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Abstract

The Uncontrolled Manifold hypothesis and
Minimal Intervention principle propose that
the observed differential variability across task
relevant (i.e., task goals) vs. irrelevant (i.e.,
in the null space of those goals) variables
is evidence of a separation of task variables
for efficient neural control, ranked by their
respective variabilities (sometimes referred to as
hierarchy of control). Support for this comes
from spatial domain analyses (i.e., structure
of) of kinematic, kinetic and EMG variability.
While proponents admit the possibility of
preferential as opposed to strictly uncontrolled
variables, such distinctions have only begun
to be quantified or considered in the temporal
domain when inferring control action. Here
we extend the study of task variability during
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tripod static grasp to the temporal domain by
applying diffusion analysis. We show that both
task-relevant and task-irrelevant parameters
show corrective action at some time scales; and
conversely, that task-relevant parameters do
not show corrective action at other time scales.
That is, the spatial fluctuations of fingertip
forces show, as expected, greater ranges of
variability in task-irrelevant variables (> 98%
associated with changes in total grasp force; vs.
only < 2% in task-relevant changes associated
with acceleration of the object). But at some
time scales, however, temporal fluctuations of
task-irrelevant variables exhibit negative cor-
relations clearly indicative of corrective action
(scaling exponents < 0.5); and temporal fluctu-
ations of task-relevant variables exhibit neutral
and positive correlations clearly indicative of
absence of corrective action (scaling exponents
≥ 0.5). In agreement with recent work in other
behavioral contexts, these results propose we
revise our understanding of variability vis-á-vis
task relevance by considering both spatial and
temporal features of all task variables when
inferring control action and understanding how
the CNS confronts task redundancy. Instead of
a dichotomy of presence vs. absence of control,
we should speak of a continuum of weaker to
stronger—and potentially different—control

1



strategies in specific spatiotemporal domains,
indicated here by the magnitude of deviation
from the 0.5 scaling exponent. Moreover, these
results are counter examples to the Uncontrolled
Manifold hypothesis and the Minimal Interven-
tion principle, and the similar nature of control
actions across time scales in both task-relevant
and task-irrelevant spaces points to a level of
modularity not previously recognized.

Introduction

Redundancy, and the variability it allows, has
traditionally been viewed as the central problem
of motor control research [1], which can be stud-
ied at a variety of levels (e.g., task, muscle, or
goal redundancy). Here, we understand the term
task redundancy to be the availability of infinitely
many different mechanical actions by the neu-
romuscular system that can accomplish a given
motor task. . The totality of these mechanical
actions form the goal equivalent manifold, a term
coined in [2]. This differs from muscle redun-
dancy, which refers to the multitude of muscle
coordination patterns producing a same mechan-
ical action [3]. Multifinger static grasp has been
studied extensively because it is a good example
of task redundancy [4, 5, 6, 7] since using n fin-
gertips to satisfy static force and torque equilib-
rium of the object grasped is underconstrained
(i.e., one can, for instance, squeeze an object
harder without translating or rotating it). For
multifinger grasp, the redundant task space of all
applicable forces for static grasp can be mathe-
matically separated into the mutually orthogo-
nal subspaces of force variability that have no ef-
fect on static equilibrium (e.g. squeezing the ob-

ject in static grasp) on the one hand, and on the
other hand, force variability that disrupts static
equilibrium (i.e., violates the task constraints).
Others and we refer to the former and latter
subspaces as task-irrelevant (or null space) and
task-relevant, respectively, as they indicate a dis-
tinction about where the controller is thought to
place emphasis.

Proponents of the Uncontrolled Manifold (UCM)
and Principle of Minimal Intervention hypothe-
ses have suggested that, to simplify the control
task, the nervous system only needs to identify
and control the task-relevant subspace, and can
disregard the task-irrelevant subspace [8, 9, 10,
11, 12]. Compelling evidence for this comes from
spatial domain analyses showing clear structure
in the spatial variability of task variables. By
spatial variability we mean the amplitude and
range of the multidimensional task variables of
fingertip or resultant forces. Researchers, includ-
ing our group, have repeatedly shown that the
spatial variability in task-irrelevant dimensions
is relatively larger than in task-relevant dimen-
sions [8] in analyses of kinematic [13], kinetic [5]
and EMG variability [12]. In this context, larger
spatial variability in a task dimension is assumed
to imply less control effort (i.e., intervention) of
those task variables that do not affect the suc-
cessful performance of the task. In practice, how-
ever, even task-relevant dimensions will exhibit
some variability because a certain amount is ac-
ceptable given, say, high contact friction, or un-
avoidable, given, say, sensory or motor noise, or
neural delays. Conversely, task-irrelevant dimen-
sions will also show some control action when,
for instance, noise, delays or stochasticity drive
the system across some boundary that requires
intervention (e.g., [14, 15]). Therefore, the rel-
ative magnitude of variability across task vari-
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ables is not necessarily a robust predictor of task-
relevance, control action or strategy [12, 16].
In fact, even proponents of the UCM hypothesis
admit the possibility of preferential as opposed
to a strict separation into clearly controlled and
uncontrolled variables [10]. Despite this quali-
fication, we lack specific quantification and de-
scription of controlled intervention in both task-
relevant and task-irrelevant spaces that would al-
low us to understand neural control strategies
better.

Spatial vs. temporal variability

There is a growing emphasis to infer neural con-
trol strategies by supplementing spatial quantifi-
cation of variance with temporal analyses. As
described above, much more attention has been
given to spatial variability. However, relatively
little attention has been directed at the tempo-
ral structure of variability in task variables in
the context of task redundancy [12, 16, 17]. By
temporal variability we mean the time-varying
features of the multidimensional task variables,
e.g., fingertip or resultant forces in this case. Lest
the reader think that time-varying actions during
static force production or grasp is an oxymoron,
others and we have shown that finger muscles
and fingertip forces exhibit rich dynamics dur-
ing static grasp [5, 7, 12]. Being considered and
called uncontrolled, the implicit and explicit as-
sumption is that task-irrelevant variability ex-
hibits the spatial and temporal properties of un-
controlled dynamical processes. In the anoma-
lous diffusion literature, this is considered either
a white noise process, consisting of uncorrelated
samples, or Brownian motion, formed by the in-
tegration of the former [18, 19]. In the context
of neural control, we take it to mean the state

of least control (i.e., truly uncontrolled where
the dynamics of the plant is not influenced by
the controller). Conversely, a controlled process,
continuously or intermittently [20, 21, 22, 23],
will exhibit the temporal properties of controlled
dynamical processes such as negative correlations
between time samples (i.e., if a task variable
moves in one direction, at some future time it
will require a corrective action in in the opposite
direction). Please also note that the mechanical
properties of the musculoskeletal plant act as fil-
ters on the neural input, and can give to correla-
tions in the output. This is a limitation common
to all studies of neural commands. Therefore,
studying the force variability that naturally oc-
curs in static grasp provides unique opportuni-
ties to reveal the time-varying nature of control
actions without having the confounding, or at
least superimposed, effects of additional dynam-
ics coming from other features of more dynamical
tasks such as gait [16]. By applying a combina-
tion of temporal and spatial analysis techniques
to multifinger static grasp, we find that task-
relevant and task-irrelevant variables are both
subject to strong and weak control actions at dif-
ferent time scales. Therefore, these results pro-
vide evidence against the UCM hypothesis and
the Minimal Intervention principle. We conclude
that it is necessary to revisit and revise our un-
derstanding of variability vis-á-vis task relevance
when inferring control action and understanding
how the CNS confronts task redundancy.

Methods

We combine linear spatial approaches and non-
linear temporal approaches to (i) quantify the
spatio-temporal nature of the variability in both
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the task-relevant and task-irrelevant subspaces;
(ii) compare them to the mechanical predictions
of necessary control actions for the task; and
(iii) evaluate them in light of the UCM hypoth-
esis and Minimal Intervention principle. We se-
lected the task of static tripod grasp because it
is a common and useful redundant motor task,
and a fundamental aspect of human manipula-
tion [24, 25, 7].

Data collection

We asked 12 young, healthy and consenting sub-
jects (ages 20-36, 6 male, 9 right-handed) to per-
form a static tripod grasp of an instrumented
rigid object designed and built in our lab (Fig-
ure 1), whose use has been reported in [7]. While
performing the grasp, the thumb, index and mid-
dle finger were in contact with three ATI Nano17
6-axis force transducers (Apex, NC, USA) locked
in a configuration comfortable for each subject.
The angle between index and middle finger was
approximately 30◦, while the angles formed with
the thumb by each finger were approximately
165◦. Each force transducer was coated with
a Teflon surface to reduce reliance on friction
by the subjects to achieve a stable grasp. The
force transducers were connected to a 16-bit Na-
tional Instruments 6225 M-series data acquisi-
tion card (National Instruments, Austin, TX,
USA). Attached to the object were three markers
for motion capture, forming an equilateral trian-
gle, whose plane was parallel to the grasp plane of
the three fingertips. Seven motion capture cam-
eras (Vicon, Oxford, UK) allowed us to measure
the object’s position and orientation to quantify
how well the subject met the task goal of main-
taining a simple static grasp.

Furthermore, three different weights (50 g, 100 g,
and 200 g) were attached from below to the ob-
ject (Figure 1c). Additionally, the latter half the
trials were performed with visual feedback pre-
sented to the subjects approximately 1 m away
on a 23 inch computer screen. The visual feed-
back consisted of a horizontal target line repre-
senting the target sum of normal forces (in New-
tons) applied by three fingers, and a crosshair
representing the actually applied sum of normal
forces (Figure 1d). The goal in those trials with
visual feedback was to align the horizontal com-
ponent of the crosshair with the target line and
keep the variability of force application minimal.
The target force was the average sum of normal
forces applied by subjects across all trials with-
out visual feedback. In effect, the visual feed-
back added another task-relevant dimension to
the task, besides keeping the grasp as static as
possible.

Subjects performed all trials with their dominant
hand determined as per Oldfield [26], as shown
in [7]. Subjects were seated in a chair, with
the grasping hand resting on the chair’s arm-
rest (Figure 1). Moreover, we asked subjects to
immobilize the wrist of their grasping hand by
gripping the wrist with their non-dominant hand
to minimize wrist rotation and hand translation,
since we were interested in the coordination of
fingertip forces for steady-state static grasp with
as little motion as possible.

Subjects performed three repetitions of static
grasp trials of 68 s duration for each weight and
each visual condition, for a total of 18 trials per
subject (3x3x2). The instructions to the subjects
were to simply hold the object in a static tripod
grasp with as little motion as possible, as in Fig-
ure 1. Even though the object was light (max.
260 g), we provided subjects with one minute of
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Presented on screen
(50 Hz, 1.5 m away)

Weight attached to
object from below

No visual
feedback (9)

50 g (3)
100 g (3)
200 g (3)

Force target tracked
by crosshair (9)

50 g (3)
100 g (3)
200 g (3)

Table 1: Overview of the experimental conditions
(number of trials in parentheses). The instruc-
tions to the subjects were to simply hold the ob-
ject in a static tripod grasp with as little motion
as possible, as in Figure 1.

rest to avoid fatigue or discomfort. Trials were
block randomized: the different weights were at-
tached in random order for each condition, but
the nine trials with visual feedback were always
performed after the ones without. This was be-
cause the target total grasp force line height was
based on the self-selected average sum of normal
forces for each weight in the non-visual condi-
tion. The individual experimental conditions are
described in Table 1.

Data preprocessing

The three-dimensional force data recorded by
each transducer were sampled at 400 Hz, while
the motion-capture marker positions were sam-
pled at 200 Hz (both force and motion data col-
lection were triggered synchronously). We re-
moved the first seven and last 1 second(s) from
each trial’s time series to avoid transients. Next,
we downsampled both the force and motion cap-
ture time series to 100 Hz, to balance the need
for temporal resolution and computational cost.
Having performed the same analysis on a subset

of the trial at the original sample rate, we subse-
quently found that results were unaffected, when
repeating the analysis at lower sample rates.
Hence, 100 Hz was found to be a useful compro-
mise as it still allows for a physiologically mean-
ingful temporal resolution on the order of 10−1

s.

As is required by our temporal analysis, see be-
low, we did not filter the data to avoid creating
artifactual correlations.

Data analysis - Spatial

To analyze the spatial coordinated action among
the three fingertip forces, we first performed prin-
cipal component analysis (PCA) on the time
series of each sensor’s normal forces for each
trial. PCA is a popular linear method for the
estimation of spatial correlation structures in
data [27]. Specifically, we computed the three
principal components (PCs) of the 3x3 normal
force covariance matrix (q-PCA). Each PC is a
unit vector whose elements, called loadings, spec-
ify the multidimensional correlation among vari-
ables; and a combination of PCs forms a basis
defining a vector subspace that is a linear ap-
proximation to the spatial correlation structure
in the data [27]. PCA has been commonly used
to estimate effective degrees of freedom in mo-
tor systems, and in the context of the UCM hy-
pothesis to compute task-relevant and -irrelevant
latent variable spaces, which are represented by
the orthogonal PC vectors (e.g., [5]). We then
projected the 3-dimensional normal forces (one
normal force per force sensor) time series data
onto the three principal components. Follow-
ing [7], we call the first, second, and third princi-
pal components the Grasp, Compensation and
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Hinge Modes of this task (Figure 2), respec-
tively. We also tested doing this same analy-
sis on the full 3D force data (normal and two
tangential force components per force sensor, see
Discussion and Figures 10, 11, 12, and 13) but
the results are unchanged from when using only
the normal force component from each sensor,
in particular since the magnitude of the tangen-
tial force fluctuations were several orders of mag-
nitude smaller than those of the normal forces,
but not their mean levels, since vertical tan-
gential components are required to sustain the
weight of the object against gravity. Impor-
tantly, adding tangential forces to the analysis
adds several task-relevant or task-irrelevant di-
mensions, which however does not affect the fun-
damental question or findings of this study, i.e.
the implications of certain temporal dynamics
for the study of control of task-relevant and -
irrelevant dimensions.

Data analysis - Temporal

Next, we applied Detrended Fluctuation Anal-
ysis (DFA) to each projected time series [28]
to detect temporal correlations in non-stationary
time series. It has the advantage, in particu-
lar over the classical time-lagged autocorrelation
function, that it can distinguish unwanted trends
of arbitrary order that can give rise to spuri-
ous non-zero correlations, from actual long-range
correlations in non-stationary data. Examples of
non-stationary data are time-series with trends
that are long relative to the length of the time se-
ries or which exhibit clustering - mathematically
speaking, data whose two-point autocorrelation
is time-variant. DFA has been used extensively
for the analysis of behavioral and physiological
data [29, 30, 31]. Mathematically, it quantifies

the power-law increase of the root-mean square
deviations from a trend in the time series fluctu-
ations, once segments of increasing length n have
been subtracted from it to remove trends of that
length:

F (n) =

 1

L

L∑
j=1

(Xj − (aj + b))2

 1
2

Where Xj − (aj + b) represents the residuals of
the linear fit aj + b to the time series segments
Xj of length n. For a given segment length n,
there are L overlapping segments in the process.
The complete expression for F (n) represents the
average root mean square deviation at segment
length, or time scale, n. In a non-stationary pro-
cess, this time scale is related to F (n) by the
relationship

F (n) ∝ nα

This power-law increase in root-mean square de-
viation is mathematically linked to long-range
temporal correlations in the data: negative corre-
lations will, over time, lead to a smaller rate of in-
crease than positive correlations. The scaling ex-
ponent α indicates the type of correlation, as well
as the strength of the relationship between data
increments separated by a time scale n. DFA re-
veals empirically (i.e., in a model-free way with
minimal assumptions) the inherent time scales
for which different temporal correlations exist in
the data by showing if the scaling exponent α
(i.e., the slope of the logarithmic plots of n vs.
F (n)) differs at different time scales. These time
scales are found based on regions of slope linear-
ity in the logarithmic plots of n vs. F (n), and
thus regions of actual power-law scaling.

In particular, the scaling exponents α can be fit
to the logarithmic plots of the time scales n vs.
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the F (n) (for an interpretation of these scaling
exponents, see Table 2).

Because long-range negative correlations reflect
corrective actions that prevent dissipation, they
are interpreted as evidence for the workings of
corrective and stabilizing (i.e., negative feed-
back) control, while positive correlations can be
interpreted as evidence of lack of corrections and
thus lack of stabilizing control actions [32, 20].
(Please note that these notions are related, but
not equivalent to notions of stability, which are
beyond the scope of this work because our static
grasp task is stable). Recent work also sup-
ports the idea of interpreting scaling exponents
in terms of indicating the degree of control effort
[16, 33]

To further confirm the reliability of our results,
we repeated the DFA on the first and second half
of each trial to test if the structure of the vari-
ability in normal forces is sensitive to the level
of total grasp force. We felt this to be necessary
because, as is commonly reported in studies of
static grasp (e.g., [34], we noticed that some tri-
als exhibited a relaxation of the total grasp force,
likely an adaptation to reduce fingertip forces
over time to mitigate fatigue (see Results).

Modeling of tripod grasp

As in [7], we applied the same analysis meth-
ods to synthetic data generated by a simulation
of the task. For a description of the model, see
Appendix. In that model the variability in the
simulated normal forces comes from our imple-
mentation of a standard Brownian random walk
(see Appendix and [7] for details). Analyzing
data from a strictly mechanical simulation allows
us to disambiguate features of mechanical origin

from features of the control that cannot be ex-
plained by mechanics, and are therefore of likely
neural origin (for other examples of this approach
see [7, 35, 36]).

Results

Principal component analysis of simu-
lated normal forces

Figure 3 shows the simulated normal forces plot-
ted against each other, which shows that, by con-
struction, the valid solutions populate a plane
representing the constraints of the task. In agree-
ment with our mechanical analysis [7], PCA of
the simulated data finds the two basis vectors
(principal components, or PCs) describing that
plane: the Grasp Mode [0.81, 0.41, 0.41]T and
the Compensation Mode [0.0,−0.71, 0.71]T , Fig-
ure 2.

Mechanically, the dynamics associated with the
Compensation Mode reflects movement of the
intersection point of the three force vectors, as
shown in [24, 25]: as long as the force vectors, ex-
tended from their respective application points,
intersect in one common point inside the object,
there will be no moment exerted on the object.
The only physical limitation is that the force vec-
tor extended from each fingertip stay within its
friction cone. The Grasp Mode, in turn, quan-
tifies changes in the total grasp force, which is
equivalent to the intersection point not moving
side-to-side on the manifold in Figure 2, but
rather up-and-down as the distance to the ori-
gin quantifies the total grasp force.

These two PCs together explain all the normal
force variance in the simulated data. In this
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Value of α at n Type of correlation Nature of correlation Effect on data

> 0.5 Persistence
Positive (negative)
increment followed

by positive (negative) increment
Expansion

< 0.5 Anti-persistence
Positive (negative)
increment followed

by negative (positive) increment

Contraction
(Stabilization)

= 0.5 Brownian motion No correlation
between increments

-
(No control)

Table 2: Different scaling exponents found by linear fitting in the logarithmic displacement vs. time
scale plot.

Mode Experimental
condition

Task
relevance

UCM and MI
predictions

Spatial PCA
results

Temporal DFA results
at different time scales

Grasp Mode No visual feedback
With visual feedback

Irrelevant
Relevant

No control
Control

High variance
Low variance

Controlled and uncontrolled
Controlled and uncontrolled

Compensation
Mode

No visual feedback
With visual feedback

Irrelevant
Irrelevant

No control
No control

High variance
Low variance

Controlled and uncontrolled
Controlled and uncontrolled

Hinge Mode No visual feedback
With visual feedback

Relevant
Relevant

Control
Control

High variance
Low variance

Controlled and uncontrolled
Controlled and uncontrolled

Table 3: Summary of findings, highlighting in bold discrepancy among UCM and Minimal In-
tervention (MI) predictions and temporal Detrended Fluctuation Analysis (DFA) results. As per
Figures 8 and 9, by uncontrolled we mean evidence of unstable and Brownian growth (scaling ex-
ponents > 0.5), and by controlled we mean evidence of corrective action (scaling exponents < 0.5).
In particular, both the Grasp and Compensation Modes are task-irrelevant but show temporal fea-
tures of corrective action at some time scales. Similarly, the Hinge Mode is task-relevant but shows
temporal features of lack of corrective action at some time scales.

idealized case, by construction once again, if
the variability of normal fingertip forces exhibits
this structure in steady-state static tripod grasp,
then such variability will not give rise to accel-
erations or rotations of the grasped object and
exists entirely in the null space of the task. Ac-
tual acceleration of the object is associated with
variability of normal forces perpendicular to this
plane, along the PC vector of the Hinge Mode
[0.6,−0.5,−0.5]T .

Principal component analysis of exper-
imental forces

As expected, subjects met the task requirements
of not dropping the object and holding it still,
but still showing some variability in their normal
forces and object movement. The object mark-
ers (for motion capture) stayed well within 5 mm
in all directions, and object motion was signif-
icantly affected by the presence of visual feed-
back, but not weight (p < .01, Mann-Whitney
U test). Given the mechanics of the task and
instructions to the subjects, the small but mea-
surable linear accelerations of the object must be
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due to dynamics along the Hinge Mode (or to a
lesser extent to the unmodeled vertical motion
and 3D rotation modes given that the wrist was
held fixed).

We applied PCA to the time series of experimen-
tal normal forces (see Figures 4 and 5 for repre-
sentative trials for 2 different conditions) and,
as expected from the mechanical requirements of
the task [7], we found that the variability of nor-
mal forces consistently exhibited a structure de-
scribed by the three principal components found
in the simulation.

In the case of no visual feedback, the Grasp Mode
obtained from PCA explains approximately 90%
of the normal force variance, while the Compen-
sation Mode approximately 5-10% and the Hinge
Mode 1-3% (Figure 6). In contrast, in trials
with visual feedback the Grasp and Compensa-
tion Modes contribute roughly equally to the nor-
mal force variance, slightly less than 50% each
(Figure 6) with 1-3% accounted for by the Hinge
Mode. The low percentage of variance explained
by the Hinge Mode in both cases shows that
subjects were mindful of the request to perform
static grasp, and satisfied the task requirements
of not accelerating the object. Lastly and not
surprisingly, the Hinge Mode shows almost no
variation over time given that the object was held
relatively still, as confirmed by motion capture.
Figure 10 further shows that the variance ex-
plained by three Modes remains unaffected even
if we consider all three force components for each
digit.

Detrended Fluctuation Analysis of time
series projected onto principal compo-
nents

Our first finding is that the Grasp, Compensa-
tion and Hinge Modes all naturally exhibit three
distinct scaling regions, representing temporal
correlations at three different time scales (Fig-
ure 8). In particular, the distinct time scales are
at 10s, 100s and 1000s of milliseconds, subject
to some fluctuation. Due to this fluctuation, we
calculated the scaling exponent only for a con-
servative subrange of these time scales that was
common to all trials and subjects, i.e. 1-50 ms,
250-500 ms, and 3500-7000 ms.

In the following, all reported changes in scaling
exponents α (i.e., slopes of the log-log plots) are
statistically significant at the p < .01 level, based
on Kruskal-Wallis (across the three weight con-
ditions) and Mann-Whitney U statistical tests
(across the two visual feedback conditions). We
used these non-parametric test (equivalents of
ANOVA and t-test, respectively), because in-
spection of deviations from normality revealed
a clear absence of a normal distribution of α re-
quired for parametric tests.

Detrended Fluctuation Analysis: Gen-
eral scaling exponent results

Consider Figure 9, which shows the mean scaling
exponents across all trials, respectively. At short
time scales (1-50 ms), the slopes associated with
both the Compensation and Hinge Mode time
series are close to 0.5, indicating lack of positive
or negative correlation (approximating a random
walk) between increments and thus absence of a
corrective control effort, while the Grasp Mode
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has a mean slope of 0.7, reflective of positive cor-
relations (i.e., diffusive growth) in the time series.

At medium time scales (200-500 ms), the slope of
the Grasp Mode decreases to 0.5, indicating lack
of corrective control effort along this dimension,
while the Compensation Mode now indicates the
activity of a stabilizing or correcting effort, with
the scaling exponents α having decreased to a
value of 0.3, and the Hinge Mode shows a very
strong negative correlation (indicative of strong
corrective action) of RMS deviation scaling with
exponent α = 0.1, indicating a strong tendency
to enforce a constant mean level. Importantly,
the 200-500 ms time delays include the short-
est voluntary time scales of the sensorimotor sys-
tem [37].

The long time scale (3500-7000 ms) is not partic-
ularly different from the 200-500 ms time scale
in terms of DFA slopes, except that the Grasp
Mode now becomes corrective as well, with a
slope having decreased from 0.5 to 0.3.

Importantly, DFA scaling exponents did not sig-
nificantly differ between the first and the second
half of the trials.

Effect of adding visual feedback

Solid arrows in Figure 9 show the effect of adding
visual feedback. Note that these arrows indi-
cate only those statistically significant changes
found based on our Mann-Whitney U statisti-
cal tests. Visual feedback had the predictable
effect of decreasing the scaling exponent α for
the Grasp Mode at the long time scales of 3500-
7000 ms; indicating the success of the long visuo-
motor loop in keeping the total grasp constant.
However, and somewhat counter-intuitively, it

also increased the slope of the Grasp Mode at
short time scales (1-50 ms), indicating greater
positive correlations (i.e., diffusive growth) in
the short latencies not affected by the visuo-
motor loop. This may reflect increased signal-
dependent noise and spurious corrections known
to result from higher gains in the motor and
sensory components of a feedback loop - in this
case the visuomotor loop. The Hinge Mode was
the only other Mode affected by visual feedback;
where its slope in the long time scales became
slightly, but statistically significantly, more cor-
rective as it is changing from 0.13 to 0.1.

Detrended Fluctuation Analysis: Effect
of increasing weight

Dashed arrows in Figure 9 show the effect of
adding weight to the object. Note that these ar-
rows indicate only those statistically significant
changes found based on our Kruskal-Wallis sta-
tistical tests. The α slope of the Grasp Mode at
scales (1-50 ms) increased toward to 1.0, as in
the case of adding visual feedback. Again, this
perhaps reflects the increase in signal-dependent
noise with the need for greater grasp forces.
Signal-dependent noise scales linearly with force
and is observed in the 8-12 Hz frequency band
of force measurements ([38], i.e. time scales of <
125 ms) and induces positive mechanical corre-
lations across fingers due to reaction forces. The
only other significant effect of weight was a slight
increase of the Hinge Mode slope in the medium
time scales, possibly reflecting the increased diffi-
culty of maintaining immobile the more massive
objects, which would show less effective correc-
tions in this time-scale (see Figure 9).
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Discussion

Our spatio-temporal analysis of static grasp
demonstrates that fingertip forces exhibit evi-
dence of corrective actions and absence of correc-
tive actions in both the task-relevant and task-
irrelevant task subspaces. Our main message is
that, during a static tripod grasp, we find exam-
ples at different time scales of how task-irrelevant
parameters, which are commonly associated with
the UCM, are actively controlled, and how task-
relevant parameters (i.e., performance variables)
are not actively controlled. This evidence crit-
ically extends our approach to task relevance,
and compels us to revise our understanding of
neural control of task redundancy. In particu-
lar, our results challenge the currently dominant
approaches to redundancy of the UCM Hypoth-
esis and the Minimal Intervention principle that
advocate a separation of control strategies be-
tween task-relevant and task-irrelevant variables.
Rather, we demonstrate that there exist correc-
tive actions common to all task variables that
supports the notion of a continuum, rather than
a separation, of neural control strategies common
to both task-relevant vs. task-irrelevant vari-
ables. Moreover, the similarity of control actions
across time scales seen in both task-relevant and
task-irrelevant spaces points to a level of modu-
larity in corrective action not previously recog-
nized. After explaining how methodological con-
siderations do not challenge our main findings,
we discuss the implications of our results to our
understanding of neural control of task redun-
dancy.

Methodological Considerations

We find that variability of the normal forces of
the fingertips on the object during static grasp
suffices to show a counter example to current
thinking about neural control of task redun-
dancy. We designed our experimental paradigm
of static equilibrium to sidestep methodologi-
cal and theoretical difficulties encountered by
prior studies of more complex tasks, e.g., [39,
16, 17]. Studies investigating the UCM hypoth-
esis and Minimal Intervention principle must re-
strict themselves to a measurable subset of per-
formance variables (it is not practical to record
EMG from all muscles, angles from all joints,
etc.) during well-defined tasks (like planar limb
motion or body motion in the sagittal plane).
We used a mechanical model developed in [7] to
interpret our normal force data, and were care-
ful to only analyze trials for which the linear
and angular accelerations were measured as neg-
ligible based on motion capture data, and thus
considered as static grasp. We initially analyzed
the 9-dimensional system that included tangen-
tial forces of all three fingertips, but found that
the only significant tangential forces were those
counteracting gravity. They were relatively con-
stant, which is not surprising given the trials we
considered as valid examples of static grasp. The
magnitudes of the fluctuations of the other tan-
gential forces (those in the horizontal plane) were
several orders of magnitude smaller than the nor-
mal forces, and therefore considered negligible for
the purposes of making our main point. Namely,
showing a counter example of task-irrelevant task
variables (those associated with the UCM) being
actively controlled during a static tripod grasp.
Tangential forces add to the dimensionality of
the motor control task - some of the performance
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variables associated with these dimensions could
be identified as task-relevant, others as being
part of the UCM. However, any additional task
variability dimension is, mathematically and in
the context of the UCM hypothesis, perpendicu-
lar to existing dimensions (e.g., moment cancella-
tion efforts do not necessitate normal force vari-
ability, from a purely mechanical point of view).
Therefore, whether or not these additional di-
mensions are subject to control (i.e. constitute
additional performance variables) has no bear-
ing on our main finding that there exist at least
2 task-irrelevant (from a UCM point of view) di-
mensions of variability (i.e., Grasp and Compen-
sation Modes) that are being continuously con-
trolled in the task of static tripod grasp, while
simultaneously, there exists a task-relevant direc-
tion, or performance variable (i.e., Hinge Mode),
that is not controlled at short time scales. Nev-
ertheless, studying potential coupling between
mechanically independent task dimensions is a
worthwhile problem. In fact, we have looked at
this problem for a similar (but dynamic) task in
a previous paper [7], but that analysis and dis-
cussion is beyond the scope of this work.

Our methodology has some important strengths
and differences compared to prior work that uses
a temporal analysis. Our work on multifin-
ger manipulation differs from that of locomo-
tion [39, 16], reaching and gaze shifting [17] in
that: (i) it is substantially simpler problem than
locomotion and therefore easier to identify per-
formance variables; (ii) it is equally important
to activities of daily living; and (iii) particu-
larly relevant to human evolution. In particular,
Dingwell and colleagues [16] recently showed that
gait, a nonlinear dynamical task, exhibits the
expected greater variability along goal-irrelevant
directions as per the UCM and Minimal Inter-

vention principle. In agreement with our find-
ings, they find corrections for deviations in both
goal-relevant and -irrelevant directions; but pre-
fer to say that the nervous system largely ”ignores
non-essential variations.” While they use DFA to
study the correlation structure along each pro-
jected time series, they interpret the scaling ex-
ponents as continuous variables that indicate dif-
ferent levels of control action at different time
scales in different subspaces. Given the com-
plexity and nonlinearity of their task, they ex-
plore variations in model structure to alter what
was being controlled, but not the task variables,
to further strengthen their conclusions. We did
not need to do that because we chose a sim-
pler task where the analytical solution to the
mechanics of the system and task allows us to
define our Modes, and interpret the scaling expo-
nents. Importantly, they cite us [12] - when stat-
ing that quantification of variances along spatial
dimensions alone can lead to incorrect conclu-
sions about control - as motivation for their use of
temporal analyses as a necessary next step. This
is the point we also now make by emphasizing
spatio-temporal analyses for static grasp. In fact,
it is perhaps a testament to the utility of these
spatio-temporal analyses that, even when done
at multiple levels of observation and across mul-
tiple tasks, different studies agree that temporal
dynamics is critical to proper interpretation of
neural control. Lastly, van Beers and colleagues
[17] study two simultaneous discrete movement
tasks: reaching and gaze shifts between visual
targets that are not related to our work in mul-
tifinger grasp. However, their autocorrelation
analysis of task-relevant and task-irrelevant vari-
ables shows that task-irrelevant variability is cor-
rected less intensively. Because their tasks are
dynamical target-driven tasks, their interpreta-
tion of the temporal structure of variability in
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the task-irrelevant variables is motor exploration,
learning and performance optimization. Given
that our static grasp task is simpler and has clear
goals that can be modeled mechanically, we can
make stronger claims as to the nature and struc-
ture of the variability. Our approach is, how-
ever, necessarily silent about methodological is-
sues in those other nonlinear dynamical experi-
mental and analytical paradigms. However, we
agree with them in that active exploration for fa-
tigue mitigation is a potential benefit of variabil-
ity in these task-irrelevant variables (see below).

Furthermore, it is important to consider prior
studies that have identified voluntary and in-
voluntary collaborative force interactions among
fingertips when pressing or grasping rigid ob-
jects (e.g., [40, 6, 9, 41]; see for review [42]).
From the mechanical perspective, many extrinsic
flexor and extensor muscles are multitendoned or
have multiple compartments subject to a certain
level of common neural inputs (but the thumb
and index finger are largely independent [43]).
This provides a level of mechanical coupling
across fingers - which is mostly known to prevent
large, individuated or disparate finger motions
([44, 43, 45]; as reviewed by [42]). Our task was
designed to consider these potential confounds
by requiring a low-magnitude static grasp in pos-
tures where all fingers are similarly flexed so that
tendinous interconnections do not play a dom-
inant role. Common neural inputs to muscles
across fingers are also not a confound because,
as reported by [6], those common drives do not
produce the kind of variability that leads to a
pervasive dynamic Grasp Mode in the low fre-
quency range during non-grasp force production
tasks. Common neural input, by definition, is
composed of highly correlated short-latency (i.e.,
high frequency) discharge of motor units. As re-

ported by Bremner et al. [46] the duration of the
synchronization ranged from 5 to 31 ms (mode=
13ms). These latencies are only applicable to
the shortest (i.e., 1-50 ms) time scales in Fig-
ure 9. Moreover, the Grasp Mode captures such
effects of common neural drive because it is de-
fined as synchronous increase or decrease of fin-
ger forces. Common neural drive would not enter
the other Modes because they require opposing
(i.e., synchronous increases and decreases) in fin-
ger forces. Thus, common neural drive cannot
explain our findings of evidence of control action
in task-irrelevant variables, and lack of it in task-
relevant variables, that are spread across Modes
and time scales.

Lastly, Bryce and colleagues [47] have urged cau-
tion when analyzing nonlinear or nonstationary
signals with DFA. However, our goal is not to
estimate exact or specific Hurst exponents, but
rather show that a clear deviation from the 0.5
line exists, much like in the recent work by Ding-
well. We did consider the potential confound of
nonstationary time series, but our results are ro-
bust with respect to analyzing first and second
halves of each trial. Furthermore, we do not ob-
serve an initial curvature mentioned by Bryce
and colleagues, among other things because we
do not allow for estimation of very small time
scales, as mentioned in our methods. Instead,
we see an initial linear region, with scaling differ-
ent for each Mode. This finding is robust across
subjects and trial halves. This underscores the
stability of our conclusion: that task-irrelevant
dimensions are indeed subject to control inter-
vention, and vice versa, and that this observation
is time-invariant.
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Spatial analysis

Our simulation results clearly show that the first
two principal components, the Grasp and Com-
pensation Modes, span the null space of force
dynamics associated with successful static grasp:
variation of force inside this manifold does not
violate the constraints of static grasp (i.e. zero
net force and moment). Given however, that
noise and variability are inevitable elements of
neuromuscular systems, successful task comple-
tion naturally leads to the population of the null
space manifold, and task-relevant variability in
the Hinge Mode orthogonal to the solution man-
ifold (i.e. modulating linear motion of the object
in violation of the static task requirement) will
be minimal, but not necessarily zero.

In the case of static grasp, the fingertips are
coplanar in the horizontal plane, and their verti-
cal tangential components serve to cancel grav-
ity. Therefore, the point of intersection of 3D
force vectors in the horizontal plane can either:

Remain stationary. In this case the only pos-
sible changes in the fingertip force vectors are to
increase or decrease their magnitudes simultane-
ously and proportionally, i.e., change the total
grasp force. Mind the fact that these magni-
tudes are bounded above by finger strength and
the possibility of crushing the object; and below
by the need to support the object against grav-
ity. Regardless of the location of the point of
intersection within the object, such simultaneous
and proportional increases or decreases in 3D fin-
gertip force vector magnitudes will induce iden-
tically simultaneous and proportional changes in
the normal component of the normal forces. This
is captured by the Grasp Mode where all normal
forces are positively correlated and therefore hav-

ing PC loadings of the same sign, as in [0.81 0.41
0.41]T in Figure 2. Please note that the loadings
are the unit vectors describing the multidimen-
sional correlation defining each PC. Therefore
the loadings for this PC show that the thumb,
index and middle finger forces all co-vary in this
Mode. This analytical argument shows that the
normal forces suffice to detect the spatial cor-
relation structure defining the Grasp Mode. To
confirm this, Figure 11 plots the loadings of the
1st PC of the 3D force analysis case (i.e., normal
and two tangential forces for each digit) for all
subjects and trials. This 9D equivalent to the
Grasp Mode shows that positive correlation of
all three normal forces dominates, and that the
loadings of the tangential forces straddle the zero
line (i.e., do not show strong covariation with the
normal forces) to create a vector roughly [0 0 0.8
0 0 0.4 0 0 0.4]T .

Move within the object. If, say, the
thumb force vector maintained its magnitude but
changed its direction along an arc to the right by
increasing its the tangential component and de-
creasing its normal component, then maintaining
static equilibrium (as it was in the experiments
we analyzed) would require the other two fin-
gertip force vectors to track the 3D thumb force
vector. In so doing, the magnitude of one fin-
gertip force vector must increase, and the other
decrease. This lengthening and shortening of the
vectors must again be simultaneous and propor-
tional. Once again, this will also induce iden-
tically simultaneous and proportional changes in
the normal component of the normal forces. This
is captured by the Compensation Mode, where
one normal force is positively correlated with the
thumb force and the other negatively. Thus the
fingers have PC loadings of opposite signs, as in
[0 -0.71 0.71]T in Figure 2. That is, the full 3-
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component force vectors are not required to de-
tect these changes. The normal forces suffice to
detect these changes and their associated struc-
ture as the Compensation Mode. To confirm
this, Figure 12 plots the loadings 2nd PC of the
3D force analysis case for all subjects and trials.
This 9D equivalent to the Compensation Mode
shows a dominant anti-correlation between the
loadings of the normal forces of the index and
middle finger, and that the loadings of the nor-
mal force of the thumb and all tangential forces
straddle the zero line to create a vector roughly
[0 0 0 0 0 -0.7 0 0 0.7]T .

A different combination of normal forces is the
one perpendicular to the manifold. This is the
”Hinge Mode” that would induce linear motion,
with PC loadings [0.6− 0.5− 0.5]T (thumb nor-
mal force increasing and simultaneous and pro-
portional decreases in the fingers’ normal forces).
Our results show that dynamics along this task-
relevant Mode was minimal because, by con-
struction, we only analyzed cases where the ob-
ject was in static equilibrium, in agreement with
the UCM hypothesis that this Mode exhibits less
variability. The normal forces suffice to detect
these changes and their associated structure as
the Hinge Mode, as also shown for the 3D force
analysis case in Figure 13.

Very critically, we did not need PCA to iden-
tify our three Modes empirically. Rather, these
were prescribed by the analytical solution to the
mechanics of the system and task. PCA was
only applied to the experimental data to identify
for each subject the directions of normal force
variability that maximally corresponded to the
known directions inferred from mechanical anal-
ysis. For all subjects, these agreed well, by con-
struction, with the closed-form analytical solu-
tion as mentioned in the results.

Our experimental spatial results, as expected,
are in agreement with our simulations and the
prior evidence for the UCM Hypothesis and the
Minimal Intervention principle [8, 11]: the vari-
ance in task-relevant variables is smaller than in
the task-irrelevant spaces. The difference in vari-
ance explained by the Grasp and Hinge Modes
in each case is explained by comparing Figures 4
and 5 where, in the absence of visual feedback,
the total grasp force (Grasp Mode) shows large
variability that is absent when visual feedback is
provided to avoid such drift. More specifically,
the projection of the fingertip force time series
data recorded without visual feedback onto the
Grasp Mode shows a very slow monotonic down-
ward trend (Figure 7 for a representative trial).
We interpret this slow trend to be the major con-
tributor to large spatial variability explained by
this mode: it is caused by the three fingers re-
ducing their normal forces simultaneously. This
underscores an important shortcoming of PCA
when applied to non-stationary signals (for a de-
tailed discussion see [27]). On the other hand,
in trials including visual feedback, the Grasp
Mode does not exhibit such a trend (Figure 5
for a representative trial). This is not surpris-
ing, since holding a constant total force is now
an explicit task constraint, converting the Grasp
Mode into a task-relevant Mode (see Table 3).
As a consequence, the Compensation Mode (the
other task-irrelevant dimension) now contributes
a larger proportion of the overall variability (Fig-
ure 6). The fact that variability in the Grasp
Mode does not disappear with visual feedback is
well known and can be attributed to unavoidable
motor noise, and other central and peripheral
sources of correlated finger forces [5, 7, 48]. The
Compensation Mode also exhibits a slow non-
monotonic modulation both increasing and de-
creasing over time (Figure 7). This indicates that
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index and middle finger normal forces are slowly
and continuously modulated, out of phase, dur-
ing static grasp.

As we have argued before [3, 27, 35], PCA of
analytical solutions and experimental data alike
naturally show a reduction in the dimensional-
ity of task variables, which is a necessary result
of meeting task constraints with a biomechan-
ical plant. But this does not imply that the
CNS is itself using a low-dimensional controller
to simplify or optimize the redundancy problem.
Rather, this simply reflects the structure of the
solution space. Therefore, the question in not
only whether the CNS can meet the requirements
of the task (by definition it did if the task was
accomplished), but also how it continues to meet
them as time goes by. This makes temporal anal-
ysis of task variable dynamics critical to under-
standing the neural control actions in both the
task-relevant and task-irrelevant spaces.

Temporal analysis

Our DFA results, on the other hand, demonstrate
the presence and absence of corrective actions
by the CNS at different time scales in both the
task-relevant and task-irrelevant task subspaces.
Both linear and nonlinear time series analysis has
been commonly employed to reveal temporal cor-
relation structures (positive or negative) indica-
tive of control strategies (destabilizing or stabi-
lizing, respectively), primarily in postural con-
trol research [20, 49]. For instance, in a seminal
paper by Collins and de Luca [20] the authors
demonstrated a complex correlation structure in
the center-of-pressure time series recorded during
quiet stance, a highly redundant task. However,
this perspective has not been brought to bear to

the study of task redundancy. Once again, one
can argue that the available literature endorses
preferential as opposed to a strict separation into
clearly controlled and uncontrolled variables, but
we lacked a specific quantification of the tempo-
ral nature of the dynamics of task-relevant and
task-irrelevant that would allow us to infer the
neural control strategies in each space.

As per Figures 8 and 9, we find that both task-
relevant and task-irrelevant variables exhibit the
features of uncorrected divergence, Brownian
motion and corrective action, depending on the
time scale considered - as evidenced by positive,
neutral, and negative correlations between force
increments separated by different time periods
(i.e., scaling exponents > 0.5, = 0.5, and < 0.5,
respectively). As per Table 3, the UCM and
Minimal Intervention approaches would predict
a clearer separation of corrective actions (i.e.,
control strategies) across task-relevant and task-
irrelevant variables.

The temporal features of the task-irrelevant
Grasp Mode challenge the UCM Hypothesis and
the Minimal Intervention principle. The Grasp
Mode (when no visual feedback is given) ex-
hibits all three control strategies as the time
scales lengthen, and goes from uncorrected di-
vergence, to Brownian motion to corrective ac-
tion. The slow downward trend in total grasp
force in trials when without visual feedback hap-
pens at medium to long time scales - so it does
not explain the uncorrected divergence seen at
the short time scales. Such divergence, which
was also present and even accentuated with vi-
sual feedback, is more likely a consequence of
positive correlations that can be shown to be a
result of the interplay between purely random
signal-dependent noise [38], motor unit synchro-
nization [42], and instantaneous (but low-pass
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filtered by skin compliance) mechanical reaction
forces. This variability in what are both task-
irrelevant and task-relevant variables is neverthe-
less left uncorrected by the CNS either as part
of the neural control strategy or because of in-
ability to do so at such short latencies. Alter-
natively, we can argue that task-irrelevance is
not only a spatial consideration but also a tem-
poral one, where low-magnitude or short term
variability is accepted and only corrected upon
crossing a certain spatial or temporal threshold.
But such interpretation is not really compatible
with the UCM Hypothesis and the Minimal In-
tervention principle, but rather with other theo-
ries specifically phrased to advocate intermittent
or drift-and-act control as an optimal strategy
[20, 21, 22, 23].

The neutral and negative correlations in the
Grasp Mode at medium and long latencies, re-
spectively, cannot be attributed to control inter-
vention to avoid dropping the object due to a
critical reduction in Grasp Mode force. The total
grasp force level always remained well above the
weight of the object, the hand was held still, and
the scaling exponents were unchanged between
the first and second half of the trials (Fig 9) -
and slip-grip responses happen at latencies well
below 200 ms [7, 50, 51]. Thus we conclude that
corrective control intervention depends on fac-
tors other than safety boundaries or automatic
grasp tendencies seen only during dynamic ma-
nipulation [7]. Moreover, such corrective con-
trol intervention occurs regardless of whether the
Grasp Mode is task-irrelevant or task-relevant
(when without or with visual feedback, respec-
tively). Further challenging the UCM Hypoth-
esis and the Minimal Intervention principle, the
task-irrelevant Compensation Mode also exhibits
corrective control intervention at medium and

long time scales.

DFA exposes an absence of correlation at very
short time scales in the task-relevant Hinge
Mode. This indicates an absence of corrective
actions (i.e., control). This lack of control may,
however, simply be due to the inability of the
neuromuscular system to do so at such short la-
tencies; or may be evidence of an intermittent or
drift-and-act strategy. While finding the reasons
for this requires further investigation, it is nev-
ertheless important to point out this important
temporal feature not previously addressed by the
UCM Hypothesis and the Minimal Intervention
principle, to the best of our knowledge. That
is, the fact remains that, due to physiological
limitations or control strategy, even highly task-
relevant variables are left uncontrolled at some
time scales.

The fact that the results are so similar between
the first and the second halves of the trials in-
dicates that the observed dynamics and the as-
sociated correlation structure depend neither on
time nor the total grasp force (which can be in-
terpreted as location in the force space; or in con-
trol terms our findings are not state-dependent).
This in turn suggests a temporal control strat-
egy that is state-independent (except potentially
at the boundaries; which we have no reason to
believe our subjects approached, but could be an
important next research step).

One possible explanation for the observed nega-
tive correlations along the Grasp and Compen-
sation Modes could be that traversing the solu-
tion manifold is an active process, through which
the CNS actually takes advantage of redundancy.
Specifically, controlled dynamics along the Com-
pensation Mode corresponds to the regulation
of the index and middle finger contributions to
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the opposition of thumb normal force. In agree-
ment with others, we speculate that the may
be actively trying to shift the demands between
the two fingers over time, which in turn might
mitigate effects of fatigue at the muscle level
(e.g., [52, 39, 17]). By gradually varying fingertip
forces, the CNS can achieve a change in the un-
derlying muscle coordination pattern, which in
turn will change the rates of fatiguing of indi-
vidual muscles, thus allowing for improved use
of available resources. The slow downward trend
along the Grasp Mode direction of normal forces
agrees with this fatigue reduction strategy: a
general reduction of forces generated by the mus-
cles leads to a reduction in the fatigue rate. But
at these low levels of grasp force magnitude, the
redundancy of solutions for a given set of finger-
tip force vectors would also allow changes in coor-
dination patters that would not be detectable as
changes in the magnitude or direction of finger-
tip force vectors. This issue, therefore, deserves
further investigation.

Lastly, note that here we do not employ DFA
to determine self-similarity or fractional dimen-
sionality in the data, as has been done in some
studies [30, 53]. In those studies, the linearity
in the logarithmic plots needs to extend over at
least one order of magnitude to count as strong
evidence of fractionality [19]. In our case the
requirements for the linearity of the logarith-
mic plots are not as rigid because the quantifi-
cation of long-range correlations applies to data
where the linearity extends over shorter ranges
of time scales. Moreover, challenging the pref-
erential separation of control action across task
variables as in the UCM Hypothesis and the Min-
imal Intervention principle only requires evidence
of similar corrective actions (or their absence) in
both task-relevant and task-irrelevant-which our

results clearly show. These results expose a fun-
damental limitation of the UCM hypothesis and
the Minimum Intervention Principle: their focus
on spatial aspects of motor variability and disre-
gard for temporal aspects.

Conclusions and Modularity

We show that both task-relevant and task-
irrelevant parameters show corrective action at
some time scales; and conversely, that task-
relevant parameters do not show corrective ac-
tion at other time scales. In agreement with
recent work in other behavioral contexts, these
results propose we revise our understanding of
variability vis-á-vis task relevance by consider-
ing both spatial and temporal features of all task
variables when inferring control action and un-
derstanding how the CNS confronts task redun-
dancy. Moreover, these results are counter ex-
amples to the UCM hypothesis and the Minimal
Intervention principle, as they assume a sepa-
ration of task variables into relevant and irrele-
vant ones, indicated by their respective variabil-
ities. As mentioned above, proponents of UCM
hypothesis and the Minimal Intervention princi-
ple admit the possibility of preferential as op-
posed to strictly uncontrolled variables [10], or
that the nervous system largely ”ignores non-
essential variations" [16], but such qualitative
distinctions have only begun to be quantified
or considered in the spatio-temporal domain
when inferring control action. Following up on
those qualifications, we present specific spatio-
temporal quantitative examples of controlled in-
tervention (or lack thereof) in both task-relevant
and task-irrelevant spaces (based on mechani-
cal/mathematical definition of the task and its
possible modes of variability) to expand our un-
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derstanding of neural control strategies. Addi-
tional work is needed to revise our view of neu-
ral control that takes into considerations both
spatial and temporal aspects of neuromuscular
function and variability, and the structure and
nature of the solution space of the task.

The similar nature of control actions across time
scales in both task-relevant and task-irrelevant
spaces that we find point to a level of mod-
ularity not previously recognized. The spatio-
temporal results presented here instead suggest
that neural control uses a continuum of control
strategies going from uncorrected divergence to
strong corrective actions that are not defined
by the level of task-relevance of the controlled
variables; and which may also involve intermit-
tent and drift-and-act characteristics. Impor-
tantly, while the increase in weight and the addi-
tion of visual feedback does seem to modulate
the dynamics on the individual dimensions, it
does not lead to a crossing of the 0.5 line and
therefore not to a fundamental change in the
control strategy. Our methodological consider-
ation and spatio-temporal analysis allow us to
present clear examples of how the task-irrelevant
parameters (i.e. elemental variables that are or-
ganized to constitute the UCM) are actively and
continuously controlled during a tripod grasp at
certain time scales, while the task-relevant pa-
rameter (or performance variable) is not actively
controlled during a tripod grasp at certain time
scales. Therefore, we show that estimating the
different extents of control based on task vari-
able variances alone (a purely spatial approach)
is insufficient, as Dingwell and we had proposed
before [16, 12]. Rather, those variables constitut-
ing the Uncontrolled manifold (which are again,
mathematically defined by the unambiguous me-
chanics of the task, see Figure 2) may have dif-

ferent temporal dynamics, but are not controlled
in a fundamentally different way.

This spatio-temporal approach to variability pro-
vides a tool to quantify the nature and degree of
neural control action, extending the traditional
spatial variance magnitude approach by quanti-
fying the temporal nature of variability. For ex-
ample, traversing the solution manifold is an ac-
tive process by which the controller enforces the
constraints of the task. The CNS does not create
the solution manifold1, but rather seeks to in-
habit it as has been discussed earlier [35, 54, 23].
As such, the means by which the CNS enters and
continually inhabits the solution manifold can be
thought of as the implementation of a dynami-
cal attractor on the task variables. In the con-
text of time-varying stochastic behavior of differ-
ential and discrete-time distributed systems like
the neuromuscular system, the implementation
of such a controller enforcing an attractor can
be thought of as the implementation of a spe-
cific probability density of the state (for a pre-
sentation of this view see [55], which is differ-
ent from Bayesian estimation and discrete-time
Markov processes).

This emerging view of the nervous system as
functioning at the level of affecting probabil-
ity density functions [55] is compatible with a
modular interpretation of our spatio-temporal re-
sults. DFA estimates the statistical self-affinity
of stochastic processes with memory whose un-
derlying statistics (mean, standard deviation and
higher-order moments) or dynamics are non-

1To be clear, the solution manifold arises indepen-
dently of the controller as it depends only on the charac-
teristics of the plant and the constraints of the tasks. A
controller can then choose to inhabit a particular region
or subset of the solution manifold to meet the require-
ments of the task [23, 35].
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stationary [28]. That is, DFA quantifies how well
a probability density function is implemented.
Thus the continuum of control strategies seen
across all Modes and time scales can be thought
of as essentially differently tuned versions of the
same modular control process that can let drift
(i.e., uncorrected divergence), be indifferent, or
enforce (i.e., corrective action) the statistics of
the time-varying probability density of the state
so that it populates the solution space. Hence
the level of modularity in the controller rests on
the ability of the system to work with probability
density functions in the task-relevant and task-
irrelevant spaces at different time scales - and not
with distinct basis functions or synergies imple-
menting a separation of task variables.

Appendix

Identification and modeling of the me-
chanical requirements of the task and
its null space

Each fingertip applies a three-dimensional force
f̃ to the object. Computing the cross product
of the moment arm, i.e. the vector between the
point of force application and the object’s cen-
ter of mass, with the fingertip force vector yields
the moment applied to the object. The total 6-
dimensional force and moment applied to the ob-
ject can be computed with the following mapping
W:

[ ∑
f∑
m

]
6x1

=

[
I3x3 I3x3 I3x3
Mth Mind Mmid

]
6x9

 f̃th
f̃ind
f̃mid


9x1

= Wf̃

where I3x3 is the unit matrix and M{th, ind, mid}
is the skew-symmetric matrix representing the
cross-product between the moment arm of the
finger and its force vector f{th, ind, mid}. Since W
is a mapping from 9-dimensional (three 3-D fin-
ger forces) to 6-dimensional (6 degrees of freedom
for the object grasped) space, the associated null
space, i.e. the space of vectors for which 0̃ = Wx̃
has 3 dimensions. Any vector x̃ in this null space
represents a solution to the static grasp require-

ment
[ ∑

f∑
m

]
=

[
0̃

0̃

]
, i.e. that both the sum

of forces and the sum of moments should be zero.
This is the mathematical description of the task-
irrelevant subspace because fingertip forces can
change inside this space but the object will re-
main static.

However, this is a necessary, but not sufficient,
requirement. Additionally, we require that the
finger tips do not slip, so the tangential forces
are upper-bounded through the friction relation-
ship ftangential ≤ µfnormal, i.e. the tangential
force cannot exceed the normal force, multiplied
with the friction coefficient µ, which we have set
to 0.04, the approximate friction coefficient of
Teflon on Teflon. This represents a lower bound
on the coefficient of friction, since this coefficient
is certainly greater when fingertip and Teflon sur-
face interact. That is, the grasp under experi-
mental conditions is actually less constrained and
tangential components can be greater. In addi-
tion, the sum of tangential forces directed ver-
tically needs to oppose the force applied to the
object by gravity. A nominal object had a weight
of 100 g, hence the sum of tangential forces had
to equal 0.981N, which in turn determined the
sign (positive, i.e. into the object) and the min-
imum magnitude of the normal forces. This re-
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Constraint Magnitude Interpretation∑
F [0, 0,mg]T Sum of forces equal and opposite to gravity force, i.e. no net force∑
M 0 Sum of moments equals zero, i.e. no net moment

FiT ≤ µ · FiN Tangential force at the i-th finger cannot exceed normal force

Table 4: List of relevant constraints in static grasp

quirement changes with the weight condition, of
course. For a complete list of static grasp model
constraints, see Table 4.

Given that the task null space is well described,
it was important to simulate the properties of
expected solutions to compare against the ex-
perimental results to properly disambiguate the
spatio-temporal features of the fingertip forces
that can be explained by mechanics from those
of neural origin; as in [7, 35]. Enforcing all con-
straints gives us mathematical description of the
null space of the task. To simulate instances
of these fingertip forces, we numerically sam-
pled vectors f̃tnull from the null space of the
above linear matrix by multiplying the three null
space basis vectors ñi with random values a, b, c,
drawn from a standard Brownian random walk:
f̃tnull = a · ñ1+b · ñ2+c · ñ3. We then added these
null space vectors f̃null to the minimum sum-
of-squared-forces solution f̃min sq of force vectors
that met all the above described static grasp con-
straints: f̃t = f̃min sq + f̃tnull , using MATLAB’s
(Natick, MA) quadprog() function to determine
the actual solution with minimum Euclidean dis-
tance to f̃min sq + f̃tnull .
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Figure 1: The apparatus for tripod grasp designed and built in our lab. It consists of three arms
rotating about a common hinge to adjust to the most comfortable configuration for each subject.
The arms are then fixed to create a rigid object. Each arm is instrumented with a 6-axis force
transducer that forms the contact surfaces for tripod grasp.
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Figure 2: Illustration of the three Modes of normal forces associated with the principal components
computed from the data and the simulations, across all subjects and conditions (adapted from [7]).
Please note that the loadings are the unit vectors describing the multidimensional correlation defin-
ing each PC. Therefore the loadings for this PC show that the thumb, index and middle finger forces
all co-vary in this Mode. We refer to these three PCs as: (i) the task-irrelevant Grasp Mode, along
[0.81, 0.41, 0.41]T , as it reflects synchronous increases and decreases in the three normal forces, which
are also known as grasp forces, (ii) the Compensation Mode, along [0.0,−0.71, 0.71]T , reflecting the
out-of-phase opposition, or compensation, of thumb normal force by either the index or middle
finger normal force, and (iii) the task-relevant Hinge Mode, along [0.6,−0.5,−0.5]T , reflecting an
increase (decrease) in thumb normal force accompanied by a simultaneous decrease (increase) in
the index and middle finger normal forces, which would typically occur if the object was acceler-
ated by the thumb, thus violating the mechanical task requirements of static grasp (without loss of
generality, the violation of static grasp by purely rotating the object using tangential forces is not
considered here, see Discussion). 26
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Figure 3: Representative plot of the simulated thumb, index and middle finger normal forces with-
out visual feedback Top: The three simulated normal forces plotted against each other. Note that
the force fluctuations come to lie on a plane, whose orientation we compute using PCA. The rotated
coordinate system indicates the directions of normal force variability, and the lengths of the arrows
indicate the variance explained along that direction. Note that since in the simulation the motor
task is executed perfectly, two directions, which span a manifold of solutions, explain all variability.
Bottom: The three simulated normal forces during a trial plotted individually. Note that the floor
effect results from the hard constraint of minimum normal force in the simulation, which for the
subjects is more flexible and can result in a downward trend in total grasp force in trials without
visual feedback.
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Figure 4: Representative plot of experimental thumb, index and middle finger normal forces recorded
during one trial with a 200 g weight without visual feedback. Top: The three normal forces plotted
against each other. Note that the force fluctuations come to lie on a plane defining the mechanical
requirements of the task (see Appendix and Figure 2), whose orientation we calculate using PCA
(directions and variances explained shown by the rotated and scaled coordinate system - note that
most of the variability is explained by two components and the data come to lie on a plane). Note
the elongated distribution of the data, due to a gradual reduction of total grasp force in the absence
of visual feedback. Bottom: The three normal forces during a trial plotted individually. Note the
elongated distribution of the data is here seen as a downward trend in the three fingers.
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Figure 5: Representative plot of experimental thumb, index and middle finger normal forces recorded
during one trial with a 200 g weight, with visual feedback. Top: The three normal forces plotted
against each other. Note that the force fluctuations come to lie on a plane, as is expected if the task
constraints are met (see Appendix and Figure 2, note the rotated and scaled coordinate system),
but the variability in normal forces populates the plane in a tighter cluster given that a constant
total grasp force is now a task constraint the subjects enforces. Bottom: The three normal forces
during a trial plotted individually. Note the absence of a downward trend across the three fingers,
due to the enforcement of the visual constraint on the sum of normal forces.
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Figure 6: Mean proportions of variance explained by the Grasp, Compensation and Hinge Modes,
respectively, in the sample trials with (right) and without (left) visual feedback. In trials without
visual feedback, PCA indicates that most variance occurs along the Grasp Mode - which is true given
that subjects gradually reduce the total grasp force and the data are distributed in an elongates
fashion compared to the tighter cluster in the case where visual feedback is provided (cf. Figures 2
and 3) The overwhelming majority of the variance in trials with and without visual feedback is
explained by the Grasp and Compensation modes, and hence the normal force variability occurs on
a planar manifold.
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Figure 7: Representative plot of the experimental normal forces now projected onto the principal
components for the same representative trial as in Figure 4 without visual feedback. Top: The
force fluctuations on the plane spanned by the Grasp and Compensation Modes. Bottom: The
three principal component time series during a trial plotted individually. Note how the Grasp Mode
captures the common downward trend, while the Compensation and Hinge Modes have relatively
lower variability.
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Figure 8: Representative DFA of projected normal force time series from one subject, where the
data were collected in a 200 g weight trial, without visual feedback. The plot shows the three
scaling regions (1-50, 250-500 and 3500-7000 ms) which we used to fit the scaling exponent, for
each normal force correlation Mode (Grasp, Compensation and Hinge Modes). The red lines show
the linear fits to the behavior of diffusion vs. time scale - their slopes can either be greater than,
equal or less than 0.5 (dashed line), indicating the diffusive process is positively correlated (pc, or
uncorrected divergence), uncorrelated (uc, or Brownian motion), or negatively correlated (nc, or
corrective action), respectively, at those time scales.
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Figure 9: Summary of temporal analysis. Distribution of DFA scaling exponents of the normal
forces projected onto the three Modes at three time scales- during the first (left box plots) and the
second half (right box plots) of the trials, in trials without visual feedback. Solid arrows indicate the
effect, if any, of adding visual feedback; and dashed arrows indicate the effect, if any, of increasing
the weight. Note that these arrows indicate any statistically significant changes found based on the
non-parametric statistical tests described in the text. We find that, contrary to the suppositions
of the UCM hypothesis and Minimal Intervention principle borne by spatial analysis, at different
time scales we see evidence of control effort (i.e., negatively correlated time histories with scaling
exponents <0.5) in the task-irrelevant Modes (i.e., Grasp and Compensation ); and evidence of
uncorrected divergence in the Grasp Mode - which becomes task-relevant when visual feedback is
provided -, and Brownian-like dynamics and unstable growth in the task-relevant Hinge Mode (i.e.,
non-correlated and positively correlated time histories, respectively, with scaling exponents > 0.5).
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Figure 10: Percent variance explained when considering three-dimensional forces for each digit (3D
force analysis that is 9-dimensional given three forces for each of three digits, empty box plots) vs.
when considering only the normal force at each digit (normal force analysis, gray box plots). The
box plots show the variance explained by each PC from all subjects and trials, where the 1st PC
explains the majority of the variance, the 2nd PC a modest amount, and the third PC less than
10%. The remaining variance explained by PCs 4 to 9 is shown for the 3D force analysis. The
structure of each PC is given by its loadings (as shown in Figures 11, 12 and 13. Those figures
shows that, even in the 3D force analysis case, the 1st, 2nd, and 3rd PC’s represent the Grasp,
Compensation and Hinge Modes seen in the normal force analysis. This consistency across percent
variances explained demonstrates that the reduced normal force analysis is valid and equivalent to
the full 3D force analysis.

34



Fz

FyFx

Fz

FyFx

Fz

FyFx

Thumb
Index

Middle

-1

0

1

Figure 11: Loadings of the 1st PC, the Grasp Mode, when considering the 3D force analysis case
(normal plus two tangential force components, empty box plots) for each digit vs. when considering
only its normal force (normal force analysis, gray box plots). Box plots show loadings from all
subjects and trials. Note that the loadings of all tangential forces (Fx and Fy) straddle the zero
line, demonstrating that they are not relevant to the correlation structure of the 1st PC. The normal
force components (Fz) of all digits have positive and nonzero loadings, indicating that the structure
of this PC using normal forces is equivalent to that of the full 3D force analysis. The dispersion
or exact median values in the box plots are not the means to establish the task-relevance or task-
irrelevance of the PC. That dispersion is a consequence of natural variability and inaccuracies in
motor performance, and unavoidable sensor noise. It is the goals of the task and mechanical analysis
that determine how to identify the task-relevant and task-irrelevant Modes.
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Figure 12: Loadings of the 2nd PC, the Compensation Mode, when considering the 3D force analysis
case for each digit (empty box plots) vs. when considering only its normal force (gray box plots).
Box plots show loadings from all subjects and trials. Note that the loadings of the normal force
components (Fz) of the thumb, and all tangential force components (Fx and Fy), straddle the zero
line, demonstrating that they are not relevant to the correlation structure of the 2rd PC. The normal
force components (Fz) of the index and middle finger exhibit anti-correlation, indicating that the
structure of this PC using normal forces is equivalent to that of the full 3D force analysis. The
increase in dispersion in the full 3D force analysis compared to the Grasp Mode in Figure 11 is
naturally associated with the increased susceptibility to measurement noise as this Mode explains
much less of the variance in the data, see Figure 10.
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Figure 13: Loadings of the 3rd PC, the Hinge Mode, when considering the 3D force analysis case
for each digit (empty box plots) vs. when considering only its normal force (gray box plots). Box
plots show loadings from all subjects and trials. Note that the loadings of the tangential forces (Fx
and Fy) of the thumb, index and middle fingers straddle the zero line, demonstrating that they
are not relevant to the correlation structure of the 3rd PC. The normal force components (Fz) of
the thumb exhibits anti-correlation to those of the index and middle fingers, indicating that the
structure of this PC using normal forces is equivalent to that of the full 3D force analysis. The
increase in dispersion in the full 3D force analysis compared to the Grasp Mode in Figure 11 is
naturally associated with the increased susceptibility to measurement noise as this Mode explains
much less of the variance in the data, see Figure 10.
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