well as accurate. See Mackay (2003) for a
discussion of sampling and Bayesian hypothesis test-
ing.

Figure 2b shows a scatter plot comparing the vari-
ability ratio computed using least squares and the
Bayesian method. Note the almost perfect agree-
ment. The mean was 0.775 for the least squares
method and 0.765 for the Bayesian method. This
rules out the potential confounds of biased least-
squares estimation. To be sure the estimated noise
magnitudes differed, but these differences did not in-
teract with our hypothesis. The average (RMS) noise
magnitude was 3% MVC for EMGs and 0.18 N for
fingertip forces.
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