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Abstract 

 
Study Design: Retrospective Cohort 

Introduction: Pollicization creates a thumb from another finger to treat hypoplasia/aplasia. 

Important outcomes include strength, function, dexterity, and quality of life.  

Purpose of the Study: To evaluate mid- to long-term outcomes and examine predictors of 

outcome after early childhood pollicization.  

Methods: 8 children who underwent 10 pollicizations (age at surgery ≤ 5 years) were evaluated 

3 to 15 years after surgery. Anthropometrics, range of motion, and basic medical history were 

obtained.  Participants completed an upper extremity questionnaire (PODCI) and functional tests 

including grip and pinch strength, Box and Blocks, 9-hole pegboard, and strength-dexterity (S-

D) tests.  

Results: Almost all pollicized hands had poor strength and performed poorly on the traditional 

functional tests.  Six of 10 pollicized hands had normal dexterity scores but were less stable in 

maintaining a steady-state force.  Predictors of poorer outcomes included older age at surgery, 

reduced metacarpophalangeal and interphalangeal range of motion, and radial absence.    

Discussion: Early childhood pollicization resulted in poor strength and overall function, but 

normal dexterity was often achieved using altered control strategies. 

Conclusions: Most children will likely obtain adequate dexterity despite weakness after 

pollicization, but older children and those with the most severe involvement may have poorer 

outcomes. 
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1. Introduction 1 

Thumb hypoplasia or aplasia accounts for up to 16% of all congenital hand deformities 2 

and is bilateral in 12-63% of patients 1.  Absence of the thumb results in a loss of up to 40% of 3 

hand function 2.  Surgical options to reconstruct the thumb include toe to thumb transfer, 4 

distraction lengthening, and pollicization 3.  Pollicization is the process of creating a thumb from 5 

the next most radial finger.  It involves surgical translocation of the radial most digit into a 6 

position of thumb function.  Nerves and arteries are rotated on a pedicle, and muscle and tendon 7 

transfers are performed to create a “new” thumb that can perform the functions of flexion, 8 

extension, abduction, adduction, and opposition.  Pollicization changes the anatomy of the hand, 9 

but the brain must also adapt to accommodate and control the new structural setup.  Brain 10 

imaging studies have shown that neuroplasticity occurs after thumb reconstruction with 11 

increased brain activity in regions that control the thumb 4.  12 

Most assessments of hand function involve functional testing that evaluates the ability to 13 

perform specific tasks, the time it takes to perform those tasks, or the quality of movement 14 

during task performance.  Many established functional measures are available such as Box and 15 

Blocks5, Jebsen Taylor6, peg board7, Functional Dexterity Test (FDT)8, Assisting Hand 16 

Assessment (AHA)9, ABILHAND-Kids10, Melbourne Assessment (MA2)11, and Shriners 17 

Hospitals Upper Extremity Evaluation (SHUEE)12.  These tests generally examine whole arm 18 

function, assessing a combination of strength, coordination, and gross and fine motor control.  To 19 

focus specifically on manual dexterity and neural control for fingertip force magnitude and 20 

direction, the Strength-Dexterity (S-D) test can be used 13-15.  Subjective assessments have also 21 

been performed using questionnaires such as the Michigan Hand Outcomes Questionnaire 22 

(MHQ)16, Canadian Occupational Performance Measure (COPM)17, Disability of Arm, Shoulder, 23 
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and Hand (DASH)18, Pediatric Outcomes Data Collection Instrument (PODCI)19, and Short 24 

Form 36 (SF-36)20.   25 

Existing studies of outcomes after early childhood finger pollicization for thumb 26 

hypoplasia have demonstrated decreased strength and performance on functional tests compared 27 

to age-matched norms and non-operated contralateral hands 21-25.  Despite their functional 28 

limitations, patients and parents tend to rate their satisfaction and quality of life unexpectedly 29 

high 26-29.  Less is known about the recovery and development of neuromuscular control of 30 

fingertip forces after pollicization.  Neural and muscular contributors to dexterous manipulation 31 

are particularly plastic during development and improve over an extended period30-33, and thumb 32 

absence and reconstruction are likely to alter the brain via this process of neuroplasticity. 33 

1.1 Purpose of the Study 34 

The purpose of this study was to evaluate mid- to long-term outcomes after early 35 

childhood pollicization using a combination of functional tests and questionnaires, as well as the 36 

S-D test and to examine potential predictors of surgical outcomes.  This evaluation may help to 37 

guide surgical intervention and rehabilitation strategies to maximize musculoskeletal and neural 38 

control capabilities in this population. 39 

40 
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2. Materials and Methods 41 

This study examined 8 children who had undergone pollicization surgery to address 42 

thumb hypoplasia or aplasia (10 pollicized hands, Blauth V) at a young age (≤ 5 years) (Table 1).  43 

Two children had bilateral involvement; all but 2 children were diagnosed with VACTERL 44 

Association34; 1 child with VACTERL and bilateral involvement also had Klippel-Feil 45 

syndrome35.  Pollicization was performed between 1994 and 2010 by a single surgeon at a single 46 

hospital using the modified Buck-Gramcko technique 36.  Post-operative care consisted of 6 47 

weeks of casting, 6 months of night splinting, and 6 months of a home rehabilitation program 48 

with or without occupational therapy services.  The time since pollicization ranged from 2.9 to 49 

15.7 years (mean ± standard deviation, 8.2 ± 4.1 years).  The average age at testing was 10.6 ± 50 

4.5 years (range 4-17) (Table 1).  Written assent and consent were obtained from the participants 51 

and their parents or legal guardians following IRB-approved protocols. 52 

2.1 Surgical Technique 53 

A modified Buck-Gramcko surgical technique was utilized (Figure 1).  Manual 54 

compression was used to exsanguinate the extremity and the tourniquet was elevated to 55 

200mmHg.  The dorsal skin was incised primarily to identify the critical dorsal veins, and then 56 

the palmar incision was completed to identify the radial and ulnar neurovascular bundles to the 57 

index and middle fingers. Using 8-0 nylon, the radial digital artery to the middle finger was 58 

divided just distal to the common branching. The common nerve was microdissected in line with 59 

the fascicles to the level of the carpal tunnel.  The A1 pulley was opened; next the middle finger 60 

was spread away from the index finger and the transverse intermetacarpal ligament was released.  61 

The tendons of the first dorsal and palmar interossei muscles were harvested for transfer.  62 
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The metacarpophalangeal (MP) head was cut at the epiphysis, and the shaft of the metacarpal 63 

was removed. The epiphysis was sewn into the carpal insertion in 45-degrees of abduction and 64 

120-degrees of pronation. The extensor tendons were separated and shortened with the IP joint in 65 

full extension. The extensor digitorum communis (EDC) index was inserted as the abductor, and 66 

the extensor indicis proprious (EIP) became the new extensor pollicis longus (EPL).  The 67 

tendons of the first dorsal and palmar interossei were transferred to the ulnar and radial lateral 68 

bands at the level of the new thumb proximal phalanx. The skin was closed transposing the 69 

dorsal flaps laterally and maintaining the position of the thumb in relation to the rest of the hand.  70 

2.2 Rehabilitation 71 

Following surgery, the child was placed in a cast for 4-6 weeks. After cast removal, a 72 

forearm-based removable night splint was fabricated placing the new thumb in abduction with 73 

the IP joint extended, which the child was asked to wear for an additional 6 months. The night 74 

splint was intended to maximize the 1st web space. If necessary, tape or a soft splint was used to 75 

maintain the new thumb in an abducted position during the day. A thermoplastic day splint was 76 

generally not recommended as this does not give the child the opportunity to actively develop the 77 

musculature of the new thumb. Additionally, the family was educated in scar management, 78 

edema control and ways to promote active movement of the new thumb. 79 

Post-operative therapy primarily consisted of family training to instruct the child’s 80 

caregiver(s) in thumb passive and active range of motion (ROM) exercises followed by age-81 

appropriate activities to facilitate the use of the pollicized digit as a thumb. Buddy taping all 82 

fingers together was a helpful technique to isolate the thumb for more active movement during 83 

grasp. Fine motor activities generally began with repetitive radial digital grasp and release of 84 
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larger objects, moving to static pinches of smaller objects. With more advanced prehensile skills, 85 

such as rotation and in-hand manipulation, it was common and acceptable to see compensatory 86 

patterns. Four weeks post-surgery each child underwent a standard evaluation. Depending on the 87 

child’s progress, regular occupational therapy sessions and/or a home exercise program was 88 

recommended. Some individuals received occupational therapy 1-2x per week for 6 months to 89 

develop these skills, while most children required only a home exercise program with periodic 90 

monitoring to ensure continued progress. If hand skills were not progressing as anticipated, the 91 

child was scheduled for additional therapy as needed. 92 

2.3 History, Anthropometric Measures, Patient Classification, and Questionnaire 93 

Demographic and anthropometric measures were recorded, and a retrospective chart and 94 

x-ray review provided surgical history and Blauth 37 and Bayne 38 classifications.  The Blauth 95 

classification updated by Manske and McCarroll grades the severity of thumb hypoplasia based 96 

on the stability of the carpometacarpal thumb joint as well as the musculature present for thumb 97 

opposition 25,39.  The Bayne and Klug radial longitudinal deficiency (RLD) classification updated 98 

by James incorporates the stability and presence of the skeletal and muscular radial column of 99 

the forearm 40.  All hands had a stable metacarpophalangeal (MP) joint.  Radial stability was not 100 

measured. 101 

The participant’s self-initiated ability to handle objects in daily activities was graded 102 

using the Manual Ability Classification System (MACS) 41.  Total Active Motion (TAM) was 103 

calculated based on the extension and flexion range of motion of the proximal interphalangeal 104 

(PIP) and distal interphalangeal (DIP) joints:  TAM = ([PIP Flexion + DIP Flexion] – [Extension 105 

Deficit of DIP + Extension Deficit of PIP]) / 175 × 100.  TAM was graded as excellent (85-106 
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100%), good (70-84%), fair (50-69%), or poor (0-49%) following Strickland’s original 107 

classification system42,43.  The Upper Extremity domain of the parent Pediatric Outcomes Data 108 

Collection Instrument (PODCI) was administered and standardized scores and Z-scores were 109 

calculated following the instrument’s standard instructions and normative data 19. 110 

2.4 Strength 111 

Pinch and grip strength were measured using standard pinch (Baseline Hydraulic Pinch, 112 

FEI, White Plains, New York) and grip dynamometers (Hydraulic Hand Dynamometer, Preston, 113 

Jackson, MI).  Three trials were performed for each motion (grip, lateral pinch, and tripod 114 

pinch), and the mean force from the three trials was used for analysis.  Pinch strength Z-scores 115 

were calculated using normative data from Mathiowetz et al. for ages 6-19 years44 and Lee-116 

Valkov et al. for ages 3-5 years 45.  Grip strength Z-scores were calculated using normative data 117 

from Hager-Ross et al. 46.  Z-scores indicate the number of standard deviations an individual’s 118 

measurement is above or below the mean of normal.  95% of non-impaired individuals are 119 

expected to have Z-scores between -2 and +2 (values within 2 standard deviations of the mean of 120 

the normative group). 121 

2.5 Functional Tests 122 

Functional testing was performed using the Box and Blocks5 and 9-hole peg tests7.  The 123 

Box and Blocks test is an assessment of manual dexterity.  It consists of a box with a partition 124 

directly in the center, with 150 blocks placed on one side of the box.  The participant is given 60 125 

seconds in which to transport one block at a time over the partition, releasing it to the opposite 126 

side. The number of blocks transported to the other side is counted.  The test is then repeated 127 

with the non-dominant hand 44.  Box and Blocks Z-scores were calculated using normative data 128 
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for the left or non-dominant hand from Mathiowetz et al. for children ages 6-19 years5 and 129 

Jongbloed-Pereboom et al. for children ages 3-5 years 47.   130 

The 9-hole peg test is a standardized and well-established measurement of finger 131 

dexterity.  The participant is asked to take pegs from a container, one by one, and place them into 132 

a pegboard as quickly as possible.  The participant must then remove the pegs from the holes, 133 

one by one, and replace them back into the container.  Scores are based on the time taken to 134 

complete the test.  9-hole peg test Z-scores were calculated using normative data for the non-135 

dominant hand from Poole et al. 7. 136 

2.6 Dexterity (S-D Test) 137 

The S-D test assesses the dynamic control of fingertip forces needed for dexterous 138 

manipulation.  A detailed description of how the S-D test was conducted is provided in 139 

Lightdale-Miric et al. 48; only a brief description is provided here.  Essentially, the participant 140 

partially compresses a slender, compliant instrumented spring as far as possible between the 141 

thumb and first finger and then maintains that maximal level of compression for at least 3 142 

seconds (steady state) (Figure 2).  The compression force, which is proportional to the distance 143 

the spring is compressed, quantifies the maximal ability of the subject to manipulate an unstable 144 

object at very low force magnitudes by dynamically controlling the magnitude and direction of 145 

fingertip forces. 146 

Four different springs of equal stiffness (0.86 N/cm) and diameter (0.9 cm) but varying 147 

lengths (2.9 to 4.0 cm) were used to accommodate hands with different sizes and abilities 32.  148 

Each participant used the shortest spring that he or she was not able to fully compress.  S-D Z-149 

scores were calculated based on the mean steady state force over 3 maximal trials 32.  Additional 150 
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dynamical analysis was performed on the hands that used the longest spring (5 hands).  Phase 151 

portraits of force vs. force velocity (first derivative) vs. force acceleration (second derivative) 152 

were produced and characterized using mean Euclidean distance (ED), which represents the 153 

mean distance of the cloud of points from the origin per unit time.  Greater Euclidean distance 154 

indicates larger dynamical dispersion and suggests weaker corrective actions by the 155 

neuromuscular controller enforcing the sustained compression32,49.  The compression dynamics 156 

were also characterized in terms of the root mean square (RMS) of the compression force, which 157 

indicates the level of deviation from maintaining a completely stable force.  The dynamical 158 

results were compared to previously published control data from 12 children and 60 adults 48.   159 

2.7 Statistical Analysis 160 

Linear regression (for continuous variables) and Mann-Whitney rank sum tests (for 161 

binary variables) were used to evaluate the relationship between the outcome measures and 162 

possible predictors of outcome.  The predictors examined included age at surgery, time since 163 

pollicization, angle of first web, ratio of thumb to next finger length, MP flexion, IP flexion, MP 164 

extension deficit, IP extension deficit, touch pad, and radial longitudinal deficiency.  Euclidean 165 

distance from the dynamical analysis was also compared between pollicized and control hands 166 

using Mann-Whitney rank sum tests.  Statistical analyses were performed in Stata (version 12.1, 167 

StataCorp LP, College Station TX). 168 

3. Results  169 

3.1 Strength 170 
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Strength was below normal in almost all pollicized hands (Figure 3).  The average Z-171 

scores were below -3 for all three types of strength tested (grip, lateral pinch, and tripod pinch) 172 

(Table 2).  Only two hands had grip strength in the normal range (Z-scores: -1.4 and -1.3), and 173 

only one had tripod pinch strength in the normal range (Z-score: -0.8).  All three of these hands 174 

were from different participants.  Although the strength of these three hands fell in the normal 175 

range, it remained below average.  All hands scored below the normal range in lateral pinch 176 

strength.   177 

3.2 Functional Tests 178 

Similarly, almost all pollicized hands scored below normal on the traditional functional 179 

tests.  Pollicized hands scored particularly poorly on the pegboard test, where all hands scored 180 

below the normal range with very low scores (Figure 3, Table 2).   Only one hand performed in 181 

the normal range for the Box and Blocks test (Z-score: -1.1).  This hand also scored in the 182 

normal range for grip strength.  Total Active Motion was graded as good for 1 hand, fair for 4 183 

hands, and poor for 5 hands. 184 

3.3 Dexterity 185 

In contrast, 6/10 pollicized hands had normal dexterity scores (Z-scores: -1.3 to 1.0).  186 

Four pollicized hands had S-D scores at least 2.4 standard deviations below normal (Z-187 

scores: -2.4, -3.0, -3.0, -3.1).  These four hands with poor dexterity came from different 188 

individuals, one of whom had bilateral pollicization with good outcome on the other side.     189 

Although many hands achieved a normal magnitude of compression force, interestingly, 190 

the manner in which that force was achieved differed from normal.  Pollicized hands were less 191 
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steady in maintaining the steady-state force, with a more erratic (less smooth) force trajectory 192 

and greater dispersion in force, velocity, and acceleration.  This is quantified by a significant 193 

difference in the mean Euclidean distance (ED) which characterizes the phase plots (p = 0.047), 194 

where a greater ED in the pollicized hands (mean ± standard deviation, 0.47 ± 0.12) compared 195 

with control hands (0.34 ± 0.16) indicates less refined control over maintenance of the steady 196 

state force.  In addition, the pollicized hands exhibited large variability in mean force velocity 197 

(rate of correction) for a given amount of error (RMS) 48, suggesting large variability among 198 

individuals in the neural control mechanisms used. 199 

3.4 PODCI Questionnaire 200 

On the upper extremity domain of the PODCI questionnaire, 6/8 patients representing 201 

7/10 pollicized hands had scores in the normal range (Z-scores: -1.2 to -0.3).  One unilaterally 202 

pollicized participant had a PODCI Z-score of -3.3, and one bilaterally pollicized participant had 203 

a Z-score of -9.3.   204 

3.5 Predictors of Outcome 205 

Grip and pinch strength tended to decrease when surgery was done at an older age (Table 206 

3, Figure 4).  PODCI scores also tended to decrease with older age at surgery because the two 207 

participants with low PODCI Z-scores underwent pollicization at older ages (2.5, 3.1, and 5.0 208 

years; one participant had two hands pollicized at different times).  In contrast, the functional 209 

outcomes (Box and Blocks, pegboard, S-D) showed no relationship to age at surgery, and there 210 

was no significant relationship between time since pollicization and any of the outcome 211 

measures. 212 
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Outcomes were not related to the angle of first web or the ratio of thumb to finger length.  213 

Grip and tripod pinch strength tended to increase with greater MP flexion range of motion 214 

(ROM) and higher TAM score, and tripod pinch strength also increased with greater IP flexion 215 

ROM.  Increased MP extension deficit was associated with decreased grip and lateral pinch 216 

strength and lower Box and Blocks and pegboard scores.  Increased IP extension deficit also 217 

showed a trend towards lower grip and lateral pinch strength, as well as lower PODCI scores, but 218 

not lower functional test scores.  Tripod pinch strength was higher in the 3 hands with positive 219 

touch pad (Z-score mean ± standard deviation: -2.6 ± 0.9) compared with the 7 hands not able to 220 

touch pad (-3.8 ± 0.2) (p = 0.05), but touch pad ability did not affect grip or lateral pinch strength 221 

(p > 0.19).  Hands with positive touch pad also scored higher on the Box and Blocks (-2.8 ± 1.1 222 

vs. -5.0 ± 1.1, p = 0.03) and pegboard (-6.5 ± 3.3 vs. -19.5 ± 17.4, p = 0.09) tests, but not on the 223 

S-D test (p = 0.31). 224 

Grip strength (-4.7 ± 0.1 vs. -2.7 ± 1.2, p = 0.08), pegboard scores (-21.2 ± 15.8 vs. -5.8 ± 225 

2.4, p = 0.02), and dexterity (-2.8 ± 0.3 vs. -0.8 ± 1.4, p = 0.09) tended to be lower in the 3 hands 226 

with an absent radius (Bayne IV).  Three of 4 hands with dexterity measures below the normal 227 

range had an absent radius, compared with 0/6 hands with normal dexterity (p = 0.03).  A MACS 228 

classification of I (handles objects easily and successfully) was associated with higher pegboard 229 

test Z-scores (-3.8 ± 1.1 vs. -13.3 ± 11.8, p = 0.01), and all hands with below-normal dexterity 230 

had MACS classifications above level I. 231 

Among the two participants who had undergone bilateral pollicization, strength and 232 

functional test scores tended to be slightly better, but still below normal, for the dominant hand.  233 

Both dominant pollicized hands had dexterity Z-scores in the normal range (-0.3 and -1.0 for 234 

dominant side vs. -3.0 and -1.3 for non-dominant side). 235 
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3.5 Contralateral Hands 236 

Most non-pollicized contralateral hands had strength, function, and dexterity scores 237 

within the normal range.  Of 5 non-pollicized contralateral hands (data from one contralateral 238 

hand was missing), one had below-normal lateral (Z = -2.7) and tripod (Z = -2.3) pinch strength 239 

with normal grip strength (Z = -0.2) and another had below-normal Box and Blocks (Z = -2.0) 240 

and pegboard (Z = -4.1) scores (Table 2).  Yet another participant had a PODCI upper extremity 241 

score below the normal range (Z = -3.3). 242 

243 
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4. Discussion 244 

Hypoplastic or aplastic thumbs have been reconstructed via finger pollicization for 245 

almost 50 years 26 yet there are few functional prognostic guidelines for the surgeons and 246 

rehabilitation therapists caring for these children.  Understanding of the role of neural control 247 

and neuromuscular plasticity as well as anatomy and biomechanics of the new thumb after 248 

pollicization is important for maximizing functional gains in these children.  This study not only 249 

examined strength and function but also quantified fingertip forces and examined the role of 250 

neuroplasticity up to 15 years after early childhood pollicization. 251 

4.1 Strength and Function 252 

Outcomes after pollicization in children have been evaluated previously using timed tests 253 

such as the pegboard style Functional Dexterity Test (FDT) and Jebsen Hand Function Test 254 

(JHFT) 6,8 and parent/patient questionnaires about quality of life and the ability to complete tasks 255 

such holding a pencil, buttoning a shirt, texting, or playing video games.  Netscher, et al. found 256 

positive outcomes in two JHFT subtests (page turning and checker stacking) and patient/parent 257 

assessments of thumb appearance and function in children with pollicized digits and no radial 258 

dysplasia, despite poor strength and performance on the pegboard test 22.  De Kraker, et al. found 259 

high patient and parent satisfaction with surgical outcome despite diminished strength and range 260 

of motion in a series of 40 patients ages 5-25 years 21.   261 

The results of this study support the previous findings of diminished strength and overall 262 

function in pollicized hands.  Using the S-D test, however, we were also able to quantify finger-263 

to-thumb dexterity, which showed better outcomes than any of the more global tests of hand 264 

function.  The S-D test correlates only moderately with traditional functional tests, suggesting 265 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 16

that the S-D test captures a different domain of function48,50.  Our combined results indicate that 266 

although children with pollicization lack strength and/or gross motor coordination, they are able 267 

to stabilize an unstable object by dynamically controlling fingertip forces to a point.  Therefore, 268 

these children are likely to achieve high levels of independence with self-care, writing, and small 269 

object manipulation. 270 

4.2 Anatomy and Range of Motion 271 

Past studies have documented that the pre-surgical anatomy of the arm, hand and finger 272 

to be pollicized directly impacts post-surgical outcomes21,51.  Manske et al. demonstrated reduced 273 

range of motion and strength in the new thumb joints25. The results of the current study showed 274 

that anthropomorphic measures as well as active and passive range of motion of the joints of the 275 

new thumb correlate with strength and function. De Kraker, et al. demonstrated that grip and 276 

pinch strength are significantly lower in severe RLD compared with mild RLD21.  Our findings 277 

support these results through the relationship between Bayne and Klug classification and 278 

outcomes.  In addition, increased severity often involved abnormalities of the radial most finger.  279 

If the radial most finger has reduced pre-operative range of motion, joint contracture, or absence 280 

of musculature, outcomes after pollicization may be compromised.  281 

4.3 Non-Pollicized Hands 282 

The non-pollicized contralateral hands of unilaterally pollicized children in our study had 283 

moderately reduced strength but normal S-D scores and only slightly reduced performance on 284 

the Box and Blocks and pegboard tests. Previous studies have reported strength and functional 285 

deficiencies in the “normal” hands of children with unilateral thumb hypoplasia/aplasia 286 

compared with the dominant hand of children without thumb deformity22,25. Our results suggest 287 
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that despite reduced strength, dexterity is usually maintained in the contralateral hands of 288 

children with unilateral thumb hypoplasia/aplasia. 289 

4.4 Dexterity  290 

A unique component of this study was the dynamic assessment of finger dexterity using 291 

the S-D test.  The S-D test allows assessment of not only whether the task can be completed, but 292 

also how precisely it is performed, providing insight regarding the underlying neural control 293 

strategies employed during low-force dexterous manipulation.  The S-D test evaluates 294 

continuous dynamical features during steady-state compression rather than offer discrete 295 

measures of functional performance; thus providing more information about the neuromuscular 296 

system than standard clinical measures and further enhancing its utility as a performance metric.  297 

While most pollicized hands achieved magnitudes of compression force within the normal range 298 

during the S-D test (2-3N), they exhibited clear differences in compression dynamics compared 299 

with control hands, complementing results observed between control and clinical populations in 300 

older adulthood 52 and suggesting altered neural control mechanisms for the regulation and 301 

dynamical control of fingertip force directions in the reconstructed joint.   302 

Dynamical control of fingertip force direction underlies fine motor tasks and the deficits 303 

in compression dynamics may explain the patients’ difficulties in performing standardized 304 

measures of upper extremity performance such as the 9-hole pegboard and Box and Blocks tests. 305 

We have previously demonstrated that dexterity as defined by the S-D test is closely correlated 306 

with measures of strength and whole-arm function, but also quantifies a different functional 307 

domain in typically developing children50.  In this study, we extend those results to highlight the 308 

deficits of neural control mechanisms in the presence of a clinical condition (e.g., pollicization). 309 
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4.5 Neuromuscular Plasticity 310 

Although children exhibit the plasticity needed to adapt their control systems to control 311 

fingertip forces after pollicization51, differences in hand and thumb use may alter the 312 

development of neural control capabilities52 or cortical circuitry for hand control14,53. The neural 313 

control for hand function has a prolonged phase of development30 featuring improvements in the 314 

ability to control fingertip force direction32 as well as improved connectivity in descending 315 

neural pathways31.  In addition, there are periods of critical development during childhood when 316 

the corticospinal system is most plastic and amiable to change54,55. Changes in cortical structure 317 

after pollicization51, nerve transfer56,57, hand graft58, and both thumb59 and muscle 318 

reconstruction60 have been previously reported.   Motor cortex plasticity has also been reported 319 

in response to therapy after injury to the motor cortex61-63 and incomplete spinal cord injury64. 320 

Even children who sustain injury to the central nervous system (with intact anatomy), such as 321 

children with cerebral palsy, retain a certain level of neuroplasticity into adolescence, showing 322 

improvements in hand function after intense therapy65,66. Children undergoing pollicization have 323 

an intact neural system, increasing the potential for cortical plasticity and motor relearning with 324 

appropriate hand use following pollicization51. This highlights the need for future studies 325 

evaluating the near- and long-term changes in cortical function after treatment and therapy. 326 

Neuroplasticity and adaptive ability are assumed to be greater when surgery is performed 327 

at a younger age, which is the current trend in treatment protocols51,67.  While we found no effect 328 

of age at surgery on functional testing outcomes, all patients in this study underwent surgery by 329 

the age of five years. Younger age at surgery did have a positive impact on strength, in contrast 330 

to the findings of Manske et al. who found no relationship between age at surgery and measures 331 

of strength25. Larger studies including patients who underwent surgery at an older age are needed 332 
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to fully understand the effect of age at surgery on plasticity. The results of the current study, 333 

together with past research and current knowledge on neuroplasticity and development, strongly 334 

suggest that pollicization is effective. However, therapeutic strategies could be further developed 335 

to take advantage of neuroplasticity to improve the dynamic control of fingertip forces. While 336 

the current clinical emphasis on developing strength and range of motion should continue, the 337 

development of dexterity at low force magnitudes is also important and should be promoted 338 

through neuroplasticity. 339 

4.6 Limitations 340 

Limitations of this study include its small sample size and cross-sectional design.  Larger 341 

longitudinal studies are needed to understand changes in function over time as rehabilitation 342 

progresses and as the children develop and mature.  Different rehabilitation programs need to be 343 

evaluated to determine if they can improve a child’s dexterity after pollicization.  In addition, all 344 

surgeries in this study were performed by a single surgeon, which does not allow for comparison 345 

of different surgical techniques.  Subtle differences in surgical technique such as final thumb 346 

length, metacarpal excision amount, the presence or transfer of intrinsic muscles, and extensor 347 

and flexor tendon shortening likely affect pollicization outcomes.  Additional research is needed 348 

to evaluate the effects of different surgical and rehabilitation options on strength, function, and 349 

dexterity outcomes after pollicization. 350 

5. Conclusions 351 

In conclusion, early childhood pollicization resulted in poor strength and functional test 352 

scores 3 to 15 years after surgery.  However, most patients were able to achieve near-normal 353 

control over low-magnitude fingertip forces, which is a key component of dexterity and in-hand 354 
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object manipulation.  Older age at surgery and more severe deformity including radial absence 355 

are possible predictors of poorer outcome after pollicization.  In addition, reduced MP and IP 356 

range of motion appear to be predictive of lower performance on functional tests.   357 

Control of fingertip forces despite low strength and gross motor ability seems to be 358 

achieved through neuromuscular plasticity which enables patients to perform the dexterous task 359 

after pollicization using altered control strategies.  Parents and children undergoing pollicization 360 

may be counseled that they will likely obtain adequate dexterity despite weakness after surgery 361 

although older children and those with the most severe disease involvement may have poorer 362 

outcomes.  Post-operative therapy protocols promoting neuroplasticity may result in increased 363 

life-long function for the child.  364 
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Figure Legend 549 

Figure 1:  Hand with thumb aplasia before and after pollicization.  550 

Figure 2:  The S-D test challenges the participant to compress a slender, compliant spring 551 

between the thumb and first finger. 552 

Figure 3:  Outcome Z-scores.  The grey band indicates the normal range of ±2. 553 

Figure 4:  Relationship between tripod pinch strength and age at pollicization (p = 0.04).   554 
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Table 1:  Characteristics of the study participants 
 
Participant Sex Side Dominant 

Hand 
Original 

Diagnosis 
Age at 

pollicization 
(yr) 

Age 
at test 
(yr) 

Time since 
pollicization 

(yr) 

Bayne 
classification 

1 F Right Left None 2.7 9.9 7.2 II 
2 F Left Left VACTERL, 

Klippel-Feil 
Syndrome 

3.1 13.9 10.8 III 

2 F Right Left VACTERL, 
Klippel-Feil 
Syndrome 

5.0 13.9 8.9 IV 

3 M Right Left VACTERL 3.4 15.2 11.7 IV 
4 M Right Left VACTERL 2.5 5.3 2.9 IV 
5 M Right Left VACTERL 3.5 11.2 7.6 I 
6 M Left Right None 1.2 16.9 15.7 I 
6 M Right Right None 1.2 16.9 15.7 I 
7 M Left Right VACTERL 2.0 7.3 5.4 II 
8 M Right Left VACTERL 1.8 5.1 3.3 II 
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Table 2:  Z-score results for the outcome measures.  Z-scores below -2 fall below the normal 
range.   
 
 Pollicized Contralateral 
 N Z-score 

Mean ± SD 
(range) 

Below normal 
range 
N (%) 

N Z-score 
Mean ± SD 

(range) 

Below normal 
range 
N (%) 

Grip* 9 -3.1 ± 1.3  
(-4.7, -1.3) 

7/9 (80%) 5 -0.7 ± 1.1  
(-1.9, 0.8) 

0/5 (0%) 

Lateral pinch 10 -3.7 ± 1.0  
(-5.1, -2.6) 

10/10 (100%) 5 -1.7 ± 0.7  
(-2.7, -0.6) 

1/5 (20%) 

Tripod pinch 10 -3.0 ± 0.9  
(-4.0, -0.8) 

9/10 (90%) 5 -1.3 ± 0.7  
(-2.3, -0.3) 

1/5 (20%) 

Box & blocks 10 -3.4 ± 1.5  
(-6.2, -1.1) 

9/10 (90%) 5 -0.5 ± 0.9  
(-2.0, 0.2) 

1/5 (20%) 

9-hole 
pegboard 

10 -10.4 ± 10.7  
(-39.4, -2.6) 

10/10 (100%) 5 -0.5 ± 2.1  
(-4.1, 1.2) 

1/5 (20%) 

Dexterity (S-D) 10 -1.4 ± 1.5  
(-3.1, 1.0) 

4/10 (40%) 5 0.5 ± 1.1  
(-0.9, 1.9) 

1/5 (20%) 

PODCI 10 -2.8 ± 3.5  
(-9.3, -0.3) 

3/10 (30%) 5 -1.2 ± 1.2  
(-3.3, -0.3) 

1/5 (20%) 

* Data from one hand was missing.  
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Table 3:  Relationship between clinical characteristics and outcome measures (Z-scores) based 
on linear regression. 

 Grip Strength Lateral Pinch 
Strength 

Tripod 
Pinch 

Strength 

Box and 
Blocks 

Pegboard Dexterity     
(S-D) 

PODCI 

 β β β β (95% 
CI) 

p β β β β (95% 
CI) 

p ββββ    (95
% CI) 

p β β β β (95
% CI) 

p β β β β (95% 
CI) 

p β β β β (95% 
CI) 

p β β β β (95% 
CI) 

p 

Age at 
surgery 
(yr) 

-0.62 
(-1.39, 
0.15) 

0.10 -0.51 
(-1.06, 
0.04) 

0.07 -0.52 
(-1.01, 
-0.03) 

0.04 -0.54 
(-1.44, 
0.36) 

0.20 -3.81 
(-10.47, 
2.85) 

0.22 -0.11 
(-1.12, 
0.90) 

0.81 -1.86 
(-3.74, 
0.03) 

0.05 

Time since 
surgery 
(yr) 

-0.09 
(-0.36, 
0.17) 

0.43 -0.12 
(-0.27, 
0.02) 

0.09 0.07 
(-0.09, 
0.23) 

0.36 -0.07 
(-0.32, 
0.19) 

0.56 -0.21 
(-2.10, 
1.69) 

0.81 0.06 
(-019, 
0.32) 

0.58 -0.05 
(-0.68, 
0.57) 

0.85 

Angle of 
1st web 
(deg) 

-0.02  
(-0.12, 
0.08) 

0.65 0.00  
(-0.05, 
0.05) 

0.88 0.00  
(-0.05, 
0.05 

0.97 0.00 
(-0.07, 
0.07 

0.96 -0.35  
(-0.80, 
0.10) 

0.11 -0.02  
(-0.09, 
0.05) 

0.47 0.03 
(-0.14, 
0.20) 

0.70 

Ratio 
thumb/ 
finger 

0.98 
(-34.2, 
36.2) 

0.95 4.4 
(-7.1, 
15.8) 

0.40 1.6 
(-9.6, 
12.8) 

0.75 8.8 
(-7.0, 
24.6) 

0.24 37.2 
(-87.0, 
161.4) 

0.51 -7.9 
(-24.3, 
8.5) 

0.30 -8.7 
(-50.2, 
32.7) 

0.64 

MP flexion 
(deg) 

0.03 
(-0.004, 
0.07) 

0.08 0.002 
(-0.02, 
0.03) 

0.85 0.02 
(0.001, 
0.04) 

0.04 0.005 
(-0.03, 
0.04) 

0.75 0.10 
(-0.18, 
0.37) 

0.44 0.01 
(-0.02, 
0.05) 

0.46 0.05 
(-0.04, 
0.13) 

0.24 

IP flexion 
(deg) 

0.04 
(-0.02, 
0.09) 

0.16 0.01 
(-0.03, 
0.05) 

0.57 0.03 
(0.003, 
0.06) 

0.03 0.02 
(-0.04, 
0.08) 

0.46 0.21 
(-0.21, 
0.63) 

0.29 0.00 
(-0.06, 
0.06) 

0.99 0.06 
(-0.08, 
0.20) 

0.37 

MP 
extension 
deficit 
(deg) 

-0.05 
(-0.11, -
0.0003) 

0.04
9 

-0.04 
(-
0.08, -0.
009) 

0.02 -0.02 
(-0.06, 
0.03) 

0.36 -0.06 
(-0.12, 
-0.006) 

0.03 -0.44 
(-0.85, -
0.03) 

0.04 -0.04 
(-0.11, 
0.03) 

0.19 -0.10 
(-0.26, 
0.06) 

0.19 

IP 
extension 
deficit 
(deg) 

-0.08 
(-0.17, 
0.01) 

0.08 -0.06 
(-0.13, 
0.007) 

0.07 -0.05 
(-0.12, 
0.02) 

0.12 -0.04 
(-0.16, 
0.08) 

0.43 -0.61 
(-1.38, 
0.16) 

0.10 -0.08 
(-0.19, 
0.03) 

0.13 -0.25 
(-0.47, 
-0.02) 

0.04 

TAM (%) 0.03 
(0.007, 
0.05) 

0.02 0.01 
(-0.01, 
0.04) 

0.25 0.02 
(0.005, 
0.04) 

0.02 0.02 
(-0.02, 
0.05) 

0.27 0.18 
(-0.04, 
0.40) 

0.10 0.02 
(-0.02, 
0.05) 

0.32 0.06 
(-0.01, 
0.13) 

0.09 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Highlights 

 
• Early childhood pollicization resulted in poorer strength and overall function but normal 

dexterity using altered control strategies. 

• Older age at surgery, reduced metacarpalphalageal and interphalangeal range of motion 

and radial absence were predictors of poorer outcomes. 

• Older children and those with more severe involvement may have poorer strength, 

dexterity and overall function. 

 

 


