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ABSTRACT
Estimating tendon excursion-joint angle relationships that

define moment arm variations is a critical part of biomechani-
cal modeling. The conventional approach has been to assume a
specific mathematical form for these relationships and use exper-
imental data to regress the parameters of these assumed mathe-
matical functions. In contrast, here we propose a novel method
that uses symbolic regression to simultaneously determine both
the appropriate topology, i.e. the form of the mathematical ex-
pression, and the parameter values that best fit the experimen-
tal data. We demonstrate this method with synthetic data gen-
erated using a known model of the human index finger. Cross
validation with realistic noise levels shows that this method can
extract the correct form and parameter values for nonlinear ten-
don excursion-joint angle relationships even in the presence of
noise.

INTRODUCTION
Musculotendon routing determines how muscles interact

with joints. Mathematically, this is defined by the moment-

∗Address all correspondence to this author.

arm relationship (either constant or posture dependent) that maps
muscle forces to joint torques, as well as tendon excursions to
joint angle changes. While building anatomically realistic mod-
els of the musculotendon pathways is useful in studying human
movement, obtaining analytical expressions describing the mo-
ment arm relationship is necessary to develop computationally
efficient models to study dynamics and control of biomechanical
systems (Eg. [1]). Posture-dependent moment arm variation is
obtained from tendon excursion vs. joint angle relationships as
described in [2]. Current methods of modeling assume a specific
mathematical form for this relationship, usually a polynomial of
a specific degree, and regress the parameters of this assumed
model from experimental data. Here we present a technique that
does not assume a specific mathematical model a priori, but si-
multaneously estimates both the topology, i.e. the elementary
building blocks forming the mathematical expression, and the
parameters, i.e. the coefficients and other constants accompa-
nying each building block of the mathematical expression, from
experimental data. We have demonstrated this concept of simul-
taneous exploration of model topologies and parameters in our
earlier work on modeling tendon networks of the hand [3]. Here
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we perform this exploration using a software called EUREQA [4]
to determine the functional mapping from joint angles to tendon
excursions in a simulated model of an index finger. EUREQA
implements a machine learning technique called symbolic re-
gression that uses genetic programming to evolve mathematical
expressions to model the available data. A population of models
is evaluated iteratively to find a set of models that best map the
inputs to the outputs. Using symbolic regression to model tendon
excursion-joint angle relationships has the unique advantage that
the results are analytical expressions, which are computationally
simple to model and are anatomically interpretable. This is un-
like other machine learning techniques that use a ‘black box’ ap-
proach to model input-output relationships. See [5] for the merits
of different machine learning techniques.

METHODS
We generated data consisting of joint angles and correspond-

ing tendon excursions for the human index finger using nonlinear
expressions based on Landsmeer’s models I (constant moment
arm) and III (bowstringing tendon) which have been used pre-
viously in the literature [1]. Each of these expressions formed
the hidden target system which was then inferred using sym-
bolic regression. A single test or data point consisted of four
inputs: the joint angles corresponding to ad-abduction (θadd) of
the metacarpo-phalangeal joint (MCP) and flexion extension of
the MCP (θmcp), the proximal-interphalangeal (PIP) (θpip) and
the distal-interphalangeal (DIP) (θdip) joints; and one output cor-
responding to the tendon excursion of each of the seven tendons
actuating the index finger taken individually (s). A data set con-
sisted of 300 such data points. This data set was presented to the
symbolic regression software which ran in a parallel program-
ming environment consisting of 15 quad-core computers.

To study the robustness of the algorithm to noise, we re-
peated the estimation by injecting experimentally realistic noise
to the dataset (5% noise to the joint angle data and 1% noise to
the tendon excursions).

RESULTS
Here we will present results for one of the seven tendons

(FDP) to illustrate our point. The algorithm was successfully
able to find accurate expressions for the other tendons as well.
As expected, the algorithm found multiple feasible solutions
that mapped the joint angle inputs to the tendon excursions.
Tab. 1 shows the hidden target expression along with one sample
evolved model for each noise level. Tab. 2 shows the errors ob-
tained on evaluation of these models with training, interpolation
and extrapolation test data.

CONCLUSIONS AND DISCUSSION
These results show that symbolic regression can effectively

estimate non-linear tendon excursion vs. joint angle relation-
ships, even with noisy data. Understandably, the cross validation

TABLE 1. Tendon excursion-joint angle expressions for the FDP

Target expression

s f d p = 0.52θadd +8.32θmcp +5.76θpip +2.97θdip+

0.66θ
2
add −

(8.32θmcp)
tan(0.5θmcp)

−
(7.5θpip)

tan(0.5θpip)
−

(3.96θdip)
tan(0.5θdip)

+39.56

Evolved expression

for data with no

noise

s f d p =0.52θadd +8.28θmcp +5.72θpip +2.95θdip+

0.69θ
2
add +1.45θ

2
mcp +1.31θ

2
pip +0.69θ

2
dip+

0.012
Evolved expression

for data with noise

s f d p = 7.27θmcp +7.21θpip +2.76θdip+

2.65sin(θ 2
mcp)+θ

2
dipcos(cos(7489.16θmcp))

TABLE 2. Root mean squared (RMS) errors for the evolved model

RMS error in mm (RMS error normalized by mean tendon excursion)

Training data Interpolation
cross validation

Extrapolation
cross validation

No noise 0.003 (0.0002) 0.003 (0.0002) 0.064 (0.0021)

Noise 0.55 (0.047) 0.25 (0.021) 2.68 (0.088)

errors with extrapolation data are larger, indicating that it is im-
portant for us to collect experimental data for the entire range of
interest. Extraction of such analytical relationships is important
to develop computationally efficient dynamic models for simula-
tion and control.
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