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Extrapolatable Analytical Functions for Tendon
Excursions and Moment Arms From Sparse Datasets

Manish U. Kurse, Hod Lipson, Member, IEEE, and Francisco J. Valero-Cuevas®, Member, IEEE

Abstract—Computationally efficient modeling of complex neu-
romuscular systems for dynamics and control simulations often
requires accurate analytical expressions for moment arms over the
entire range of motion. Conventionally, polynomial expressions are
regressed from experimental data. But these polynomial regres-
sions can fail to extrapolate, may require large datasets to train,
are not robust to noise, and often have numerous free parameters.
We present a novel method that simultaneously estimates both
the form and parameter values of arbitrary analytical expressions
for tendon excursions and moment arms over the entire range
of motion from sparse datasets. This symbolic regression method
based on genetic programming has been shown to find the appro-
priate form of mathematical expressions that capture the physics
of mechanical systems. We demonstrate this method by applying
it to 1) experimental data from a physical tendon-driven robotic
system with arbitrarily routed multiarticular tendons and 2) syn-
thetic data from musculoskeletal models. We show it outperforms
polynomial regressions in the amount of training data, ability to ex-
trapolate, robustness to noise, and representation containing fewer
parameters—all critical to realistic and efficient computational
modeling of complex musculoskeletal systems.

Index Terms—Extrapolation, moment arm, polynomial regres-
sion, symbolic regression, tendon excursions.

I. INTRODUCTION

OMPUTATIONAL modeling of complex musculoskeletal
C systems is sensitive to accurate representation of tendon
routing, insertion points, and moment arm values [1], [2]. The
most commonly used technique to obtain moment arm varia-
tions over the range of motion of a joint is the tendon and joint
displacement method [3]. Implementation of this method gen-
erally involves fitting explicit analytical expressions for tendon
excursions as functions of joint angles. Tendon excursions arise
from changes in length of a musculotendon either due to active
contraction or passive stretching. Hence, they are directly re-
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lated to muscle length changes and the maximal force a muscle
can generate, as determined by the force-length properties [4].
Moment arms over the range of motion can then be obtained
by taking partial derivatives of these tendon excursion expres-
sions with respect to the corresponding joint angle changes.
This standard approach has been used extensively in the litera-
ture to understand the contribution of different muscles toward
the production of joint torque and limb motion (e.g., [S]-[8]).
It has also been used to validate musculoskeletal models repre-
senting bone geometry and musculotendon pathways [9], [10].
Simulation of musculoskeletal dynamics for the development
and testing of theories of motor control also specifically require
analytical expressions for tendon excursions and moment arms
as functions of joint angles [2], [11]. Very often, dynamic equa-
tions of the system (which include the moment arm functions)
need to be evaluated iteratively (perhaps tens of thousands of
times) to solve for an optimal control law for each cost function
and task goal [12]. Such algorithms require accurate, compu-
tationally efficient analytical expressions for moment arms for
the entire range of motion.

Analytical expressions for moment arms and tendon excur-
sions are of two kinds: 1) idealized geometric models, or 2)
empirical models. The coefficients of the analytical expressions
in both these approaches are regressed from experimental data.
These data consist of joint angles and tendon excursion mea-
surements, often obtained from cadaveric specimens [3], [5],
[6], [8], [13], [14]. In the first case, idealized geometric models,
tendon routings are approximated by simple geometric shapes
and the mathematical forms of the expressions are derived using
trigonometry (e.g., [15]-[17]). While this might be sufficient to
obtain approximate values of moment arms and tendon excur-
sions in some simple cases, it may not necessarily be accurate
for all muscles and is heavily dependent on assumptions about
the anatomy. It is likely not appropriate for the complex rout-
ing of many tendons around joints, as well as nonuniform bone
geometry, deformity, surgical modification, and injury. There-
fore, most studies in biomechanics use the second approach:
empirical models. These almost always consist of polynomial
expressions (including splines, which are piecewise polynomi-
als stitched together) mapping joint angles to tendon excursions,
and are regressed from experimental measurements, such as us-
ing cadaveric specimens [6], [8], [13], [14], [18], [19]. But these
polynomial regressions have several inherent mathematical pit-
falls; they can fail to extrapolate, may require large datasets to
train, are not robust to noise, and often have numerous free pa-
rameters [20]. Hence, they may not be the best choice to model
multiple degree-of-freedom biomechanical systems where
1) obtaining a rich dataset from the entire range of motion can be
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difficult [21], 2) data are generally sparse and contain noise from
measurement errors and skin deformations [22], [23], and 3) are
susceptible to common errors in the estimation of axes of joint
rotation and accurate joint angles [24]. In addition, polynomial
functions are inherently a type of mathematical expression that
is likely not reflective of the geometry and physics of tendon
routing which even in the ideal case often contain trigonometric
functions [15].

Here, we present a novel method to find analytical functions
for tendon excursions and moment arms as functions of joint an-
gles that does not assume a specific mathematical form a priori.
Rather, it simultaneously estimates directly from experimental
data both appropriate mathematical forms of the analytical ex-
pressions for moment arms and tendon excursions, and their
best-fit parameter values. Previously we have called attention to
the need for biomechanical modeling to go beyond parameter
estimation and engage in the search for appropriate model forms
[25]. Here, we show an example of how to perform this simulta-
neous search of mathematical form, i.e., the structure consisting
of mathematical building blocks; and parameter values, i.e., the
coefficients and other constants accompanying each building
block of the mathematical expression, using a software pack-
age called Eureqa (http://creativemachines.cornell.edu/eureqa).
Eureqa implements symbolic regression using genetic program-
ming [26]. While symbolic regression and genetic programming
have been used for over 15 years [27] in the field of machine
learning, Eureqa is a recent improvement that ensures faster con-
vergence and more accurate solutions [28], [29]. Unlike other
machine learning techniques that use a “black box™ approach
to model input—output relationships, Eureqa has been shown to
obtain computationally efficient, analytical expressions that can
capture the physics of the system being modeled. In this paper,
we compare polynomial regression (the state-of-the-art used
by the musculoskeletal modeling community to represent these
systems) to our method. We apply the traditional polynomial
regression approach and our novel machine learning method
to both experimental data from a multiarticular tendon-driven
robotic system, and computer-generated synthetic data from
many simulated musculoskeletal systems with experimentally
realistic noise added.

II. METHODS
A. Symbolic Regression Using Genetic Programming

Symbolic regression is a machine learning technique that
searches the space of mathematical operators, functions and
parameter values to obtain analytical expressions that model
available data based on a fitness criterion [27]. Evolutionary
algorithms are generally used to guide this search in what is
an infinite-dimensional space. Here, we use a software package
called Eureqa that performs symbolic regression using genetic
programming to infer implicit and explicit analytical functions
to model input—output data [26]. In our case, Eureqa searches for
explicit analytical expressions of the form s = f(6) mapping
joint angles, 6 to each tendon’s excursion s (see Fig. 1). The
three joint angles and the excursion of the tendon of interest at
any time step constitute a data point. Many such data points from
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Fig. 1. Three-joint planar robotic system with three arbitrarily routed tendons
was moved manually to span a range of joint angles. The tendon excursions
were recorded and joint angles calculated from motion capture data.

the entire time series of the experiment form a dataset. We use
sum of deviations of inferred analytical function predictions for
the tendon excursions from true measurements (coming from ex-
perimental testing or computer simulation) over an entire dataset
as the fitness criterion, i.e., the fitness-error to be minimized. In
addition to this, Eureqa also penalizes the equation-complexity,
defined as the sum of the number of parameters and terms in the
analytical expressions being inferred. The search space consists
of analytical expressions formed by parameter values and com-
binations of mathematical operations performed on the input
variables 6. In our case, we restricted the mathematical op-
erations to addition, subtraction, multiplication, division, sine,
cosine, tangent and square root.! Polynomial expressions are
automatically generated by repeated multiplication of the input
variables. In addition, Eureqa uses the concept of coevolution
of fitness predictors, described in detail in [28], for faster and
improved convergence of solutions. Instead of using the entire
time history of the training dataset to calculate the fitness of
evolving analytical expressions, it finds and uses a small set of
data points (called fitness predictors) that can best distinguish
between analytical expressions of otherwise equal fitness. Fit-
ness predictors are chosen in every generation of evolution in

'Eureqa allows several mathematical building blocks including trigonometric
functions, logarithmic functions, boolean operations, etc. The entire list is avail-
able in the Eureqa documentation: http://creativemachines.cornell.edu/eureqa.
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parallel with the search for analytical expressions modeling the
experimental data.

Unlike conventional optimization that would minimize
fitness-error in a “single-line search” and find either the global
minimum or one of the local minima of the fitness landscape,
Eureqa uses multiobjective optimization to produce a family of
multiple “optimal” analytical expressions (15-20 expressions)
that map joint angles to the tendon excursions. Each analytical
expression has different levels of fitness-error and equation-
complexity (defined earlier). This family of analytical expres-
sions constitutes a Pareto front of fitness-error versus equation-
complexity. In this multiobjective optimization, the tradeoffs
between the fitness criteria are made explicit to the user. The
advantage of this approach is that it provides multiple analytical
expressions that may be more or less sparse, accurate, compu-
tationally efficient, or revealing of the physics of the problem—
either of which may be given more weight as “optimal” by the
user as desired. We chose to define as the optimal solution the
one analytical expression that had the lowest extrapolation error
(root mean squared (RMS) error when tested with data points
outside the range of training datasets). However, the user is free
to weigh other aspects more heavily. Our choice was driven by
the need for analytical functions to have the ability to extrapolate
as itensures that they are capturing the physics of the system and
not simply overfitting to the training data points. Each search
in Eureqa starts with an initial set of multiple, random analyt-
ical functions, and terms are added/subtracted in discrete steps
as the search progresses. Eureqa provides the support to run a
search very easily on parallel computers that are connected in
a network without requiring any special network architecture
or hardware. On average, we ran each search in parallel for
12 h on 20 computers (Dual Dualcore AMD Opteron 2.0 GHz)
at the USC High-Performance Computing and Communications
(www.usc.edu/hpce) computer cluster. As is necessary in most
machine learning problems without closed-form solutions, a
stopping/convergence criterion needs to be defined. We defined
the search to have converged if the fitness of the solution with
the lowest fitness error remained unchanged for more than 2 h.
We repeated the entire search five times to test for consistency
of results. The family of “optimal” solutions was not necessarily
of identical form in every repeat but of different representations
of functions that modeled the data best with consistent RMS
errors.

B. Comparison Against Polynomial Regression

The state-of-the-art technique is to regress tendon excursions
as polynomial functions of joint angles (e.g., [6], [8], [13], [14],
and [18]). We regressed the coefficients of multivariable lin-
ear, quadratic, cubic, and quartic polynomials (all cross terms
considered) using MATLAB (Version R2009b, MathWorks,
Natwick, MA). Polynomials of order greater than four over-
fit to the training data and performed worse than polynomial
regressions of lower orders, and hence were not considered in
this paper. This is also the case with spline functions, which
are piecewise polynomials stitched together [9]. Moreover, to
evaluate dynamic equations of the system, for example, to solve
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for an optimal controller, simple analytical functions modeling
the behavior of the system throughout the range of motion are
required. Splines or other piecewise surface fits would not be not
suitable for this purpose and hence were not considered in this
paper. We compared the performance of analytical expressions
from the multivariable linear, quadratic, cubic, and quartic re-
gressions against those from symbolic regression by testing with
a cross-validation dataset (data points not selected for training,
but within the range of training) and an extrapolation dataset
(data points outside the range of training). We used RMS error
between the true tendon excursions (experimentally measured
or simulated) and the analytical function predictions (coming
from symbolic or polynomial regressions), normalized by the
range of movement for that tendon and expressed as a percent-
age, as the fitness error criterion for the comparison. RMS errors
were determined for cross-validation and extrapolation datasets.

C. Experimental Data From a Tendon-Driven Robotic System

We used a planar robotic finger with three links, three joints
and three tendons to produce the motion capture data (see Fig. 1).
The three tendons were routed such that the first tendon flexed
all joints (similar in action to the flexor digitorum profundus in
the human finger), the second tendon, extended one joint and
flexed the remaining two joints (similar to an intrinsic tendon),
and the third tendon, extended all joints (similar to the extensor
digitorum communis). We moved the robotic finger manually to
span the full 3-D joint configuration space of flexion—extension
in a human finger. Servo dc motors maintained a constant tension
of 1.5 N in every tendon to prevent tendons from going slack.
As we moved the robotic finger, optical encoders measured
tendon excursions at a sampling frequency of 10 Hz. A six-
camera optical motion capture system, manufactured by Vicon
(Lake Forest, CA), tracked reflective markers adhered to each
segment of the robotic finger at a frequency of 30 Hz. The mean
calibration residual error of the marker position reconstruction
was less than 0.2 mm. We processed the 3-D coordinates of the
markers generated by the Vicon Nexus software to obtain joint
angle changes for the entire duration of movement and then
downsampled them to 10 Hz.

We then partitioned the datasets to test for robustness of the
inferred analytical expressions to 1) size of the training dataset
and 2) range of extrapolation.

1) Reducing the Size of the Training Dataset: We divided the
experimental data into training, cross-validation and extrapola-
tion datasets (training and cross-validation datasets coming from
the same range of data and the extrapolation dataset consisting
of data points outside the range of training). Then, we created
nine independent training datasets by systematically reducing
the number of training data points keeping the range fixed (n,
n/2, n/3, etc., in Fig. 3). We performed symbolic and poly-
nomial regressions using these nine different training datasets
and tested the resulting analytical expressions with the fixed
cross-validation and extrapolation datasets. This was repeated
five times for each training dataset, for each tendon (S, So, and
S3), by resampling the training data points with replacement
(Eureqa picked multiple random initial analytical functions at
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the beginning of each search). This was done to ensure that the
observed results were consistent and not simply due to chance.

2) Increasing the Range of Extrapolation: We compared the
regressions against one another in their ability to extrapolate,
by performing regressions on training datasets and then testing
with data points from six different ranges of extrapolation (25%,
50%, etc., in Fig. 4). We expressed each extrapolation range as
percentage by volume of the training dataset (in joint angle
space) where 0% means no extrapolation and 150% extrapola-
tion refers to the situation where the volume of extrapolation
is 150% of the volume of the training dataset range (in joint
angle space).” This was also repeated five times by resampling
of training data points with replacement for each tendon (57,
SQ 5 and 53)

D. Computer-Generated Synthetic Data

For validation purposes, we also tested our inference algo-
rithm using synthetic (i.e., computer-generated) data because in
this case, we would have access to the ground truth, and also be
able to corrupt the datasets with noise in a systematic manner.
Landsmeer’s models I, II, and III [15] are well-accepted ana-
lytical expressions mapping joint angles to tendon excursions
describing three different kinds of tendon routings for limbs and
fingers [5], [30], [31]. Landsmeer obtained these expressions us-
ing trigonometry assuming simplified geometry for anatomical
systems [15]. We generated synthetic datasets consisting of joint
angles and tendon excursions from the 27 possible combinations
(with repetition, 3 x 3 x 3) of the three Landsmeer models (see
Fig. 2). We then tested how well symbolic (i.e., Eureqa) and
polynomial regressions could infer these hidden target expres-
sions from input—output datasets. This allowed us to test whether
or not the results obtained using the tendon-driven robotic finger
also generalized to arbitrary combinations of anatomical tendon
routing. We are not, however, suggesting that these Landsmeer’s
models are particularly accurate or realistic representations of
real musculoskeletal systems.

We then compared the robustness of symbolic and polynomial
regressions to 1) noise in the data and also 2) the number of free
parameters in the analytical expressions obtained by the two
regression techniques.

1) Robustness to Noise: We added experimentally realistic
noise of 5% in joint angles and +1% in tendon excursions to
the synthetic data generated by the 27 combinations of the three
Landsmeer models (Tendon excursions are generally measured
directly using a ruler or position encoders whereas joint angles
are inferred from motion capture marker positions or measured
using a goniometer. The latter are subject to larger variations due
to errors in marker/segment positions, joint axes estimations,
skin deformations, etc. [22], [24]). We then performed symbolic
and polynomial regressions on the noisy datasets and compared

2For example consider a one-joint one-tendon system where the complete
range of motion is 0°~100°. If we use 0°~80° as the range of training dataset
for the regressions and test with joint angles between 80°—100°, it would be
considered 25% extrapolation since we are extrapolating to a range that is 25%
larger than the training range.
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Fig. 2. Synthetic data consisting of tendon excursions and joint angles were
generated using models formed by combinations of Landsmeer’s models LII,
and ITT ([T T I],[T T II],. . . [XIT ITT 1I1]).

how well they model the noisy data by testing with the cross-
validation and extrapolation datasets.

2) Number of Free Parameters: We compared the number
of free parameters in the expressions inferred by symbolic re-
gression against the number of coefficients in each form of
polynomial regression. Expressions with fewer parameters are
preferable not only because they are more computationally par-
simonious and compatible with Occam’s Razor, but also because
expressions with a large number of parameters/coefficients tend
to overfit to the training data, and naturally require larger train-
ing datasets.

III. RESULTS
A. Results for the Experimental Tendon-Driven Robotic System

Symbolic regression could infer analytical expressions that
had cross-validation and extrapolation RMS errors below 10%
for each of the tendons of the experimental tendon-driven robotic
system for all training dataset sizes and ranges of extrapolation.
Table I shows examples of expressions obtained using the dif-
ferent regressions for one of the tendons of the robotic system
in one of the cases. Following are the comparisons against poly-
nomial regression.

1) Effect of Reducing the Size of the Training Dataset: We
saw that symbolic regression was much more robust to reduc-
tion in the size of the training dataset (range being fixed) as
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TABLE I
EXAMPLES OF ANALYTICAL EXPRESSIONS OBTAINED USING SYMBOLIC AND
THE DIFFERENT POLYNOMIAL REGRESSIONS FOR ONE OF THE TENDONS OF
THE ROBOTIC SYSTEM

Regression | Expressions
. 13.7sin(0, — 0.78) + 12.30; + 8.4805 +
Symbolic 4.02033571,(93) n 14.§
Linear 9.260; + 12.60; + 11.805 + 7.26
. 3.7767 +0.8903+2.205 —0.3380102—0.4576265 —

Quadratic | 'y 1960, + 83501 + 11.20 + 9.705 + 5.24
—1.8967 — 2.0503 — 1.5603 — 0.438076> +
0.2580:03 — 0.01276203 + 0.281020, —

Cubic 0.16303603 + 0.2876265 + 0.49463020, + 4.807 +
5.6302 + 5.0202 — 0.5710205 — 0.9490,03 —
0.367601602 + 10.361 + 8.8865 + 8.7803 + 4.83
—1.2607 + 0.2603 — 0.083107 + 0.208650, —
0.635630,1 +0.7566303 — 0.22260362 — 0.266360, —
0.1590560s — 0.05940202 + 0.09470%207 —
0.824026% + 0.0728605020, — 0.1120260,6, —

Quartic 0.135030.07 — 1.0807 — 3.003 — 0.903605 +
144626, + 0.0506026? + 0.1096567 +
0.5160360.0; + 1.950360, + 0.8810%26, —
0.6770302 + 6.050? + 6.6402 + 3.7102 —
1.26620; — 1.54650; — 1.11650; + 9.726, +
8.520> + 9.4405 + 4.7

compared to the polynomial regressions. As described earlier,
this robustness was tested for cross-validation and extrapolation
datasets. In general, symbolic regression required fewer training
data points than polynomial regressions to obtain RMS errors
of 5% in tendon excursion predictions (see Fig. 3). When tested
with the cross-validation dataset, cubic, and quartic regressions
had lower RMS errors than symbolic regression for large train-
ing dataset sizes, but had much larger errors when the number
of training data points was small. However, when tested with
the extrapolation dataset, all polynomial regressions had much
larger errors compared to symbolic regression, independent of
the size of the training dataset (see Fig. 3). These observations
were consistent across all three tendons (57, S, and S3 in
Fig. 1).

2) Effect of Increasing the Range of Extrapolation: Sym-
bolic regression could extrapolate further away from the train-
ing datasets compared to polynomial regressions for the same
RMS error in tendon excursion predictions. It could extrapolate
to ranges beyond 150% of the range of the training dataset (by
volume) for tendons one and two and up to 125% for tendon
three and still maintain RMS errors below 5%. In comparison,
linear, quadratic and quartic regressions could not extrapolate
beyond 50-75% in most cases, and cubic regression up to 100%
for the same RMS error of 5% in tendon excursion predictions
(see Fig. 4).

Fig. 5 summarizes the comparison between symbolic and
polynomial regressions for the experimental data from the
tendon-driven robotic finger. It shows the achievable percent-
age extrapolation for the different regression techniques with
reduction in training dataset size to obtain 5% RMS error in ten-
don excursion predictions. Symbolic regression could extrapo-
late to much larger ranges of data, compared to the polynomial
regressions, for all the training dataset sizes.
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B. Results for the Computer-Generated Synthetic Data

All regressions produced very low errors for the computer-
generated synthetic data when no noise or extrapolation was
involved. We observed that of the 27 possible combinations of
the three Landsmeer’s models, symbolic regression tended to
infer the exact target ground-truth expressions for joints with
models I and II, and found expressions equivalent or closely
related to the original expression (e.g., Taylor series terms or
alternative trigonometric forms) for joints with model III (see
Table II). The training, cross-validation and extrapolation RMS
errors were below 0.4% for all 27 combinations.

1) Robustnessto Noise: When experimentally realistic noise
was added to the training datasets, cubic and quartic regres-
sions overfit to the noise and performed poorly when tested for
cross validation and extrapolation (see Fig. 6). In contrast, sym-
bolic regression outperformed the polynomial regressions for
all tendons when tested with extrapolation datasets and matched
quadratic regression when tested with cross-validation datasets.
The box plot in Fig. 6 shows that for the 27 combinations of
Landsmeer’s models with noise added, on average symbolic
and quadratic regressions had equivalent cross-validation er-
rors, whereas symbolic was 8% better than quadratic regression
when tested with the extrapolation dataset. Hence, symbolic
regression would be the regression of choice to model tendon
excursions in physiological systems from experimental data,
where measurement noise cannot be avoided.

2) Number of Free Parameters as a Practical Measure of the
Complexity of the Analytical Expression: Analytical expres-
sions obtained using symbolic regression had fewer free pa-
rameters and lower cross-validation, extrapolation errors com-
pared to polynomial regressions for experimental data from the
tendon-driven robotic system as well as for the synthetic data
with no noise and with noise added (see Fig. 7).

IV. DISCUSSION

‘We have presented a novel method based on symbolic regres-
sion that can infer accurate analytical expressions mapping joint
angles to tendon excursions from sparse datasets. Symbolic re-
gression outperforms polynomial regression, the state-of-the-art
technique used in musculoskeletal modeling, in that it requires
smaller training datasets, can extrapolate to ranges outside that
of the training dataset, and does not contain an arbitrary num-
ber of free parameters that can lead to overfitting the training
datasets and/or their noise. We have demonstrated these ad-
vantages of symbolic regression using both experimental and
synthetic data and strongly suggest that this approach may be a
more suitable choice to model tendon mechanics for neuromus-
cular systems.

Obtaining the necessary experimental data to create valid an-
alytical expressions to represent the musculoskeletal system is
invariably difficult and costly. This is true for both cadaveric
specimens and human subjects. Hence, it is critical to be able
to extract functionally accurate analytical expressions from as
sparse a dataset as possible. Moreover, because the ground truth
is not usually known, it is important to have confidence that the
expressions found are unaffected by unavoidable measurement
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Effect of reducing the size of the training dataset: Comparison of RMS errors of symbolic and polynomial regressions with reduction in the number of

training data points. The plots show mean and standard errors calculated across five runs for each regression type and training dataset size for the three tendons of
the experimental robotic finger. When tested with the cross-validation dataset (interpolated from the same range as the training dataset), cubic and quartic regression
had lower RMS errors compared to symbolic regression for large training datasets and quadratic regression had errors comparable to symbolic regression for small
training datasets. But when tested with the extrapolation dataset (data points outside the range of training upto 50% of the volume of the training dataset), symbolic
regression had lower errors than all polynomial regressions for all the different training dataset sizes. The stem plots show the training dataset size required to
obtain a 5% RMS error using each of the regression techniques. Symbolic regression requires the fewest training data points compared to the different polynomial

regressions for 5% cross-validation and extrapolation errors.

noise, that enough data are available/used, that the form of the
analytical expressions is appropriate and parsimonious, and that
the analytical functions are valid for the entire natural workspace
of the limb. We have demonstrated here that symbolic regres-
sion, as implemented in Eureqa [26], outperforms polynomial
regression, the state-of-the-art in musculoskeletal modeling,
with respect to these performance criteria.

For the physical system of tendons traveling over joints with
smoothly varying mechanical behavior, it is critical that the ten-
don excursion expressions model data even outside the range
of the experimentally obtained data points on which they are
trained to ensure they capture the true behavior of the sys-

tem, and not just overfit to the training data points. Moreover,
obtaining data spanning the entire range of motion of a multi-
ple degree-of-freedom biomechanical system is very difficult.
It would also necessitate a larger training dataset. Polynomial
models do not extrapolate well again due to their overfitting
behavior whereas symbolic regression avoids this problem and
can model points well beyond the range of training data.
Experimental data from biomechanical specimens is unavoid-
ably polluted by measurement noise and/or uncertainty. These
can arise from skin deformation, motion capture errors, and/or
estimation of axes of joint rotation, measurement errors and/or
noise, etc. Small errors in these measurements lead to large



1578

Extrapolation by volume (%) = = Cubic
v Quadratic
0 25 50 75 100 125 150 « Linear
Tendon1 : =—— Symbolic
20 150%
125%
100%
75%
50%
25%
Tendon2
20 e 150%
9 Te 125%
5 100%
o 75%
%]
= 50%
o
25%
xY 1|
Tendon3

150%

125%

100%

75%

50%

25%
X

X All extrapolation errors > 5%
¥ Achievable extrapolation > 150%

Fig. 4. Effect of increasing the range of extrapolation: comparison of RMS
errors of symbolic and polynomial regressions across increasing ranges of ex-
trapolation, expressed as a percentage by volume of the region in §—6-6 space
enclosed by the training dataset. The plots show mean and standard errors cal-
culated across five runs for each regression type and training dataset size for
the three tendons of the experimental robotic finger. While cubic and quartic
regressions have lower RMS errors for data points within the range of training
(0% extrapolation), symbolic regression outperforms polynomial regressions
for all ranges of extrapolation. The stem plots show the percentage of extrapola-
tion achievable with each regression type to maintain the RMS error below 5%.
Symbolic regression can extrapolate to much larger ranges of data compared to
the different polynomial regressions for the same RMS prediction error.

errors in the inferred joint angle kinematics [22]-[24]. While
experimental data are often filtered, filtering introduces artifacts
and reduces the resolution of the measurements. Hence, it is
important that the regression technique employed be robust to
noise and capture the true underlying system behavior with the
highest resolution possible. We show that polynomial regression
models, especially higher order polynomials, overfit to the noise
and can be poor representations of the real underlying behavior
of the system. In contrast, symbolic regression is seen to be ro-
bust to noise and is more accurate than polynomial regressions
in modeling noisy data.

The form of the analytical function must also strike a bal-
ance between parsimony and accuracy. Functions with a large
number of free parameters require a large training dataset for
the estimation of the values of those parameters. They also
have a greater tendency to overfit to the training dataset when
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Fig.5. Summary of the comparison between symbolic and polynomial regres-
sions in their ability to extrapolate and their performance with training dataset
reduction. The achievable percentage extrapolation for models trained over dif-
ferent training dataset sizes to maintain RMS errors below 5% is shown for each
regression technique for the three tendons of the planar robotic system. For
each training dataset size, symbolic regression can extrapolate to larger ranges
beyond the training dataset compared to polynomial regressions.

compared to models with fewer parameters. On the other hand,
analytical functions with too few parameters will fail to accu-
rately represent the functional nonlinearities of the system. The
symbolic regression algorithm in Eureqa explores multiple po-
tential forms for the analytical function while also penalizing
the number of parameters; and prioritizes low fitness error so-
lutions with fewer parameters over those with more parameters.
In many of the cases we present polynomial functions of higher
orders have a large number of free parameters compared to
the more parsimonious analytical functions found by symbolic
regression.

The ability of symbolic regression to infer the nonlinear tar-
get expressions of the Landsmeer models shows that our method
can capture the underlying physics of the system directly from
input—output data. This is particularly the case here because the
target expressions were derived by Landsmeer by hand using
principles of geometry and anatomy. As argued elsewhere [26],
the fact that symbolic regression did not only infer adequate
mathematical expressions but those target expressions is worth
noting. At the very least, this says that those target expressions
are parsimonious and that Eureqa is able to favor parsimonious
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TABLE I
TARGET AND INFERRED EXPRESSIONS WITH TRAINING, CROSS-VALIDATION AND EXTRAPOLATION RMS ERRORS(%) FOR SOME COMBINATIONS OF LANDSMEER’S
MobELS I, 11, T

Landsmeer combination | Expressions RMS grrors (%)
. TOSS
Train. . Extrap
valid.
LLI Target 1.801 + 1.802 + 1.805
*7 Evolved 1.861 + 1.8602 + 1.803 0.001 | O 0
Lo | Target 1.861 + 3.65in(0.562) + 0.6635 — (1.603) /tan(0.503) + 3.2
T Evolved 1.801 4 3.61sin(0.502) 4+ 1.5405 — 0.778sin(63) 0.102 | 0.084 | 0.124
L Lo | Tt 1.80; + 0.665 — (1.603)/tan(0.503) + 0.60> — (1.602) /tan(0.562) + 6.4
T Evolved 1.801 4 0.6105 + 1.105tan(0.2403) + 0.2403 + 2.15tan(0.2876>) 0.007 | 0.008 | 0.026
ILIL T Target 3.65in(0.501) + 3.65in(0.5602) + 1.803
> Evolved 3.6s51n(0.501) + 3.65in(0.502) + 1.803 0.001 | O 0
ILIL 11 Target 3.65in(0.502) + 3.65in(0.501) + 3.6sin(0.563)
> Evolved 3.6s51n(0.502) + 1.01(61 + sin(0.8601)) + 1.01(03 + sin(0.863)) — 0.015 0.043 | 0.041 | 0.318
Loy | Target 1.8605 + 0.66; — (1.661)/tan(0.561) + 3.6sin(0.562) + 3.2
T Evolved 1.805 4 0.5860; 4 0.3107 — 0.065i1(0.43603%) + 02 + 1.035in,(0.7902) 0.031 | 0.034 | 0.165
Target 0.601 + 0.602 + 0.6035 — (1.601)/tan(0.591) — (1.66’2)/tan(0.592) —
L, o | 4 (1.663)/tan(0.505) + 9.6
0.5861 + 0.580 + 0.5503 + 0.3267 + 0.3265 + 0.3165 — 0.13sin(0.3267) —
Evolved 0.13si1(0.3262) + 0.018 0.059 | 0.066 | 0.345
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Fig. 6.

Comparison of RMS errors between symbolic and polynomial regressions for the 27 combinations of Landsmeer’s models with no noise and with £5%

noise added to joint angles and 4-1% to tendon excursions. While cubic and quartic regressions have lower errors than symbolic regression for data with no noise,
when experimentally realistic noise is added, symbolic regression has much lower errors than these polynomial regressions. The box plot on the right shows
the ratio of RMS errors of symbolic to quadratic regression (best among polynomial regressions) for the data with noise. The median ratio is close to one for
cross-validation testing demonstrating that symbolic and quadratic regressions are equivalent with respect to RMS errors in this case whereas for extrapolation
testing, the median ratio is 0.92 indicating that on average, symbolic regression has 8% lower RMS errors than quadratic regression across the 27 models.

expressions. In addition, this demonstrates how the analytical
expressions for tendon excursions or moment arm variations
generated by symbolic regression may contain insight on the ge-
ometry of the tendon routing—and therefore capture the physics
of the system.

Unlike conventional optimization that is based on a “single
line search” and finds the global optimum or one of the local
optima of the fitness landscape, Eureqa converges on a family of

optimal solutions that lie on the Pareto front of the fitness error-
complexity plane. The user is then free to choose the solution
they want based on the features of the analytical expressions
most important to them such as 1) observation and knowledge
of the system being modeled, 2) fitness error alone, 3) cross-
validation or extrapolation error (as we chose to in this paper),
etc. Polynomial regressions or other functional regressions do
not offer this choice. Currently, selection of suitable functions is
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Comparison of RMS errors and number of parameters across symbolic and polynomial regression models for experimental data from the three tendons

of the planar robotic system and synthetic data generated using the 27 combinations of Landsmeers models with no noise and with experimentally realistic noise
added. In all cases, symbolic regression models have fewer parameters and lower RMS errors compared to the polynomial regressions.

mostly driven by the properties and pitfalls of polynomial fitting
as opposed to giving the freedom to the investigator to choose
functions for scientific or computational reasons.

Until recently, measuring tendon excursions accurately was
only possible in cadaveric specimens. But with advances in the
field of magnetic resonance and ultrasound imaging, it has be-
come possible to record moment arms in live subjects [32]-[34].
While in this paper, we have demonstrated the use of symbolic
regression to extract analytical functions mapping joint angles to
tendon excursions assuming direct measurements in cadaveric
systems, it will soon be possible to measure tendon excursions
and moment arms noninvasively in vivo—and our techniques
will be applicable to those measurements. This would enable
estimation of accurate, subject-specific models of moment arm
variation that are critical, for example, in the cases of deformity,
surgical modification, injury, or the development of functional
electrical stimulation controllers [35] and for patient-specific
diagnosis and rehabilitation.

The analytical functions obtained are selected to be compu-
tationally efficient for iterative or real-time use, but they can be
costly to find offline. One of the major limitations of symbolic
regression is computational cost, since it uses genetic program-
ming that involves searching a high-dimensional space for opti-
mal or near-optimal solutions. Eureqa was designed to execute
on a cluster of parallel computers by automatically paralleliz-

ing the search process, where the computation time is reduced
linearly with the number of processors available. Also, while
it might be computationally expensive to infer these analyti-
cal expressions, it needs to be done only once. The resulting
analytical expressions can then be used as part of the model
in the research of interest. In fact, once inferred, the computa-
tional cost of implementing the expressions is lower given that
parsimony (and, therefore, computational efficiency) is an ex-
plicit fitness criterion. Eureqa’s graphical user interface allows
the user to continuously monitor the fitness error as well as
the family of optimal analytical functions throughout a search.
The user can pause and continue, or terminate the search at
any point. In addition, the user has the flexibility to select the
set of mathematical operations that are to be the possible op-
tions defining the space of feasible functions to be generated.
While choosing more operations would make the search more
generic and thus could increase computational cost for function
inference, restricting the solution space too much can also lead
to inappropriate or inaccurate analytical functions.> Hence an
informed choice needs to be made based on knowledge of the

3In the worst case scenario, the search time would grow exponentially with an
increase in the number of mathematical building blocks. But, in practice, adding
appropriate building blocks that are a good fit to the data would accelerate the
search.
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system being modeled, the purpose of the analytical functions,
and availability of computational power.

State-of-the-art biomechanical modeling involves assuming
a fixed topology/form for the system being modeled and es-
timating the parameter values from experimental data. In our
previous work [25], we have demonstrated that modeling of
certain complex biomechanical systems requires simultaneous
inference of both model topology and parameter values directly
from experimental data. Here, as a continuation of that work,
we have demonstrated that the conventional method of assum-
ing a fixed polynomial form and regressing coefficients from
experimental data, suffers from certain drawbacks that can be
overcome by using symbolic regression that simultaneously in-
fers both the form and the parameter values of the analytical
expressions directly from experimental data.

We have demonstrated the advantages of using this method in
a tendon-driven robotic system. We are currently applying it to
infer analytical expressions modeling tendon excursions in the
human fingers from cadaveric data.
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