Accepted Manuscript Long Term Functional Outcomes After Early Childhood Pollicization Nina Lightdale-Miric , M.D., Nicole M. Mueske , M.S., Emily L. Lawrence , M.S., Jennifer Loiselle , O.T., Jamie Berggren , O.T., Sudarshan Dayanidhi , Ph.D., Milan Stevanovic , M.D., Francisco J. Valero-Cuevas , Ph.D., Tishya A.L. Wren , Ph.D. Journal of Hand Therapy Bit of the Control PII: S0894-1130(14)00169-0 DOI: 10.1016/j.jht.2014.11.003 Reference: HANTHE 881 To appear in: Journal of Hand Therapy Received Date: 26 August 2014 Revised Date: 5 November 2014 Accepted Date: 11 November 2014 Please cite this article as: Lightdale-Miric N, Mueske NM, Lawrence EL, Loiselle J, Berggren J, Dayanidhi S, Stevanovic M, Valero-Cuevas FJ, Wren TAL, Long Term Functional Outcomes After Early Childhood Pollicization, *Journal of Hand Therapy* (2015), doi: 10.1016/j.jht.2014.11.003. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ## **Long Term Functional Outcomes After Early Childhood Pollicization** Nina Lightdale-Miric, M.D.^{1,2}, Nicole M. Mueske, M.S.¹, Emily L. Lawrence, M.S.³, Jennifer Loiselle, O.T.⁴, Jamie Berggren, O.T.⁴, Sudarshan Dayanidhi, Ph.D.⁵, Milan Stevanovic, M.D.¹, Francisco J. Valero-Cuevas, Ph.D.^{3,6}, Tishya A. L. Wren, Ph.D.^{1,2,3} ¹Children's Orthopaedic Center, Children's Hospital Los Angeles, Los Angeles, CA, USA ²Orthopaedic Surgery Department, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA ³Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA ⁴Division of Rehabilitation Medicine, Children's Hospital Los Angeles, Los Angeles, CA ⁵Muscle Physiology Laboratory, Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA ⁶Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA ## Corresponding Author: Tishya A. L. Wren, Ph.D. Children's Hospital Los Angeles 4650 Sunset Blvd., #69 Los Angeles, CA 90027 Phone: (323) 361-4120 Fax: (323) 361-1310 Email: twren@chla.usc.edu Abstract **Study Design:** Retrospective Cohort **Introduction:** Pollicization creates a thumb from another finger to treat hypoplasia/aplasia. Important outcomes include strength, function, dexterity, and quality of life. Purpose of the Study: To evaluate mid- to long-term outcomes and examine predictors of outcome after early childhood pollicization. **Methods:** 8 children who underwent 10 pollicizations (age at surgery ≤ 5 years) were evaluated 3 to 15 years after surgery. Anthropometrics, range of motion, and basic medical history were obtained. Participants completed an upper extremity questionnaire (PODCI) and functional tests including grip and pinch strength, Box and Blocks, 9-hole pegboard, and strength-dexterity (S- D) tests. **Results:** Almost all pollicized hands had poor strength and performed poorly on the traditional functional tests. Six of 10 pollicized hands had normal dexterity scores but were less stable in maintaining a steady-state force. Predictors of poorer outcomes included older age at surgery, reduced metacarpophalangeal and interphalangeal range of motion, and radial absence. **Discussion:** Early childhood pollicization resulted in poor strength and overall function, but normal dexterity was often achieved using altered control strategies. **Conclusions:** Most children will likely obtain adequate dexterity despite weakness after pollicization, but older children and those with the most severe involvement may have poorer outcomes. Key Words: pollicization; dexterity; thumb; surgical outcome; functional outcome **Level of Evidence:** IV # 1. Introduction 1 | 2 | Thumb hypoplasia or aplasia accounts for up to 16% of all congenital hand deformities | |----|---| | 3 | and is bilateral in 12-63% of patients ¹ . Absence of the thumb results in a loss of up to 40% of | | 4 | hand function ² . Surgical options to reconstruct the thumb include toe to thumb transfer, | | 5 | distraction lengthening, and pollicization ³ . Pollicization is the process of creating a thumb from | | 6 | the next most radial finger. It involves surgical translocation of the radial most digit into a | | 7 | position of thumb function. Nerves and arteries are rotated on a pedicle, and muscle and tendon | | 8 | transfers are performed to create a "new" thumb that can perform the functions of flexion, | | 9 | extension, abduction, adduction, and opposition. Pollicization changes the anatomy of the hand, | | 10 | but the brain must also adapt to accommodate and control the new structural setup. Brain | | 11 | imaging studies have shown that neuroplasticity occurs after thumb reconstruction with | | 12 | increased brain activity in regions that control the thumb ⁴ . | | | | | 13 | Most assessments of hand function involve functional testing that evaluates the ability to | | 14 | perform specific tasks, the time it takes to perform those tasks, or the quality of movement | | 15 | during task performance. Many established functional measures are available such as Box and | | 16 | Blocks ⁵ , Jebsen Taylor ⁶ , peg board ⁷ , Functional Dexterity Test (FDT) ⁸ , Assisting Hand | | 17 | Assessment (AHA) ⁹ , ABILHAND-Kids ¹⁰ , Melbourne Assessment (MA2) ¹¹ , and Shriners | | 18 | Hospitals Upper Extremity Evaluation (SHUEE) ¹² . These tests generally examine whole arm | | 19 | function, assessing a combination of strength, coordination, and gross and fine motor control. To | | 20 | focus specifically on manual dexterity and neural control for fingertip force magnitude and | | 21 | direction, the Strength-Dexterity (S-D) test can be used ¹³⁻¹⁵ . Subjective assessments have also | | 22 | been performed using questionnaires such as the Michigan Hand Outcomes Questionnaire | | 23 | (MHQ) ¹⁶ , Canadian Occupational Performance Measure (COPM) ¹⁷ , Disability of Arm, Shoulder, | | 24 | and Hand (DASH) ¹⁸ , Pediatric Outcomes Data Collection Instrument (PODCI) ¹⁹ , and Short | |----|---| | 25 | Form 36 (SF-36) ²⁰ . | Existing studies of outcomes after early childhood finger pollicization for thumb hypoplasia have demonstrated decreased strength and performance on functional tests compared to age-matched norms and non-operated contralateral hands ²¹⁻²⁵. Despite their functional limitations, patients and parents tend to rate their satisfaction and quality of life unexpectedly high ²⁶⁻²⁹. Less is known about the recovery and development of neuromuscular control of fingertip forces after pollicization. Neural and muscular contributors to dexterous manipulation are particularly plastic during development and improve over an extended period ³⁰⁻³³, and thumb absence and reconstruction are likely to alter the brain via this process of neuroplasticity. ## 1.1 Purpose of the Study The purpose of this study was to evaluate mid- to long-term outcomes after early childhood pollicization using a combination of functional tests and questionnaires, as well as the S-D test and to examine potential predictors of surgical outcomes. This evaluation may help to guide surgical intervention and rehabilitation strategies to maximize musculoskeletal and neural control capabilities in this population. #### 2. Materials and Methods This study examined 8 children who had undergone pollicization surgery to address thumb hypoplasia or aplasia (10 pollicized hands, Blauth V) at a young age (≤ 5 years) (Table 1). Two children had bilateral involvement; all but 2 children were diagnosed with VACTERL Association³⁴; 1 child with VACTERL and bilateral involvement also had Klippel-Feil syndrome³⁵. Pollicization was performed between 1994 and 2010 by a single surgeon at a single hospital using the modified Buck-Gramcko technique ³⁶. Post-operative care consisted of 6 weeks of casting, 6 months of night splinting, and 6 months of a home rehabilitation program with or without occupational therapy services. The time since pollicization ranged from 2.9 to 15.7 years (mean ± standard deviation, 8.2 ± 4.1 years). The average age at testing was 10.6 ± 4.5 years (range 4-17) (Table 1). Written assent and consent were obtained from the participants and their parents or legal guardians following IRB-approved protocols. ## 2.1 Surgical Technique A modified Buck-Gramcko surgical technique was utilized (Figure 1). Manual compression was used to exsanguinate the extremity and the tourniquet was elevated to 200mmHg. The dorsal skin was incised primarily to identify the critical dorsal veins, and then the palmar incision was completed to identify the radial and ulnar neurovascular bundles to the index and middle fingers. Using 8-0 nylon, the radial digital artery to the middle finger was divided just distal to the common branching. The common nerve was microdissected in line with the fascicles to the level of the carpal tunnel. The A1 pulley was opened; next the middle finger was spread away from the index finger and the transverse intermetacarpal ligament was released. The tendons of the first dorsal and palmar interossei muscles were harvested for transfer. The metacarpophalangeal (MP) head was cut at the epiphysis, and the shaft of the metacarpal was removed. The epiphysis was sewn into the carpal insertion in 45-degrees of abduction and 120-degrees of pronation. The extensor
tendons were separated and shortened with the IP joint in full extension. The extensor digitorum communis (EDC) index was inserted as the abductor, and the extensor indicis proprious (EIP) became the new extensor pollicis longus (EPL). The tendons of the first dorsal and palmar interossei were transferred to the ulnar and radial lateral bands at the level of the new thumb proximal phalanx. The skin was closed transposing the dorsal flaps laterally and maintaining the position of the thumb in relation to the rest of the hand. ## 2.2 Rehabilitation Following surgery, the child was placed in a cast for 4-6 weeks. After cast removal, a forearm-based removable night splint was fabricated placing the new thumb in abduction with the IP joint extended, which the child was asked to wear for an additional 6 months. The night splint was intended to maximize the 1st web space. If necessary, tape or a soft splint was used to maintain the new thumb in an abducted position during the day. A thermoplastic day splint was generally not recommended as this does not give the child the opportunity to actively develop the musculature of the new thumb. Additionally, the family was educated in scar management, edema control and ways to promote active movement of the new thumb. Post-operative therapy primarily consisted of family training to instruct the child's caregiver(s) in thumb passive and active range of motion (ROM) exercises followed by age-appropriate activities to facilitate the use of the pollicized digit as a thumb. Buddy taping all fingers together was a helpful technique to isolate the thumb for more active movement during grasp. Fine motor activities generally began with repetitive radial digital grasp and release of larger objects, moving to static pinches of smaller objects. With more advanced prehensile skills, such as rotation and in-hand manipulation, it was common and acceptable to see compensatory patterns. Four weeks post-surgery each child underwent a standard evaluation. Depending on the child's progress, regular occupational therapy sessions and/or a home exercise program was recommended. Some individuals received occupational therapy 1-2x per week for 6 months to develop these skills, while most children required only a home exercise program with periodic monitoring to ensure continued progress. If hand skills were not progressing as anticipated, the child was scheduled for additional therapy as needed. 2.3 History, Anthropometric Measures, Patient Classification, and Questionnaire Demographic and anthropometric measures were recorded, and a retrospective chart and x-ray review provided surgical history and Blauth ³⁷ and Bayne ³⁸ classifications. The Blauth classification updated by Manske and McCarroll grades the severity of thumb hypoplasia based on the stability of the carpometacarpal thumb joint as well as the musculature present for thumb opposition ^{25,39}. The Bayne and Klug radial longitudinal deficiency (RLD) classification updated by James incorporates the stability and presence of the skeletal and muscular radial column of the forearm ⁴⁰. All hands had a stable metacarpophalangeal (MP) joint. Radial stability was not measured. The participant's self-initiated ability to handle objects in daily activities was graded using the Manual Ability Classification System (MACS) 41 . Total Active Motion (TAM) was calculated based on the extension and flexion range of motion of the proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints: TAM = ([PIP Flexion + DIP Flexion] – [Extension Deficit of DIP + Extension Deficit of PIP]) / 175 × 100. TAM was graded as excellent (85- 100%), good (70-84%), fair (50-69%), or poor (0-49%) following Strickland's original classification system^{42,43}. The Upper Extremity domain of the parent Pediatric Outcomes Data Collection Instrument (PODCI) was administered and standardized scores and Z-scores were calculated following the instrument's standard instructions and normative data ¹⁹. ## 2.4 Strength Pinch and grip strength were measured using standard pinch (Baseline Hydraulic Pinch, FEI, White Plains, New York) and grip dynamometers (Hydraulic Hand Dynamometer, Preston, Jackson, MI). Three trials were performed for each motion (grip, lateral pinch, and tripod pinch), and the mean force from the three trials was used for analysis. Pinch strength Z-scores were calculated using normative data from Mathiowetz et al. for ages 6-19 years⁴⁴ and Lee-Valkov et al. for ages 3-5 years ⁴⁵. Grip strength Z-scores were calculated using normative data from Hager-Ross et al. ⁴⁶. Z-scores indicate the number of standard deviations an individual's measurement is above or below the mean of normal. 95% of non-impaired individuals are expected to have Z-scores between -2 and +2 (values within 2 standard deviations of the mean of the normative group). ## 2.5 Functional Tests Functional testing was performed using the Box and Blocks⁵ and 9-hole peg tests⁷. The Box and Blocks test is an assessment of manual dexterity. It consists of a box with a partition directly in the center, with 150 blocks placed on one side of the box. The participant is given 60 seconds in which to transport one block at a time over the partition, releasing it to the opposite side. The number of blocks transported to the other side is counted. The test is then repeated with the non-dominant hand ⁴⁴. Box and Blocks Z-scores were calculated using normative data for the left or non-dominant hand from Mathiowetz et al. for children ages 6-19 years⁵ and Jongbloed-Pereboom et al. for children ages 3-5 years ⁴⁷. The 9-hole peg test is a standardized and well-established measurement of finger dexterity. The participant is asked to take pegs from a container, one by one, and place them into a pegboard as quickly as possible. The participant must then remove the pegs from the holes, one by one, and replace them back into the container. Scores are based on the time taken to complete the test. 9-hole peg test Z-scores were calculated using normative data for the non-dominant hand from Poole et al. ⁷. ## 2.6 Dexterity (S-D Test) The S-D test assesses the dynamic control of fingertip forces needed for dexterous manipulation. A detailed description of how the S-D test was conducted is provided in Lightdale-Miric et al. ⁴⁸; only a brief description is provided here. Essentially, the participant partially compresses a slender, compliant instrumented spring as far as possible between the thumb and first finger and then maintains that maximal level of compression for at least 3 seconds (steady state) (Figure 2). The compression force, which is proportional to the distance the spring is compressed, quantifies the maximal ability of the subject to manipulate an unstable object at very low force magnitudes by dynamically controlling the magnitude and direction of fingertip forces. Four different springs of equal stiffness (0.86 N/cm) and diameter (0.9 cm) but varying lengths (2.9 to 4.0 cm) were used to accommodate hands with different sizes and abilities ³². Each participant used the shortest spring that he or she was not able to fully compress. S-D Z-scores were calculated based on the mean steady state force over 3 maximal trials ³². Additional dynamical analysis was performed on the hands that used the longest spring (5 hands). Phase portraits of force vs. force velocity (first derivative) vs. force acceleration (second derivative) were produced and characterized using mean Euclidean distance (ED), which represents the mean distance of the cloud of points from the origin per unit time. Greater Euclidean distance indicates larger dynamical dispersion and suggests weaker corrective actions by the neuromuscular controller enforcing the sustained compression ^{32,49}. The compression dynamics were also characterized in terms of the root mean square (RMS) of the compression force, which indicates the level of deviation from maintaining a completely stable force. The dynamical results were compared to previously published control data from 12 children and 60 adults ⁴⁸. ## 2.7 Statistical Analysis Linear regression (for continuous variables) and Mann-Whitney rank sum tests (for binary variables) were used to evaluate the relationship between the outcome measures and possible predictors of outcome. The predictors examined included age at surgery, time since pollicization, angle of first web, ratio of thumb to next finger length, MP flexion, IP flexion, MP extension deficit, IP extension deficit, touch pad, and radial longitudinal deficiency. Euclidean distance from the dynamical analysis was also compared between pollicized and control hands using Mann-Whitney rank sum tests. Statistical analyses were performed in Stata (version 12.1, StataCorp LP, College Station TX). ## **3. Results** ## *3.1 Strength* | Strength was below normal in almost all pollicized hands (Figure 3). The average Z- | |---| | scores were below -3 for all three types of strength tested (grip, lateral pinch, and tripod pinch) | | (Table 2). Only two hands had grip strength in the normal range (Z-scores: -1.4 and -1.3), and | | only one had tripod pinch strength in the normal range (Z-score: -0.8). All three of these hands | | were from different participants. Although the strength of these three hands fell in the normal | | range, it remained below average. All hands scored below the normal range in lateral pinch | | strength. | | | #### 3.2 Functional Tests Similarly, almost all pollicized hands scored below normal on the traditional functional tests. Pollicized hands scored particularly poorly on the pegboard test, where all hands scored below the normal range with very low scores (Figure 3, Table 2). Only one hand performed in the normal range for the Box and Blocks test (Z-score: -1.1). This hand also scored in the normal range for grip strength. Total Active
Motion was graded as good for 1 hand, fair for 4 hands, and poor for 5 hands. #### 3.3 Dexterity In contrast, 6/10 pollicized hands had normal dexterity scores (Z-scores: -1.3 to 1.0). Four pollicized hands had S-D scores at least 2.4 standard deviations below normal (Z-scores: -2.4, -3.0, -3.0, -3.1). These four hands with poor dexterity came from different individuals, one of whom had bilateral pollicization with good outcome on the other side. Although many hands achieved a normal magnitude of compression force, interestingly, the manner in which that force was achieved differed from normal. Pollicized hands were less steady in maintaining the steady-state force, with a more erratic (less smooth) force trajectory and greater dispersion in force, velocity, and acceleration. This is quantified by a significant difference in the mean Euclidean distance (ED) which characterizes the phase plots (p = 0.047), where a greater ED in the pollicized hands (mean \pm standard deviation, 0.47 ± 0.12) compared with control hands (0.34 ± 0.16) indicates less refined control over maintenance of the steady state force. In addition, the pollicized hands exhibited large variability in mean force velocity (rate of correction) for a given amount of error (RMS) ⁴⁸, suggesting large variability among individuals in the neural control mechanisms used. ## 3.4 PODCI Questionnaire On the upper extremity domain of the PODCI questionnaire, 6/8 patients representing 7/10 pollicized hands had scores in the normal range (Z-scores: -1.2 to -0.3). One unilaterally pollicized participant had a PODCI Z-score of -3.3, and one bilaterally pollicized participant had a Z-score of -9.3. ## 3.5 Predictors of Outcome Grip and pinch strength tended to decrease when surgery was done at an older age (Table 3, Figure 4). PODCI scores also tended to decrease with older age at surgery because the two participants with low PODCI Z-scores underwent pollicization at older ages (2.5, 3.1, and 5.0 years; one participant had two hands pollicized at different times). In contrast, the functional outcomes (Box and Blocks, pegboard, S-D) showed no relationship to age at surgery, and there was no significant relationship between time since pollicization and any of the outcome measures. | 213 | Outcomes were not related to the angle of first web or the ratio of thumb to finger length. | |-----------------------------------|---| | 214 | Grip and tripod pinch strength tended to increase with greater MP flexion range of motion | | 215 | (ROM) and higher TAM score, and tripod pinch strength also increased with greater IP flexion | | 216 | ROM. Increased MP extension deficit was associated with decreased grip and lateral pinch | | 217 | strength and lower Box and Blocks and pegboard scores. Increased IP extension deficit also | | 218 | showed a trend towards lower grip and lateral pinch strength, as well as lower PODCI scores, but | | 219 | not lower functional test scores. Tripod pinch strength was higher in the 3 hands with positive | | 220 | touch pad (Z-score mean \pm standard deviation: -2.6 \pm 0.9) compared with the 7 hands not able to | | 221 | touch pad (-3.8 \pm 0.2) (p = 0.05), but touch pad ability did not affect grip or lateral pinch strength | | 222 | (p > 0.19). Hands with positive touch pad also scored higher on the Box and Blocks (-2.8 \pm 1.1 | | 223 | vs5.0 \pm 1.1, p = 0.03) and pegboard (-6.5 \pm 3.3 vs19.5 \pm 17.4, p = 0.09) tests, but not on the | | 224 | S-D test $(p = 0.31)$. | | 225 | Grip strength (-4.7 \pm 0.1 vs2.7 \pm 1.2, p = 0.08), pegboard scores (-21.2 \pm 15.8 vs5.8 \pm | | 226 | 2.4, p = 0.02), and dexterity (-2.8 \pm 0.3 vs0.8 \pm 1.4, p = 0.09) tended to be lower in the 3 hands | | 227 | with an absent radius (Bayne IV). Three of 4 hands with dexterity measures below the normal | | 228 | range had an absent radius, compared with $0/6$ hands with normal dexterity (p = 0.03). A MACS | | 229 | classification of I (handles objects easily and successfully) was associated with higher pegboard | | 230 | test Z-scores (-3.8 \pm 1.1 vs13.3 \pm 11.8, p = 0.01), and all hands with below-normal dexterity | | 231 | had MACS classifications above level I. | | | | | 232 | Among the two participants who had undergone bilateral pollicization, strength and | | | | | 233 | functional test scores tended to be slightly better, but still below normal, for the dominant hand. | | 233234 | functional test scores tended to be slightly better, but still below normal, for the dominant hand. Both dominant pollicized hands had dexterity Z-scores in the normal range (-0.3 and -1.0 for | | 35 | Contra | latoral | Hands | |----|--------|---------|-------------------------| | | Comra | ıaıeraı | $\boldsymbol{\Pi}$ anas | | Most non-pollicized contralateral hands had strength, function, and dexterity scores | |---| | within the normal range. Of 5 non-pollicized contralateral hands (data from one contralateral | | hand was missing), one had below-normal lateral ($Z = -2.7$) and tripod ($Z = -2.3$) pinch strength | | with normal grip strength (Z = -0.2) and another had below-normal Box and Blocks (Z = -2.0) | | and pegboard ($Z = -4.1$) scores (Table 2). Yet another participant had a PODCI upper extremity | | score below the normal range $(Z = -3.3)$. | ## 4. Discussion Hypoplastic or aplastic thumbs have been reconstructed via finger pollicization for almost 50 years ²⁶ yet there are few functional prognostic guidelines for the surgeons and rehabilitation therapists caring for these children. Understanding of the role of neural control and neuromuscular plasticity as well as anatomy and biomechanics of the new thumb after pollicization is important for maximizing functional gains in these children. This study not only examined strength and function but also quantified fingertip forces and examined the role of neuroplasticity up to 15 years after early childhood pollicization. ## 4.1 Strength and Function Outcomes after pollicization in children have been evaluated previously using timed tests such as the pegboard style Functional Dexterity Test (FDT) and Jebsen Hand Function Test (JHFT) ^{6,8} and parent/patient questionnaires about quality of life and the ability to complete tasks such holding a pencil, buttoning a shirt, texting, or playing video games. Netscher, et al. found positive outcomes in two JHFT subtests (page turning and checker stacking) and patient/parent assessments of thumb appearance and function in children with pollicized digits and no radial dysplasia, despite poor strength and performance on the pegboard test ²². De Kraker, et al. found high patient and parent satisfaction with surgical outcome despite diminished strength and range of motion in a series of 40 patients ages 5-25 years ²¹. The results of this study support the previous findings of diminished strength and overall function in pollicized hands. Using the S-D test, however, we were also able to quantify finger-to-thumb dexterity, which showed better outcomes than any of the more global tests of hand function. The S-D test correlates only moderately with traditional functional tests, suggesting that the S-D test captures a different domain of function^{48,50}. Our combined results indicate that although children with pollicization lack strength and/or gross motor coordination, they are able to stabilize an unstable object by dynamically controlling fingertip forces to a point. Therefore, these children are likely to achieve high levels of independence with self-care, writing, and small object manipulation. ## 4.2 Anatomy and Range of Motion Past studies have documented that the pre-surgical anatomy of the arm, hand and finger to be pollicized directly impacts post-surgical outcomes^{21,51}. Manske et al. demonstrated reduced range of motion and strength in the new thumb joints²⁵. The results of the current study showed that anthropomorphic measures as well as active and passive range of motion of the joints of the new thumb correlate with strength and function. De Kraker, et al. demonstrated that grip and pinch strength are significantly lower in severe RLD compared with mild RLD²¹. Our findings support these results through the relationship between Bayne and Klug classification and outcomes. In addition, increased severity often involved abnormalities of the radial most finger. If the radial most finger has reduced pre-operative range of motion, joint contracture, or absence of musculature, outcomes after pollicization may be compromised. ## 4.3 Non-Pollicized Hands The non-pollicized contralateral hands of unilaterally pollicized children in our study had moderately reduced strength but normal S-D scores and only slightly reduced performance on the Box and Blocks and pegboard tests. Previous studies have reported strength and functional deficiencies in the "normal" hands of children with unilateral thumb hypoplasia/aplasia compared with the dominant hand of children without thumb deformity^{22,25}. Our results suggest that despite reduced strength, dexterity is usually maintained in the contralateral hands of children with unilateral thumb hypoplasia/aplasia. ## 4.4 Dexterity A unique component of this study was the dynamic assessment of finger dexterity using the S-D test. The S-D test allows assessment of not only whether the task can be completed, but also how precisely it is performed, providing insight regarding the underlying neural control strategies employed during low-force dexterous manipulation. The S-D test evaluates continuous dynamical features during steady-state compression rather than offer
discrete measures of functional performance; thus providing more information about the neuromuscular system than standard clinical measures and further enhancing its utility as a performance metric. While most pollicized hands achieved magnitudes of compression force within the normal range during the S-D test (2-3N), they exhibited clear differences in compression dynamics compared with control hands, complementing results observed between control and clinical populations in older adulthood ⁵² and suggesting altered neural control mechanisms for the regulation and dynamical control of fingertip force directions in the reconstructed joint. Dynamical control of fingertip force direction underlies fine motor tasks and the deficits in compression dynamics may explain the patients' difficulties in performing standardized measures of upper extremity performance such as the 9-hole pegboard and Box and Blocks tests. We have previously demonstrated that dexterity as defined by the S-D test is closely correlated with measures of strength and whole-arm function, but also quantifies a different functional domain in typically developing children⁵⁰. In this study, we extend those results to highlight the deficits of neural control mechanisms in the presence of a clinical condition (e.g., pollicization). ## 4.5 Neuromuscular Plasticity 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 Although children exhibit the plasticity needed to adapt their control systems to control fingertip forces after pollicization⁵¹, differences in hand and thumb use may alter the development of neural control capabilities⁵² or cortical circuitry for hand control ^{14,53}. The neural control for hand function has a prolonged phase of development³⁰ featuring improvements in the ability to control fingertip force direction³² as well as improved connectivity in descending neural pathways³¹. In addition, there are periods of critical development during childhood when the corticospinal system is most plastic and amiable to change 54,55. Changes in cortical structure after pollicization⁵¹, nerve transfer^{56,57}, hand graft⁵⁸, and both thumb⁵⁹ and muscle reconstruction⁶⁰ have been previously reported. Motor cortex plasticity has also been reported in response to therapy after injury to the motor cortex ⁶¹⁻⁶³ and incomplete spinal cord injury ⁶⁴. Even children who sustain injury to the central nervous system (with intact anatomy), such as children with cerebral palsy, retain a certain level of neuroplasticity into adolescence, showing improvements in hand function after intense therapy^{65,66}. Children undergoing pollicization have an intact neural system, increasing the potential for cortical plasticity and motor relearning with appropriate hand use following pollicization⁵¹. This highlights the need for future studies evaluating the near- and long-term changes in cortical function after treatment and therapy. Neuroplasticity and adaptive ability are assumed to be greater when surgery is performed at a younger age, which is the current trend in treatment protocols^{51,67}. While we found no effect of age at surgery on functional testing outcomes, all patients in this study underwent surgery by the age of five years. Younger age at surgery did have a positive impact on strength, in contrast to the findings of Manske et al. who found no relationship between age at surgery and measures of strength²⁵. Larger studies including patients who underwent surgery at an older age are needed to fully understand the effect of age at surgery on plasticity. The results of the current study, together with past research and current knowledge on neuroplasticity and development, strongly suggest that pollicization is effective. However, therapeutic strategies could be further developed to take advantage of neuroplasticity to improve the dynamic control of fingertip forces. While the current clinical emphasis on developing strength and range of motion should continue, the development of dexterity at low force magnitudes is also important and should be promoted through neuroplasticity. #### 4.6 Limitations Limitations of this study include its small sample size and cross-sectional design. Larger longitudinal studies are needed to understand changes in function over time as rehabilitation progresses and as the children develop and mature. Different rehabilitation programs need to be evaluated to determine if they can improve a child's dexterity after pollicization. In addition, all surgeries in this study were performed by a single surgeon, which does not allow for comparison of different surgical techniques. Subtle differences in surgical technique such as final thumb length, metacarpal excision amount, the presence or transfer of intrinsic muscles, and extensor and flexor tendon shortening likely affect pollicization outcomes. Additional research is needed to evaluate the effects of different surgical and rehabilitation options on strength, function, and dexterity outcomes after pollicization. ## 5. Conclusions In conclusion, early childhood pollicization resulted in poor strength and functional test scores 3 to 15 years after surgery. However, most patients were able to achieve near-normal control over low-magnitude fingertip forces, which is a key component of dexterity and in-hand object manipulation. Older age at surgery and more severe deformity including radial absence are possible predictors of poorer outcome after pollicization. In addition, reduced MP and IP range of motion appear to be predictive of lower performance on functional tests. Control of fingertip forces despite low strength and gross motor ability seems to be achieved through neuromuscular plasticity which enables patients to perform the dexterous task after pollicization using altered control strategies. Parents and children undergoing pollicization may be counseled that they will likely obtain adequate dexterity despite weakness after surgery although older children and those with the most severe disease involvement may have poorer outcomes. Post-operative therapy protocols promoting neuroplasticity may result in increased life-long function for the child. | Acknow | ledgements | |--------|------------| | | Caponiton | | We would like to thank Cassie Nguyen for her assistance with data processing. This | |---| | publication was supported by SC CTSI (NIH/NCRR/NCATS) through Grant UL1TR000130. Its | | contents are solely the responsibility of the authors and do not necessarily represent the official | | views of the NIH. FVC, SD, and EL were partially supported by grants NIDRR H133E080024; | | NSF EFRI-COPN 0836042; NIH AR050520 and NIH AR052345 to FVC. | ## References 372 - Tay SC, Moran SL, Shin AY, Cooney WP, 3rd. The hypoplastic thumb. *The Journal of the American Academy of Orthopaedic Surgeons*. 2006;14(6):354-366. - Verdan C. The Reconstruction of the Thumb. Surgical Clinics of North America. 1968;48(5):103. - 377 3. Papadogeorgou EV, Soucacos PN. Treatment alternatives of congenital hand differences with thumb hypoplasia involvement. *Microsurgery*. 2008;28(2):121-130. - 379 4. Manduch M, Bezuhly M, Anastakis DJ, Crawley AP, Mikulis DJ. Serial fMRI of 380 adaptive changes in primary sensorimotor cortex following thumb reconstruction. 381 *Neurology*. 2002;59(8):1278-1281. - Mathiowetz V, Ferderman S, Wiemer D. Box and block test of manual dexterity: norms for 6-19 year olds. *Canadian Journal of Occupational Therapy*. 1985;52(5):241-246. - Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. *Arch Phys Med Rehabil*. 1969;50(6):311-319. - Poole JL, Burtner PA, Torres TA, et al. Measuring dexterity in children using the Nine-hole Peg Test. *Journal of hand therapy : official journal of the American Society of Hand Therapists*. 2005;18(3):348-351. - Aaron DH, Jansen CW. Development of the Functional Dexterity Test (FDT): construction, validity, reliability, and normative data. *Journal of hand therapy : official journal of the American Society of Hand Therapists*. 2003;16(1):12-21. - Krumlinde-Sundholm L, Holmefur M, Kottorp A, Eliasson AC. The Assisting Hand Assessment: current evidence of validity, reliability, and responsiveness to change. *Dev Med Child Neurol.* 2007;49(4):259-264. - 395 10. Arnould C, Penta M, Renders A, Thonnard JL. ABILHAND-Kids: A measure of manual ability in children with cerebral palsy. *Neurology*. 2004;63(6):1045-1052. - 397 11. Bourke-Taylor H. Melbourne Assessment of Unilateral Upper Limb Function: construct 398 validity and correlation with the Pediatric Evaluation of Disability Inventory. *Dev Med* 399 *Child Neurol.* 2003;45(2):92-96. - Davids JR, Peace LC, Wagner LV, Gidewall MA, Blackhurst DW, Roberson WM. Validation of the Shriners Hospital for Children Upper Extremity Evaluation (SHUEE) for Children with Hemiplegic Cerebral Palsy. J Bone Joint Surg Am. 2006;88(2):326-333. - 403 13. Valero-Cuevas FJ, Smaby N, Venkadesan M, Peterson M, Wright T. The strength-404 dexterity test as a measure of dynamic pinch performance. *J Biomech.* 2003;36(2):265-405 270. - 406 14. Mosier K, Lau C, Wang Y, Venkadesan M, Valero-Cuevas FJ. Controlling instabilities in 407 manipulation requires specific cortical-striatal-cerebellar networks. *J Neurophysiol*. 408 2011;105(3):1295-1305. - Venkadesan M, Guckenheimer J, Valero-Cuevas FJ. Manipulating the edge of instability. *J Biomech.* 2007;40(8):1653-1661. - Chung KC, Pillsbury MS, Walters MR, Hayward RA. Reliability and validity testing of the Michigan Hand Outcomes Questionnaire. *The Journal of hand surgery*. 1998;23(4):575-587. - Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. The Canadian occupational performance measure: an outcome measure for occupational therapy. *Can J Occup Ther*. 1990;57(2):82-87. -
Hudak PL, Amadio PC, Bombardier C. Development of an Upper Extremity Outcome Measure: The DASH (Disabilities of the Arm, Shoulder, and Head). *Am J Ind Med*. 1996;29(6):602-608. - Daltroy LH, Liang MH, Fossel AH, Goldberg MJ. The POSNA pediatric musculoskeletal functional health questionnaire: report on reliability, validity, and sensitivity to change. Pediatric Outcomes Instrument Development Group. Pediatric Orthopaedic Society of North America. *J Pediatr Orthop*. 1998;18(5):561-571. - Ware Jr JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. *Med Care*. 1992;30(6):473-483. - de Kraker M, Selles RW, van Vooren J, Stam HJ, Hovius SE. Outcome after pollicization: comparison of patients with mild and severe longitudinal radial deficiency. *Plastic and reconstructive surgery*. 2013;131(4):544e-551e. - Netscher DT, Aliu O, Sandvall BK, et al. Functional outcomes of children with index pollicizations for thumb deficiency. *The Journal of hand surgery*. 2013;38(2):250-257. - 431 23. Aliu O, Netscher DT, Staines KG, Thornby J, Armenta A. A 5-year interval evaluation of function after pollicization for congenital thumb aplasia using multiple outcome measures. *Plastic and reconstructive surgery*. 2008;122(1):198-205. - Staines KG, Majzoub R, Thornby J, Netscher DT. Functional Outcome for Children with Thumb Aplasia Undergoing Pollicization. *Plastic and reconstructive surgery*. 2005;116(5):1314-1323. - 437 25. Manske PR, McCarroll Jr. HR. Reconstruction of the congenitally deficient thumb. *Hand clinics*. 1992;8(1):177-196. - 439 26. Manske PR. Index pollicization for thumb deficiency. *Techniques in hand & upper extremity surgery*. 2010;14(1):22-32. - Taghinia AH, Upton J. Index finger pollicization. *The Journal of hand surgery*. 2011;36(2):333-339. - Vekris MD, Beris AE, Lykissas MG, Soucacos PN. Index finger pollicization in the treatment of congenitally deficient thumb. *Annals of plastic surgery*. 2011;66(2):137-142. - Sykes PJ, Chandraprakasam T, Percival NJ. Pollicisation of the index finger in congenital anomalies. A retrospective analysis. *Journal of hand surgery*. 1991;16(2):144-147. - 447 30. Armand J, Olivier E, Edgley SA, Lemon RN. Postnatal Development of Corticospinal 448 Projections from Motor Cortex to the Cervical Enlargement in the Macaque Monkey. *J. Neurosci.* 1997;17(1):251-266. - 450 31. Lebel C, Beaulieu C. Longitudinal Development of Human Brain Wiring Continues from Childhood into Adulthood. *The Journal of Neuroscience*. 2011;31(30):10937-10947. - 452 32. Dayanidhi S, Hedberg A, Valero-Cuevas FJ, Forssberg H. Developmental improvements 453 in dynamic control of fingertip forces last throughout childhood and into adolescence. *J Neurophysiol.* 2013;110(7):1583-1592. - 455 33. Dayanidhi S, Kutch JJ, Valero-Cuevas FJ. Decrease in muscle contraction time 456 complements neural maturation in the development of dynamic manipulation. *The* 457 *Journal of neuroscience: the official journal of the Society for Neuroscience.* 458 2013:33(38):15050-15055. - 459 34. Czeizel A, Ludanyi I. An aetiological study of the VACTERL-association. *Eur J Pediatr*. 460 1985;144:331-337. - 461 35. Tracy MR, Dormans JP, Kusumi K. Klippel-Feil Syndrome. *Clinical Orthopaedics and Related Research.* 2004;424:183-190. - 36. Buck-Gramcko D. Pollicization of the Index Finger. *The Journal of Bone and Joint Surgery*. 1971;53A(8):1605-1617. - 465 37. Blauth W. [The hypoplastic thumb]. Arch Orthop Unfallchir. 1967;62(3):225-246. - 466 38. Bayne LG, Klug MS. Long-term review of the surgical treatment of radial deficiencies. 467 *The Journal of hand surgery.* 1987;12(2):169-179. - 468 39. Blauth W. Indication and technics of the index-finger thumb in aplasia of the thumb. *Handchirurgie*. 1969;1(1):28-33. - 470 40. James MA, Green HD, McCarroll Jr. HR, Manske PR. The association of radial 471 deficiency with thumb hypoplasia. *Journal of Bone and Joint Surgery. American volume*. 472 2004;86-A(10):2196-2205. - 41. Eliasson AC, Krumlinde-Sundholm L, Rosblad B, et al. The Manual Ability 474 Classification System (MACS) for children with cerebral palsy: scale development and 475 evidence of validity and reliability. *Dev Med Child Neurol*. 2006;48(7):549-554. - 476 42. Strickland JW. Results of flexor tendon surgery in zone II. *Hand clinics*. 1985;1(1):167-477 179. - 478 43. O'Connell SJ, Moore MM, Strickland JW, Frazier GT, Dell PC. Results of Zone I and 479 Zone II Flexor Tendon Repairs in Children. *The Journal of hand surgery*. 1994;19A:48-480 52. - 481 44. Mathiowetz V, Wiemer DM, Federman SM. Grip and pinch strength: norms for 6- to 19-482 year-olds. *The American journal of occupational therapy : official publication of the* 483 *American Occupational Therapy Association.* 1986;40(10):705-711. - 484 45. Lee-Valkov PM, Aaron DH, Eladoumikdachi F, Thornby J, Netscher DT. Measuring 485 normal hand dexterity values in normal 3-, 4-, and 5-year-old children and their 486 relationship with grip and pinch strength. *Journal of hand therapy : official journal of the* 487 *American Society of Hand Therapists*. 2003;16(1):22-28. - 488 46. Hager-Ross C, Rosblad B. Norms for grip strength in children aged 4-16 years. *Acta Paediatr.* 2002;91(6):617-625. - Jongbloed-Pereboom M, Nijhuis-van der Sanden MWG, Steenbergen B. Norm Scores of the Box and Blocks Test for Children Ages 3-10 Years. *The American Journal of* Occupational Therapy. 2013;67(3):312-318. - 493 48. Lightdale-Miric N, Mueske NM, Dayanidhi S, et al. Quantitative assessment of dynamic control of fingertip forces after pollicization. *Gait and Posture*. In press. - 49. Dayanidhi S, Valero-Cuevas FJ. Dexterous Manipulation Is Poorer at Older Ages and Is 496 Dissociated From Decline of Hand Strength. *The Journals of Gerontology Series A:* 497 Biological Sciences and Medical Sciences. 2014. - Vollmer B, Holmstrom L, Forsman L, et al. Evidence of validity in a new method for measurement of dexterity in children and adolescents. *Dev Med Child Neurol*. 2010;52(10):948-954. - 501 51. Kozin SH. Pollicization: the concept, technical details, and outcome. *Clinics in orthopedic surgery*. 2012;4(1):18-35. - 503 52. Lawrence EL, Fassola I, Werner I, Leclercq C, Valero-Cuevas FJ. Quantification of dexterity as the dynamical regulation of instabilities: Comparisons across gender, age and disease. *Front Neurol.* 2014;5(53). - 506 53. Holmström L, de Manzano O, Vollmer B, et al. Dissociation of brain areas associated with force production and stabilization during manipulation of unstable objects. *Exp Brain Res.* 2011;215(3-4):359-367. - 509 54. Martin JH. The corticospinal system: from development to motor control. *Neuroscientist*. 2005;11(2):161-173. - 511 55. Martin JH, Friel KM, I. S, Chakrabarty S. Activity- and use-dependent plasticity of the developing corticospinal system. *Neurosci Biobehav Rev.* 2007;31(8):1125-1132. - 513 56. Merzenich MM, Jenkins WM. Reorganization of cortical representations of the hand following alterations of skin inputs induced by nerve injury, skin island transfers, and experience. *Journal of hand therapy : official journal of the American Society of Hand Therapists.* 1993;6(2):89-104. - 517 57. Anastakis DJ, Malessy MJ, Chen R, Davis KD, Mikulis D. Cortical plasticity following nerve transfer in the upper extremity. *Hand Clin.* 2008;24(4):425-444, vi-vii. - 519 58. Giraux P, Sirigu A, Schneider F, Dubernard J. Cortical reorganization in motor cortex after graft of both hands. *Nat Neurosci.* 2001;4(7):691-692. - 521 59. Manduch M, Bezuhly M, Anastakis DJ, Crawley AP, Mikulis D. Serial fMRI of adaptive changes in primary sensorimotor cortex following thumb reconstruction. *Neurology*. 2002;59(8):1278-1281. - 524 60. Chen R, Anastakis DJ, Haywood CT, Mikulis DJ, Manktelow RT. Plasticity of the 525 human motor system following muscle reconstruction: a magnetic stimulation and 526 functional magnetic resonance imaging study. *Clinical Neurophysiology*. 527 2003;114(12):2434-2446. - 528 61. Kopp B, Kunkel A, Muhlnickel W, Villringer K, Taub E, Flor H. Plasticity in the motor system related to therapy-induced improvement of movement after stroke. *Neuroreport*. 1999;10:807-810. - 531 62. Liepert J, Uhde I, Graf S, Leidner O, Weiller C. Motor cortex plasticity during forced-use therapy in stroke patients: a preliminary study. *J Neurol*. 2001;248:315-321. - Nudo RJ, Plautz EJ, Frost SB. Role of Adaptive Plasticity in Recovery of Function After Damage to Motor Cortex. *Muscle Nerve*. 2001;24(8):1000-1019. - Raineteau O, Schwab ME. Plasticity of Motor Systems After Incomplete Spinal Cord Injury. *Nat Rev Neurosci*. 2001;2(4):263-273. - 537 65. Gordon AM, Schneider JA, Chinnan A, Charles JR. Efficacy of a hand-arm bimanual intensive therapy (HABIT) in children with hemiplegic cerebral palsy: a randomized control trial. *Dev Med Child Neurol.* 2007;49(11):830-830. - Gordon AM, Charles JR, Wolf SL. Efficacy of Constraint-Induced Movement Therapy on Involved Upper-Extremity Use in Children with Hemiplegic Cerebral Palsy Is Not Age-Dependent. *Pediatrics*. 2006;117(3):e363-e373. - 543 67. Netscher DT, Eladoumikdachi F. Two case reports of pollicization of a previously syndactylized index finger for congenitally absent thumb. *Annals of plastic surgery*. 545 2003;51(6):607-610; discussion 611-606. 547548 25 | 549 | Figure Legend | |-----|---| | 550 | Figure 1: Hand with thumb aplasia before and after pollicization. | | 551 | Figure 2: The S-D test challenges the participant to compress a slender, compliant spring | | 552 | between the thumb and first finger. | | 553 | Figure 3: Outcome Z-scores. The grey band indicates the normal range of ± 2 . | | 554 | Figure 4: Relationship between tripod pinch strength and age at pollicization ($p = 0.04$). | Table 1: Characteristics of the study participants |
Participant | Sex | Side | Dominant
Hand | Original
Diagnosis | Age at pollicization | Age
at test | Time since pollicization | Bayne classification | |-------------|-----|-------|------------------|-----------------------|----------------------|----------------|--------------------------|----------------------| | | | | Hand | Diagnosis | (yr) | (yr) | (yr) | classification | | 1 | F | Right | Left | None | 2.7 | 9.9 | 7.2 | II | | 2 | F | Left | Left | VACTERL, | 3.1 | 13.9 | 10.8 | III | | | | | | Klippel-Feil | | | | | | | | | | Syndrome | | | | | | 2 | F | Right | Left | VACTERL, | 5.0 | 13.9 | 8.9 | IV | | | | | | Klippel-Feil | | | | / | | | | | | Syndrome | | | | | | 3 | M | Right | Left | VACTERL | 3.4 | 15.2 | 11.7 | IV | | 4 | M | Right | Left | VACTERL | 2.5 | 5.3 | 2.9 | IV | | 5 | M | Right | Left | VACTERL | 3.5 | 11.2 | 7.6 | I | | 6 | M | Left | Right | None | 1.2 | 16.9 | 15.7 | I | | 6 | M | Right | Right | None | 1.2 | 16.9 | 15.7 | I | | 7 | M | Left | Right | VACTERL | 2.0 | 7.3 | 5.4 | II | | 8 | M | Right | Left | VACTERL | 1.8 | 5.1 | 3.3 | II | Table 2: Z-score results for the outcome measures. Z-scores below -2 fall below the normal range. | | | Pollicize | ed | | Contralateral | | | | | | |-----------------|----|------------------|--------------|---|----------------|--------------|--|--|--|--| | | N | Z-score | Below normal | N | Z-score | Below normal | | | | | | | | $Mean \pm SD$ | range | | Mean ± SD | range | | | | | | | | (range) | N (%) | | (range) | N (%) | | | | | | Grip* | 9 | -3.1 ± 1.3 | 7/9 (80%) | 5 | -0.7 ± 1.1 | 0/5 (0%) | | | | | | | | (-4.7, -1.3) | | | (-1.9, 0.8) | | | | | | | Lateral pinch | 10 | -3.7 ± 1.0 | 10/10 (100%) | 5 | -1.7 ± 0.7 | 1/5 (20%) | | | | | | | | (-5.1, -2.6) | | | (-2.7, -0.6) | Y | | | | | | Tripod pinch | 10 | -3.0 ± 0.9 | 9/10 (90%) | 5 | -1.3 ± 0.7 | 1/5 (20%) | | | | | | | | (-4.0, -0.8) | | | (-2.3, -0.3) | | | | | | | Box & blocks | 10 | -3.4 ± 1.5 | 9/10 (90%) | 5 | -0.5 ± 0.9 | 1/5 (20%) | | | | | | | | (-6.2, -1.1) | | | (-2.0, 0.2) | | | | | | | 9-hole | 10 | -10.4 ± 10.7 | 10/10 (100%) | 5 | -0.5 ± 2.1 | 1/5 (20%) | | | | | | pegboard | | (-39.4, -2.6) | | | (-4.1, 1.2) | | | | | | | Dexterity (S-D) | 10 | -1.4 ± 1.5 | 4/10 (40%) | 5 | 0.5 ± 1.1 | 1/5 (20%) | | | | | | | | (-3.1, 1.0) | | | (-0.9, 1.9) | | | | | | | PODCI | 10 | -2.8 ± 3.5 | 3/10 (30%) | 5 | -1.2 ± 1.2 | 1/5 (20%) | | | | | | | | (-9.3, -0.3) | | | (-3.3, -0.3) | | | | | | ^{*} Data from one hand was missing. Table 3: Relationship between clinical characteristics and outcome measures (Z-scores) based on linear regression. | | Grip Strength | | Lateral I
Streng | | Trip
Pine
Stren | ch | Box a
Bloc | | Pegboa | ard | Dexte
(S-I | | POD | CI | |---------------------|---------------|------|---------------------|------|-----------------------|------|---------------|------|-----------|------|---------------|------|---------|------| | | β (95% | р | β (95% | p | β (95 | p | β (95 | p | β (95% | p | β (95% | р | β (95% | p | | | CI) | | CI) | | % CI) | | % CI) | | CI) | | CI) | | CI) | | | Age at | -0.62 | 0.10 | -0.51 | 0.07 | -0.52 | 0.04 | -0.54 | 0.20 | -3.81 | 0.22 | -0.11 | 0.81 | -1.86 | 0.05 | | surgery | (-1.39, | | (-1.06, | | (-1.01, | | (-1.44, | | (-10.47, | | (-1.12, | | (-3.74, | | | (yr) | 0.15) | | 0.04) | | -0.03) | | 0.36) | | 2.85) | | 0.90) | r | 0.03) | | | Time since | -0.09 | 0.43 | -0.12 | 0.09 | 0.07 | 0.36 | -0.07 | 0.56 | -0.21 | 0.81 | 0.06 | 0.58 | -0.05 | 0.85 | | surgery | (-0.36, | | (-0.27, | | (-0.09, | | (-0.32, | | (-2.10, | | (-019, | | (-0.68, | | | (yr) | 0.17) | | 0.02) | | 0.23) | | 0.19) | | 1.69) | | 0.32) | | 0.57) | | | Angle of | -0.02 | 0.65 | 0.00 | 0.88 | 0.00 | 0.97 | 0.00 | 0.96 | -0.35 | 0.11 | -0.02 | 0.47 | 0.03 | 0.70 | | 1 st web | (-0.12, | | (-0.05, | | (-0.05, | | (-0.07, | | (-0.80, | | (-0.09, | | (-0.14, | | | (deg) | 0.08) | | 0.05) | | 0.05 | | 0.07 | | 0.10) | | 0.05) | | 0.20) | | | Ratio | 0.98 | 0.95 | 4.4 | 0.40 | 1.6 | 0.75 | 8.8 | 0.24 | 37.2 | 0.51 | -7.9 | 0.30 | -8.7 | 0.64 | | thumb/ | (-34.2, | | (-7.1, | | (-9.6, | | (-7.0, | | (-87.0, | | (-24.3, | | (-50.2, | | | finger | 36.2) | | 15.8) | | 12.8) | | 24.6) | | 161.4) | | 8.5) | | 32.7) | | | MP flexion | 0.03 | 0.08 | 0.002 | 0.85 | 0.02 | 0.04 | 0.005 | 0.75 | 0.10 | 0.44 | 0.01 | 0.46 | 0.05 | 0.24 | | (deg) | (-0.004, | | (-0.02, | | (0.001, | | (-0.03, | | (-0.18, | | (-0.02, | | (-0.04, | | | | 0.07) | | 0.03) | | 0.04) | | 0.04) | | 0.37) | | 0.05) | | 0.13) | | | IP flexion | 0.04 | 0.16 | 0.01 | 0.57 | 0.03 | 0.03 | 0.02 | 0.46 | 0.21 | 0.29 | 0.00 | 0.99 | 0.06 | 0.37 | | (deg) | (-0.02, | | (-0.03, | | (0.003, | | (-0.04, | | (-0.21, | | (-0.06, | | (-0.08, | | | | 0.09) | | 0.05) | | 0.06) | | 0.08) | | 0.63) | | 0.06) | | 0.20) | | | MP | -0.05 | 0.04 | -0.04 | 0.02 | -0.02 | 0.36 | -0.06 | 0.03 | -0.44 | 0.04 | -0.04 | 0.19 | -0.10 | 0.19 | | extension | (-0.11, - | 9 | (- | | (-0.06, | | (-0.12, | | (-0.85, - | | (-0.11, | | (-0.26, | | | deficit | 0.0003) | | 0.08, -0. | | 0.03) | | -0.006) | | 0.03) | | 0.03) | | 0.06) | | | (deg) | | | 009) | | | | | | | | | | | | | IP | -0.08 | 0.08 | -0.06 | 0.07 | -0.05 | 0.12 | -0.04 | 0.43 | -0.61 | 0.10 | -0.08 | 0.13 | -0.25 | 0.04 | | extension | (-0.17, | | (-0.13, | | (-0.12, | | (-0.16, | | (-1.38, | | (-0.19, | | (-0.47, | | | deficit | 0.01) | | 0.007) | | 0.02) | | 0.08) | | 0.16) | | 0.03) | | -0.02) | | | (deg) | | | | | | | | | | | | | | | | TAM (%) | 0.03 | 0.02 | 0.01 | 0.25 | 0.02 | 0.02 | 0.02 | 0.27 | 0.18 | 0.10 | 0.02 | 0.32 | 0.06 | 0.09 | | | (0.007, | | (-0.01, | | (0.005, | | (-0.02, | | (-0.04, | | (-0.02, | | (-0.01, | | | | 0.05) | | 0.04) | 7 | 0.04) | | 0.05) | | 0.40) | | 0.05) | | 0.13) | | ## Highlights - Early childhood pollicization resulted in poorer strength and overall function but normal dexterity using altered control strategies. - Older age at surgery, reduced metacarpalphalageal and interphalangeal range of motion and radial absence were predictors of poorer outcomes. - Older children and those with more severe involvement may have poorer strength, dexterity and overall function.