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INTRODUCTION 

Understanding how the CNS orchestrates the ac-
tivity in hundreds of muscles to successfully control 
the human body is a long-standing problem that has 
generated both scientific and clinical interest [1-3]. 
The issue is how the CNS selects a muscle coordina-
tion pattern from an infinite set of options [4], and 
how it plausibly implements this pattern in neural 
connectivity.  

Research on this problem has been dominated by 
the idea that the CNS can not activate a large number 
of muscles to perform functional tasks before it 
combines the muscles into a small number of groups, 
referred to as muscle synergies [5-7]. However, my 
research has shown that index finger muscles are not 
controlled using synergies [8], that certain synergies 
are biomechanically mandated rather than neurally-
chosen [9], and that experimentally-observed muscle 
synergies during movement and force production 
may reflect a mixture of biomechanical and neural 
constraints [10].  

Here, I propose that complexity in neural struc-
tures for multi-muscle control, including the genesis 
of muscle synergies, results not from a principle of 
reducing the number of degrees-of-freedom to be 
controlled, but from the biomechanical need to rep-
resent posture-dependent changes in muscle action 
across multiple joints. I prove this by showing that 
simple neural connectivity schemes without muscle 
synergies can readily learn to control large numbers 
of muscles, but that the resulting networks are not 
effective at controlling the limb if the posture 
changes.     
 
METHODS 
Our biomechanical analysis of neural connectivity 
relies on understanding the transformation of muscle 
force to endpoint force, and how this transformation 
changes with posture. We used cadaveric hands to 
directly measure the transformation from muscle 
force to index fingertip force (the action matrix), as 

in prior work [11], for all 7 tendons controlling the 
index finger (FDS, FDP, EI, EDC, FDI, FPI, LUM) 
(Figure 1A). We measured the action matrix for a 
variety of index finger postures in two specimens.  
 To ensure our results generalized to systems 
with many more muscles, we assembled a sagittal 
plane model of the human leg using anthropometric 
measures [12] and moment arms for 44 muscles [13] 
(Figure 1B). A posture-dependent action matrix was 
calculated using standard techniques [14]. 
 We inferred the most basic network necessary to 
transform neural representations of desired endpoint 
force into the muscle forces necessary to achieve the 
desired endpoint forces. This network contains 
weighted connections between the components of 
the desired endpoint force and the motor pool of 
each muscle controlling the limb.  The appropriate 
weights were learned using a simple gradient descent 
algorithm attempting to minimize the combined cost 
of making errors in endpoint forces and using too 
much energy, defined to be the sum of squared mus-
cle forces. We evaluated how well a network gener-
alized by learning the connection strengths at one 
posture, and attempting to have the network generate 
the correct endpoint forces at a different posture. 
This analysis was performed for both the cadaveric 
measurements and the leg model. 
 
RESULTS AND DISCUSSION 
 We found that, not unexpectedly, networks with 
random (naive) connections generated large errors 
between the desired and actual endpoint force (Fig-
ure 1C). However, we found, surprisingly, that a 
simple learning algorithm could mature the connec-
tion strengths in this network to correctly active the 
muscles to produce the desired endpoint forces with 
minimum muscle effort (Figure 1D). Unfortunately, 
the mature network for one posture could not pro-
duce the desired endpoint forces in a different pos-
ture (Figure 1E). We observed this lack of generali-
zation across posture for both the leg model, and the 



 

 

cadaveric measurements, where errors in output 
force could be 125% or more in both specimens 
(Figure 1F).  
 Our current understanding of the neural connec-
tivity that drives multi-muscle control is dominated 
by the notion that the brain must simplify the highly-
redundant musculature into task-relevant groups [7]. 
This is believed to be accomplished by functional 
units called muscle synergies, perhaps encoded in 
the spinal cord [15], that act as an intermediary be-
tween task goals and muscle activations. Here we 
have shown that the intermediary of muscle syner-
gies is not necessary from the standpoint of simplifi-
cation - desired endpoint forces can be mapped di-
rectly to the force required in each of a large number 

of muscles, and the appropriate connection strengths 
in this mapping can be learned with simple rules.  
 These results open a new direction in multi-
muscle control research, because muscle synergies, 
as intermediaries between task-level and muscle-
level commands, could be re-interpreted as the nec-
essary elements to perform posture-dependent 
switching. The results of this study can be used to 
formulate new hypotheses about the nature of multi-
muscle control networks, motivated by an under-
standing what neural structures are biomechanically 
mandated.    
 
ACKNOWLEDGEMENTS 
We would like to thank hand surgeons V.R. Hentz, C. 
Leclercq, I. Fassola, and N. Lightdale for their assistance 
preparing the cadaveric specimens. Thanks to F.J. Valero-
Cuevas and J.M. Inouye for helpful discussions. This 
work was supported by NSF grant EFRI-COPN 0836042 
and NIH grant AR050520 to F.J. Valero-Cuevas.  

 
REFERENCES 

 
1. Buchanan, T.S., et al., Journal of Neurophysiology, 
1986. 56(5): p. 1225-1241. 
2. Cheung, V.C.K., et al., Proceedings of the National 
Academy of Sciences, 2009. 106(46): p. 19563. 
3. Dewald, J.P., et al., Brain, 1995. 118 ( Pt 2): p. 495-
510. 
4. Bernstein, N.A., The Co-ordination and Regulation of 
Movements. 1967, Oxford: Pergamon Press. 
5. Ting, L.H. and J.M. Macpherson, Journal of Neuro-
physiology, 2005. 93(1): p. 609-613. 
6. d'Avella, A., P. Saltiel, and E. Bizzi, Nature Neurosci-
ence, 2003. 6(3): p. 300-308. 
7. Tresch, M.C. and A. Jarc, Current Opinion in Neurobi-
ology, 2009. 19(6): p. 601-607. 
8. Kutch, J.J., et al., J Neurophysiol, 2008. 100(5): p. 
2455-71. 
9. Kutch, J.J. and F.J. Valero-Cuevas, Journal of Biome-
chanics, In Press, 2011. 
10. Kutch, J.J. and F.J. Valero-Cuevas, In review, 2011. 
11. Valero-Cuevas, F.J., J.D. Towles, and V.R. Hentz, J 
Biomech, 2000. 33(12): p. 1601-9. 
12. Winter, D.A., Biomechanics and motor control of 
human movement. 2009: Wiley. 
13. Arnold, E.M., et al., Annals of Biomedical Engineer-
ing, 2010: p. 1-11. 
14. Valero-Cuevas, F.J., Progress in Motor Control, 2005: 
p. 619-633. 
15. Saltiel, P., et al., Journal of Neurophysiology, 2001. 
85(2): p. 605-619. 
 

 
Figure 1. Muscles can be activated by simple net-
works, but these networks do not generalize across 
posture. Please see text. 


