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Abstract

Motor redundancy in neuromuscular systems exists on multiple levels. The term ”motor

redundancy” represents the availability of infinitely many different solutions to perform

a motor task. This dissertation is concerned with three particular of those levels: muscle

redundancy, wrench redundancy and posture redundancy, which are successively more

general forms of redundancy, each of which will be explained in detail.

The first level corresponds to the phenomenon that for a given constant vector of sub-

maximal limb endpoint force in isometric tasks, an infinite multitude of muscle coor-

dination patterns exists. The motor control research community refers to this kind of

redundancy as muscle redundancy, and traditionally, the selection of a particular mus-

cle coordination pattern has been considered a computational problem for the nervous

system. Mathematically, the possible muscle activations span an n-dimensional space

- n being the number of independently controlled muscles - and the mapping between

this space and that of isometrically generated endpoint forces is projective, therefore

giving rise to a null space. The null space comprises those muscle activation vectors

that do not have an effect on the endpoint forces, due to the mutual cancellations of gen-

erated forces. Specifically, the space of endpoint force vectors is 6-dimensional, con-

sisting of three linear and three rotational components, leaving n-6 degrees of freedom.

In the present work, I am studying a potential benefit of muscle redundancy, namely
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the mitigation of muscle fatigue through the dynamic switching between muscle acti-

vation patterns. Based on my results, I am proposing to abandon the view of muscle

redundancy as a computational problem for the nervous system, since in the presence

of muscle fatigue even the alleged simplification of this problem, that is, dimension

reduction through muscle synergies requires awareness of the full dimensionality of the

motor task. Instead, future research should focus on how the nervous system responds

flexibly to the challenge of time-variance due to fatiguing and actually leverages muscle

redundancy.

The second level of motor redundancy is concerned with the phenomenon that in

addition to the redundancy of muscles, infinitely many different combinations of end-

point forces and moments all achieve successful task performance. Again, this redun-

dancy has been considered a computational problem for the nervous system and various

ways of how it simplifies the selection of a particular wrench have been proposed. Note

that the selected solution in terms of endpoint forces constrains the muscle coordina-

tion solution space, in which a particular solution has to be found. Hence, wrench

redundancy is a generalization of muscle redundancy. In the case of three-finger grasp,

for instance, different fingertip force vector combinations result in an absence of net

forces and moments applied to a grasped object, due to mutual cancellation of forces

and moments applied by the fingertips. For example, one way to vary the applied forces

is to squeeze the object harder and still succeed at the motor task of static grasp. I refer

to this kind of redundancy as wrench redundancy: the same 6-dimensional wrench

vector applied to an object can be produced by a multitude of force vectors individ-

ually acting on the object. Wrench redundancy can possibly help to mitigate effects

of fatigue, namely through the dynamic shifting between endpoint force vector com-

binations, just like shifting between coordination patterns achieves this at the muscle

level. In the present work, however, I am pursuing a different path of research: In

xvii



the first study, looking at the normal force dynamics in static tripod grasp, I will show

how mathematically independent wrench space dimensions are actually controlled in

quite different ways, reflecting their specific roles in achieving dexterous manipulation.

This work shows that a purely spatial analysis of endpoint force variability is not suf-

ficient and that temporal correlations can reveal important aspects of motor control. In

particular, the dynamics of forces indicate a hierarchy of task dimensions in terms of

task-relevance and contradict the view held by some that task variables can be separated

into task-relevant and -irrelevant (i.e. the Uncontrolled Manifold Hypothesis). Accord-

ing to this view, large variability in a mechanically task-irrelevant dimension reflects

the lack of control of this dimension by the nervous system. Based on these results, I

am proposing to abandon the view of wrench redundancy as a purely spatial problem

and to espouse the use of time series analysis to determine neural control strategies. In

the second study of wrench dynamics, I will show how in a non-redundant dexterous

manipulation task, where all wrench dimensions are task-relevant due to simultaneous

force and motion requirements, the control of different task dimensions is likely cou-

pled through neurophysiological pathways, whose separation during evolution has been

incomplete. Specifically, I will show how different wrench space dimensions of the

motor task, though mathematically independent, are nevertheless coupled in the perfor-

mance of the task, thus limiting the ability to match the perfect mechanical solution

of the task. We see here an important interaction between the wrench and the muscle

level: when the wrench level becomes non-redundant, the muscle level also seems to

hit a boundary and reveals limitations in the independence of control of muscles across

fingers.

Finally, the third level is concerned with postural redundancy, meaning that dur-

ing the performance of a motor task the task goal can be achieved with different limb

configurations, described in terms of joint angles. Once again, this level of redundancy
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is a generalization of the previous level and potentially extends the potential benefits of

the former: a selected posture that enables motor task performance will constrain the

admissible endpoint force space, which in turn will constrain the muscle coordination

space. One common task taking advantage of postural redundancy is quiet stance. Dur-

ing quiet bipedal stance, two-legged animals are usually swaying or shifting from one

posture to another, the former of which can be attributed to motor noise and the latter of

which is likely a fatigue mitigation strategy. In this dissertation, I will present results of

an analysis of postural control in one-day old domestic chicks (Gallus gallus) that reveal

differences in prenatal motor development, which were induced by different amounts of

light exposure during incubation.

In summary, it can be said that the nervous system is remarkable in that it is capable

of monitoring and reconciling continuously multiple levels of redundancy during perfor-

mance of common motor tasks, in particular, since the kinematic degrees of freedom of

limbs are not controlled directly by the brain. Instead, their actuation is achieved through

a complex mapping starting with the degrees of freedom found at the brain level, where

the task is likely represented very differently from joint angles. Importantly however,

not even the three levels studied and discussed here are exhaustive: at one end, muscle

redundancy specializes to the little studied motor unit redundancy, whereby different

subsets of motor units in a single muscle generate the same muscle force. Motor units

represent the control subunits that make up and provide graded control of muscle activ-

ity. At the other end of the redundancy spectrum, postural redundancy generalizes to

behavioral redundancy, that is, using different strategies to achieve a task, for instance,

walking vs. running, etc. Personally, I found that the separation of motor control into

different levels of redundancy espoused here to be uncommon in the literature and the

field, although it has helped me tremendously in forming hypotheses, designing experi-

ments and attributing causes of failure in motor tasks to specific neuromuscular factors,
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and would certainly help the field of motor control research as well. I hope that the

following work induces the reader to consider adopting this hierarchical view of motor

redundancy, which is different from, and can potentially exist alongside other, hierar-

chical views of the neuromuscular system.
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Chapter 1

Introduction, Background and Prior

Work

1.1 Motor Redundancy

Manipulating objects with the fingertips (dexterous manipulation) is an awe-inspiring

sensorimotor ability that is essential to the activities of daily living. Multifinger

dexterous manipulation arises from dynamical interactions among muscles within

and across fingers to produce accurate fingertip forces (and motions). Arguably,

the simplest of dexterous manipulation tasks is the static grasp of rigid objects: it

nevertheless requires the accurate orchestrations of forces across the two or three

fingertips involved [Cutkosky, 1985, Raibert and Craig, 1981, Yoshikawa, 1990,

Goddard et al., 1992, Murray et al., 1994], having selected an appropriate posture,

such that the grasped object does not move or turn. Many investigators have studied

finger biomechanics (e.g., [Berme et al., 1977, Minami et al., 1983, An et al., 1985,

Schuind et al., 1992, Valero-Cuevas et al., 1998, Sancho-Bru et al., 2001]), neuromus-

cular control (e.g. [Cole and Abbs, 1986, Darling et al., 1988, Burstedt et al., 1999,

Zatsiorsky et al., 2000, Venkadesan and Valero-Cuevas, 2008, Winges et al., 2009,

Keenan et al., 2009]), and the role of brain function during their use

(e.g., [Binkofski et al., 1999, Ehrsson et al., 2000, Talati et al., 2005]). In addi-

tion, the coordination of two, three or more fingers as they hold an object is the
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subject of multiple studies (e.g., [Johansson and Birznieks, 2004, Winges et al., 2009,

Latash and Zatsiorsky, 2009]).

Understanding redundancy (i.e., how the nervous system selects and implements

a specific posture, a specific wrench and a specific muscle coordination pattern from

among the many possible options that all achieve successful motor task performance)

has been the central problem of neuromuscular control for at least four decades

(e.g., [Bernstein, 1967, Chao and An, 1978, Hogan, 1985, Valero-Cuevas et al., 1998,

Todorov and Jordan, 2002, Seth and Pandy, 2007]). I illustrate the different levels of

redundancy with a simple example (Figure 1.1): quiet stance. With regards to postural

redundancy: the task of standing quiet and upright can be achieved by many leg joint

angle configurations, where some might be more suited than other for specific purposes,

such as resisting perturbations, for instance, or reducing the level of stress on the joints

and muscles. With regards to wrench redundancy: during standing, the body weight can

be shifted from one leg to the other, allowing for infinitely many weight distributions

that produce the same functional outcome. Lastly, with regards to muscle redundancy:

again, the forces necessary to stabilize the legs in quiet stance can be achieved by dif-

ferent muscle coordination patterns, and once again, different patterns provide different

benefits.

The complexity of the human hand, the system, whose redundancy we study in chap-

ters 4 and 5, far exceeds that of the legs and apparently exacerbates the problem of redun-

dancy for dexterous manipulation due to the large number of muscles and kinematic

degrees of freedom involved. The triple challenge of task complexity, anatomical com-

plexity and muscle redundancy has delayed a rigorous understanding of how we coordi-

nate finger musculature for dexterous manipulation. Moreover, understanding how the

redundancy problem is solved in the context of dexterous manipulation remains a critical

limitation to our understanding of the mechanisms of impairment and clinical treatment

2



Posture redundancy

Wrench redundancy

Muscle redundancy

Kinematic redundancy

Motor unit redundancy

Figure 1.1: The three levels of redundancy studied in this work and embedded into the
next more general and more specific levels of redundancy, respectively. The most spe-
cific level is muscle redundancy, i.e. the availability of infinitely many different muscle
coordination patterns producing the same endpoint force. This kind of redundancy is
embedded into wrench redundancy, i.e. the availability of infinitely many different end-
point force vectors satisfying the motor task constraints. Wrench redundancy, in turn,
specializes posture redundancy, i.e. the availability of infinitely many different static
postures in an isometric task, for each of which endpoint force vectors can be found
that satisfy the constraints of the motor task. Also shown are the next more special and
general levels of redundancy, respectively.

of hand disability (some reviews include [Spoor, 1983, Schieber and Santello, 2004,

Valero-Cuevas et al., 2009a, Latash and Zatsiorsky, 2009]). I am careful to explicitly

delineate the aspects of redundancy I will address in the following chapters of this dis-

sertation.

More general than the selection of a static posture, the choice of a particular motion

pattern (i.e. a sequence of postures) constitutes the next higher level of redundancy.
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On the other hand, more specific than the selection of a particular muscle coordination

pattern, we have at the single-muscle level the so-called motor unit redundancy: since

a muscle is composed of a large number of muscle fibers, different activation patterns

of the associated motor units can generate the same submaximal single-muscle output

force (a maximal force would obviously involve all fibers of a muscle). The dynamic

phenomenon associated with motor unit redundancy is also known as motor unit rotation

or substitution [Sale, 1987, Westgaard and De Luca, 1999], hypothesized to spread the

work load.

1.2 Muscle Fatigue

For the purposes of this work, I adopt the definition of muscle fatigue as the

exercise-induced reversible decline of the maximum force a muscle can gener-

ate [Vollestad, 1997]. In the performance of submaximal motor tasks, this decline

in performance is not immediately apparent, but eventually muscle fatigue will lead

to the inability to maintain the force required for the task. This phenomenon is

referred to as exhaustion [Bigland-Ritchie et al., 1986]. Fatigue is a phenomenon

mostly [Merton, 1954] occurring in the muscle itself rather than the central nervous sys-

tem, i.e. in the neurons and the brain, and has therefore been studied almost exclusively

in isolated muscle tissue. Since the central aspects of fatigue are poorly understood, and

since I believe that the plant should be understood before the controller, I focus on the

peripheral aspects of fatigue and disregard central aspects.

At the task level, in submaximal activity, the fatigue state cannot be directly observed

but only estimated through the interpolation of occasional maximal contractions. After

exercise, there is usually a phase of recovery that is nearly complete within minutes and
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sometimes a much slower component [Edwards et al., 1977, Allen et al., 2008]. Usu-

ally recovery of maximum force is virtually complete by 30 minutes, and it is possi-

ble to perform repeated fatigue runs with nearly similar time courses after this recov-

ery [Allen et al., 2008].

Studies at the physiological level, in turn, indicate that different fatigue mechanisms,

which are not fully understood, but involve the depletion of Ca2+ and ATP, cascade so

as to give rise to a hyperbolic relationship between force (Figure 1.2) and endurance

time [Enoka and Stuart, 1992], which indicates the onset of exhaustion. In the follow-

ing, I will explain the known mechanisms briefly and specifically highlight differences

between the two major fiber types found in human muscle.682 J. DUL. G. E. JOHNSON, R. SHIAVI and M. A. TOWNSEND 

Force W 

Fig. 5. Measured relationship between external froce and activity endurance time for diKerent human 
muscle groups during static-isometric contractions. The relationship predicted with the Minimum-Fatigue 

criterion (not shown) coincides with the solid regression line (From Monod 1972). 

the medial gastrocnemius is bifunctional and capable 
of both knee flexion and ankle extension, its reflex 
connections and electrical activity show it to be largely 
concerned with ankle extension during stepping’. 

In Fig. 6, the predictions are compared with direct 
force measurement data. The force in the soleus is 
given as a function of the force in the medial gas- 
trocnemius for several activities. The symbol (A) relates 
to measured instantaneous forces during standing and 
(0) to measured peak forces during walking and other 
movements. The lines are the predictions from the 
minimum-fatigue criterion (equation 12), from several 
non-linear MINISUM criteria from the literature 
(equation 14) and, for comparison, for several linear 

Postural Walk Run 

criteria that have been used in the literature. According 
to our previous investigation the linear criteria predict 
that only the medial gastrocnemius is active, since this 
muscle is larger than the soleus (larger maximum force 
and larger cross-sectional area) and has a moment arm 
that, if at ail different, is probably larger than that of 
the soleus. 

The non-linear criteria from the literature predict 
that there is a linear relationship between the force in 
the soleus and the force in the gastrocnemius. The 
minimum-fatigue criterion predicts that these forces 
are non-linearly related according to the equation FIo, 
= 5.08 (F9,,,)0.42. (equation 8, Appendix) 

It turns out that only the prediction from th: 

Gallop Jump - 

MG force (kg wt 1 

Fig. 6. Measured vs predicted load sharing between two cat muscles during standing and locomotion. 
(Measurements from Walmsley et al.. 1978). 1. Minimum-fatigue criterion; 2. Quadratic criterion: IF:, 
3. Quadratic criteria: I(F,/,4,)*, Z(F,/F,,,)‘; 4. Cubic criterion: T(FJA$; 5. Linear criteria: ZF,, 

xF,;lA,, xF,;lF,,,. 

Figure 1.2: The relationship between force requirement and endurance time is
hyperbolic, indicating that fatigue benefits can be achieved by reducing force in
a muscle, which makes activation pattern shifts a reasonable option (Diagram
from [Dul et al., 1984]).
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Cross-bridge cycling in myocytes, which generates the force produced by muscles

through contraction, can only occur in the presence of Ca2+, which is released from the

Sarcoplasmatic Reticulum (SR) in response to a muscle action potential (AP) and then

pumped into the SR again. Since the time constants of Ca2+ release (< 20 ms) and

re-uptake (80 - 200 ms, [Baker et al., 1995]) differ greatly, the net result of sustained

muscle contraction - especially under a fused tetanus - is a depletion of available Ca2+.

The amount of available Ca2+ is further reduced due to the gradual depletion of ATP,

since ATP is needed for Ca2+ re-uptake into the SR through the pumps as well as the

release of cross-bridges.

To maintain a constant force level under fatigue, the activation of the muscle has

to be increased, which will increase the rate of Ca2+ and ATP depletion even more,

leading to a ”vicious circle”. Importantly, the muscle fibers, which the muscle is com-

posed of, fatigue at different rates and can be categorized into slow-fatiguing (aero-

bic) [Bevan, 1991], or slow-twitch, and fast-fatiguing (anaerobic), or fast-twitch, types.

According to the size principle [Henneman, 1957], fast-fatiguing fibers being larger than

slow-fatiguing ones, they are recruited at higher activation levels. Therefore, tasks with

very low force requirements can be performed virtually infinitely, with very limited

amounts of fatiguing [Sjogaard et al., 1986].

The slow-twitch fibers owe their endurance to the following qualities: a) a high

oxidative capacity due to a large number of mitochondria [Bezanilla et al., 1972,

Essen et al., 1975], b) a much greater amount of Ca2+ stored in rested muscle

(70% of maximum capacity vs. 20% [Bhagat and Wheeler, 1973] in fast-fatiguing

fibers) and c) a smaller Ca2+ release time constant (1/3 of that of fast-twitch mus-

cles [Bianchi and Narayan, 1982]). Furthermore, the rate and amount of SR Ca2+
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release per AP is approximately three times higher in fast-twitch fibers than in slow-

twitch fibers [Baylor and Hollingworth, 2003]. A feature of fast muscle but also a draw-

back, from a fatigue point of view, is that it can consume ATP, and thereby produce ADP

and P
i

(Phosphate) much faster than it can regenerate it, hence the above difference in

time constants applies to the consumption (fast) and regeneration (slow) of ATP as well.

Lastly, this difference between slow and fast fibers is also attributable

to the higher density of both DHPR/voltage sensors and Ca2+ release chan-

nels in fast-twitch fibers [Lamb and Walsh, 1987, Lamb, 1992, Margreth et al., 1993,

Delbono and Meissner, 1996]. The rapid contraction of fast-twitch fibers requires the

presence both of fast MHC (type II) isoforms and fast Ca2+ release. Slow-twitch fibers,

on the other hand, have fewer Ca2+ binding sites on troponin C and the SR pumps,

and thus, a lower rate and amount of Ca2+ release suffices for contraction, particu-

larly given the much slower contraction rate of the predominant MHC isoform (type I)

present [Bortolotto et al., 2000, Bottinelli and Reggiani, 2000]. Thus SR and contractile

properties in a given fiber are generally well matched [Trinh and Lamb, 2006].

In conclusion, an appropriate modeling of fatigue needs to take into account oxygen-

dependence and differential rates of fatigue among fibers and the proportions of these

fibers present in contributing muscles: in the slow-twitch fiber-dominated muscle, time-

variance of the EMG-to-muscle force relationship is hardly attributable to fatigue. Iso-

metric tasks involving muscles with a high proportion of fast-twitch fibers, on the other

hand, will be strongly affected by fatigue, unless they have low force requirements,

in which case only the non-fatiguable slow-twitch fibers in that muscle are activated.

In consequence, as the fast-twitch-fiber-dominated muscle progressively fatigues, the

activation of that muscle has to be increased (Figure 1.3) to maintain a constant mus-

cle force. In turn, the resulting recruitment of additional motor units gives rise to the

increase in EMG occurring when muscles sustain force at a given submaximal level.
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Somewhat surprisingly however, the discharge rate of originally active motor

units can decrease during prolonged submaximal contractions, since twitch time

constants increase with fatigue, despite the fact the overall excitatory drive to the

motor neuron pool increases as fatigue develops [Garland et al., 1994]. It is the

increased excitatory drive and the concurrent increased recruitment that is measured

by the EMG, but not the (decreased) discharge rates of individual motor units. The

reduction of discharge rate in motor units is normally well-matched to the slow-

ing of relaxation that occurs with muscle activation (increase of twitch time con-

stant), such that the stimulation rate remains just sufficient to give a fused tetanus of

close to maximum force possible at that point in time [Bigland-Ritchie et al., 1983,

BiglandRitchie and Woods, 1984, Balog et al., 1994]. This phenomenon is often called

”muscle wisdom” [Enoka and Stuart, 1992, Gandevia, 2001]. There exists evidence

that the reduction in motor unit activation is mediated through group III/IV affer-

ents reflex inhibition [Garland and McComas, 1990, Gandevia, 1990, Garland, 1991,

Hayward et al., 1991] as their discharge rates decline during the initial phase of fatigue,

and muscle spindle afferents later in fatigue [Gandevia, 1990, Macefield et al., 1991].

1.3 Experimental Evidence: Leveraging Muscle Redun-

dancy for Fatigue Mitigation

At the level of muscle redundancy, there currently exists one study involving tripod

grasp, [Santos et al., 2010] that has investigated the neuromuscular system’s ability to

traverse the muscle solution space, for a constant endpoint force output. Subjects were

asked to produce a constant submaximal normal force output, while minimizing tangen-

tial force, with three fingers in a grasp posture until exhaustion. Fine-wire EMG was

recorded from 10 muscles and subsequently, the relative muscle activation contributions
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Figure 1.4: The activation pattern of the 12 muscles does not change, despite the overall
increase in EMG, as evidenced by an only minimal change in the activation pattern
direction vector (diagram from [Santos et al., 2010]).
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were computed to determine if the activation pattern changed. The results indicate that

although the activations of all contributing muscles increased as time passed, the rela-

tive contributions did not change. We will show in Chapter 3, for the simpler task of

isometric knee extension, how a target force of only 15% MVC already constrains the

solution space such that dynamic muscle activation becomes severely limited.

The dynamics of muscle coordination in the context of isometric knee extension

have been extensively studied by Kouzaki, Shinohara and others [Kouzaki et al., 2002,

Kouzaki et al., 2004, Kouzaki and Shinohara, 2006]. The authors showed that involun-

tary alternation between synergist quadriceps muscles, rectus femoris and vastus lat-

eralis, occurs during very low-level sustained knee extension, between 4 and 11 times

during the one hour long trial. Subjects were asked to generate an extremely low iso-

metric 2.5% MVC force for 1 hour, whereupon MVC force was measured again, to

determine if fatigue had occurred. Interestingly, the reduction in MVC was inversely

correlated with the frequency of alternation, indicating that alternation did provide the

benefit of reducing fatigue, for instance, by enabling recovery of the temporarily silent

muscle. While these results are very encouraging, the authors have not provided a for-

mal generative mechanism or model to explain and interpret those results.

1.4 Modeling and Simulation: Muscle Redundancy and

Muscle Fatigue

Modeling of isometric force sharing under fatigue minimization was first done in Dul

et al. [Dul et al., 1984]. Their minimum-fatigue criterion was formulated as the maxi-

mization of the endurance time across a group of synergistic muscles. The endurance

time is a function of both the force generated by the muscle (inversely proportional)
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Figure 1.5: The experimental setup for the isometric knee extension task described
in [Kouzaki et al., 2002].

alternation in muscle activation, it is likely that fatigued mus-
cles may recover from fatigue during their silent phases,
leading to an attenuation of muscle fatigue. Hence, we hypoth-
esized that the frequency of alternate muscle activity is asso-
ciated with the degree of muscle fatigue.

METHODS

Subjects. Data from 41 healthy subjects during a sustained knee
extension at 2.5% MVC force were examined. In addition to the
existing data set of 19 subjects in previous studies (17–19), the new
data set was obtained from 22 subjects. The age, height, and body
mass of the 41 subjects (means ! SD) were 26.1 ! 2.5 yr, 171.6 !
6.7 cm, and 67.4 ! 8.6 kg, respectively. They gave their written,
informed consent for the study after receiving a detailed explanation
of the purposes, potential benefits, and risks associated with partici-
pation in the study. All procedures used in this study were in
accordance with the Declaration of Helsinki and were approved by the
Committee for Human Experimentation at the Department of Life
Sciences, The University of Tokyo.

General procedure and equipments. The basic setup for the knee
extension procedure has been described in our laboratory’s previous
studies (17–19). Subjects were in a seated position with the hip and
knee joint angles flexed 90° (full extension " 0°). The trunk and thigh
were strapped to a chair. The knee extension force was measured by
a strain gauge force transducer (model 274II, Minebea, Tokyo, Japan),
which was coupled with a strain amplifier and attached by a strap to
the dorsal aspect of the lower leg just above the medial malleolus.
Bipolar surface electromyogram (EMG) was recorded from skin
surface over the muscle belly of rectus femoris (RF), vastus lateralis
(VL), and vastus medialis (VM) and biceps femoris long head (BF),
using Ag-AgCl electrodes with a diameter of 5 mm and an interelec-
trode distance of 20 mm. After careful abrasion of the skin, the
electrodes were placed on the skin over the muscle belly of the
respective muscles. The common reference electrode was placed on
the iliac crest. The electrodes were connected to a preamplifier and a
differential amplifier having a bandwidth of 5 Hz to 1 kHz (model
1253A, NEC Medical Systems, Tokyo, Japan). All electric signals
were stored on hard disk of a personal computer at a sampling rate of
1 kHz using a 16-bit analog-to-digital converter (PowerLab/16SP,
ADInstruments, Sydney, Australia).

Experimental protocol. Subjects performed MVCs before and im-
mediately after (#1 s) a sustained contraction. The MVC task in-
volved a gradual increase in knee extension force exerted by the
quadriceps muscle from baseline to maximum in 3–4 s and then

sustained at the maximum for 2 s. The knee extension force was
displayed in real-time on an oscilloscope. The onset of the task was
based on a verbal count given at 1-s intervals. Vigorous encourage-
ment was provided from the investigator when the force began to
plateau. Each subject performed at least three MVC trials with
subsequent trials performed if the differences in the peak force of two
MVCs were $5% (10), and the trial with the highest peak force was
chosen for analysis. After a sufficient rest period (%10 min), the
subject sustained a contraction of the knee extensor muscles at 2.5%
MVC force for 1 h. The force and the target were displayed as
horizontal lines on an oscilloscope in front of the subject to provide
visual feedback. Subjects were instructed not to alter joint angles or
force directions during the sustained contraction. No verbal feedback
or encouragement was provided during the sustained contraction to
avoid intentional changes in muscle activation strategy. Furthermore,
our laboratory has confirmed that the alternate muscle activity cannot
be achieved voluntarily by altering joint angles or force directions
(18).

Data analyses. During the MVC tasks, simultaneous recordings of
force and EMG signals were analyzed over 1-s periods of steady force
output. The mean value of force was calculated for 1 s in each MVC
task. The EMG signals were full-wave rectified and averaged for 1 s
to calculate the average EMG (AEMG) in each MVC task.

Alternate muscle activity was observed in EMG activity between
RF and a set of VL and VM during the sustained contraction (Fig. 1).
To quantify the alternate muscle activity between synergist muscles,
we focused on marked changes in the EMG sequences between the
knee extensor muscles. EMG of BF (antagonist muscle) was small and
constant across the sustained contraction, and thus it was not included
in further analyses.

An alternate muscle activity between synergist muscles was de-
fined and counted according to previously established methods (18).
Briefly, EMG signals during the sustained contraction were full-wave
rectified and averaged over 15 s to yield AEMG every 15 s. Calculated
AEMG of each muscle head was smoothed by five-point moving
average and differentiated (dAEMG/dt); an outlier was defined as
dAEMG/dt that exceeds ! 3 SD of the first eight sample points; the
extracted outliers were classified into positive and negative outliers;
the alternate muscle activity was defined as the case in which the
positive and negative outliers overlapped between the synergist mus-
cles; and the number of the alternate muscle activity was counted in
each muscle combination, i.e., between RF and VL (RF-VL), between
RF and VM (RF-VM), and between VL and VM (VL-VM) through-
out the sustained contraction. The total number (frequency) and
combinations of alternate muscle activity were determined by this

Fig. 1. Representative data demonstrating alternate
muscle activity during sustained knee extension at 2.5%
of maximal voluntary contraction (MVC) force. Knee
extension force, electromyograms (EMG) of rectus fem-
oris (RF), vastus lateralis (VL), vastus medialis (VM),
and biceps femoris long head (BF) are shown.
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Figure 1.6: During one hour of 2.5 % MVC force production, alternations between
synergistic muscles were observed (diagram from [Kouzaki and Shinohara, 2006]).

and its percentage of slow-fatiguing aerobic fibers (proportional), based on observa-

tions and curve fitting. Not surprisingly, the optimal activation of muscles in an iso-

metric knee flexion task, according to a nonlinear (i.e. maximization of a mininum)
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optimization scheme, tended to favor force production in muscles with a higher per-

centage of slow fibers and muscles with large volumes, predicting nonetheless syn-

ergistic activation among muscles. Finally, the predicted time to failure and the pre-

dicted forces agree with values from the literature, underlining the physiological correct-

ness of this optimization criterion further confirmed elsewhere [Prilutsky et al., 1997,

Prilutsky and Zatsiorsky, 2002]. These studies found that fatigue, along with stress,

energy expenditure and perceived effort [Prilutsky and Zatsiorsky, 2002], were the best

predictors in static optimization schemes The major drawback of modeling studies

in fatigue-minimization in isometric tasks are their staticness, as they predict a sin-

gle fatigue-minimizing activation pattern that is held until failure, and do not con-

sider by design dynamic changes in the pattern as the isometric task progresses that

could improve performance and time to failure. Therefore, so far no model has been

able to reproduce the activation pattern [Kouzaki et al., 2002]. In Chapter 2, I will

address the problem of static optimization, based on the incorrect assumption of time-

invariance of the neuromuscular system and show in particular, how the concept of

synergies strongly conflicts with the control of a time-varying system. Synergies,

in short, are understood as the rigid co-activation of muscles, basically treating a

group of muscles as one muscle and thereby simplifying the muscle redundancy prob-

lem [Bizzi et al., 2002, d’Avella et al., 2003]. .

With respect to redundancy at the wrench level, there are currently no studies which

directly investigating possible dynamic strategies in a fatiguing, isometric, and submax-

imal task or consider the specifics of muscle fatigue and recovery dynamics. Instead,

studies at this level of redundancy focus on the effect of fatigue on the variability along

different task-relevant and task-irrelevant dimensions of a motor task, in the context

of the Uncontrolled Manifold Hypothesis [Scholz and Schner, 1999]. Two studies by

Danion et al. [Danion et al., 2000, Danion et al., 2001] explicitly looked at the effects
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of fatigue on a redundant task. The first study involved two fatiguing force production

exercises, one at the distal and one at the proximal phalanges, both with four fingers and

single fingers. While force enslaving [Zatsiorsky et al., 2000] across fingers remained

unaffected by fatigue at the phalanx involving the exercise, enslaving increased at the

other phalanx. Furthermore, the difference between the MVC generated by all four

fingers in unison and the larger sum of single-finger MVCs increased. These results

indicate a neural level reorganization that aims to ”preserve” a force production syn-

ergy across fingers. The other study involved fatiguing exercises at the same distal and

proximal sites by the index finger only. This resulted in reduced enslavement of the

index finger in an all-finger force production task, and a reduction in its contribution

to the total sum of forces, leading the same authors to reach the opposite conclusion:

that fatigue leads to a reorganization at the neural level that ”progressively removes” the

fatigued finger from a synergy (so that in can be ”reintegrated into the synergy” faster

due to a swift recovery).

Another study, by [Singh et al., 2010] found that unfatigued fingers in multi-finger

force production tasks adaptively increase their force variability, so as to match the

fatigue-induced increase in variability in the fatigued finger. This adaptive behavior

helps to maintain a balance of variability, i.e. a synergy and to protect the task-relevant

dimensions from fatigue effects. While the authors certainly admit the benefits of redun-

dancy in fatigue mitigation, they fail to investigate the specific dynamics of wrench

along the task-irrelevant directions.

In conclusion, the findings of these studies therefore necessitate further investigation

into wrench redundancy and the opportunities for the nervous system to mitigate the

effects of fatigue at this level of control.
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Chapter 2

Fatigue Dynamics Have Profound

Consequences for

Muscle Coordination and Theories of

Motor Control

2.1 Abstract

In submaximal motor tasks, the nervous system is believed to be confronted with the

computational challenge of selecting a particular from infinitely many distinct mus-

cle coordination patterns. Muscle redundancy, as this phenomenon is known, has led

researchers to hypothesize either the minimization of cost functions to find a solution,

or control strategies such as muscle synergies, whereby muscles are co-activated in a

stereotypical fashion, thus reducing computational complexity.

Here, we investigate the consequences of these hypotheses in the light of the hith-

erto oft-overlooked interplay between muscle coordination and fatigue. Simulations of

submaximal isometric knee extension with realistic fatigue and recovery show that the

nervous system continuously needs to respond to the complex changes in force produc-

tion capability experienced by muscles, to lengthen the time to failure.

First, we find that adherence to a synergy in activation space or muscle force space

requires either non-synergy-like muscle activations or muscle forces, respectively. We
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conclude that synergies can only be enforced in a single space (muscle activations or

forces). This challenges the hypothesis that synergies can serve to simplify and guide

the selection of muscle coordination patterns.

Secondly, the adherence to a synergy leads to early task failure, if compared to other

strategies of pattern selection (for instance, energy minimization), which do not restrict

dynamics in any space. This result indicates the disadvantage of suppressing changes in

the levels and proportions of muscle activations or force when enforcing the constraints

of the task.

Thirdly, and somewhat surprisingly, we find that intuitive cost functions, some of

which have been proposed in the literature and are based on physiological considera-

tions, actually prevent muscle recovery. We conclude that one needs to recognize the

impact of fatigue on redundancy when proposing optimization strategies.

Together, the results not only cast doubt on the utility of synergies and highlight a

major disadvantage, but challenge their association with computational benefits. There-

fore, the results encourage abandoning the view of redundancy as a computational chal-

lenge, and instead encourage us to study associated opportunities in the mitigation of

muscle fatigue and to find relevant and appropriate objective functions capable of repro-

ducing the dynamics in time-variant neuromuscular systems.

2.2 Introduction

The problem of motor redundancy has been a longstanding one in motor control

research [Bernstein, 1967, Tresch and Jarc, 2009], ever since it had been observed that

in repeatedly performed motor tasks, humans never seem to use the exact same coordi-

nation pattern of joints to achieve the task goal [Bernstein, 1967]. Redundancy refers

to the multitude of muscle activation or muscle force patterns that all give rise to the
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same endpoint force vector in submaximal and otherwise underspecified tasks, due to

the mutual cancellation of muscle actions. The perceived computational ”problem” of

motor redundancy now is that the nervous system is confronted with having to choose

one from many possible muscle coordination patterns.

Having observed that despite motor output variability (be it kinematic or

kinetic), muscle activation patterns are similar across repetitions of a motor task

and across people, scientists have proposed the existence of an underlying opti-

mizing principle as a means to determine a unique solution [Chao and An, 1978,

Crowninshield and Brand, 1981, Dul et al., 1984, Prilutsky and Zatsiorsky, 2002]. This

solution minimizes or maximizes a proposed objective function, which is selected

based on various neurophysiological or energetic considerations. It has been shown

in numerous studies that experimentally observed muscle coordination patterns can

(at least nominally) be found through the optimization of different objective func-

tions [Crowninshield and Brand, 1981, Dul et al., 1984, Anderson and Pandy, 2001].

However, these studies fail to address the possibility that there exist sufficiently many

constraints to the task (e.g. high force, resistance to perturbations, posture) to uniquely

determine a solution [Loeb, 2000], regardless of the objective function. Furthermore,

optimization is commonly employed to compute a single static solution, based on the

often implicit assumption that the neuromuscular system does not undergo changes over

time, during repeated or continuous task performance. However, allowing for time-

variance in the system might actually help to further constrain the search space of poten-

tial objective functions, since the ability to reproduce experimentally observed muscle

activation patterns provides another selection criterion.

Assuming that there exists an underlying principle of optimization in the selec-

tion of muscle coordination, scientists have proposed for the purpose of computa-

tional simplicity the concept of muscle synergies. Subject to a synergy, muscles
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are always co-activated in specific patterns [Bizzi et al., 2002, d’Avella et al., 2003,

Chhabra and Jacobs, 2006, Tresch and Jarc, 2009]. The combination of different dis-

tinct synergies enables variable and dynamic muscle coordinations, while simulta-

neously reducing the number of variables in optimization. One criticism of syner-

gies is firstly the assumption that high dimensionality poses a computational prob-

lem [Bizzi et al., 2002], an assumption that remains to be supported by evidence. Sec-

ondly, while allowing for motor variability, synergies constrain the muscle activation or

force spaces in specific ways, which greatly restricts potential beneficial or even nec-

essary variability [Kutch and Valero-Cuevas, 2012]. Numerous studies have shown that

the role of an individual muscle relative to another (synergist or antagonist) depends on

posture [Hasan and Enoka, 1985], torque [Caldwell and Van Leemputte, 1991] or direc-

tion of force application [Theeuwen et al., 1994], and in fact, synergists like gastrocne-

mius medialis and soleus can become functional antagonists [Schieppati et al., 1990,

Kutch and Valero-Cuevas, 2011].

In the present work, we firstly explore the potential consequences of one way in

which neuromuscular systems are time-varying: muscle fatigue, which we understand

as the exercise-induced decline of the maximum force of a muscle. The primary effect

of fatigue is to reduce the proportionality between muscle activation, measured through

EMG, and muscle force [Dideriksen et al., 2010]. Hence, to maintain a given force

level, the activation of each fatigued muscle has to be increased, to recruit more motor

units or increase the firing rate of already recruited ones. Since synergistic muscles

fatigue at different rates, due to the demands of the task and the proportion of fatigable

vs non-fatigable fibers [Johnson et al., 1973, Housh et al., 1995, Loeb and Ghez, 2000],

we hypothesize that the increase in activation occurs at different rates across muscles.
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Specifically, we hypothesize that including fatigue-based time-variance in modeling

exposes an important drawback of adhering to a single initial solution, and simply scal-

ing it up to maintain a force, in the presence of reduced muscle output as it fatigues.

This strategy will lead to comparatively early failure, and exposes the requirement for

continuous optimization, or more generally, continuous adaptation. Besides, adding

time-variance to musculoskeletal models provides another constraint to identify valid

approaches to the finding of a solution.

Secondly, we show that due to the time-variance of the mapping from muscle acti-

vation to muscle force, only one domain (muscle force or activation) at a time can

be controlled synergistically, while the other varies dynamically, thus making obvi-

ous the inevitability of dynamical changes in either activity or force, with important

consequences to the study of computational complexity in motor function. Further-

more, we hypothesize that the restriction on the solution space imposed by synergies

will lead to a relatively early task failure. It is important to note that we consider

the adherence to a synergy to be equivalent to the adherence to a static optimal solu-

tion: if an ”optimal” synergy fails, then a random synergy is all the more likely to

fail, as the co-activation pattern in that case is not even adapted to the task. This

result suggests the need for and the benefits of dynamic activation strategies in sub-

maximal tasks, for which there exists evidence from isometric knee extension EMG

recordings [Sjogaard et al., 1986, Kouzaki, 2005, Kouzaki and Shinohara, 2006].
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2.3 Methods

2.3.1 Modeling a redundant neuromuscular system

Assumptions

For the purposes of modeling a redundant motor task subject to fatiguing, we adopt

the definition of muscle fatigue as the exercise-induced decline of the maxi-

mum force a muscle can generate [Vollestad, 1997]. In turn, this requires an

increase of activation of that muscle to maintain the force, as has been observed pre-

viously [Dideriksen et al., 2010, Danna-Dos Santos et al., 2010, Rudroff et al., 2010].

Muscle recovery, on the other hand, occurs only in the total absence of activa-

tion [Dideriksen et al., 2011], while at very low muscle forces, the muscle neither

fatigues nor recovers, due to the reliance on slow-twitch fibers, also known as inde-

fatigable fibers [Loeb and Ghez, 2000].

We selected the task of isometric knee extension, because there exists prior evi-

dence, in the absence of a mathematical model, that the nervous system lever-

ages redundancy for the mitigation of fatigue [Sjogaard et al., 1986, Kouzaki, 2005,

Kouzaki and Shinohara, 2006]. Besides, from a modeling point of view, knee extension

has favorable properties: it allows for isolation of muscle redundancy and a relatively

clean separation from endpoint force vector redundancy, whereby different force vec-

tors can all achieve successful task performance. Specifically, the muscles actuating

knee extension (vasti and rectus femoris) are largely similar in terms of their mechan-

ical action - in particular, these muscles don’t add/abduct or rotate the leg. Therefore,

dynamic activation of RF and the Vasti in isometric knee extension is unlikely to give

rise to undesirable tangential endpoint force component, which helps to keep this vector

constant.

Furthermore, we assume the following:
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Independence of muscles: The 31 muscles actuating the modeled limbs (actu-

ally 33, but see below) are assumed to be controlled independently. However, it

has been observed in numerous studies that the activations of muscles correlate to

some degree. Whether these correlations are a function of the particular motor

task [Kutch et al., 2008, Valero-Cuevas et al., 2009b] or the common input at a higher

center [Winges et al., 2006], is currently unclear. The only exception we make to this

assumption is that the three Vasti muscles are controlled together and basically treated as

one muscle [Hoffer et al., 1987a, Hoffer et al., 1987b]. This reduces the original number

of 33 muscles to 31.

Knowledge of muscle state is unaffected by noise and neural delays: since

the neural delays involved in transmitting information about the muscle state to a

central controller are negligible (on the order of ms) compared to the time scale of

fatiguing (on the order of 10s of seconds to minutes) and force modulation (isomet-

ric task), we do not include them in our model. Furthermore, we disregard noise,

either in the muscle activation signal or the endpoint force fluctuation (signal-dependent

noise [Jones et al., 2002]), based on the observation that the magnitudes of relative shifts

in muscle activation are much larger than the fluctuations about the mean force level

generated by a muscle. Nevertheless, noise and delays might influence the amplitude,

frequency or timing of activation pattern dynamics but are unlikely to prevent such high-

amplitude, low-frequency dynamics altogether.

Leg consisting of rigid, supported links with ball and hinge joints:

for an isometric task, this assumption has been shown to be sufficient and

valid [Valero-Cuevas et al., 1998]. This assumption allows us to use a simple three-

dimensional geometric model to model the mapping from joint torques to limb endpoint

forces. Furthermore, since we model a seated posture, with knee and hip flexed at right

angles, the leg is completely supported and no torques are necessary to maintain posture.
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Linearity: It has been shown previously that in isometric force production,

the mapping from muscle activation to the endpoint wrench is approximately lin-

ear [Valero-Cuevas et al., 1998], which entails that the mapping from muscle activation

to limb endpoint force can be described by matrix multiplication. Force-velocity curves

do not play a role in isometric tasks and the force-length curve properties are captured

by the changes of the moment arms as the posture varies.

Post activation potentiation: Under activation, the maximum force a muscle can

generate initially increases [Brown and Loeb, 1998], before the onset of fatigue. We

assume here that the muscle has been activated accordingly and is capable of generating

its maximum force.

Mathematical modeling of isometric knee extension

The leg model consists of two joints, a ball joint at the hip and a hinge joint at knee, but

no ankle joint, since none of the knee extensors crosses this joint. The knee and hip joint

are both flexed at 90�. The two joints actuate a rigid two-link system, with the upper

and lower leg being 0.437 m and 0.37 m long, respectively [Ward et al., 2009]. The

particular endpoint coordinates and limb orientation x, y, z,↵ at the lower end of the shin

are a function of the four joint angles ~q = [q1, q2, q3, q4] (i.e. hip add/abduction, rotation,

flexion/extension and knee flexion/extension) [Valero-Cuevas, 2009]. This relationship

is expressed by the geometric relationship (s(q) = sin(q), and c(q) = cos(q)):
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where the L

i

are the link lengths. The change in endpoint coordinates and ori-

entation, as a function of the change in joint angles can be expressed by the Jaco-

bian [Yoshikawa, 1990], i.e. the partial derivatives of the above geometric relationship:

˙
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The Jacobian J(~q) is nonlinearly dependent on the posture ~q. The endpoint wrench ~w

in knee extension, i.e. the four-dimensional vector consisting of 3 forces and 1 moment

applied by the shin, is also related to the joint torques ~⌧ by the Jacobian, taking its

inverse transpose:

~w = J(~q)

�T

~⌧

These torques, in turn, are generated about the hip and knee joints by the tendon

tensions ~

f , where ~

f is an n-dimensional vector and n the number of muscles (n = 31):

~⌧ = R(~q)

~

f =

2

6664

r11 . . . r1n

... . . . ...

r31 . . . r3n

3

7775
~

f

Here, R(~q) is the moment arm matrix and the r

ij

are the moment arms of the j-

th muscle acting about the i-th joint. Since muscle moment arms change with mus-

cle lengths, which in turn depend on the posture and thus the joint configuration, the

moment arm matrix is posture-dependent, but we simplify it to R. We used moment

arms for the 31 muscles for this particular posture (90� knee and hip flexion) based on

published values [Arnold et al., 2010]. In our model, the 31 muscles generate 4 joint
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torques (hip add/abduction, rotation, flexion/extension and knee flexion/extension), cor-

responding to an underdetermined mapping from activation to torques.

Finally, the tendon tensions ~

f generated by the muscles are related to the muscle

activations ~a (0  a

i

 1) through a diagonal mapping F0:

F0~a =

2

66666664

F11 0 . . . 0

0 F22 . . . 0

...
... . . . ...

0 0 . . . F

nn

3

77777775

~a

where the entry F

i

i corresponds to the maximum muscle tension of the i-th muscle.

This value scales the individual muscle activations, which are between 0 and 1, to the

force generated by the muscle. The diagonality of this mapping reflects the above men-

tioned assumption of independent muscle control. The maximum muscle tension values

are computed as the product of the physiological cross-sectional areas (PCSA) of the

muscles and the muscle stress, the values of which can be found in [Arnold et al., 2010].

If we allow for fatigue dynamics, which we describe in the next section, the matrix

F0 becomes time-varying, since the maximum tension a muscle can generate will

decrease or increase depending on its activation level, as per our adopted definition

of fatigue, hence F0(t). Initially, muscles are assumed to be unfatigued and capable

of producing maximum force [Brown and Loeb, 1998]. Incorporating muscle fatigue

and recovery dynamics in this way reflects the assumption of immediate knowledge of

muscle state (above).

In conclusion, the linear mapping from muscle activations a to the 4-dimensional

endpoint wrench w, applied by the ventral aspect of the lower leg, in an isometric knee

extension task, can be described by the product of the 3 above matrices:
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Rectus femoris

Adductor brevis
Adductor longus Gemelli

Gluteus medius 1

Iliacus

Pectineus
Piriformis

Psoas
Tensor fascia latae

Quadratus femoris

Sartorius

Vasti

Fnormal

Figure 2.1: Muscles contributing to knee extension and their vectors of force application
(if knee and hip are flexed at right angles), based on the linear model and selected by
various optimization functions (described below). Also shown is the direction of nor-
mal force application (black arrow), just above the malleolus. Note that some of these
vectors, those associated with adductors and abductors, point out of the plane.

w = J

�T

RF0(t) · a

In our modeling approach of knee extension, where 31 muscles actuate the hip and

knee joints to generate a wrench, the redundancy, i.e. the infinity of possible solutions,

can then be mathematically illustrated as follows:
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w = J

�T

RF0(t) · a

w = J

�T

RF0(t) · a

= J

�T

RF0(t) · (y + z)

= J

�T

RF0(t)y + J

�T

RF0(t)z

= J

�T

RF0(t) · y + 0

= J

�T

RF0(t) · y

where an 31-dimensional muscle activation vector a = y + z can be decomposed

into two vectors, one of which z is an arbitrary vector from the null space of the matrix

J

�T

RF , which has 31 � 4 = 27 basis vectors. Note that due to the [0, 1]-constraint

on the activations the solution space is constrained and moreover, because of the time-

dependence of F0(t), the solution space of the matrix is shrinking and expanding in

various dimensions as the muscles fatigue and recover.

2.3.2 Mathematical modeling of fatigue

To extract realistic fatigue and recovery dynamics, represented by a set of differential

equations, we implemented and ran a recently published model [Dideriksen et al., 2011]

of single-muscle force production and fatigue. This model extends a common motor

unit-based model of muscle force generation [Fuglevand et al., 1993] by dynamics of

muscle cell metabolite uptake and release rates, which in turn depend on the muscle acti-

vation level. Accumulation of metabolites decreases the twitch amplitude and increases

the twitch time constant of each motor unit. We simulated the decrease in MVC force,
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and thus fatigue, by continuously activating the muscle activated at 10 different, but

constant levels, from 0.1 to 1.0, i.e. full activation, where full activation is the level of

activation necessary to achieve the maximum firing rate in all of the motor units of the

muscle. We simulated the time course of MVC force increase due to recovery, on the

other hand, by leaving an initially fully fatigued muscle deactivated for a sufficiently

long time. The fatigue and recovery profiles are shown in figures 2.2 and 2.3. Note

that the fully fatigued muscle is still capable of generating low amounts of force, which

reflects the contribution of indefatigable slow fibers [Loeb and Ghez, 2000]. The fatigue

dynamics at high forces initially match the activation-dependent exponential profile pro-

posed elsewhere [Freund and Takala, 2001]. The recovery, on the other hand, follows an

initial exponential increase, which is followed by a slow linear phase. The linear phase

represents the change in the amplitude in the H-reflex [Duchateau et al., 2002].

Based on these time series of muscle fatigue and recovery, we used the EUREQA

software [Schmidt and Lipson, 2009] to find possibly non-linear differential equations
dF0
dt

= f(F0(t), a(t))·a(t) and dF0
dt

= f(F0(t)) representing fatigue and recovery, respec-

tively. EUREQA implements a machine learning technique known as symbolic regres-

sion that uses genetic programming to evolve analytical expressions to model the avail-

able data. A population of models is evaluated iteratively to find a set of models that

best map the inputs to the outputs. This is unlike other machine learning techniques

that use a ”black box” approach to model input-output relationships because it avoids

overfitting in attempting to uncover the underlying physics by not espousing any one

specific form of the equations.. The optimization criterion we used to fit the dynamics

was the maximization of the R-squared goodness-of-fit metric, as this provided the best

trade-off between minimizing the fitting error and model complexity, i.e. the over-fitting

of the simulation time series.
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2.3.3 Simulating muscle activation dynamics in isometric knee

extension subject to optimization

We integrated the previously obtained differential equations with a simple Euler scheme,

implemented in the MATLAB c� (Natick, MA) environment. The activation dynamics

at each time step, which we set to 10 s (i.e. small relative to time constants of muscle

fatigue and recovery), were found using the constrained optimization functions linprog()

and quadprog(), minimizing linear or quadratic objective functions, respectively. These

objective functions represent simple control strategies and ways to overcome or lever-

age, respectively, motor redundancy. The following constraints applied:

J

�T

RF0(t)x,ya(t) = 0

J

�T

RF0(t)↵a(t) = 0

J

�T

RF0(t)za(t) = c

i.e. the normal force component of the vector generated at the leg endpoint needs to

be kept constant at c N (Figure 2.1), where c represents a percentage of MVC force,

while keeping tangential force components F
x

and F

y

and the endpoint torque at zero.

Furthermore, the 31 muscle activations a(t) are constrained to fall in the [0, 1] interval,

i.e.:

0  a

i

(t)  1
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We simulated activation dynamics based on the instantaneous minimization of six objec-

tive functions at each time point of simulation, static variations (muscle forces being

static) of which have been proposed previously [Prilutsky and Zatsiorsky, 2002]:

1)
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2 (sum of activations squared)
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(t) (constant muscle force)

where the a
i

⇤ and F

i

⇤ are initial muscle activations and muscle forces computed for the

unfatigued muscle, by minimization of objective function 1). Note that in 5), activation

proportions rather than actual activations are kept constant, since the latter would lead to

immediate task failure, i.e. activations need to increase from task beginning to compen-

sate for fatigue. Objective functions 5) and 6) represent synergistic strategies of task per-

formance, by either keeping all muscle activation contributions equal, as in 5) or keep-

ing the force produced by each muscle constant. In [Danna-Dos Santos et al., 2010], the

authors claim to have found evidence for the former strategy, while synergies can also

be understood as occurring at the muscle force level, as in 6), or yet another level of the

control hierarchy.

Running the muscle activation dynamics based on these objective functions, we

quantified the performance of each control strategy in terms of i) failure times, i.e. the

time point at which the 31 muscles were no longer capable of generating the forces nec-

essary to produce the isometric knee extension force, ii) cumulative error, that is, the

cumulative absolute difference between the generated force and the target forces, iii)
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the number of changes in the order of individual muscle activation proportions, iv) the

number of changes in the order of individual muscle forces, v) the summed difference in

activation at the beginning and the time of failure and vi) the same as v), but for muscle

force. Synergies would aim to keep the latter four metrics at zero, due to ”hard-wired”

muscle co-activation, which intends to prevent any dynamics in activation or muscle

force. Specifically, we would expect objective function 5) to keep at zero the number

of activation order switches and objective function 6) the number of muscle force order

switches.

2.3.4 Parameter search

Since the model [Dideriksen et al., 2011] simulates the force, activation, fatigue and

recovery dynamics of the first dorsal interosseous (FDI) muscle, the extracted differ-

ential equations cannot be simply applied to any muscle of the human body without

some degree of adjustment. Therefore, to test the sensitivity of our obtained results

to parameters, we reran the above described simulations over a range of values. Most

importantly, we ran simulations at different submaximal activation levels, expressed as

percentages of normal force MVC. Gradually increasing the activation level has the

effect of reducing the volume of the solution space of admissible muscle coordination

patterns [Valero-Cuevas, 2009]. Specifically, we hypothesize that at high activation lev-

els, different optimization functions all converge to the same activation dynamics, due

to the lack of solutions. Furthermore, we tested different ratios of the dominant time

constants of fatigue and recovery, thus gradually approaching a scenario without muscle

recovery. Lastly, we explored the sensitivity to a parameter we refer to as the ”fatigue

threshold”, whereby muscles do not fatigue if their activation is below this value (Fig-

ure 2.2, at low activations) [Housh et al., 1995]. This reflects the contribution or pro-

portion of slow-twitch (or non-fatiguable) motor units, which are variable in the human
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body [Johnson et al., 1973]. We hypothesize that since the above objective functions

do not explicitly take into account the muscle physiology, a change in this value will

not have an obvious effect on the computed muscle coordination patterns. The specific

parameters and value ranges tested are shown in table 2.3.4.

Parameter Range
MVC percentage 0.01 - 20 %
⌧recovery/⌧fatigue 0.5 - 10
Non-fatiguable activation level 0.01 - 0.3

2.4 Results

2.4.1 Eureqa-extracted dynamics of muscle fatigue and recovery

We first ran the motor-unit model [Dideriksen et al., 2011] at different activation levels,

to obtain curves of decrease and increase of maximum muscle force representing fatigue

and recovery (Figures 2.2 and 2.3).

Based on these curves, we ran Eureqa for approximately 9 hours on an Apple Mac-

book Pro with a 4-core 2.53 Ghz Intel Core i5 and selected a fit that achieved the best

trade-off between low error and complexity:

dF0

dt

= ⌧fatigueF0(t)e
�(2.451F0(t)2a(t)�0.5933)2

a(t)

where ⌧fatigue = �0.00905 for the nominal fatigue dynamics. Similarly, we ran

Eureqa on the muscle recovery curve for 4 hours to obtain:

dF0

dt

= ⌧recoveryerfc(15.18F0(t)
2 � 11.66F0(t))
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Figure 2.2: Fatigue dynamics. Decline
in MVC force for various constant mus-
cle activations, based on the model
in [Dideriksen et al., 2010]. Note that at
low activation levels (a(t)  0.2), the
muscle almost doesn’t fatigue and that
even if fully activated, the muscles max-
imum force declines to a non-zero level.
These phenomena likely reflect the con-
tribution of slow-twitch fibers.
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Figure 2.3: Recovery dynamics. Incline
in MVC force in the absence of muscle
activation. Note the much longer time
scale compared to muscle fatiguing. Also
note that an initial exponential increase in
MVC force is followed by a long linear
increase.

where erfc(x) represents the complementary error function, i.e. erfc(x) =

2p
⇡

R1
x

e

�y

2
dy and ⌧recovery = 0.00448 for the nominal recovery dynamics (Figure 2.5).

Lastly, we extended the fatigue differential equation by a conditional operations,

whereby fatigue dynamics were suppressed if the activation level of the muscles was

below the fatigue threshold h described above, i.e. a(t)  h. Moreover, we extended

the recovery differential equation by another conditional operator to suppress recovery

if the activation was different from zero, i.e a(t) = 0.0.
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Figure 2.4: Observed fatigue dynamics dF0
dt

in the simulations
of [Dideriksen et al., 2011], and the fit (red) obtained using Eureqa.

Figure 2.5: Observed recovery dynamics dF0
dt

in the simulations
of [Dideriksen et al., 2011], and the fit (red) obtained using Eureqa.

2.4.2 Running the nominal model subject to optimized activation

At each time step of simulation, where dt = 10 s, we ran MATLAB’s linprog() and

quadprog() functions, minimizing the above described objective functions, subject
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to the above mentioned constraints and using the current maximum muscle forces F0
i

(t).

Next, we computed the instantaneous fatigue or recovery increment or decrement from

the Eureqa-extracted differential equations (previous section). In Figures 2.6 and 2.7,

we observe a clear difference in muscle activation dynamics, based on the objective

function minimized. All objective functions rely mostly on the rectus femoris and the

vasti, as expected. None of the objective functions, however, gives rise to the activa-

tion of hamstring muscles, which are hip extensors. Their activation would be expected,

based on the fact that rectus femoris also acts as a hip flexor and this flexion needs to

be counteracted. However, it has been found [Andersen et al., 1985] that the hamstrings

remain silent in knee extension in this posture and that RF basically acts as a monoartic-

ular muscle. Here, the upward component of the rectus femoris is mostly counteracted

by its synergists, the vasti, and other muscles.

Importantly, synergy-based activation dynamics, i.e. keeping constant the propor-

tions of muscle activations or the force produced by each muscle, succeed at their

respective objectives (Figures 2.8 and 2.9). However, we observe that the former also

entails non-constant contributions of individual muscles in terms of force, while the lat-

ter entails non-constant contributions in terms of activation. In other words, synergy-

based objectives can only be met in one domain, while requiring dynamic changes

in others. Furthermore, the constant activations proportion objective function almost

immediately gives rise to a tangential force component, thus violating the task con-

straints (Figure 2.8).

Another important observation is that not only do different objective functions give

rise to different activation dynamics, but they also rely on vastly different numbers of

muscles. For instance, minimizing the sum of activations, a linear objective function,

involves only 4 muscles, while minimizing the sum of squared activations, a quadratic

objective function, involves 13 muscles (Figures 2.7 and 2.6).
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Figure 2.6: Sum of squared activations objective function muscle activation and force
dynamics. Muscle activation and force dynamics are highly dynamic, quite different
from a static optimization approach that ignores time-variance due to muscle fatigue.

2.4.3 Parameter search results

Even more strikingly, relying on just 4 muscles at the lowest force levels, the sum of

activations objective function fails at the task significantly later than its quadratic coun-

terpart (Figure 2.10), and for that matter, all other objective functions. It does so con-

sistently across all levels of force. This can be attributed to the fact that minimizing

this criterion is actually the only one tested here that leverages the ability of muscles to

recover, here specifically the rectus femoris and the vasti (Figure 2.7), to a considerable

degree, reaching the maximum recovery rate at levels between 10 and 20 % of MVC

force (Figure 2.11). Note that at lower force levels, recovery is necessary to a lesser
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Note the rapid switching between rectus femoris and vasti muscles and the fact that this
strategy only relies on 4 muscles for successful task performance. The brief switching
off of rectus femoris allows it to recover slightly, before being reactivated.

degree, due to the fatigue threshold described above. The decline of recovery at higher

forces can be attributed to the lack of available muscle coordination patterns that achieve

the task, while the lower rate at low forces reflects the contribution of muscles activated

sufficiently low to avoid fatiguing.
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Figure 2.8: Constant activation proportions objective function muscle activation and
force dynamics. Note that this objective functions leads to both a relatively early task
failure and a large task error in terms of normal force and one of the tangential compo-
nents of force. Finally, it involves complex dynamics in muscle force space.

All objective functions perform better than the constant muscle force objective func-

tion, in terms of failure time and better than the constant activation proportions objective

function, in terms of error rate (Figure 2.10). As a matter of fact, note that while the

constant activation proportions function seemingly fails later than all other activation

schemes, it consistently does so by violating the task constraint of zero tangential force

(Figure 2.8), thus giving rise to a large error rate at all MVC force percentage levels

(Figure 2.10). Interestingly, while succeeding at enforcing their respective synergy, syn-

ergies do however involve either activation or muscle switching and thus give rise to

”undesirable” computational complexity.
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Figure 2.9: Constant muscle forces objective function muscle activation and force
dynamics. This objective function leads to a relatively early task failure and involves
complex dynamics in muscle activation space.

Lastly, varying the ratio of recovery and fatigue time constants and the fatigue

threshold have far smaller influence on the results, giving almost the same results for

all values in terms of the metrics computed here (results not shown). This is hardly

surprising, since only one of the objective functions, minimizing the sum of activations,

actually leverages muscle recovery dynamics. Thus, its dynamics are the only ones that

do show some effect of increasing the recovery time constant, specifically a reduction

in switching behavior and a reduction in the recovery rate.
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.

2.5 Discussion

In submaximal tasks, the reality of fatigue and recovery in neuromuscular systems and

the resultant time-variance of maximum muscle forces necessitates an adaptive response

by the nervous system to select muscle activations based on the instantaneous state of the

system, to maintain a desired output. This is contrary to the currently dominant think-

ing about optimization for neuromuscular systems, whereby a single optimal solution

is relied on for the entire duration of task performance [Prilutsky and Zatsiorsky, 2002].

Importantly, the need for dynamic muscle activations and forces doesn’t arise simply to
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ensure increased activation to compensate for muscle fatigue [Dideriksen et al., 2010]:

since muscles fatigue differentially [Housh et al., 1995], the compensatory increase

in activation needs to be individually tuned. Mathematically, the activation pat-

tern can be represented by a vector, whose direction is determined by the individ-

ual muscle activation contributions and whose magnitude represents the overall acti-

vation [Valero-Cuevas et al., 1998, Valero-Cuevas, 2000]. Based on this interpretation,

the need for continuous adaptation is expressed by the need for both changes in direction

of the vector and increase in its magnitude. A single static optimal solution, on the other

hand, is expected to yield an optimal result only for the instantaneous state of the system

and thus proves suitable only in the prediction of muscle forces, when the relationship

between activation and force is ignored (e.g. [Prilutsky and Zatsiorsky, 2002]), or in the

prediction of activation in tasks of short duration.

Incorporating sophisticated state-of-the-art dynamics of fatigue and recov-

ery [Dideriksen et al., 2011] in a realistic linear model of isometric knee exten-

sion [Yoshikawa, 1990, Arnold et al., 2010], we simulated continuous optimization for a

variety of objective functions and showed that fatigue-induced time-variance inevitably,

regardless of the objective, leads to complex dynamics of activation and individual mus-

cle force contribution (Figures 2.6 and 2.7).

Importantly, synergy-based co-activation of muscles, such as maintaining constant

muscle activation proportions or individual muscle forces, is equivalent to adhering to

an initial solution found through static optimization. While synergies indeed succeed at

minimizing dynamics in their respective domains, the dynamics in the respective other

domains are clearly not synergy-like (Figure 2.8 and 2.9). However, combining the

contributions of individual muscles into a desired endpoint force output, the nervous

system cannot ignore any of the domains. Therefore, the results presented here for even

a simple motor task indicate that the computational benefits associated with synergies
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are restricted to a single domain. However, the fact that humans are capable of perform-

ing motor tasks continuously or repeatedly show that the nervous system is capable of

processing time-varying relationship between high-dimensional muscle activation and

muscle force spaces.

How could the neuromuscular system still achieve simultaneous simplicity in the

muscle force and the activation dynamics? One possibility is that despite their dif-

ferential activation, contributing muscles all fatigue at the same rate, which in turn

requires equal increases in activation across muscles to compensate for the loss in

muscle force. Given the possibility that some muscles are activated at levels suf-

ficiently low to avoid fatiguing and thus make unnecessary the increase in activa-

tion [Housh et al., 1995], this seems highly unlikely. The other possibility is that the

mapping from muscle activation to muscle force, which is known to be complex and

time-variant [Dideriksen et al., 2010], is adjusted such that synergies can be maintained

in both domains simultaneously. Apart from the lack of evidence for such a complex

and unnecessary adjustment, it again requires knowledge of individual muscle states and

thus information about the full dimensionality of the problem.

Moreover, synergistic objective functions either lead to relatively early task failure,

as in the case of constant muscle forces, or they fail to meet the task constraints, as in

the case of constant activation proportions (Figure 2.10). Alternatively, this can be con-

sidered an immediate task failure. Since fatiguing depends functionally on the muscle

force, a constant muscle force strategy will leave resources in less activated muscles

unused and this strategy will fail by the time one of the muscles reaches full activation

and fatigue cannot be compensated any more. A constant activation proportion strategy,

on the other hand, cannot meet task constraints due to the above mentioned differential

fatiguing in muscles, almost immediately producing force in undesired directions. For

these reasons, lack of computational simplification and early failure, synergies (and thus
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single static optimization) are at best unnecessary but at worst outright detrimental for

motor task performance.

It can be argued nevertheless, that shifting between synergies might help to alleviate

this problem. While there exists evidence for switching between specific activation

patterns [Akima et al., 2011], this strategy raises the question of how many synergies

are necessary to perform a task and where the difference lies between shifting between

synergies and dynamic activation.

Why have these necessary consequences of differential fatiguing seldom been

observed previously? One possibility is the lack of redundancy in previously stud-

ied tasks: for instance, the task posture or the force requirement might only admit a

very limited number of solutions [Loeb, 2000, Kutch and Valero-Cuevas, 2011] (Fig-

ure 3.2). While these solutions likely require differential activation of contributing mus-

cles, leading to differential fatiguing, the observed activation dynamics might approxi-

mate those of synergistic activation, i.e. a simple scaling up of the muscle coordination

pattern [Rudroff et al., 2010, Danna-Dos Santos et al., 2010], due to the limited resolu-

tion of surface EMG [Farina et al., 2004].

Unexpectedly, while it did enable relatively longer task performance, continuous

optimization of most objective functions tested here did not leverage the availability

of muscle recovery. Only minimizing the sum of activations function gave rise to the

required disabling of muscles. While, on the one hand, being one of the least com-

plex strategies, involving the fewest number of muscles, it also came closest to repro-

ducing the dynamics observed in [Kouzaki and Shinohara, 2006], namely the switching

between rectus femoris and the vasti (Figure 2.7). As we increased the force require-

ment, this switching gradually disappeared (Figure 2.11), reflecting the need to keep all

quadriceps muscles activated and reducing the space of available solutions. The ability
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to leverage redundancy for optimal use of resources provides another important aspect

in the debate on optimization as a means to solve the redundancy problem.

There exists peripheral evidence for the underlying mechanisms that give rise to

activation shifts between muscles. Selective fatiguing through electric stimulation of

the vastus lateralis [Akima et al., 2002] and biceps brachii [Aymard et al., 1995] has

been shown to increase recruitment of synergists, while the selective fatiguing of first

dorsal interosseous has been shown to increase the ↵-motoneuron excitability of the

non-fatigued neighboring abductor pollicis brevis [Duchateau and Hainaut, 1993]. The

former observations have been attributed to the decrease in inhibition of group Ia

afferents between synergists, with the inhibition between antagonists remaining unaf-

fected [Aymard et al., 1995], while the latter are due to the activation of group III and

IV afferents under fatigue, which in turn inhibit the fatigued muscle. Further evidence

suggests that an observed alternating activity between synergistic muscles, such as the

switching between rectus femoris and the vasti (as seen in the optimization of the sum

of activations function), when we optimized the sum of activations objective function,

serves to prolong task performance, as the switching frequency negatively correlated

with the post-trial decrease in MVC force [Kouzaki and Shinohara, 2006].

Concluding, our results encourage us to view redundancy as an opportunity for

mitigation of fatigue in neuromuscular systems, rather than a computational problem.

However, the results furthermore indicate that even if the neuromuscular system does

not leverage redundancy, a controller nevertheless needs to be fully aware of the high-

dimensional dynamics in muscle force and activation spaces and the time-varying rela-

tionship between the two. Future efforts at discovering a potential optimization principle

underlying muscle activations in motor tasks should therefore investigate the interplay

between redundancy and muscle recovery at submaximal forces. However, computa-

tional models are required to design experiments to ensure the availability of multiple
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solutions in a given motor task, so as to avoid falsely concluding that synergies are a con-

sequence of nervous system control, as well as the drawbacks of the limited resolution

of EMG.
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Chapter 3

Biomechanics Rather Than

Neurophysiology Explains the

Abolishment of Alternating Activation

of Synergistic Muscles in Submaximal

Fatiguing Isometric Contractions

3.1 Abstract

Several publications in the last two decades have demonstrated slow dynamic reweigh-

ing of muscle activation among synergists in fatiguing low-force isometric tasks. Fur-

thermore, some of these studies have found evidence that switching between synergists

serves as a fatigue mitigation mechanism, as the frequency of switching is inversely

related to the decrease in MVC force during the trial. Potentially, muscles that are

switched off can recover from fatigue to some degree. However, the switching between

synergists largely disappears at approximately 10% of MVC [Kouzaki et al., 2002], a

phenomenon hitherto not understood.

It is a well-known that at lower force levels, multiple muscle coordination patterns

can generate the same force output. Here, we show, based on the prediction of a real-

istic biomechanical model of isometric knee extension, that although multiple muscle
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coordination solutions do exist at the 15% MVC force level, each of them requires all

synergists involved in knee extension to be activated, thus precluding muscle coordina-

tion patterns in which individual muscles are switched off.

We then used surface EMG to determine experimentally the muscle activations in

isometric knee extension and successfully reproduced the switching dynamics observed

in previous studies of isometric knee extension. We find that, as predicted by the model,

switching largely disappears between 10 % and 15 % of MVC force.

Hence, we provide a simple biomechanical rather than a complex neurophysiolog-

ical explanation for the abolishment of muscle switching at higher force levels. This

result has important implications for our understanding of how the nervous system deals

with muscle redundancy: specifically, we show that the assumption of neurophysiolog-

ical factors is unnecessary in the explanation of the abolishment of muscle switching.

This enables us to view control by the nervous system as being mainly constrained by

biomechanical factors, while being able to play an active role in the mitigation of fatigue.

3.2 Introduction

Involuntary low-frequency alternations in recruitment of different parts of the

quadriceps during submaximal isometric knee extension were first reported

in [Sjogaard et al., 1986]. Since then, such changes in muscle activation in isomet-

ric tasks have been reproduced in the same task [Kouzaki and Shinohara, 2006], as

well as observed in other isometric tasks such as elbow flexion [Semmler et al., 2000]

and ankle extension [Tamaki et al., 1998]. In particular, in the former two studies the

observed changes were statistically associated with a reduced decrease in post-trial

MVC [Kouzaki and Shinohara, 2006] or increased endurance [Semmler et al., 2000].
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These results have important and hitherto overlooked implications for motor con-

trol, specifically the way in which the nervous system handles the redundancy prob-

lem [Bernstein, 1967], i.e. the seemingly infinite number of muscle activation patterns

that all generate the same endpoint force vector in submaximal tasks. The results indi-

cate that the nervous system is actually capable of leveraging redundancy for the mit-

igation of fatigue, i.e. employing the switching between synergists to mitigate fatigue

and extend the time to exhaustion in submaximal tasks.

Besides, these results cast doubt on the validity of using optimization to determine a

unique solution to the redundancy problem [Prilutsky and Zatsiorsky, 2002], since tradi-

tional approaches in biomechanics disregard the time-varying nature of neuromuscular

systems subject to fatigue and thus do not allow for dynamic muscle activation or at

least, the switching between solutions. This mismatch between prediction and observa-

tion also applies to the idea of muscle synergies [Tresch and Jarc, 2009], i.e. the rigid

co-activation of muscles, since synergies can be considered as static solutions to the

redundancy problem.

Importantly, however, the endurance-enhancing muscle switching between syn-

ergists has only been observed at very low forces, at no more than 10% of MVC

force [Kouzaki et al., 2002]. Why alternating recruitment has not been observed at

higher force levels, is currently unclear, but [Kouzaki et al., 2002] suggest that these

dynamics are related to the balance between neural inputs from peripheral afferents and

the voluntary drive. Specifically, inhibition between synergist muscles decline as volun-

tary contraction levels increase [Gritti and Schieppati, 1989, Schieppati et al., 1990].

Here, we test a simpler hypothesis for the observed abolishment of switching at

higher contraction intensities. In particular, we hypothesize that the neuromuscular sys-

tem simply requires all synergists, i.e. rectus femoris and the vasti, to produce the

desired force. To generate a specific endpoint force vectors, a subtle combination of
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muscles whose individual vectors point in the approximate direction is required. While

at low forces, combinations exist that do not necessarily involve all synergists, at higher

force the neuromuscular system simply runs out of solutions of this kind. This predic-

tion is based on a simple linear and redundant, but realistic model of isometric knee

extension [Yoshikawa, 1990, Valero-Cuevas, 2009].

3.3 Methods

3.3.1 Modeling a redundant neuromuscular system

Assumptions

For the purposes of modeling a redundant motor task subject to fatiguing, we adopt the

definition of muscle fatigue as the exercise-induced decline of the maximum force

a muscle can generate [Vollestad, 1997]. In turn, this requires the increase of activa-

tion of that muscle to maintain the force generated by it, as has been observed pre-

viously [Dideriksen et al., 2010, Danna-Dos Santos et al., 2010, Rudroff et al., 2010].

Muscle recovery, on the other hand, occurs only in the total absence of activa-

tion [Dideriksen et al., 2011]. At very low muscle forces, the muscle neither fatigues

nor recovers, due to the reliance on slow-twitch fibers, also known as indefatigable

fibers [Loeb and Ghez, 2000].

We selected the task of isometric knee extension, because there exists prior

evidence that the nervous system leverages redundancy for the mitigation of

fatigue [Sjogaard et al., 1986, Kouzaki, 2005, Kouzaki and Shinohara, 2006]. Besides,

from a modeling point of view, knee extension has favorable properties: it allows for

isolation of muscle redundancy and a clear separation from endpoint force vector redun-

dancy, whereby different force vectors can all achieve successful task performance.
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Specifically, the muscles actuating the knee (vasti and rectus femoris) are largely simi-

lar in terms of their mechanical action and additionally, these muscles don’t add/abduct

or rotate the leg. Therefore, dynamic activation of rectus femoris and the vasti in iso-

metric knee extension is unlikely to give rise to undesirable tangential endpoint force

component, which helps to keep this vector constant.

Furthermore, we assume the following:

Independence of muscles: Muscles actuating the modeled limbs are assumed to

be controlled independently. However, it has been observed in numerous studies that

the activations of muscles correlate to some degree. Whether these correlations are a

function of the particular motor task [Valero-Cuevas et al., 2009b, Kutch et al., 2008] or

the common input at a higher center [Winges et al., 2006], is currently unclear. The

only exception we make to this assumption is that the three vasti muscles are controlled

together and basically treated as one muscle [Eccles et al., 1957, Hoffer et al., 1987a,

Hoffer et al., 1987b].

Leg consisting of rigid, supported links with ball and hinge joints: for

an isometric finger task, this assumption has been shown to be sufficient and

valid [Valero-Cuevas et al., 1998]. This assumption allows us to use a simple three-

dimensional geometric model to model the mapping from joint torques to limb endpoint

forces. Furthermore, since we model a seated posture, with knee and hip flexed at right

angles, the leg is completely supported and no torques are necessary to maintain posture.

Linearity: It has been shown previously that in isometric force production,

the mapping from muscle activation to the endpoint wrench is approximately lin-

ear [Valero-Cuevas et al., 1998], which entails that the mapping from muscle activation

to limb endpoint force can be described by matrix multiplication. Force-velocity curves

do not play a role in isometric tasks and the force-length curve properties are captured

by the changes of the moment arms as the posture varies.
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Mathematical modeling of isometric knee extension

The modeling of isometric knee extension has been described in the previous chapter,

in a section with the same title.

3.3.2 Muscle necessity analysis

We used the nominal matrix J

�T

R(~q)F0 to determine whether specific muscles, namely

the rectus femoris and the vasti are necessary for a given desired output force using

standard tools in computational geometry. The muscle redundancy problem can be

expressed as a set of linear inequalities [Chao and An, 1978, Spoor, 1983]. These

inequality constraints enforce firstly, that the activation for each muscle lie between

0 and 1, secondly, that the actual output normal force is equal to the desired force,

in terms of the percentage of MVC normal force, thirdly, the tangential components

of the endpoint force vector are zero and finally, that no torque is applied about the

endpoint. The inequality constraints define a region in muscle activation space called

the task-specific activation set: any point inside that set will produce the desired

output force [Kuo and Zajac, 1993, Valero-Cuevas et al., 1998, Valero-Cuevas, 2000,

Valero-Cuevas, 2005]. We computed the vertices defining the task-specific activation

set using a vertex enumeration algorithm [Avis and Fukuda, 1992]. We then found the

task-specific activation ranges to achieve the desired output force for each muscle by

projecting all vertices onto the 31 muscle coordinate axes to determine the minimum

and maximum task-specific activations. We used the necessity analysis of the nominal

model to determine a set of candidate muscles for the subsequent sensitivity analysis

(below). Since running vertex enumeration to test the robustness of muscle necessity

results is computationally too costly, we tested the necessity of a few individual muscles

only, which we identified by the low force at which they became necessary. Lastly, due
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to the computational cost, we performed the necessity analysis on a reduced model with

15 muscles, including all muscles that have a moment about the knee plus some of the

hip muscles, mainly hip flexors and extensors.

3.3.3 Sensitivity analysis

To test how sensitive the muscle necessities of the most necessary muscles found

through vertex enumeration are to variations in task posture, muscle moment arms and

maximum muscle forces, we perturbed the column vectors of the matrix J

�T

R(~q)F0, by

adding random vectors drawn from a zero-mean normal distribution. Since the action

matrix is formed by the product of the posture-dependent Jacobian inverse transpose,

the muscle moment arm matrix and the diagonal matrix of maximum muscle forces,

perturbing this product is equivalent to randomly varying these parameters in isolation.

To determine necessity of individual muscles, we ran MATLAB’s linprog() con-

strained linear optimization algorithm. Specifically, we minimized the sum of muscle

activations
P

c

i

a

i

subject to the above described muscle activation, torque and tangen-

tial constraints. However, all coefficients c

i

, except the one for the muscle of interest

(rectus femoris and vasti) were set to zero, therefore the objective function becomes sim-

ply c

i

a

i

. Thus, the objective is to minimize the contribution of the muscle of interest,

while allowing other muscles to contribute an arbitrary amount of force, as long as the

constraints are satisfied. If the contribution of the muscle of interest cannot be reduced

to zero, that muscle needs to be considered necessary under the given constraints.

Besides varying the perturbation intensity from zero (nominal model) to 20% of each

action matrix column vector’s length, we also varied the output normal force in terms

of the percentage of MVC normal force, which the particular perturbed model could

generate, to determine for each perturbation intensity the percentage at which a muscle

becomes necessary.
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3.3.4 Data collection

Data were obtained from 3 young adult male subjects (ages 23, 32 and 33, all right-

dominant) during sustained knee extension at three different MVC percentage levels

(2.5%, 10% and 15%), below and just above the predicted level at which the vasti mus-

cles became necessary to perform the task.

We measured subjects’ MVC torque using a CYBEX Humac Norm system (Cybex,

Medway, MA). They were asked to produce maximum isometric knee extension torque

with their dominant leg and with hip and knee flexed at 90� for 5 seconds. This was

repeated 3 times and the maximum obtained value was used as the MVC torque. Based

on the MVC knee extension torque and the moment arm length, i.e. the distance between

knee and the location of force application just above the malleolus, we computed the

MVC normal force by dividing the torque by the moment arm length.

Subjects were seated in a chair, hip joint flexed at 90� and the knee of the dominant

leg flexed at slightly less than 90�. Subjects were not strapped to the chair, to ensure

that they voluntarily maintained that posture and could not rely on postural changes to

mitigate fatigue. However, the lower leg was immobilized between the force sensor and

the leg rest of the chair. Subjects exerted force with the ventral aspect of their lower

dominant leg just above the medial malleolus (Figure 3.1) against a 6-axis force trans-

ducer (JR3, Woodland, CA). Simultaneously, we recorded bipolar surface electromyo-

gram (EMG) using a Delsys system (Delsys, Boston, MA) from the muscle bellies of

rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF)

and semitendinosus (ST), while the common reference electrode was placed on the skin

around the olecranon. Because of its deep location, we were unfortunately not able

to record from iliacus via surface EMG. EMG and force data were sampled at 1000

Hz using a 16-bit data acquisition system (National Instruments 6259) and stored and

analyzed on a computer.
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Plastic tube

Force sensor

Surface EMG 
(Rectus femoris)

Figure 3.1: Experimental setup. Subjects were seated on a chair, with the backrest set
to vertical, to help them maintain a posture of 90� hip flexion and near 90� knee flexion.
They exerted a force directed forward against a tube that was attached to a force sensor,
set to the appropriate height above ground. The dominant leg, with which subjects
exerted force, was immobilized between the tube and the leg rest. To prevent discomfort
caused by the force exertion, a strap was tied around the leg above the malleolus.

Subjects maintained the 2.5% MVC normal force for 1 hour, the 10% for 20 min-

utes, and the 15% MVC for 15 minutes or until exhaustion. Subjects were given visual

feedback on the normal force: a horizontal line on the screen representing the applied

normal force had to be aligned with a horizontal target force line, as closely as pos-

sible. While subjects did perform a short 1-minute learning trial, they were not given

directions during the actual trial.
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3.3.5 Data analysis

3.4 Results

3.4.1 Muscle necessity analysis

The muscle necessity analysis reveals that first, the vasti become necessary, near 12%

MVC normal force and next, both rectus femoris and illiacus become necessary at 41%

(Figures 3.2 and 3.3). None of the other muscles that have a moment about the knee

joint, such as the hamstrings, for instance, become necessary at these force levels. In

fact, at 41% MVC, all muscles except the three mentioned above can be arbitrarily

activated and a suitable solution still be found. Therefore, for the subsequent sensitivity

analysis, we investigated the robustness of the necessity results for the vasti, rectus

femoris and iliacus.

3.4.2 Sensitivity analysis

Our sensitivity analysis based on randomized perturbations to the model of isometric

knee extension suggests that it is the vasti which are the determining factors in the

disappearance of muscle switching, since they become necessary at lower MVC normal

force levels than the rectus femoris.

3.4.3 Experimental results

Subjects’ MVC normal forces were found to be 440 N, 481 N and 951 N, respectively.

All three subjects were able to maintain the required force for the duration of the trial

at the 2.5 and 10% MVC target forces. When the task was performed until exhaustion,

the subjects only failed to maintain the required force at the very end. Exhaustion only

occurred when 15% MVC normal force was the target force.
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Figure 3.2: Muscle necessity analysis result at 15% of MVC normal force. The admissi-
ble activation ranges for necessary muscles are colored red. At this force level, the vasti
muscles (VAS) become necessary for any muscle coordination pattern, and thus cannot
be switched off for potential recovery from fatigue. Note that all other muscles can be
activated at any level and a suitable coordination pattern can still be found.

Plotting the EMG traces for the three force levels of 2.5%, 10% and 15% of MVC

normal force (Figures 3.6 - 3.8), we see a gradual change from very pronounced switch-

ing dynamics among the rectus femoris and the two vasti at low force, becoming less

pronounced as the force increases to a complete disappearance at the highest force level.

Instead, the high force is maintained by gradually increasing the activation of all syner-

gistic muscles, thus confirming our hypothesis that at least one of the synergists becomes

necessary at this force level. Thus, the switching off of a muscle would lead to violation

of the task constraints.

More specifically, the observed switching occurred mainly between the

rectus femoris and the two of the vasti muscles, possibly all three of
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Figure 3.3: Muscle necessity analysis result at 41 % of MVC normal force. The admis-
sible activation ranges for necessary muscles are colored red. Besides the vasti (VAS),
the rectus femoris (RF) and the illiacus (ILIACUS) become necessary, too, while all
other muscles can be activated at any level.

them [Akima et al., 2011], due to the common innervation of these mus-

cles [Hoffer et al., 1987a, Hoffer et al., 1987b, Eccles et al., 1957]. This con-

firms the observations in [Kouzaki et al., 2002, Kouzaki and Shinohara, 2006,

Akima et al., 2011], where the observed switching frequency among the vasti

was near zero. Moreover, the switching activity between muscles, when it occurred,

never began immediately or soon after the start of the trials, but 15 minutes into the trial

at medium force levels (Figure 3.7) and even later at the lowest force level (Figure 3.6,

25-30 minutes), suggesting that the switching is induced by fatigue.

Finally, the finding of our sensitivity analysis that the vasti become necessary at

lower force levels than the rectus femoris is reflected by the comparatively greater mod-

ulation of RF activation (Figures 3.6 and 3.7), i.e. the difference in activation between
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Figure 3.4: Sensitivity analysis for the vasti muscles. For a given MVC normal force
proportion between 0 and 0.5, the column vectors of the matrix J

�T

RF0 were perturbed
by vectors of length 0 to 0.2 of the nominal vector length. For each perturbation length,
the perturbation was repeated 100 times and at each iteration the necessity of the vasti
was determined. The z-axis represents the proportion of iterations for which the vasti
were necessary. We see that the vasti become necessary at the lowest force level for the
unperturbed nominal model, near 0.12 of its MVC normal force.

”on” and ”off” phases is more pronounced in the latter. This confirms that more muscle

coordination patterns exist in the absence of RF activation than do in the absence of vasti

activation.

3.5 Discussion

In this work, we have found evidence for a simple biomechanical explanation for the

abolishment of muscle activation alternation among synergists. Specifically, our 31-

muscle model of isometric knee extension predicts the necessary activation of some of
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Figure 3.5: Sensitivity analysis for rectus femoris. Contrary to the vasti, in the nominal
model the rectus femoris becomes necessary at the highest MVC normal force propor-
tion, between 0.35 and 0.4, while in the most perturbed model, the RF can be necessary
at force levels as low as 0.1.

the involved muscles, which prevents their deactivation and thus the alternation among

synergists.

Alternating activation between synergistic muscles in fatiguing submaximal

isometric tasks is a phenomenon that has been observed in multiple stud-

ies [Sjogaard et al., 1986, Tamaki et al., 1998, Kouzaki et al., 2002]. it has been sug-

gested that the alternation serves as a endurance-enhancing mechanism, whereby deac-

tivated muscles recover some of their force-generating capability that decreased under

fatigue. The underlying physiological mechanisms giving rise to the alternation phe-

nomenon are currently unclear, but it has been hypothesized that muscle afferents send

fatigue-related information to the ↵-motoneurons of all synergists via interneurons.

In particular, a potential mechanism is the fatigue-induced disinhibition of afferents

between synergists [Schieppati et al., 1990, Pascoe et al., 2006]. According to this inter-

pretation, the alternation between synergists occurs due to the reciprocal decrease in
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Figure 3.6: Representative EMG recordings at 2.5% MVC normal force. The subject
maintained this force level for 60 minutes. Between 20 and 30 minutes into the trial, we
see activation rotation between the RF and the two vasti, becoming more pronounced as
the trial progresses. Two sample coordination patterns are highlighted: dashed rectan-
gle: RF activated, vasti deactivated, solid rectangle: RF deactivated, vasti activated

inhibition, but since muscles fatigue at different rates, they inhibit each other differ-

entially. Not surprisingly, the reason for the disappearance of alternation at approxi-

mately 10% MVC is even less understood. It has been found that the blood flow to

muscles is significantly reduced at 10% MVC [Sjgaard et al., 1988]. This in turn would

require larger activation of the muscle. It has been found [Gritti and Schieppati, 1989,

Schieppati et al., 1990] that besides fatigue, greater muscle contraction also as the effect

of disinhibition among synergists. Therefore, the constant disinhibition due the larger

activation overrides the effect of the periodic disinhibition due to fatigue.
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Figure 3.7: Representative EMG recordings at 10% MVC normal force. The subject
maintained this force level for 20 minutes. The switching between RF and the vasti
now begins around 10 to 15 minutes into the trial, but is less pronounced. Two sample
coordination patterns are highlighted: dashed rectangle: RF activated, vasti deactivated,
solid rectangle: RF deactivated, vasti activated

While this interpretation might be true, we argue that it is too complex and incor-

rectly assumes that alternation would still occur if not for the abolishment of inhibition

between synergists by high muscle activation. Indeed, a larger desired output force

requires greater activation. but based on the experimentally confirmed biomechanical

model of isometric knee extension, we argue that the primary reason for the absence of

alternation between the rectus femoris and the vasti muscles is the necessity for vasti

activation. Given that rectus femoris occupies only 15% of the volume of the quadri-

ceps [Akima et al., 2007], it appears obvious that the knee extension force generated at
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Figure 3.8: Representative EMG recordings at 15% MVC normal force. The subject
maintained this force level for 10 minutes. Assuming that switching serves as a fatigue
mitigation mechanism, we expect it to begin progressively earlier as the force level is
increased. However, no switching occurs at this force level.

higher levels needs to originate somewhere and cannot solely come from rectus. How-

ever, since the rectus femoris is not necessary at the low force levels studied here (Fig-

ure 3.3), this muscle could still be deactivated on its own, while the activation of the

vasti would be accordingly modulated to compensate. While modulation is indeed more

pronounced in RF (Figure 3.7), we hypothesize that disinhibition due to high activa-

tion [Gritti and Schieppati, 1989, Schieppati et al., 1990] still plays a role in preventing

the complete deactivation of rectus femoris at higher force levels.

The importance of biomechanics in the explanation of neural control strategies

seen here emphasizes the need for a controller capable of a flexible response to the

complex and interdependent requirements imposed by the mechanics of the task, the
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redundancy of muscles and the time-variance due to muscles fatiguing at different

rates, proportional to their individual activation. Indeed, there exists some indica-

tion for a great degree of flexibility in the activation of synergistic and thus, redun-

dant, muscles. In [Schieppati et al., 1990], it was found that gastrocnemius and soleus

are not necessarily synergists under all conditions: as the force requirements of the

task increase, the inhibition between synergists disappears, thus altering the relative

function of the two muscles, which become more synergistic. Furthermore, selec-

tive fatigue of biceps brachii has been shown to increase the activation of unfa-

tigued synergists [Aymard et al., 1995], while the same has been shown in the quadri-

ceps [Akima et al., 2002], potentially due to the disinhibition mechanism described

above. In summary, these findings strongly argue against a rigid co-activation by mus-

cles, as suggested by optimization [Prilutsky and Zatsiorsky, 2002] and the muscle syn-

ergy concept [Tresch and Jarc, 2009]. Instead, they indicate that i) the biomechanical

requirements of the task, in particular the desired output force level, need to be taken

into consideration in trying to determine a muscle coordination pattern, and ii) the time-

varying nature imposed by fatigue on neuromuscular systems does not allow for a static

solution without violation of task constraints. On the other hand, the ability to respond

in a flexible way affords the nervous system a means to proactively leverage muscle

redundancy, specifically a dynamic activation of muscles, to enhance the endurance of

the system [Kouzaki and Shinohara, 2006].
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Chapter 4

Temporal Analysis Reveals a

Continuum, Rather Than a Separation,

of Task Relevance

4.1 Abstract

The Uncontrolled Manifold and Principle of Minimal Intervention hypotheses propose

that the observed differential variability across task relevant (i.e., task goals) vs.

irrelevant (i.e., in the nullspace of those goals) variables is evidence of a separation

of task variables for efficient neural control strategies. Support for this comes from

spatial domain analyses of kinematic, kinetic and EMG variability. While proponents

admit the possibility of preferential as opposed strictly ”uncontrolled” variables,

such distinction has not been quantified or considered when inferring control action.

Here we extend analysis of task variability to the temporal domain and show that,

even for steady-state 3-finger static grasp, the variability in ”task-irrelevant” variables

exhibits a structure indicative of corrective action at par with that for ”task-relevant”

variables. The spatial fluctuations of fingertip forces show, as expected, greater ranges

of variability in ”task-irrelevant” variables (> 98% associated with changes in total

grasp force; vs. only < 2% in ”task-relevant” changes associated with acceleration of

the object). At some time scales, however, the temporal fluctuations of ”task-irrelevant”

variables can exhibit negative correlations clearly indicative of corrective control (Hurst
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exponents < 0.5); and temporal fluctuations of ”task relevant” variables can exhibit

neutral and positive correlations clearly indicative of absence of corrective control

(Hurst exponents � 0.5). We conclude that we must revise our understanding of task

relevance in the context of task variability, and that we must consider both spatial and

temporal features of all task variables when inferring control action and understanding

how the CNS handles task redundancy.

4.2 Introduction

In motor control research, redundancy has traditionally been viewed as its ”central

problem” [Bernstein, 1967]. Here, we understand the term ”redundancy” as the avail-

ability of infinitely many different solutions to the performance of a motor task, as

opposed to muscle redundancy, which refers to the multitude of muscle coordination

patterns producing the same endpoint force. The ”problem” in either type of redun-

dancy is selecting a unique solution. In multifinger grasp, which has been studied exten-

sively from a redundancy point of view [Park et al., 2010, Santello and Soechting, 2000,

Latash and Zatsiorsky, 2009], a solution consists of finding a configuration of n fingertip

force vectors, whose summation will create a net force and moment vector that leads to

successful task performance. For instance, in static three-finger grasping of rigid objects

studied here, one can squeeze an object harder, without translating or rotating it, or the

pressing of a key can be performed as long as the normal force is sufficiently large and

the tangential force components are inside the friction cone.

Mathematically, the redundant space of all applicable forces can be separated into

the mutually orthogonal subspaces of force variability that has no effect on the task

(e.g. squeezing the object in static grasp) and force variability that violates the task
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constraints. We refer to the former subspace as the task-irrelevant space, or ”null

space”. Faced with the above mentioned ”problem” of selecting particular solutions,

researchers have suggested that the nervous system only needs to identify and control

the latter, task-relevant subspace, and can disregard the former subspace, thereby sim-

plifying the control task. This idea of control is known as the ”Uncontrolled Man-

ifold” hypothesis [Scholz and Schner, 1999, Scholz et al., 2002, Latash et al., 2010]

or ”Principle of minimal intervention” [Jordan, 2003, Valero-Cuevas et al., 2009b].

Studies have considered as evidence for this strategy the observation that task-

irrelevant dimensions exhibit relatively larger variability than task-relevant dimen-

sions [Scholz and Schner, 1999]. Such stratified variability has been demonstrated in

analyses of kinematic [Tseng and Scholz, 2005], kinetic [Santello and Soechting, 2000]

and EMG variability [Valero-Cuevas et al., 2009b]. In this sense, large variability in

a task dimension reflects the absence of control of this dimension during successful

task performance. On the other hand, even a task-relevant dimension will exhibit some

amount of variability. Therefore, the magnitude of variability is not necessarily a good

predictor of task-relevance and in fact, proponents of the UCM hypothesis admit the

possibility of preferential as opposed to a separation into strictly controlled and uncon-

trolled variables [Latash et al., 2010]. Despite this admission, a specific quantification

that would allow us to predict task-relevance based on variability is currently missing.

However, little attention has so far been directed at the temporal structure of vari-

ability in the task null space. Being considered uncontrolled, the implicit assump-

tion is that task-irrelevant variability exhibits the properties of either a white noise

process, consisting of uncorrelated samples, or Brownian motion, formed by the

integration of uncorrelated samples [Kantz and Schreiber, 2004]. Conversely, a con-

trolled process, continuously or intermittently controlled [Collins and De Luca, 1994,

Milton et al., 2009], will exhibit correlations between time samples. Both linear
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and nonlinear time series analysis have been commonly employed to reveal tempo-

ral correlation structure indicative of control strategies, primarily in postural control

research [Jeka et al., 2004, Collins and De Luca, 1994]. For instance, in a seminal paper

by Collins and de Luca [Collins and De Luca, 1994] the authors demonstrated a com-

plex correlation structure in the center-of-pressure time series recorded during quiet

stance, a highly redundant task.

Here, we test the hypothesis that a time-series, or temporal, analysis of forces in

the ”task-irrelevant” subspace of static tripod grasp reveals more than just an uncor-

related process with relatively large variance. We selected the task of static tri-

pod grasp, because it is one of the most common but simple motor tasks. Yet

at the same time, it allows for multiple solutions in terms of fingertip force vec-

tor configurations, since the object can be squeezed harder or the intersection point

of the three force vectors can move, without imparting a moment or acceleration

on the object [Yoshikawa and Nagai, 1991, Flanagan et al., 1999]. Thus, static tri-

pod grasp has an intuitive associated task null space. To reveal temporal correla-

tion and thus structure indicative of control, we apply Detrended Fluctuation Analysis

(DFA) [Kantelhardt et al., 2001] to the time series of mechanically task-irrelevant vari-

ables to reveal long-range correlations indicative of corrective feedback control of these

variables. Such temporal structure of task-irrelevant variability challenges the thinking

that task-irrelevant variables are not controlled. Instead, these results suggest that task-

relevance needs to be understood more broadly than just mechanically and is incommen-

surate with a simple separation into task-relevant and task-irrelevant variables. Rather,

task variables need to be ranked according to this extended understanding of relevance.

We speculate that the control of mechanically irrelevant variables can help to improve

task performance.
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4.3 Methods

4.3.1 Data collection

We asked 12 young subjects (ages 20-36, 6 male, 9 right-handed) to perform a static

tripod grasp of an instrumented object designed and built in our lab (Figure 4.1). While

performing the grasp, the thumb, index and middle finger were in contact with three ATI

Nano17 6-axis force transducers (Apex, NC, USA) locked in a configuration comfort-

able for each subject. The angle between index and middle finger was approximately

30�, while the angles formed with the thumb by each finger were approximately 165�.

Each force transducer was coated with a teflon surface to reduce reliance on friction by

the subjects to achieve a stable grasp. The force transducers were connected to a 16-bit

National Instruments 6225 M-series data acquisition card (National Instruments, Austin,

TX, USA). Attached to the object were three markers for motion capture, forming an

equilateral triangle, whose plane was parallel to the grasp plane of the three fingertips.

7 motion capture cameras (Vicon, Oxford, UK) allowed us to measure the object’s posi-

tion and orientation to quantify how well the subject met the task goal of maintaining a

simple static grasp.

Subjects performed all trials with their dominant hand [Oldfield, 1971]. Subjects

were seated in a chair, with the grasping hand resting on the chair’s armrest (Figure 4.1).

Moreover, we asked subjects to immobilize the wrist of their grasping hand by gripping

the wrist with their non-dominant hand to minimize wrist rotation and hand translation,

since we were interested in the coordination of fingertip forces for steady-state static

grasp.

Subjects performed steady-state static grasps under three weight and two visual con-

ditions, for a total of 6 conditions. Three different weights, 50 g, 100 g and 200 g, were

screwed to the object from below (Figure 4.1) to add to the 50 g weight of the object

67



itself. The torques induced by the lowered center of mass helped to minimize rotations

of the object, except those about the vertical axis. In the visual feedback trials, we pre-

sented a crosshair on the screen, whose height represented total grasp force as the sum

of the three normal forces (Figure 4.1). We updated the position of the crosshairs at a

rate of 50 Hz. Subjects had to control normal forces such that the crosshairs would align

with a horizontal target line, in addition to minimizing object translations and rotations.

The visual feedback screen was placed approximately 1.5 m away from the subject,

ensuring that the subject would be able to track the horizontal line.

Subjects performed static grasp trials of 68 s duration three times for each weight,

and for each visual condition, for a total of 18 trials per subject (3x3x2). Between trials,

subjects had one minute of rest to avoid fatigue. The different weights were attached

in random order, while the nine trials involving visual feedback were always performed

after the ones without, because the target line height was based on the self-selected

average sum of normal forces subjects applied to the force sensors for a given weight in

the non-visual condition.

4.3.2 Data preprocessing

The three-dimensional force data recorded by each transducer were sampled at 400 Hz,

while the marker positions were sampled at 200 Hz (both force and motion data col-

lection were triggered synchronously). We removed the first seven and last 1 second(s)

from each trial’s time series to avoid transients. Next, we downsampled both the force

and motion capture time series to 100 Hz. Due to the type of data analysis we per-

formed, we did not filter the data to avoid creating artifactual correlations (see below

and Results section).
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Figure 4.1: a.-b. The apparatus designed and built in our lab. It consists of three arms
rotating about a common hinge. Each arm is instrumented with a 6-axis force transducer,
which form the contact surfaces for tripod grasp. c. The static grasp posture during
trials. In addition, subjects were asked to hold their wrist with their non-dominant hand.
d. The visual feedback on the sum of normal forces. Subjects had to align the crosshair
with the target line.
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4.3.3 Data analysis

To analyze the spatial coordinated action among the three fingertip forces, we first per-

formed principal component analysis (PCA) on the time series of each sensors normal

forces, for each trial. PCA is a common linear method for the estimation of spatial

correlation structures in data [Clewley et al., 2008]. Specifically, we computed the three

principal components of the 3x3 normal force covariance matrix (q-PCA). PCA has been

commonly used to estimate effective degrees of freedom in motor systems; and in the

context of the Uncontrolled Manifold (UCM) hypothesis to compute task-relevant and

-irrelevant latent variables, which are represented by the orthogonal PC vectors. As is

commonly done [Kutch and Valero-Cuevas, 2012], we then projected the 3-dimensional

normal forces (one normal force per force sensor) time series data onto the three princi-

pal components. We also tested doing this same analysis on the full 9-dimensional data

sets (3 force components per force sensor) but the results are unchanged from when

using only the normal force component from each sensor). As described in the Results,

the first, second, and third principal components can be called the grasp, compensation

and hinge modes of this task (Figure 4.3).

Next, we applied Detrended Fluctuation Analysis (DFA) to each projected time

series [Kantelhardt et al., 2001]. DFA is a tool for the detection of long-range temporal

correlations in non-stationary time series, and has the advantage (in particular, over the

classical time-lagged autocorrelation function) that it can distinguish unwanted trends

of arbitrary order, which can give rise to spurious non-zero correlations, from actual

long-range correlations in non-stationary data. DFA has been used extensively for the

analysis of behavioral and physiological data [Hausdorff et al., 1996a, Peng et al., 1998,
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Penzel et al., 2003]. Mathematically, DFA quantifies the power-law increase of the root-

mean square deviations from a trend in the time series fluctuations, once segments of

increasing length n have been subtracted from it to remove trends of that length:

F (n) =

"
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j
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2
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b represents the residuals of the linear fit a
j

b to the time series segment X
j

of length n. For a given segment length n, there are L overlapping segments in the

process. The complete expression for F (n) represents the average root mean squared

deviation at segment length, or time scale, n. In a non-stationary process, this time scale

is related to F (n) by the relationship

F (n) / n

↵

This power-law increase in root-mean square deviation is mathematically linked to long-

range temporal correlations in the data: negative correlations will, over time, lead to a

smaller rate of increase than positive correlations. In particular, scaling exponents can

be fit to the logarithmic plots of the time scales n vs. the F (n): on the one hand, a

scaling exponent ↵ > 0.5 indicates persistence, meaning that the time series increments

at a particular time scale n are positively correlated with the time series increment at

time scale � = 0. In other words, a positive (negative) increment at time scale � = t

is associated with a positive (negative) increment at time scale � = 0. On the other

hand, a scaling exponent ↵ < 0.5 indicates anti-persistence, i.e. positive (negative)

increments are followed by negative (positive) increments. If ↵ = 0.5, there is a lack of

correlation between the increments at that particular time scale � and the time series is

equivalent to a purely diffusive and random (i.e., Brownian) walk. Because long-range

71



negative correlations reflect corrective actions that prevent dissipation, they are inter-

preted as evidence for the workings of corrective and stabilizing (i.e., negative feed-

back) control, while positive correlations can be interpreted as evidence of feedforward

control [Collins and De Luca, 1994].

DFA reveals empirically the inherent time scales for which different temporal cor-

relations exist in the data. We found that the steady-state static grasp data naturally

contained three inherent time scales: 1-50 ms, 200-500 ms, and 3500-7000 ms (Fig-

ure ??). These time scales are found based on regions of linearity in the logarithmic

plots of n vs. F (n), and thus regions of actual power-law scaling.

We noticed that some trials exhibited a relaxation of the total grasp force, likely an

adaptation to reduce fingertip forces when no perturbations are expected and to mitigate

fatigue. Therefore, to test for reliability of our results, we repeated the DFA on the

first and second half of each trial to test if normal force coordination patterns are time-

varying and sensitive to the location in the trial, and in the level of total grasp force.

Note that here we do not employ DFA to determine self-similarity or fractional

dimensionality in the data, as has been done in some studies [Hausdorff et al., 1996b,

Hausdorff et al., 1996a]. In those studies, the linearity in the logarithmic plots needs

to extend over at least one order of magnitude to count as strong evidence of fraction-

ality [Kantz and Schreiber, 2004]. In our case the requirements for the linearity of the

logarithmic plots are not as rigid because the quantification of long-range correlations

applies to data where the linearity extends over shorter ranges of time scales.

4.3.4 Identification and modeling of the mechanical requirements

of the task and its nullspace

Each fingertip applies a three-dimensional force ˜

f to the object. Computing the cross

product of the moment arm, i.e. the vector between the point of force application and
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the object’s center of mass, with the fingertip force vector yields the moment applied

to the object. The total 6-dimensional force and moment applied to the object can be

computed with the following mapping W:
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where I3x3 is the unit matrix and M{th, ind, mid} is the skew-symmetric matrix representing

the cross-product between the moment arm of the finger and its force vector f{th, ind, mid}.

Since W is a mapping from 9-dimensional to 6-dimensional space, the associated null

space, i.e. the space of vectors for which ˜

0 = Wx̃ has 3 dimensions. Any vector x̃ in

this space represents a solution to the static grasp requirement
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5, i.e.

that both the sum of forces and the sum of moments should be zero.

However, this is a necessary requirement only. Additionally, we require that at the

finger tip contact points the tangential forces are upper-bounded through the relationship

ftangential  µfnormal, i.e. the tangential force cannot exceed the normal force, multiplied

with the friction coefficient µ, which we have set to 0.04, the friction coefficient of teflon.

This represents a lower bound on the coefficient of friction, since this coefficient is

certainly greater when fingertip and teflon surface interact - the grasp under experimental

conditions is actually far less constrained. The sum of tangential forces applied needs to

oppose the force applied to the object by gravity. The simulated object had a weight of

100 g, hence the sum of tangential forces had to equal 0.981 N, which in turn determined

the sign (positive, i.e. into the object) and the minimum magnitude of the normal forces.

We sampled vectors ˜f
tnull from the null space of the above linear matrix by multi-

plying the three null space basis vectors ñ

i

with random values a, b, c, drawn from a
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standard Brownian random walk: ˜f
tnull = a · ñ1 + b · ñ2 + c · ñ3. We then added the

null space vector ˜fnull to the minimum sum-of-squared-forces solution ˜

fmin sq of force

vectors that met all the above described static grasp constraints: ˜f
t

=

˜

fmin sq +˜

f

tnull , using

MATLAB’s (Natick, MA) quadprog() function to determine the actual solution with

minimum Euclidean distance to ˜

fmin sq +˜

f

tnull .

Constraint Magnitude InterpretationP
F [0, 0,mg]

T Sum of forces equal and opposite to gravity force, i.e. no net forceP
M 0 Sum of moments equals zero, i.e. no net moment

F

i

T

 µ · F
i

N

Tangential force at the i-th finger cannot exceed normal force

Table 4.1: List of relevant constraints in static grasp

4.4 Results

4.4.1 Principal component analysis of simulated normal forces

The three individual simulated normal forces are shown on the right in Figure 4.4. Note

that despite their apparent variability, each sample represents a valid solution to the con-

strained problem of steady-state static grasp. Furthermore, on the left in Figure 4.4 we

show the simulated normal forces plotted against each other, and it becomes obvious that

the valid solutions populate a plane. Applying Principal Component Analysis (PCA) to

the simulated data to determine the two basis vectors of that plane, we find that it is

spanned by the vectors [0.8, 0.4, 0.4]

T and [0.0,�0.7, 0.7]

T , explaining together 100%

of data variance. Hence, if the variability of normal fingertip forces exhibits this struc-

ture in steady-state static tripod grasp, such variability will not give rise to accelerations

or rotations of the grasped object and exists entirely in the null space of the task, while

actual acceleration or rotation of the object is associated with normal force variability

perpendicular to this plane, along the vector [0.6,�0.5,�0.5].
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Figure 4.2: Representative plot of the simulated thumb, index and middle finger normal
forces. Top: The three simulated normal forces plotted against each other. Note that
the force fluctuations come to lie on a plane, whose orientation we compute using PCA.
Bottom: The three simulated normal forces during a trial plotted individually. Note that
the floor effect results from the minimum normal force constraint.

We refer to these three principal components found in the simulations as: (i) the

grasp mode, along [0.8, 0.4, 0.4]

T , as it reflects synchronous increases and decreases in
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the three normal forces, which are also known as grasp forces, (ii) the compensation

mode, along [0.0,�0.71, 0.71]

T , reflecting the out-of-phase opposition, or compensa-

tion, of thumb normal force by either the index or middle finger normal force, and (iii)

the hinge mode, along [0.6,�0.5,�0.5], reflecting an increase (decrease) in thumb nor-

mal force accompanied by a simultaneous decrease (increase) in the index and middle

finger normal forces, which would typically occur if the object was accelerated by the

thumb or rotated, thus violating the mechanical task requirements of static grasp. These

three normal force modes are illustrated in Figure 4.3.

Mechanically, the dynamics associated with the compensation mode reflect

movement of the intersection point of the three force vectors, as shown

in [Yoshikawa and Nagai, 1991, Flanagan et al., 1999]. As long as the force vectors,

extended from their respective application points intersect in one common point inside

the object, there will be no moment exerted on the object. This intersection point can

move inside an area spanned by the friction cones without violating the task require-

ments. Its motion indicates that the tangential force components parallel to the grasp

plane are changing, as the normal forces, in turn, need to be compensated in synchrony,

to avoid both slippage of fingers and accelerations of the object.

4.4.2 Principal component analysis of experimental forces

As expected, subjects met the task requirements well but not perfectly: movements

of the object markers were well within 5 mm in all directions. Object motion was

significantly affected by the presence of visual feedback, but not weight. Importantly,

the small but measurable object accelerations are not caused by force dynamics inside

the two-dimensional manifold spanned by the grasp and compensation modes found in

the simulations (above), but are due to dynamics along the hinge mode and the tangential

force components.
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Figure 4.3: Illustration of the three normal force modes associated with the principal
components computed from the data and the simulations, across all subjects and condi-
tions.

We applied PCA to the time series of experimental normal forces (Figure 4.4 for

a representative figure), and found that across all trials and subjects, and therefore

regardless of task condition, normal force variability consistently exhibited a structure

described by the three principal components found in the simulation: [0.8, 0.4, 0.4]

T ,

[0.0,�0.7, 0.7]

T and [0.6,�0.5,�0.5] (Figure 4.6). Note that the slight deviations from

these directions are unlikely to reflect violations of the task requirements, since subjects

performed the task well (above), but could be due to one of the following: (i) The grasp
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plane formed by the three fingertips is not perfectly parallel to ground. If you consider

Figure 4.1, this seems plausible. Subjects performed this task in a posture that was com-

fortable for them. (ii) The individual grasp mode vector components reflect the degree

of opposition between thumb normal force and the other two normal forces and are

therefore influenced by the apparatus arm angles and the finger tip contact points. In the

experiments, we adjusted the arm angles for subjects’ individual comfort and subjects

decided where to place their fingertips.

As expected from a spatial variability standpoint, the grasp mode explains approxi-

mately 90% of the normal force variance, while the compensation mode approximately

5-10% and the hinge mode 1-3% (Figure 4.7). In the trials with visual feedback, grasp

and compensation modes contribute equally to the normal force variance, slightly less

than 50% each (Figure 4.7) and again 1-3% by the hinge mode, which means that the

null space manifold is evenly populated by the normal force dynamics in these trials.

The low percentage of variance explained by the hinge mode in both cases shows that

subjects satisfied the task requirements of not accelerating or rotating the object.

Projecting the fingertip force time series data without visual feedback onto the grasp

mode shows a very slow monotonic downward trend (Figure 4.8 for a representative

trial). This slow trend is interpreted by PCA as a contributor to large spatial variability

explained by this mode and is caused by the three fingers reducing their normal forces

simultaneously. In trials with visual feedback, the grasp force mode does not exhibit

such a trend (Figure 4.5 for a representative trial), which is not surprising, since keep-

ing the sum of normal forces constant becomes a task requirement, which the subjects

did meet. Thus, visual feedback has the effect of reducing the grasp mode’s contri-

bution to the overall force variability due to the absence of the above mentioned slow

trend. In turn, the compensation mode now contributes a larger proportion of the overall

variability (Figure 4.7). The compensation mode also exhibits a slow non-monotonic
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Figure 4.4: Representative plot of experimental thumb, index and middle finger normal
forces recorded during one trial with a 200 g weight. Top: The three normal forces
plotted against each other. Note that the force fluctuations come to lie on a plane, whose
orientation we computed using PCA. Bottom: The three normal forces during a trial
plotted individually. Note the common downward trend across the three fingers.
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Figure 4.5: Representative plot of experimental thumb, index and middle finger nor-
mal forces recorded during one trial with a 200 g weight, when visual feedback was
presented. Top: The three normal forces plotted against each other. Note that the force
fluctuations come to lie on a plane, as in tasks without visual feedback, but the dynamics
populate the plane differently. Bottom: The three normal forces during a trial plotted
individually. Note the absence of a downward trend across the three fingers, due to the
enforcement of the sum of normal forces constraint.
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modulation both increasing and decreasing over time (Figure 4.8). This indicates that

index and middle finger normal forces are slowly and continuously modulated, out of

phase, during static grasp, unlike a white noise process. Lastly and not surprisingly, the

hinge mode shows almost no variation over time.
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Figure 4.6: Distribution of data principal components (dots). The colored lines show
the mean grasp, compensation and hinge mode directions.
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back. In trials without visual feedback, most variance occurs along the grasp mode,
capturing the downward trend across all finger normal forces.

4.4.3 Detrended Fluctuation Analysis of time series projected onto

principal components

DFA of the normal force time series projected onto the three principal components

reveals long-range correlations indicative of both the presence and absence of time-

delayed corrective control in all three modes. In the following, all reported changes

in Hurst exponents (i.e., slopes of the log-log plots) are statistically significant at the

p < .01 level, based on Kruskal-Wallis (across the three weight conditions) or Mann-

Whitney tests (across the two visual feedback conditions).

Consider Figure 4.9, which shows the scaling exponents in the first and second

halves of the trials, respectively. At short time scales (1-50 ms), the slopes associ-

ated with both the compensation and hinge mode time series are close to 0.5, indicating
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Figure 4.8: Representative plot of the above experimental normal forces projected onto
the three principal components. Top: The force fluctuations on the plane spanned by
the grasp and compensation modes. Bottom: The three principal component time series
during a trial plotted individually. Note how the grasp mode captures the common down-
ward trend, while the hinge mode has comparatively minimal variability.

lack of negative correlation between increments and thus absence of a corrective control
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effort, while the grasp mode has a slope of 0.7, reflective of positive correlations in the

time series.

At medium time scales (200-500 ms), the slope of the grasp mode decreases to 0.5,

indicating lack of corrective control effort along this dimension, while the compensation

mode now indicates the activity of a stabilizing or correcting effort, having decreased

to a value 0.3, and the hinge mode shows a very distinct slowing down of RMS devi-

ation scaling with exponent 0.1, indicating strong concentration around a mean level.

Importantly, the 200-500 ms time delays include the shortest voluntary time scales of

the sensorimotor system [Kawato, 1999].

The long time scale (3500-7000 ms) is not particularly different from the 200-500 ms

time scale in terms of DFA slopes, except that the grasp mode now becomes corrective

as well, with a slope having decreased to 0.3 from 0.5.

Its slope at this time scale is further reduced to 0.1 in trials with visual feedback,

thus reflecting the lack of slow trends in the grasp mode, since the sum of normal forces

has to be kept constant. The hinge mode is also affected by vision at long time scales,

becoming slightly but significantly more corrective as it is changing from 0.13 to 0.1.

Increasing the weight has the effect that it increases the slope of the grasp mode at

small time scales (1-50 ms) to 1.0, perhaps reflecting the increase in signal-dependent

noise, which scales linearly with force and is observed in the 8-12 Hz frequency band

of force measurements ([Jones et al., 2002], i.e. time scales of < 125 ms) and induces

positive mechanical correlations across fingers due to reaction forces. Another effect

of weight increase is a slight increase of the hinge mode slope with weight, possibly

reflecting the increased difficulty of maintaining stable the more inert object and the

increased need for corrective efforts.

Adding visual feedback also increases the slope of the grasp mode at short time

scales (1-50 ms), which again might reflect the increased amount of signal-dependent
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noise, since the grasp force level had to be kept constant and could not decrease, as in

the trials without visual feedback.

Finally, the fact that the results are so similar between the first and the second halves

of the trials indicates that the observed dynamics and the associated correlation structure

depend neither on time nor the total grasp force (which can be interpreted as location in

the force space; or in control terms the ”state space” of the system). This in turn indicates

a control strategy that is state-independent except potentially at the boundaries. While

the increase in weight and the addition of visual feedback does seem to modulate the

dynamics on the individual dimensions, it does not lead to a crossing of the 0.5 line and

therefore not to a fundamental change in the control strategy.

Importantly, we see that each mode, both mechanically task-relevant and -irrelevant,

exhibits features of control as well as the absence of control, at some time scale.

4.5 Discussion

While we cannot claim at this point that the neural controller actively controls the spe-

cific dimensions of normal force coordination determined through PCA, our simulation

results nevertheless clearly indicate that the first two principal components, the grasp

and compensation modes, span the null space of force dynamics associated with static

grasp: variation of force inside this planar manifold does not violate the constraints of

static grasp (i.e. zero net force and moment). Given however that noise is an inevitable

reality in neuromuscular systems, successful task completion therefore naturally leads

to the population of the null space manifold, while variability orthogonal to it will be

minimal, but not necessarily zero.
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Figure 4.9: The distribution of DFA scaling exponents of the normal forces projected
onto the three force modes - during the first (left box plots) and the second half (right
box plots) of the trials. Note the large exponent of the grasp mode at short time scales,
while the other two modes exhibit a lack of correlation at this time scale. At larger
time scales, the hinge mode exponent is very close to 0, reflecting the fact that subjects
hardly accelerated the object. The grasp mode, on the other hand, exhibits no correlation
at the medium time scale. Importantly, there is no significant difference between scaling
exponent between the first and the second half of the trials.

These results regarding the distribution of variability in space seem to agree with

the Uncontrolled Manifold (UCM) Hypothesis and the Minimal Intervention Princi-

ple [Scholz and Schner, 1999, Jordan, 2003]: that the nervous system chooses to control

only the task-relevant dimensions of a task and keeping their variance small, since they

interfere with the task, while allowing larger variability in directions or variables that

do not affect task performance. This control strategy is reflected in the distribution of

variability along different dimensions of the task. Since static tripod grasp has an asso-

ciated multi-dimensional task-irrelevant manifold, on which fluctuations do not require

corrective intervention, i.e. the grasp and compensation modes found here through PCA,
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task-irrelevant variables not affecting the mechanical requirements of the task certainly

exist.

However, the temporal DFA applied to task-irrelevant variables and the task-relevant

hinge mode gives a much more complex picture, in which variables of both types appear

to be controlled at uncontrolled, depending on the time scale considered. It is impor-

tant to note that the UCM hypothesis would predict a lack of any correlation in task-

irrelevant variables. On the one hand, grasp mode variability exhibits a lack of long-

range correlation at medium time scales (300-1000 ms) and an absence of corrective

dynamics at short time scales (1-50 ms), while the compensation mode is entirely ran-

dom at short time scales (1-50 ms): being mechanically task-irrelevant, these results

seems to support lack of intervention by the neural controller. Qualitatively, the grasp

mode exhibits a slow downward trend in trials without visual feedback, which might

be a consequence of not controlling forces at medium time scales, while the positive

correlations at short time scales can be shown to be a result of the interplay between

signal-dependent noise [Jones et al., 2002] and reaction forces, i.e. of purely mechani-

cal origin.

On the other hand, the grasp mode exhibits negative correlations indicative of cor-

rective control at large time scales and contrary to the prediction of the UCM hypothe-

sis. These negative correlations cannot solely be attributed to control intervention when

there is a risk of dropping the object due to a reduction in grasp mode force. Instead,

the non-zero scaling below 0.5 observed in our experimental data, both in the first and

second half of the trials (Figure 4.9), suggests control intervention independent of state-

space location. Next, the task-irrelevant compensation mode exhibits negative correla-

tions at medium and large time scales, again contrary to the UCM hypothesis predic-

tion. Lastly, DFA exposes an absence of correlation at very short time scales in the

task-relevant hinge mode, indicating an absence of control. Given the existence of loop
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delays in neuromuscular systems, the absence of correlations along the hinge mode at

short time scales is not surprising.

These results expose a fundamental limitation of the UCM hypothesis and the Min-

imum Intervention Principle: their focus on spatial aspects of motor variability and dis-

regard for temporal aspects. ”Spatial aspects” refers to latent variables, or instantaneous

correlation modes of elemental variables in motor tasks, which can be revealed through

the use of PCA, among other methods. ”Temporal aspects” refers to the correlations

over time along such latent correlation modes. In other words, due to physiological

limitations, even highly task-relevant variables can be uncontrolled temporarily.

We conclude that controlled and uncontrolled dynamics vary as functions not only

of spatial, but also temporal constraints of the task due to physiological and other lim-

itations, and argue that the UCM hypothesis and the Minimum Intervention Principle

need to be extended by considerations of temporal aspects of motor control, as revealed

through our DFA applied to all task variables. In their current form, these theories

of motor control are incommensurate with our results in that these theories assume a

simple separation of task variables into relevant and irrelevant ones, entirely based on

mechanical considerations. The results presented here instead suggest a continuum of

task-relevance based on aspects beyond those of pure mechanics.

What aspects are potentially relevant to motor tasks, other than mechanics? One

possible explanation for the observed negative correlations along the grasp and com-

pensation modes could be that traversing this manifold is an active process, through

which the CNS actually takes advantage of redundancy. Specifically, controlled dynam-

ics along the compensation mode correspond to the regulation of the index and middle

finger contributions to the opposition of thumb normal force. We speculate that the

CNS is actively trying to shift the demands between the two fingers over time, which
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in turn might mitigate effects of fatigue at the muscle level. By gradually varying end-

point forces, the CNS achieves a change in the underlying muscle coordination pattern,

which in turn will change the rates of fatiguing of individual muscles, thus allowing for

improved use of available resources. Furthermore, the slow downward trend along the

grasp mode direction of normal forces would fall in line with this hypothesis: a general

reduction of forces generated by the muscles leads to a reduction in the fatigue rate.

This intriguing hypothesis deserves further investigation.
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Chapter 5

An Involuntary Stereotypical Grasp

Strategy Pervades Voluntary Dynamic

Multifinger Manipulation

5.1 Abstract

We used a novel apparatus with three hinged finger pads to characterize collaborative

multifinger interactions during dynamic manipulation requiring individuated control of

fingertip motions and forces. Subjects placed the thumb, index and middle fingertips

on each hinged finger pad, and held it with constant total grasp force while voluntarily

oscillating the thumbs pad. This task combines the need to (i) hold the object against

gravity while (ii) dynamically reconfiguring the grasp. Fingertip force variability in this

combined motion and force task exhibited strong synchrony among normal (i.e., grasp)

forces. Mechanical analysis and simulation show that such synchronous variability is

unnecessary and cannot be explained solely by signal dependent noise. Surprisingly,

such variability also pervaded Control Tasks requiring different individuated fingertip

motions and forces - but not tasks without finger individuation such as static grasp.

These results critically extend notions of finger force variability by exposing and quan-

tifying a pervasive challenge to dynamic multifinger manipulation: the need for the

neural controller to carefully and continuously overlay individuated finger actions over

mechanically unnecessary synchronous interactions. This is compatible with - and may
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explain - the phenomenology of strong coupling of hand muscles when this delicate bal-

ance is not yet developed, as in early childhood, or when disrupted, as in brain injury.

We conclude that the control of healthy multifinger dynamic manipulation has barely

enough neuromechanical degrees-of-freedom to meet the multiple demands of ecolog-

ical tasks, and critically depends on the continuous inhibition of synchronous grasp

tendencies, which we speculate may be of vestigial evolutionary origin.

5.2 Introduction

Successful dexterous manipulation requires dynamic collaborative use of our fin-

gers. Clearly, the neural control must actuate the system properly to satisfy the

mechanical constraints of the task. Numerous studies have investigated how we

adapt grasp to different friction contact [Johansson and Westling, 1984], object cur-

vature [Jenmalm et al., 2003], fingertip positions [Baud-Bovy and Soechting, 2001],

perturbations [Eliasson et al., 1995, Kim et al., 2006, van de Kamp and Zaal, 2007],

object manipulations [Flanagan et al., 1999, Shim et al., 2005, Winges et al., 2008]

and dexterity requirements [Johanson et al., 2001, Valero-Cuevas et al., 2003,

Venkadesan et al., 2007]. These prior studies have identified voluntary and invol-

untary collaborative force interactions among fingertips to reduce task variability

when pressing or grasping rigid objects (e.g., [Baud-Bovy and Soechting, 2001,

Scholz et al., 2002, Shim et al., 2005, Latash and Zatsiorsky, 2009]; and for a

review [Schieber and Santello, 2004]). This study, however, examines the behavior of

collaborative, multifinger interactions during more ecological dynamic manipulation of

a deformable object requiring the simultaneous control of fingertip motion and force.

It is motivated by prior work aiming to clarify an apparent and long-standing paradox

between the scientific concepts of muscle redundancy and robustness, vs. the clinical
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reality of motor development and dysfunction [Venkadesan and Valero-Cuevas, 2008,

Keenan et al., 2009, Kutch and Valero-Cuevas, 2011]. If, say, hand musculature

is so redundant, why then is dynamic manipulation so vulnerable to devel-

opmental problems [Forssberg et al., 1991], mild neurological pathologies, and

aging [Schreuders et al., 2006]? This paradox may arise simply because exper-

iments and models often use simplified tasks for which the musculature is

indeed redundant [Loeb, 2000]. In contrast, everyday ecological behavior often

involves tasks that require meeting multiple mechanical constraints and transi-

tioning between constraints. Our prior work on single fingers indicates that even

ordinary manipulation tasks can push the neuromuscular system to its limit of

performance when they require combinations of, or transitions between, motion

and force constraints [Venkadesan and Valero-Cuevas, 2008, Keenan et al., 2009,

Kutch and Valero-Cuevas, 2011]. Here we extend that prior work to multifinger

function by investigating ordinary, yet critical, multifinger tasks: dynamic manipulation

of deformable objects requiring continuous and simultaneous regulation of fingertip

motions and forces.

5.3 Methods

5.3.1 Experimental procedure

We designed a novel instrumented apparatus with three hinged finger pads to be held

using a tripod grasp with the thumb, index and middle fingers (Figure 5.1). Each finger

pad consisted of a six-axis load cell (Nano 17, ATI/Industrial Automation, Apex, NC,

USA) at one end of a rigid link to measure forces used to grasp and manipulate the

object, with the other end connected by a common planar hinge instrumented to measure

angles between the finger pads [Valero-Cuevas and Brown, 2006]. The grip surface of
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the load cell was 30 mm from the hinge axis and covered with fine (360 grit) sandpaper.

The objects mass is approximately 60 g to mitigate fatigue. Lastly, to ensure rotation of

the thumb pad at the appropriate frequency, we used a software metronome (Metronome

1.1, Keaka Jackson, The World, 2008).

Mechanics dictates that the direction of fingertip force vectors for a static grasp must

intersect at a point or the forces would create a net moment about the center of mass and

cause a rotation (e.g., Yoshikawa and Nagai, 1991, Flanagan et al., 1999). The loca-

tion of this point is arbitrary as long as the conditions imposed by the friction cones

at the fingertips are satisfied, and the zero net force constraint is met. In this study, in

contrast, the fingertip forces are constrained to intersect at a specified point (a central

hinge) or else the finger pads will rotate. Holding the apparatus with a given total grasp

force while reconfiguring the angles between the hinged finger pads requires collabo-

rative multifinger interactions to control fingertip motions and force vectors. Thus, this

apparatus explicitly distinguishes the multifinger interactions needed to hold the object

against gravity (i.e., total grasp force) from those needed to dynamically reconfigure the

grasp (i.e., compensating for thumb oscillations). Total grasp force is an independent

task constraint from compensations in fingertip force vectors when reconfiguring the

grasp: one can squeeze tighter without moving the pads, or reconfigure the grasp while

producing the same total grasp force.

We tested six consenting subjects (1 female, 5 male; 21-31 years; 5 right-handed,

1 left-handed) using a protocol approved by the USC Institutional Review Board.

Subjects held the test object with the thumb, middle and index fingers of the domi-

nant [Oldfield, 1971] hand in a tripod grasp (Figure 5.1a, the subject flexed the ring and

little fingers out of the way).

In the original task, subjects were instructed to maintain 10 N of total grasp force,

defined as the sum of the normal forces at each fingertip, while oscillating the thumb
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Figure 5.1: Experimental setup. a. Subjects held the object in a precision tripod grasp.
b. The test object connected three load cells with a central hinge that allowed movement
of the fingers. Normal force in this work is defined as the force directed at the hinge. c.
The coordinates used in deriving the equations of motion
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position in time to an audible metronome. The visual feedback consisted of a line and

a crosshair presented on a computer screen at a distance approximately 1 m from the

subject. The line represented the 10 N target sum of the three normal forces, which

is consistent with the sum of normal forces used to lift a 400 g object with three fin-

gers [Flanagan et al., 1999], while the crosshair represented the sum of normal forces

actually applied by the subjects. Simultaneously, subjects were asked to oscillate the

thumb pad of the grasping device in time with the audible metronome at 1 Hz, such that

the leftmost and rightmost angular displacements of the thumb pad were reached on the

metronome beat at a frequency of 0.5 Hz. The angular displacement of the thumb was

left to the subjects preference. In the following, we will refer to this task as the original

task.

Subjects had several practice trials, repeated with 60 s rest between trials until they

reported to be comfortable with the task (from two to six repetitions, three typical).

We did not do additional training because subjects reported to be very satisfied with

their performance, likely because humans perform such tasks regularly and our task was

designed to be similar to many ecological tasks as mentioned above. We then recorded

95 s of force and angle data at 400 samples/s (PCI 6025, National Instruments, Austin,

TX) for each subject to obtain up to 47 full task cycles per subject. Data acquisition and

visual feedback was provided with a program written in Matlab using the Data Acquisi-

tion Toolbox (Natick, MA, USA). Subject visual feedback on the force magnitude was

updated at a rate of 50 Hz. The needed forces were so low that subjects did not report

fatigue, but 60 s of mandatory rest were always enforced before each trial.

To rule out potential confounds or alternative interpretations of our results, we also

studied six different Control Tasks (Table 5.1) were performed in addition to the Original

Task - all of which were done in block-randomized order and repeated three times each

for 95 s, and for which subjects had practice trials as in the Original Task. These Control
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Tasks establish baseline performance for a variety of combinations of fingertip motion

and force constraint, and were added after the initial pilot work to better understand the

performance of the Original Task.

• Control 1 : Perform the above-described Original Task, but with the instrumented

object attached to ground. Doing this enabled us to distinguish force fluctuation

correlations across fingers due to neuromuscular from purely mechanical causes

associated with motion or reaction forces. Furthermore, this task removes the need

for force dynamics that could be attributed to behavioral responses to dropping the

object or vertical slip-grip responses.

• Control 2 : The instrumented object was handheld, but we locked the pads in

a configuration comfortable for the subject (making it a rigid object) and asked

them to oscillate the normal force between index and middle finger at a frequency

of 0.5 Hz, while holding the thumb still, thus mimicking the oscillations in nor-

mal forces the subjects needed to apply to compensate for thumb pad motion.

The visual feedback in this condition consisted of two 0.5 Hz sinusoidal curves,

phase shifted by 180 degrees and two crosshairs, representing the individual nor-

mal forces applied by index and middle finger. There was no explicit feedback on

the total grasp force in this condition, but the amplitude of the sinusoidal curves

corresponded to the amplitude of the oscillations in the Original Task. This Con-

trol Task helps to elucidate the coupling of two dimensions of force, which are at

least mathematically independent [Gao et al., 2005]: the grasp force that counter-

acts gravity and the force compensating for thumb motion. It removes an explicit

enforcement of a target total grasp force, as long as it is sufficient to hold the

object.
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• Control 3 : The instrumented object was handheld but with unlocked pads and we

asked subjects to oscillate the total grasp force, that is, oscillate in-phase the nor-

mal forces of thumb, index and middle finger at 1 Hz, thus voluntarily reproducing

the synchronous grasp variability (i.e., Grasp Mode, see Results) observed experi-

mentally in the Original Task. Here, the visual feedback consisted of a sinusoidal,

whose amplitude we determined for each subject from his or her actual perfor-

mance of the Original Task trials. While Control Task 2 above removed the tar-

get total grasp force enforcement, this task removes the requirement to modulate

force variability compensating for thumb motion. It complements Control Task

2, in that it quantifies the coupling of the two force components, i.e. synchronous

and compensatory normal force variability.

• Control 4 : Control Task 3 was repeated, but this time with the pads locked as a

rigid object to investigate the effect of removing the instability of the hinged pads

on the Grasp Mode.

• Control 5 and 6 : The final two tasks consisted of simple static grasps (handheld

object with no oscillation of the thumb), with the target sum of normal forces to be

maintained at 10 N, with pads either free (Control Task 5) or locked (Control Task

6) to separate force variability caused by visual processing from other contribu-

tors. These tasks allow us to quantify the contribution to the total force variability

by corrective action vis--vis the visual feedback.

5.3.2 Mechanical Analysis

We found the closed-form analytical solution to the necessary fingertip forces and

motions to perform the task. Comparing experimental forces to the analytical solution

disambiguates mechanically necessary from neurally driven interactions. We modeled
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Task Hinge
state

Thumb
motion

Object
displace-
ment

Target force Goal

Original Free 0.5 Hz Free 10 N grasp
Characterize multifinger interactions during
dynamic manipulation requiring simultaneous
control of fingertip motions and forces.

Control 1 Free 0.5 Hz Fixed 10 N grasp
Same as original task, but with object fixed
to ground to remove slip-grip response and
behavioral fear of dropping object.

Control 2 Fixed None Free

0.5 Hz
oscillating
compensa-
tion

Voluntarily produce the compensation mode
(alternating index and middle finger forces) as
seen in original task, but with a locked object
to remove hinge instability and voluntary fin-
ger motions.

Control 3 Free None Free 1 Hz oscillat-
ing grasp

Voluntarily produce the oscillations in the
grasp mode (synchronous normal force mod-
ulation across fingers) as seen in original task,
but without voluntary finger motions.

Control 4 Fixed None Free 1 Hz oscillat-
ing grasp

Same as in Control 3, but with a locked object
to remove hinge instability.

Control 5 Free None Free 10 N grasp
Simple static grasp with visual feedback to
assess effect of visuomotor feedback loop on
grasp force variability.

Control 6 Fixed None Free 10 N grasp Same as in Control 5, but with a locked object
to remove hinge instability.

Simulation 1 Free Oscillating Free but
stationary 10 N Mechanical constraints of successful task per-

formance dictate variability.

Simulation 2 Free Oscillating Fixed 10 N + noise Signal-dependent noise informs force variabil-
ity patterns more than the task mechanics.

Simulation 3 Free Oscillating Free but
stationary 10 N + noise Task mechanics govern force variability pat-

terns.

Simulation 4 Free but
stationary None Free but

stationary 10 N + noise Task mechanics govern force variability pat-
terns.

Table 5.1: Explanation of tests and simulations used to support hypothesis

the system as a planar, rigid-body mechanism with five degrees of freedom: x and y

location of the hinge axis on the plane, and the absolute angle of each pad. All three fin-

ger pads (which are each reduced to a point collocated with the center of pressure of the

finger pad) and their links are in the horizontal plane, and gravity acts perpendicular to

the plane in a downward direction, eliminating the vertical force from the analysis. The

six control inputs in the plane of the finger pads are the normal (toward the hinge) and

tangential components of fingertip forces for each of the three fingers. The normal and

tangential forces of both the model and the experimental data are measured with respect

to the hinge rather than the grip surface to reflect the task goals and to more easily

separate the grasp force and compensation to thumb oscillation modes (Figure 5.1b).
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5.3.3 Equations of motion for a 2-D system of three links connected

via a common hinge

We derived the dynamic equations of motion for a simplified planar model of the

grasper set-up using the Lagrange method (see, e.g. [Williams and Willima, 1996]). The

Lagrange method requires generalized coordinates (q
i

) that describe the configuration of

the object. The kinetic and potential energy (T and V ) are expressed as functions of the

qi and generalized forces (F
i

) that act on each generalized coordinate. The Lagrangian is

the kinetic minus potential energy: L = T �V , and is inserted into Lagranges equation:

d

dt

✓
�

�q̇

i

L

◆
� �

�q

i

= F

i

The grasp-device system has two translational degrees of freedom (DOF) relative to

an inertially fixed coordinate reference frame and three rotational DOF - one for each

pad. Since we observed very limited motion in the vertical direction and rotation of

the device itself, we disregarded these 4 dimensions (1 translational, 3 rotational) in

our modeling analysis. For the generalized coordinates, we selected x and y position

of the hinge and the absolute angle of each pad relative to the fixed coordinate system

✓

i

, i = 1, 2, 3 (Figure 5.1c). Using these coordinates, the 2-D vector for the position of

each pad is:
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where d

i

is the distance from the hinge to the center of mass of the i-th pad. Differ-

entiating this expression yields the velocity
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where the over dot represents the derivative with respect to time. The velocity deter-

mines the kinetic energy of each body. Let m
i

be the mass of the i-th pad and Ii be the

scalar moment of inertia of the i-th pad about a vertical (out of the page) axis through

the center of mass of link I . The kinetic energy of the system is given as the sum of

the energy of the individual parts. The partial derivatives in the Lagrangian eliminate

potential energy terms from the equation because gravity acts perpendicular to the sys-

tem. Thus the Lagrangian is given by the kinetic energy:

L = T =

X
1
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m

i

(v
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· v
i
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2

I
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˙
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The generalized forces for this simple system are the resultant forces or torques when

all generalized coordinates are fixed except one. Fixing all coordinates and allowing x

to vary gives us the generalized force for x:

F

x

=

X
F

N

i

cos ✓

i

� F

T

i

sin ✓

i

which is all the forces in the x-direction. The forces F
N

i

and F

T

i

are the normal and

tangent forces at the grip surface on each pad (Figure 5.1b). Likewise for the y direction,

the generalized force is:

F

y

=

X
F

N

i

sin ✓

i

� F

T

i

cos ✓

i

The generalized forces corresponding to the angles are physically torques. The resul-

tant torque when allowing only one angle to vary is given by:
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The component parts are arranged according to Lagranges equation to arrive at the
following equations of motion, written in matrix form for computational ease:
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This can be written compactly using matrix and vector notations with obvious mean-

ing as

Mẍ+ Cẋ

2
= D · F

The model takes the dynamics of the position and angles as inputs and outputs the

normal and tangential forces. This gives us a one-parameter subspace of the possible

forces. The grasp force is added to the equations to completely determine the forces

necessary for successful completion of the experimental task. In simulation, we fix x and

y at the origin, maintain the middle and index angles at 130 and 230 deg, respectively,

and prescribe the grasp force as ether constant or noisy. The reduced model with these

assumptions is:
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The last row of this equation comes from the definition of grasp force as the sum of

the normal forces.

5.3.4 Simulations

In the closed-form inverse dynamics solution we calculate fingertip forces necessary to

produce the desired motion and total grasp force. The desired motion maintains the

index- and middle-finger angles fixed at 130 and 230 deg while the thumb angle oscil-

lates through an arc with amplitude of 30 degrees following a sine function with a period

of 2 s (0.5 Hz). In this way we defined a comfortable configuration that would reveal

clear changes in forces, shown in Figure 5.3. For comparison, a plot of the measured

angles from one representative subject is shown in Figure 5.3. Note that in the subjects

data, the angle between the middle and index finger pads also changed slightly during

the trial, but the motion of the thumb is much greater and the mechanical solutions retain

their same form in the plot of the normal forces (Figure 5.2). The experimental appara-

tus was built to have very low friction at the hinge, thus the modeled and experimentally

measured tangential forces are very small relative to the normal forces (3000x smaller in

the frictionless model and 20x smaller in the experimental data) and were excluded from

the analysis. Instead, the adaptation of the normal forces to the changing configuration
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captures the relevant behavior due to the thumb oscillations. We further justify using

only the three normal forces to characterize the task because they fully account for the

two active degrees of freedom of the system: grasp force and compensation to thumb

oscillation. A system or study designed to consider additional degrees of freedom would

need to include the tangential forces for the very low frictions.
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Figure 5.2: Force space. a. A perfectly executed task traverses the thick line shown here.
Connecting the lines created by a variety of grasp forces (from 5 to 12 N) illustrates the
manifold of allowable forces. b. The subject data lies on the manifold described by the
model, but with varying grasp force magnitude. c. The subject data and the manifold
have slight curvature when viewed from the [1, 1, 1] direction.

We simulated four conditions for the grasp force 5.1:

• Simulation 1 : Idealized Original Task; where the grasp force was ideally constant,

while the index and middle finger generated the exact normal forces necessary to

compensate for the reconfiguration of the grasp as the thumb pad oscillated.

• Simulation 2 : Same as Simulation 2, but with the object fixed to ground and each

finger generating a zero mean Gaussian distributed noisy normal force, whose

variance was adjusted such that either the grasp force magnitude or the grasp force

error was reproduced. The noise was not bandlimited to the 8-12 Hz frequency

band, however, with which signal-dependent noise is commonly associated. This

103



condition simulates the effects of signal-dependent noise [Jones et al., 2002] at

each fingertip but since it does not consider reaction forces at the other fingertips,

this condition in effect simulates the first Control Task in which the device was

attached to ground.

• Simulation 3 : the noisy normal forces acting on the object and inducing reaction

forces in the other fingers, thus simulating correlations between fingers that would

arise purely due to mechanics. This condition simulates the Original Task with

noise.

• Simulation 4 : a simple static grasp without thumb oscillations, but including the

requirement to generate a 10 N sum of normal forces and correlations due to

mechanics (simulating the fifth and sixth Control Tasks for simple static grasp).

This condition helps to separate contributions to visual feedback error by correc-

tive actions and by signal-dependent noise.

In Simulations 3 and 4 there is no unique mechanical solution so we computed the

reaction forces by solving a underconstrained system of linear equations, solving for

zero force and moment using the pseudoinverse matrix (i.e., the least-squares energy

solution). In Simulation 1 we modeled constant total grasp forces ranging from 5 N to

12 N to find the full solution manifold (i.e., the set of all mechanically feasible fingertip

forces to accomplish the task). This set of mechanically feasible forces is the slightly

curved manifold shown as a curved surface in (Figure 5.2).

5.3.5 Data analysis

Plotting the normal component of the fingertip forces (i.e., the component of finger-

tip force acting on the finger pad and directed toward the hinge) against each other

in the three-dimensional space of normal forces is an effective way to visualize the
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Figure 5.3: Sample time histories. a. The ideal inter-finger angles used in the model.
The equations reference all angles to a fixed ground, but are shown relative to one
another here to be consistent with the experimental data. b. Measured angles from a
representative subjects data. c. The grasp force target used by the model is either con-
stant (dashed line) or variable. d. Measured grasp force from the same data as b. Note
the quasi-periodicity in the measured data.

experimental and simulation results. Each coordinate axis in this three-dimensional

space represents the normal force of a given finger (thumb, index, and middle finger),

and a combination of three forces is represented as a point in this space. The analyti-

cal solution to the task shows that the feasible set of fingertip forces lies on a slightly

curved, nearly planar surface in force space (Figure 5.2). This is because the mechan-

ical constraints of the task, such as the equilibrium equations for different finger pad

configurations, represent lines or nearly planar surfaces in the force space. That is, only
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combinations of forces that lie on the constraint lines or surfaces are valid solutions to

the grasp problem, and linear analysis tools may be used, such as principal components

analysis (PCA, [Clewley et al., 2008]).

We used the 3D force vector and torques on each finger pad (Figure 5.1b) to extract

the center of pressure location and force components in the normal, tangent and vertical

(F
N

, F

T

, F

V

) directions relative to the hinge (Figure 5.1b). The normal force covariance

patterns completely determine the grasp force and manipulation force components; the

others are not included in the analysis as discussed above. The first 5 s and last 1 s of

data were removed to eliminate transient behavior in the data.

The data, represented by a 3-by-N matrix, where N is the number of samples, were

filtered with a sliding band pass Butterworth filter of width 1 Hz and 99% overlap

between filter windows, starting from 0.1 Hz up to 10 Hz, to extract the normal force

dynamics in each of these frequency bins. We performed PCA on the 3-by-3 normal

force covariance matrix computed from each set of filtered data associated with a partic-

ular filter window, and computed the loadings of the three resulting principal component

(PC) vectors (r-mode PCA, computed from covariances between variables) as well as the

percentage of variance explained by each PC. Next, we compared the loadings of each

PC to the theoretical grasp force mode and compensation-to-thumb-oscillation mode for

each frequency range, by computing the angle between the experimentally observed PC

and the PC associated with the mechanical simulation of the task. Lastly, to determine

whether variability along a PC in the Original Task changed in a state-dependent manner,

e.g. variability at the extreme points of thumb motion vs. at the middle point, we com-

puted the variance over a window, whose length was one third of the thumb oscillation

period, i.e., 0.6 s, and slid the window over the trial data. This tests the hypothesis that

increased grasp force variability reflects the action of a purposeful mechanism, such as

guarding against drop of the object by squeezing it at critical locations in the state space.
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5.4 Results

5.4.1 Analytical Solution and Simulations

The analytical solution to the manipulation task shows that the feasible set of fingertip

forces lies in a tilted and slightly curved plane in the force space (Figure 5.4). It is to

be expected, therefore, that the PCA of the subjects data will naturally approximate this

manifold well (Figure 5.2c) and that subjects PCs will align with the manifolds PCs, for

the following reasons.

First, grasp force is the sum of the fingertip normal forces, and is equal to the pro-

jection of the current force vector [Fmiddle, Findex, Fthumb]
T onto the [1, 1, 1]

T direction1

(Column I in Figure 5.4). Changes in grasp force magnitude cause movement towards

or away from the origin in force space, while not moving the object. Therefore a PC

of the subjects data with loadings of the same sign and similar magnitude indicates a

changing grasp force. We say this PC aligns with the grasp mode.

Second, as the thumb oscillates from side to side, the relative magnitude of the mid-

dle and index fingers forces alternates to compensate for the change in direction of the

thumbs force vector during the task. Thus the manipulation force is the projection of the

current force vector onto the [-1, 1, 0] T direction (Column II in Figure 5.4). The chang-

ing force magnitudes of the index and middle fingers for a given thumb force magnitude

causes lateral movement in force space as described by the compensations to thumb

oscillation mode. The mechanics of the task result in grasp force and compensations

to thumb oscillation being orthogonal modes in force space. This is the mathematical

way of saying that one can produce the same magnitude of grasp force while moving

1For the sake of clarity in the text and figures, we indicate PCs as vectors with 1s and 0s. The math-
ematical convention would be to present them as unit vectors. In particular, [0.5, 0.5, 0.7]T is a better
approximation of the grasp mode, since index and middle finger form a smaller angle.
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in every dimension. The Compensation force mode (column II), explains out-of-phase
variation of index and middle finger force, with no contribution by the thumb. In 3D
normal force space, this corresponds to motion at a constant thumb force level, between
index and middle finger axes, along a slightly curved line. Lastly, the Hinge force mode
explains that force variability whereby middle and index finger vary their normal force
in-phase, while varying out-of-phase with the thumb normal force. This will lead to
accelerations of the object.

the thumb or conversely, vary the grasp force without affecting the thumbs positional

control. We say this PC aligns with the compensation mode.
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The third mode of force interactions is variability perpendicular to the constraint

plane and represents errors in maintaining the hinge constraint. Namely, the task

requires that the force vectors intersect at or near the hinge, and this constraint is vio-

lated if the point of intersection of forces moves in towards or away from the thumb the

[�1,�1, 1]

T direction (Column III in Figure 5.4). Variability along this dimension is

associated with translations and rotations of the grasped object. We say this PC aligns

with the hinge mode.

5.4.2 Principal component associated with the modeled ideal per-

formance of the task.

The fingertip forces necessary to produce motion of the thumb while maintaining a per-

fectly constant grasp force create a horizontal line that is slightly curved in force space

(Column II in Figure 5.4), and the family of lines for a variety of grasp force magnitudes

creates a slightly curved surface defining all feasible solutions to the task. For this ideal

case (Simulation 1, Figure 5.7) the variability in normal forces is associated purely with

compensations for movement of the thumb (i.e., column II in Figure 5.4, which is seen

as traveling back and forth along the thick line as the thumb moves from side-to-side).

The loadings of each PC for this ideal case are shown in the first row of column II of

Figure 5.4 and, as expected, the compensation mode is the PC that explains > 99% of

the variance (i.e., [�1, 1, 0]

T ). The small contribution of the hinge constraint mode PC

(i.e., [�1,�1, 1]

T direction) reflects the slight curvature of the force trajectory in force

space. The grasp force mode PC (i.e., [1, 1, 1]T direction) shows zero variance in the

grasp force by construction (i.e., the ideal task has no variability in grasp force). This

result applies equally to all frequency bands.
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5.4.3 Summary of experimental PCA result and comparison with

the modeled ideal performance of the task

Figure 5.5 summarizes our findings. As expected by the mechanical requirements of

the task shown in Simulation 1 and Figures 5.7 & 5.2, the Compensation Mode domi-

nates in the Original Task. But whereas Simulation 1 only shows residual levels of the

Grasp and Compensation Modes (due to the linear approximation to the slightly curved

solution manifold), the performance of the Original Task by the subjects was accompa-

nied by mechanically unnecessary variability in the form of substantial amounts of the

Grasp Mode; and small amounts of Hinge Mode. The Control Tasks (Table 5.1) go on to

demonstrate that the Grasp Mode strongly pervaded manipulation tasks requiring differ-

ent fingertip motion and force constraints (Figure 5.5 shows only Control Tasks 1 & 2 for

clarity, others are presented below in detail). Only simple static grasp (Control Tasks 5

& 6) exhibits much small levels of force variability in general. Importantly, these results

cannot be explained by signal dependent noise (Simulations 2-4), whether the objects is

deformable vs. rigid (hinge state), or hand held vs. attached to ground (object displace-

ment). Taken together, these results demonstrate that stereotypical grasp-and-release

synchronous interactions (i.e., Grasp Mode) pervade multifinger manipulation when the

manipulation task requires orchestrating individuated fingertip motions and forces, as

explained in the Discussion.

5.4.4 Experimental PCA result and comparison with the modeled

ideal performance of the task

We can see from Figure 5.6 (bottom plot) that on average, subjects were able to

meet the 10 N sum of normal forces requirement, with a standard deviation of 0.5
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N. Across the physiologically plausible frequency range for control of force produc-

tion [Johansson and Birznieks, 2004], the modes observed in the experimental data

match the theoretical ones quite well: the median angle difference between the experi-

mental and theoretical modes never exceeds 30 degrees, indicating that the simulations

predict the structure of variability faithfully (Figure 5.6, middle plot). Beyond 12 Hz

(not shown), and thus at time scales shorter than those of the shortest sensorimotor

loops for sensory mediated force production [Johansson and Birznieks, 2004], the pre-

dicted structure breaks down, i.e. it converges to a purely white noise process in a 3-

dimensional space, which suggests that the structure of variability is plausibly imposed

by cortically and spinally mediated drive to alpha motoneuron pools (as opposed to neu-

ral or measurement white or Gaussian noise with broad bandwidth). Figure 5.6 (top plot)

shows that the magnitude of the compensation mode PC is in agreement with that found

in the simulated task (Figure 5.7). The compensation mode dominates the variability

below and at the oscillation frequency, then falls off sharply above. While this is not

surprising, since the task determines this magnitude of variability, the magnitudes of the

grasp mode show a very different picture, compared to the simulation, the modeled ideal

performance of the task. The simulations suggest that there should be no grasp mode and

very little hinge mode variability across the entire physiologically plausible frequency

range. However, near the oscillation frequency, the grasp mode in the experimental data

explains approximately 30 % of the overall normal force variance, or alternatively, has

a standard deviation of almost 0.2 N. Beyond the task-relevant frequency of 0.5 Hz, the

grasp mode explains most of the force variance and thus dominates its variability, even

though the compensation mode magnitude does not fall off as sharply with frequency

as in the simulation. The milder roll-off can be explained by imperfect matching of the

task frequency by subjects over the course of an entire 95 s trial. The strong contribution

of the grasp mode at all frequencies, on the other hand, is plausibly a consequence of
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neural and biomechanical coupling between the control of forces which compensate for

object manipulation and that of forces required to hold it.

There are two objections which can be made against the interpretation that the con-

trol of force modes is coupled: firstly, the strong contribution of the Grasp Mode to the

overall normal force variability could be attributed to the interplay between mechanics

of the task and signal-dependent noise at the fingertips [Jones et al., 2002], whose mag-

nitude scales with the mean force. According to this objection, noise generated by each

of the fingertips will show up as reaction force at the other two fingertips, thus giving

rise to positive correlations (theoretically instantaneous but perhaps with small delay due

to tissue deformation and compression) across fingertips and thereby causing the Grasp

Mode variability observed in the experiments. Secondly, the large variability along the

Grasp Mode direction could be attributed to the visuomotor loop involving the visual

feedback, which instructed subjects to generate a constant 10 N sum of normal forces,

and subjects efforts to maintain this force after seeing the visual feedback. The simplest

strategy to correct for displayed deviations from the target force is to increase or decrease

forces across all fingertips simultaneously, hence in alignment with the observed Grasp

Mode. It should be noted, however, that i) subjects were encouraged to make their best

possible effort at maintaining this force and ii) that the visuomotor loop has a defined

latency and operates at time scales considerably shorter than that of the thumb oscil-

lation frequency, and in particular, cannot be expected to be present across the entire

range of frequencies. We investigate both of the above objections in the following two

paragraphs.
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Figure 5.5: Summary figure showing the normal force variability magnitudes of the
three force modes (Compensation, Grasp and Hinge Modes) across the low frequency
range, found through PCA in the Original and the Control Tasks as well as Simulation 1.
The results are grouped by mode and in each group, the first graph shows the magnitudes
found in Simulation 1 (noiseless, ideal performance). Note that due to the curvature
of the solution manifold (Figure 3), the Hinge mode is not exactly zero even in the
simulation. Most importantly, the Original Task and Control Task 1 both reproduce the
expected magnitude of the Compensation Mode, while they exhibit much larger Grasp
Mode magnitude.

5.4.5 Comparison with the modeled imperfect performance and the

experimentally grounded task

To address the first objection, we added signal-dependent noise to the simulated forces

generated by each fingertip, whose magnitude was proportional to that force (simulation

2). The noise proportionality constant was chosen so that the resulting grasp force mode
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Figure 5.6: a. The measured magnitudes of the three principal components vs. fre-
quency in the original object manipulation task. Not surprisingly, near the task-relevant
frequency of 0.5 Hz (vertical red dashed line), the Compensation Mode dominates the
overall force variability, as suggested by Simulation 1. However, at those frequencies,
subjects exhibit considerable contributions to force variability from the Grasp Mode.
Box plots indicate the distribution of these variability contributions across the 7 sub-
jects. b. The difference in angle between the directions of the measured and the ana-
lytical principal components. The box plots reflect the fact that the three normal force
correlation modes did not vary much across subjects and were closely aligned with the
theoretical correlation modes. Differences across subjects and between observed and
theoretical modes mostly indicate the variability of object orientation during task per-
formance c. Average sum of normal forces across the 7 subjects in the original object
manipulation task, Subjects were well able to meet the 10 N target. d. The three force
mode magnitudes computed from the unfiltered data (square root of the eigenvalues),
showing that overall, the Compensation Mode contributes most of the force variability
and the Hinge Mode contributes the least, reflecting successful task performance. (Note
that the values are in Newtons, and do not represent proportions of variance. No statis-
tical tests are done on these data because they simply show the total variance across all
frequencies.)
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Figure 5.7: The three mode magnitudes vs. frequency in the noiseless simulation of the
Original Task (Simulation 1). The Compensation Mode explains almost all the force
variability and only near the task frequency of 0.5 Hz (vertical red dashed line). The
remaining variability is explained by the Hinge Mode, near the task frequency, which
can be attributed to the curvature of the solution manifold (Figure 5.2). The Grasp Mode
does not contribute to force variability at any frequency.

variability would match experimental observations near the frequency of thumb oscil-

lation. Since there is no connection between fingertips, neural or mechanic, principal

components analysis does not reveal any correlation structure and the sum of normal

forces varies wildly about the 10 N mean (results not shown). This is what we would

expect in an experiment in which the device is attached to ground, and all the variabil-

ity observed was due to signal-dependent noise at the fingertips. As a refinement, we

introduced mechanical connection between fingertips and computed and added the reac-

tion forces at the other fingertips (simulation 3). Figure 5.8 shows that the magnitudes

of compensation and hinge modes are unaffected, while the grasp mode magnitude is

increased and matches the experimental observations. However, its magnitude does not
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roll off across the entire frequency range, thus differing significantly from the exper-

imental observations. This is not surprising, since we did not band-limit the noise.

However, band-limiting the noise in our simulations to the frequency range observed

by [Jones et al., 2002], i.e. 8-12 Hz, does not reproduce the results either, as the track-

ing error is still vastly larger than in the original experimental task. More importantly,

however, comparing the results of the original task with the first control task in which

the device was attached to ground, we find that the experimental grasp mode magnitude

is equally large (Figures 5.5 and 5.9). This is surprising because the device is attached

to ground and correlations across fingertips cannot be explained by mechanical coupling

(i.e., force variability and errors are shunted to ground and do not affect the other fin-

gers), and mismatches in forces do not accelerate the object. Moreover, simulation 2

above predicted a complete absence of correlation modes. In summary, these results

challenge the alternative interpretation that signal-dependent noise in conjunction with

mechanics explains the experimentally observed, yet mechanically unnecessary, Grasp

mode variability.

5.4.6 Comparison with the simple static hold control tasks

To investigate the second objection, that grasp mode variability is attributable solely to

corrections to drifts in the visual feedback, we analyzed the normal force data of the

fifth and sixth control tasks, in which subjects simply held the object statically (did not

oscillate the thumb) and only tracked the 10 N sum of normal force visual feedback.

As in the other experiments, the three modes of force variability match those predicted

by Simulation 1, the modeled ideal performance, across the low frequency range (Fig-

ure 5.10b). Furthermore, while the compensation mode is now contributing 20 % and

less to the force variability near the frequency of thumb oscillation, the variability mag-

nitude along the grasp mode is also reduced by approximately 50 %. This can be seen in
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Figure 5.8: a. The simulated magnitudes of the three principal components vs. fre-
quency in the original object manipulation task, including signal-dependent noise,
whose standard deviation is proportional to the mean force. The proportionality factor
was chosen such that the grasp force magnitude at the task-frequency of 0.5 Hz (ver-
tical red dashed line) matches that measured in the Original Task. However, the noise
is not band-limited to the low frequencies, since signal-dependent noise is associated
with higher frequency bands, and thus the grasp force mode magnitude is considerably
larger than the measured one at all other frequencies. b. The simulation also exhibits
much greater variability in terms of the sum of normal forces, making signal-dependent
noise an unlikely source of the grasp force variability. c and d. If, on the other hand, the
signal-dependent noise magnitude is scaled to the error observed in the sum of normal
forces (right plot), the resultant grasp force magnitude does not match the experimen-
tally observed one (left plot).

(Figure 5.10a). Similarly, the standard deviation of the sum of normal forces is reduced

by half (Figure 5.10c). These results suggest that voluntary (i.e., visuomotor) corrective

action does explain some of the variability in the grasp mode, since this control exper-

iment failed to abolish grasp mode variability altogether - but a large proportion (as
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Figure 5.9: a. The measured force modes magnitudes vs. frequency in the original
task, in which however, the device was attached to ground (Control task 1). Although
the load cells are now mechanically decoupled and thus, noise originating at one finger
does not get transmitted to the other fingers, the grasp mode contribution in this case is
just as strong as in the original task. b. The measured principal component directions
agree with the theoretical across the frequency range, although to a lesser extent than
in the original task. Note, however, that the measured grasp mode shows the greatest
agreement (vertical red dashed line indicates 0.5 Hz frequency of thumb oscillation).
c. Average subject performance at maintaining the 10 N target force. d. The force
variability analysis reveals that even though the object is attached to ground, and safety
or signal-dependent noise is not an issue, the grasp force variability is as present as in
the Original Task. Note however, that the Hinge Mode contributes stronger, too.

much as 50 %) of that variability needs to be attributed to causes other than voluntary

modulation of force and the limitations of the visuomotor loop associated with it.
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Figure 5.10: a. Force mode magnitudes vs. frequency in the simple hold task (control
tasks 5 and 6). Although for this task, grasp force variability is also unnecessary, we
see some contribution to force variability by it. However, it is much smaller than in the
original task, suggesting that force corrections to the visual feedback are not the sole
cause of grasp mode contribution. b. The measured modes agree with the hypothesized
modes across all frequencies (vertical red dashed line indicates 0.5 Hz frequency of
thumb oscillation). c. Subject performance at maintaining the 10 N target force in the
simple hold task. d. Analyzing the unfiltered simple grasp data, we find that the order
of force modes in the Original Task is preserved, but there is much less force variability.
The amount of grasp force variability in this task indicates the variability arising from
tracking the constant visual feedback.

5.4.7 Comparison with the alternating index/middle finger normal

force task

One can argue that cognitive load may explain the higher corrective activity (i.e., dom-

inant Grasp mode) seen when the thumb is being oscillated, since moving the thumb

could consume resources that could otherwise be fully devoted to the maintenance of

the task requirements. Using the range of compensation force magnitudes observed in
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each subject, we asked them to voluntarily generate alternating index and middle fin-

ger forces of the same frequency and magnitude, but without oscillating the thumb and

while the pads were locked into a rigid object (second Control task). Once again, the

experimental force variability structure matches the predictions (Figure 5.11b). Further-

more, we see that despite the absence of any finger motion in this task, the contribution

of the grasp mode is just as strong as in the original task (Figure 5.11a and 5.5). Lastly,

the feedback in this control task was based on the alternation of index and middle finger

normal forces and no explicit feedback about the force error was presented for the sum

of normal forces. Hence, despite the absence of an explicitly enforced requirement on

the grasp force, variability along this mode is just as present and thus likely to be linked

to the explicitly enforced Compensation mode requirements.

5.4.8 Comparison with voluntarily oscillated grasp force

So far, we have shown that the grasp mode is present when performing a voluntary

compensatory task. We then used the third and fourth control cases to test the inverse,

i.e., whether voluntary grasp mode produces a corresponding involuntary compensation

mode. While, for the sake of brevity, we do not show the results here, we find that

such coupling is not present. In other words, generating voluntary grasp force does not

increase the magnitude of compensation force variability beyond what is seen in static

grasp in control cases 5 and 6 (Figure 5.10 and 5.5). This is in contrast to the voluntary

production of the compensation mode, which even in the absence of thumb motion gives

rise to even larger magnitudes of grasp force variability than observed in the original task

(Figure 5.11 and 5.5).
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Figure 5.11: a. Force mode magnitudes vs. frequency in the index-middle finger alter-
nating normal force task (control task 2). Since in this task production of alternating
index and middle fingers was encouraged, not surprisingly, we see a large contribution
from the compensation mode. There was no motion component in this task and yet, the
grasp force contribution near the task frequency of 0.5 Hz (vertical red dashed line) is
quite considerable, too. b. Measured force mode directions are in agreement with the
simulation directions. c. The visual feedback was not explicitly given on the 10 N tar-
get force, but the sinusoids that mimicked the thumb force compensation mode. Hence,
greater error on the target force is to be expected, but also a reduced need to correct via
the grasp mode. d. While the magnitudes of force mode variability computed from the
unfiltered data is approximately twice of that observed in the Original Task, the order of
force modes in terms of magnitude and their relative magnitudes are preserved.

5.5 Discussion

While it is clear that the human nervous system has distinct adaptations that enable

dexterous manipulation - a functional hallmark of our species-, we demonstrate that

multifinger manipulation exposes strong limitations even for ordinary and ecological

tasks requiring the simultaneous control of individuated finger motion and force, such
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as unscrewing a bottle cap. We systematically explored the potential confounds that

could explain our results of unnecessary grasp-and-release force variability pervading

the Original Task of holding the object while reconfiguring the grasp. Now we discuss

why we can now confidently argue that the underlying cause of such pervasive Grasp

Mode variability is likely a context-sensitive coupling in the actual drive to the alpha

motoneuron pools across fingers. Moreover, our control experiments and numerical

simulations, when put in the context of seminal work by human neuroanatomists, help

interpret those limitations as consequences of evolutionarily vestigial properties of corti-

cal projections to hand muscles. We speculate that the results reveal strong competition

between descending commands to grasp vs. manipulate, likely driven by competition

between the phylogenic older reticulospinal vs. the newer corticospinal tracts. This

suggests that, for all its neuro-musculo-skeletal uniqueness and versatility, the healthy

human hand critically depends on maintaining a delicate balance between competing

descending commands. This may explain the disproportionately severe disruption of

manipulation after neurological injury such as stroke, or even with healthy aging.

We begin by emphasizing that holding and reconfiguring our novel hinged

apparatus defines an unstable mechanical system that requires the nervous system

to generate fingertip force vectors that intersect at or close to the hinge at all

times [Flanagan et al., 1999]. For a variety of magnitudes of total grasp force, the set of

valid combinations of fingertip forces defines a slightly curved manifold (Figure 5.2).

We provided subjects with visual feedback to produce a constant sum of 10 N of total

grasp force while oscillating the thumb.

The fact that our analytical model of the task revealed the solutions to be well

approximated by a linear manifold (see discussion in [Clewley et al., 2008]) both justify

and motivate the use of PCA, which in turn allows us to disambiguate mechanically nec-

essary from neurally driven variability in the experimental data [Tresch and Jarc, 2009].

122



Variability in the compensation mode (PC [�1, 1, 0]

T in Figure 5.4) represents the

instructions given to the subjects to oscillate the thumb, which results in compensatory

alternating force magnitudes of the index and middle fingers as they maintain equilib-

rium. It is not surprising, therefore, that this PC explains the greatest variance in the

data near the thumb oscillation frequency of 0.5 Hz because it is driven by the mechan-

ical requirements of the task. On the other hand, given that the subjects succeeded at

the task and did not greatly translate or rotate the object, the data exhibited the lowest

variability along the hinge mode (PC [�1,�1, 1]

T ). In fact, the mechanical require-

ments of the task explain both the low variability in the hinge constraint and the high

variability in the compensation mode near 0.5 Hz. Had we not modeled the analytical

dynamical solution to the task, we may have been tempted to interpret the Compensation

mode variability as indicative of properties of the neural controller, such as coherence

modes in the control of motoneuron pools across fingers, for which there is some evi-

dence [Schieber and Santello, 2004, Tresch and Jarc, 2009]. Contrast this to the Grasp

Mode PC [1, 1, 1]

T , which represents unnecessary grasp-and-release force variability

that is not part of the mechanical requirements of the task, which in turn leads to the

population of a manifold of mechanically feasible solutions (Figure 5.4b). Its lack of

mechanical relevance renders the Grasp Mode critically informative of the neural con-

troller’s performance and limitations.

5.5.1 Ruling out potential confounds

The additional six systematic control tasks, plus four simulations of mechanically driven

correlations between clean and noisy fingertip forces (Table 5.1), strongly indicate that

the variability along the grasp force mode cannot be attributed to signal-dependent noise

and only to a limited extent - if at all - to visuomotor corrective actions along the grasp

force direction at low frequencies. That is, (i) signal-dependent noise is associated with a
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higher frequency band (8-12 Hz, [Jones et al., 2002]) than the one in which we observed

large and unnecessary grasp force fluctuations; and (ii) the first Control Task, with the

apparatus fixed to ground to abolish - by shunting to ground - any fingertip force cor-

relations arising from reaction forces driven by signal dependent noise, exhibited the

same unnecessary contribution by the Grasp Mode (Figures 5.5 and 5.9). Therefore, we

conclude that signal-dependent noise in conjunction with instantaneous action-reaction

mechanics cannot explain this unnecessary variability.

Secondly, simple static grasp in the fifth and sixth Control Tasks, in which a 10 N

sum of normal force was to be maintained, exhibits greatly diminished variability along

the Grasp Mode direction (Figures 5.5 and 5.10). This variability reflects, among other

things, the corrective activity in response to visual feedback error. Its small magnitude

here suggests that the much stronger presence of Grasp Mode in the Original Task is not

primarily driven by the interaction with visual feedback. Importantly, Control Tasks 2, 3

and 4, involving voluntary generation of grasp and compensation forces, show that vol-

untary production of Compensation Mode variability leads to involuntary Grasp Mode

variability, but not vice versa. We therefore conclude that the mechanically unnecessary

(and potentially counterproductive?) Grasp Mode variability is of involuntary neural

origin, and that such stereotypical grasp-and-release synchronous interactions pervade

multifinger manipulation when the manipulation task requires individuated fingertip

motions and forces.

What could be the causes of this neurally driven, context sensitive involuntary vari-

ability in the Grasp Mode? A behavioral explanation is that subjects may have simply

chosen not to track the constant visual feedback in spite of our encouragement to do

so. However, all subjects reported to perform the task in all conditions to the best of

their ability and satisfaction with using visual feedback to explicitly help them maintain

a given grasp force level (recall that we have ruled out by visuomotor corrective actions
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as the main source of the Gasp Mode). Moreover, subjects are familiar with and adept at

common motor tasks requiring the reconfiguration of grasp during their daily activities,

such as rotating an object in the hand or unscrewing a bottle cap.

Alternatively, one can be tempted to attribute such variability to the principle of min-

imal intervention, giving rise to an uncontrolled manifold [Scholz and Schner, 1999,

Todorov and Jordan, 2002]. Having dedicated most of its control efforts to meet-

ing the critical constraint of not accelerating or rotating the object (hinge constraint

mode PC [�1,�1, 1]

T ) while also visibly moving the thumb (compensation mode PC

[�1,�1, 1]

T ), the nervous system may have chosen to assign the regulation of the grasp

force PC [1, 1, 1]

T the lowest priority. After all, varying total grasp force does not imme-

diately lead to mechanical failure of the task and is a task variable (i.e., constraint) that

might be given lower priority (i.e., an uncontrolled manifold). However, constant total

grasp force is an explicit task constraint that is part of our instructions and visual feed-

back. In fact, Control Task 2 shows that Grasp Mode variability does not increase even

when it is not an explicitly part of the instructions (i.e., demoting the relevance of the

Grasp Mode does not increase it). Conversely, Control Task 1 shows that Grasp Mode

variability is not decreased when the object is attached to ground either, even though

there is no concern of dropping the object or involuntary slip-grip response. Therefore,

the observed Grasp Mode variability arguably does not reflect controller prioritization

la minimal intervention or uncontrolled manifold.
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5.5.2 Grasp Mode variability reveals fundamental challenges to

controlling dynamic multifinger manipulation

This leads to the intriguing third explanation that manipulating an object while dynam-

ically reconfiguring the grasp is challenging enough to expose limitations in the neuro-

muscular control of multifinger manipulation. That is, when performing certain mul-

tifinger tasks requiring individuated finger actions to meet multiple requirements (i.e.,

maintaining hold of an object while also reconfiguring the grasp), the nervous system is

physiologically bound to violate some task constraints. We see this here as a pervasive

Grasp Force variability. This is quite different from choosing to prioritize some task

constraints as in the first two explanations above. In fact, this agrees well with other

work with single fingers, where even ordinary manipulation tasks can push the neuro-

muscular system to its limit of performance when they require combinations of, or tran-

sitions between, motion and force constraints [Venkadesan and Valero-Cuevas, 2008,

Keenan et al., 2009]. Thus we are compelled to conclude that, when manipulating an

object with individuated finger actions such as dynamically reconfiguring the grasp, the

neural controller must carefully and continuously overlay individuated finger actions

over unavoidable and mechanically unnecessary, yet strongly structured, synchronous

interactions.

This superposition of the Grasp Mode should not be confused with the notion of

functional coupling as in the context of the principle of superposition [Gao et al., 2005].

In that functional superposition, necessary internal forces (such as the grasp forces)

are coupled to manipulation forces (required to accelerate an object) in a simultane-

ous, appropriate, and intentional fashion. Such coupling is determined by the goals of

the task, such as the simultaneous increase of grip and load force to prevent slip, or

deceleration forces at the extreme points of an oscillating motion. Here, in contrast,
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we showed that our multifinger manipulation task is unavoidably accompanied by func-

tionally unnecessary (and even inappropriate) synchrony across fingertip forces. This

pervasive synchrony is neither an epiphenomenon of the task nor a desired feature of

the task.

In fact, in agreement with [Schieber and Santello, 2004] who review the literature

on peripheral and central limitations of multifinger manipulation, we argue that the ner-

vous system has to superimpose finger individuation over a propensity to modulate fin-

gertip forces in synchrony. A potential explanation for this is the emerging picture

from seminal and recent work [Donald and Kuypers, 1968, Lang and Schieber, 2004,

Lemon, 2008]; for a review, [Baker, 2011]) on different neural pathways that project

on hand motoneuronal pools and segmental interneurons. The divergent projections

to flexor muscle motoneuronal pools by the reticulospinal tract seem to be in com-

petition with inhibitory corticospinal projections [Riddle et al., 2009]. Thus, the con-

stant presence of the Grasp Mode perhaps reflects the inability of the (evolutionar-

ily younger?) corticospinal tract from the neocortex to completely override projec-

tions from the reticular formation (one of the phylogenetically oldest portions of the

human brain [Ranson, 1953]). Thus the strongly structured stereotypical interactions

that pervade voluntary dynamic multifinger manipulation may be the modern echoes of

an evolutionarily vestigial tendency for grasp so critical to brachiation or early tool

use [Donald and Kuypers, 1968, Baker, 2011]. As a consequence, the human hand

might not have enough neuromechanical, as opposed to strictly mechanical, degrees

of freedom to meet both the constraints of grasp (i.e., holding the object steadily against

gravity) and manipulation (i.e., reconfiguring the grasp).

This interpretation that, in spite of its complexity and redundancy, a

neuromuscular system can run out of neuromechanical degrees of free-

dom if the task is sufficiently demanding has been proposed elsewhere (see,
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e.g., [Loeb, 2000, Venkadesan and Valero-Cuevas, 2008, Keenan et al., 2009,

Kutch and Valero-Cuevas, 2011]). That is, in spite of the evolutionary adapta-

tions and apparent versatility and redundancy of the human hand, our results strongly

suggest that the human hand has barely enough neuromechanical degrees of freedom

to meet the multiple simultaneous mechanical demands of ecological tasks. This helps

explain the apparent paradox [Keenan et al., 2009] that, for all the neuromechanical

redundancy of the human hand, multifinger manipulation is susceptible to even mild

neurological conditions, takes years to develop in childhood, and degrades in healthy

with aging.
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Chapter 6

Prenatal Motor Development Under

Different Incubation Periods Affects

Postural Control in Domestic Chick

6.1 Abstract

Domestic chicks walk within 3-4 hr after hatching following 21 days of incubation.

However, differences in light exposure can significantly extend the incubation range (20

to 22 days). Based on observations that differences in incubation duration do not affect

morphological measurements such as weight, height and tibial bone length, we hypoth-

esized that chicks hatch when they are sufficiently mature to cope with the environ-

ment. However, we recently found differences in some gait measures suggesting postu-

ral control at hatching may be more advanced by light exposure during embryogenesis,

so in this study we further test for potential differences and reconsider our hypothesis.

Employing 3 light exposure conditions established in our earlier study and robot-assisted

posturography methods, we report significant differences in several indicators of postu-

ral control as evidence that light exposure during embryogenesis advances maturation

of control. Hatchlings experiencing the greatest light exposure during embryogenesis

exhibited the least sway area, mean speed and distance from the center-of-pressure cen-

troid during quiet stance. Further, when posture was randomly perturbed during quiet

stance, they also recovered postural stability significantly more rapidly than hatchlings
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exposed to less or no light during embryogenesis, as indicated by the fastest attenuation

of perturbation-induced sway oscillations. Although all groups exhibited general postu-

ral competence, consistent with our original hypothesis, we conclude that environmental

light during development not only accelerates morphogenesis but that it can also impart

a developmental advantage. These findings offer new important considerations relevant

to debate regarding the impact of prenatal and postnatal conditions on the development

of the human fetus and infant.

6.2 Introduction

The ongoing debate on the influence of light on neonatal development and maturation

during intensive care [Miller et al., 1995, Brandon et al., 2002] necessitates the testing

of relevant hypotheses in a suitable animal model: in particular, the domestic chick

has proved useful addressing questions of motor control development. Within a few

hours after hatching, domestic chicks (Gallus gallus) are capable of walking, stand-

ing and resisting perturbations to quiet stance. Furthermore, chicks typically hatch

at 21 days of incubation [Romijn and Roos, 1938, Hamburger and Hamilton, 1992,

Noy and Sklan, 1997] but the duration of incubation can be modulated through dif-

ferential light exposure. In particular, continuous light exposure will accelerate

hatching, while the continuous absence of light will decelerate it, each by up to

one day [Shutze et al., 1962, Siegel et al., 1969, Lauber, 1975, Ghatpande et al., 1995,

Fairchild and Christensen, 2000]. Importantly, the differences in light condition and

thus in incubation duration do not affect the viability of hatchlings, compared to natural

conditions [Lauber and Shutze, 1964]. More specifically, morphological measures such

as body weight and height and tibia bone lengths show no significant differences across

conditions [Sindhurakar and Bradley, 2010]. Together, these features make chicks a
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valuable model for examining the impact of light on locomotor development, since

observed differences can clearly be attributed to the interplay between the nervous sys-

tem, muscles and mechanics, rather than mechanics in itself.

While it is known that light exposure accelerates morphological development,

among other things, by increasing the number of nuclei in the chick blasto-

derm [Ghatpande et al., 1995] or increasing early body weight [Lauber, 1975], and

modify posthatching behavior, such as increasing the rate of feather picking

between hatchlings [Riedstra and Groothuis, 2004] and attack and copulation behav-

iors [Zappia and Rogers, 1983], it is currently unknown if light exposure has an effect

on the development of locomotor competence. On the other hand, it is known that criti-

cal neurodevelopmental events occur very shortly prior to hatching. For instance, elec-

tromyographic (EMG) and kinematic studies of leg movements during embryonic motil-

ity have provided evidence that circuits involved in locomotor control are established 1-

3 days pre-hatching [Bradley et al., 2005, Bradley et al., 2008, Ryu and Bradley, 2009].

However, light seems to have little or no influence on these components of develop-

ment, since intralimb EMG patterns for stepping have been shown to be expressed

even in the absence of sensory or descending inputs [Jacobson and Hollyday, 1982,

Bekoff et al., 1987, Bekoff et al., 1989]. Our study extends and complements previ-

ous kinematic and EMG studies of locomotor development in chicks by providing the

first analyses of postural control and postural stability parameters, commonly used in

human posture analysis, on the day of hatching. Our primary goal in this study was

to determine if the maturation of postural control is affected by different light expo-

sure conditions during incubation. Based on our previous kinematic study of the influ-

ence of incubation light on chick gait parameters, which found no differences between

conditions as well as other studies, indicating that intra- and interlimb coordination

are well established within the first day after hatching [Jacobson and Hollyday, 1982,
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Johnston and Bekoff, 1992, Johnston and Bekoff, 1996], we predicted that there would

be no differences in our current study. Surprisingly, the kinetic and more sensitive analy-

sis of quiet stance and stance perturbation response showed significant differences across

the three conditions, with chicks spending the shortest time inside the egg exhibiting the

best stabilization performance. These results indicate an influence of incubation light

condition on the development of motor skills and cast doubt on the assumption that by

the time of hatching, all chicks are equally competent.

6.3 Methods

6.3.1 Subjects

We obtained fertile Leghorn chicken (Gallus gallus) eggs from a local hatchery and

incubated them in force draft, humidified incubators at standard temperature (37.5�) and

humidity (62%). Prior to the onset of incubation, we weighed the eggs and randomly

assigned them to 1 of 3 incubators modified as described below. Onset of incubation

was considered embryonic day E0. We moved all eggs to nonrotating shelves within

the same incubator 3 days before anticipated hatching. We examined the eggs at 2 hr

intervals thereafter to determine the approximate time of pipping, a crack in the shell

indicating the onset of hatching, and when hatching was completed. After hatching, we

weighed the chicks and moved them to a brooder (47 cm x 47 cm x 20 cm). Hatchings

were trained for and tested in only 1 of the 2 experiments of this study. All training

and testing procedures were completed within 24 hours of hatching. At the end of data

collection, we euthanized the animals. All procedures were approved by the University

Institutional Animal Care and Use Committee.
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6.3.2 Incubation Conditions

Standard industrial incubators were modified to house fluorescent lighting and/or to

eliminate external sources of light without disrupting internal temperature and humidity.

Fertile eggs were maintained throughout embryogenesis in a single incubator adapted

to provide continuous light exposure 24 hr daily (24 L) at 4,000 - 7,000 lx; 12hr light

exposure daily (12L) at 650 - 3,000 lx; or continuous dark exposure 24hr daily (24D) at

 1lx. The range in light intensities indicate the variation in luminance at the egg shell

as the incubator shelf automatically rotated in 2 hr intervals, alternately placing the egg

closer to or further from the light source (Figure 6.1).

6.3.3 Acceleration of embryogenesis through light exposure

The average duration of embryogenesis in domestic chicks (Gallus gallus) is 21 days.

In a recent study we established 3 light exposure conditions that significantly varied the

length of incubation [Sindhurakar and Bradley, 2010]. Bright light exposure throughout

embryogenesis (24L conditions) reduced incubation to 20 days, where as12L conditions

resulted in hatching at 21 days, and absence of light exposure lengthened incubation to

22 days. An array of light conditions similar to 24L exposure was also employed in ear-

lier studies and was shown to significantly accelerate embryogenesis [Siegel et al., 1969,

Lauber, 1975, Coleman and McDaniel, 1976, Ghatpande et al., 1995]. We selected 12L

condition to approximate periodic indoor/outdoor light exposure during normal embryo-

genesis and 24D conditions as a control for light exposure.

6.3.4 Quiet Stance Training

Within 2-4 hours of hatching chicks were trained to stand upright on a platform similar

to the force platform. Chicks were encouraged to stand upright without taking steps
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or sitting down for at least 30 seconds at a time. If they made an attempt to escape or

sit, the experimenter intervened to discourage the behavior. After each trial of training

they were allowed to rest for few minutes. This procedure was repeated until the chicks

stood upright without any interruptions. It typically took 3-5 trials per chick to complete

the training regardless of the incubation condition. Young hatchlings are frequently dis-

tracted by the environment so the training procedure was conducted in a quiet room with

dim lights. Further, hatchlings are susceptible to shivers at room temperature, which is

not only uncomfortable for the chicks but also an undesirable behavior with regards to

acquisition of postural control data as it might introduce noise. Thus, the training area

was warmed up with a space heater. Animals were tested within 2-4 hours of training

and data from the animals that were uncooperative after 2-3 trials were excluded from

analysis.

6.3.5 Data collection

Quiet stance experiments

In our first experiments we sought to quantify static postural stability by recording forces

during quiet stance. To collect forces applied during quiet stance, we designed and built

a force platform (Figure 6.2): two square-shaped boards made from ASB material (10

cm x 10 cm x 0.9 cm) were screwed together from above and below to a 6-axis ATI

Nano17 force transducer (ATI, Apex, NC). The platform surface was covered with sand-

paper to minimize slippage of the feet, as the animals movements were unconstrained

and to protect the load cell from dirt. We also sought to minimize postural noise due to

distractions during recordings by designing a wall, consisting of four sheets made from

ASB material (9 cm x 5 cm) that surrounded the chick and was mounted on the force

platform. For the static postural control experiments, we collected 1 to 6 trials per chick,
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with each trial of 30 s in duration. We recorded fewer than 6 trials if the chick stopped

behaving or fell asleep repeatedly. Because chicks occasionally fell asleep or ceased

to cooperate, care was taken ensure that we only collected data from awake chicks that

maintained upright stance. We collected quiet stance trials for 10 chicks per incubation

condition, for a total of 30 chicks.

Figure 6.1: The incubator. Note that the surface holding the eggs was rotated at 2-hour
intervals to ensure equal light exposure.

Stance perturbation experiments

In our second experiments we sought to quantify dynamic postural stability by recording

forces during random perturbations of quiet stance. For these experiments, we mounted

the same force plate as in the quiet stance experiments onto the end-effector of an Adept6

300 6-degrees-of-freedom robot arm (Adept, Pleasanton, CA), where the robot can be

seen in its ”home” configuration, that is, its configuration prior to applying a perturba-

tion to the force platform. The robot control software was implemented in the Adept V+

language. We used a tcp/ip client-server connection between the robot controller and a
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Figure 6.2: Chick on force platform. The stance platform, made from ASB material,
was mounted on a ATI Nano17 force sensor. The chick was standing on a sheet of sand
paper, to increase stance stability.

desktop computer to trigger perturbations from within MATLAB (Natick, MA) software

we designed for data acquisition. Every 10 s, we applied a perturbation along 1 of 8 ran-

domly selected directions in the horizontal plane at random amplitudes ranging from 0

to 25 mm. The randomized directions were drawn from a discrete uniform distribution,

while the randomized amplitudes were drawn from a discretized normal distribution

with standard deviation 15 mm (based on our quiet stance results). Using a mean-zero

normal distribution for amplitudes effectively interspersed sham perturbations to prevent

chicks from anticipating the next perturbation trial. While the maximum force platform

velocity was kept constant at 2500 mm/s, the acceleration profile consisted of a step

input, followed by a very slow deceleration until the final position was reached. The

final position was maintained for 2 seconds, before returning the robot to its ”home”

configuration. Robot movement did not exhibit extraneous oscillations. We performed

a total of 29 perturbations within a 5 min test session and conducted 3-4 test sessions to
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Figure 6.3: Sample 30 s center-of-pressure dynamics of one 24L chick. Coordinates are
rotated so as to align with the major (anterior-posterior) and minor (medio-lateral) axes
of sway.

obtain a potential sample of 87-116 perturbations. We videotaped all perturbation trials,

to estimate post-trial the direction of each perturbation relative to postural orientation,

because chicks typically moved about the platform during the test session. We selected

perturbations for data analysis, those trials when chicks did not take a step or sit down

for 1 s immediately before and after the perturbation. We successfully tested 12 chicks

from 24L conditions, 11 chicks from 24D and 12 chicks from 12L conditions.
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6.3.6 Data processing

We sampled force data at 1000 Hz and then down-sampled to 100 Hz for subsequent

analyses. For classical posture analysis methods and analyses of stance perturbation

responses the data were low-pass filtered using a 4th order bidirectional Butterworth

filter with the cut-off frequency at 20 Hz and 5 Hz, respectively. However, data were

left unfiltered for the drift-diffusion approach discussed below.

The x and y coordinates for center of pressure (COP) data were computed from the

forces applied to the force platform as follows, for the n-th sample:

x[n] = �M

y

[n] + cF

x

[n]

F

z

[n]

y[n] =

M

x

[n]� cF

y

[n]

F

z

[n]

Where M

y

[n] is the y moment applied to the force sensor, while F

x

[n], F

y

[n] and

F

z

[n] are the three force components as measured by the force transducer, and c is the

thickness of the force platform that was attached to the force transducer (here, c = 9

mm).

It was not possible to guarantee that chicks assumed identical stance orientation

across trials. Therefore, we performed the subsequent data analysis not with respect to

the force sensor coordinate system but instead, rotated the coordinate system so as to

align with the chicks major and minor axes of sway (denoted MA and MI below). To

this end, we performed Principal Components Analysis (PCA) to identify the two axes

of sway directly from the COP patterns. For improved robustness, we computed the

PCA on the time series of COP increments �x = x[n + 1] � x[n], which is stationary,

rather than directly on the COP data, where estimation can be affected by data clustering.

For an example of the rotated COP time series, see Figure 6.3. Since PCA requires
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subtraction of the mean from the data, the major and minor axis components represent

the distances from the data mean along their respective associated directions.

6.3.7 Center of pressure dynamics analysis: classical approach

In [Prieto et al., 1993], a variety of metrics applicable to center of pressure measure-

ments in humans are described. We applied the following three metrics to the chick

COP measurements:

Mean distance:

d =

1

N

X

n

⇥
MA[n]

2
+MI[n]

2
⇤ 1

2

Mean speed:

v =

1

T

X

n

[(MA[n+ 1]�MA[n])

2

+(MI[n+ 1]�MI[n])

2
]

1
2

Sway area:

s =

1

2T

X

n

|MA[n+ 1] ·MI[n]

�MA[n] ·MI[n+ 1]|

Where n refers to the current data sample, N to the total number of samples recorded

in the trial, while T is the total duration of the trial, hence T = 30 s. We restrict

ourselves to reporting the results for the three most meaningful metrics, although most

of them showed significant differences.
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Center of pressure dynamics analysis: drift-diffusion approach

Assuming that the dynamics of a given system can be described by a Langevin equa-

tion [Kantz and Schreiber, 2004]:

�x

�t

= f(x(t)) + g(x(t))✏(t)

where x represents the state of a system, x 2 R

N , while f(x) describes the determin-

istic dynamics of the system. g(x) scales, in a state-dependent way, the normally dis-

tributed noise ✏, where ✏ ⇠ N(0, 1) and correlation function E[x(t)x(t

0
)] = K�(t� t

0
).

Due to the stochastic forcing g(x(t))✏(t), the state x(t) follows a probability distribution

p(x, t), whose (deterministic) time evolution can be shown [Kantz and Schreiber, 2004]

to be described by the Fokker-Planck equation, assuming the Markov property:

�p(x, t)

�t

= � �

�x

[D

1
(x, t)p(x, t)] +

�

2

�x

2
[D

2
(x, t)p(x, t)]

Where we refer to D

1 as the drift coefficient and to D

2 as the diffusion coefficient.

D

1
(x, t) describes the state-dependent change in the mean of the probability distribu-

tion p(x, t) at time t, while the diffusion term D

2
(x, t) describes the state-dependent

change in the variance of p(x, t) at time t. Since the stochastic forcing g(x(t))✏(t) in the

Langevin equation is normally distributed, the Fokker-Planck equation fully captures the

dynamics of this stochastic system with Markov property. If there were no stochastic

forcing, the drift term D

1
(x, t) would be equivalent to the description of a deterministic

system.
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A novel approach for determining drift D1and diffusion D

2 from time series data,

in particular, posture-related data, was proposed in[Gottschall et al., 2009]. The drift

coefficient can be computed as follows:

D

1
i

(x) = hx
i

(t+�t)� x

i

(t)i|
x(t)=x

ref

In other words, by finding the average change in state x during a time interval �t,

and across all data samples in a suitably chosen neighborhood of a reference state x

ref

.

Next, the diffusion coefficient is computed as follows:

D

2
ii

(x) = h(x
i

(t+�t)� x

i

(t))

2i|
x(t)=x

ref

I.e. by taking the average of the square of the change in state during a time inter-

val �t near the state x

ref

. States can then be mapped to both the computed drift and

diffusion coefficients, and polynomials fitted to this mapping. Finally, we can compute

comparative statistics on the coefficients of these polynomials to quantify differences

between conditions and to infer control strategies.

6.3.8 Center of pressure dynamics analysis: perturbation response

For every successful perturbation, as described above, we computed the mean m in

terms of the x and y coordinates of the pre-perturbation COP time series. This mean

served as the reference point for the computation of Euclidean distance (D([n] =

p
(x[n]�m

x

)

2
+ (y[n]�m

y

)

2), which we used for the subsequent data analysis. We

chose to analyze the dynamics of the Euclidean distance rather than those of the x and y

coordinates, since it was not possible to estimate major and minor axes of sway for such

short duration events. In successful perturbations, the response generally followed a
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profile that consisted of two successively smaller peaks, reflecting the oscillatory nature

of the perturbation response (Figure 6.4). We extracted the following metrics:

Time of first peak: n = argmax

k

(D[k])

where k is the data point time index relative to the time of perturbation application.

This metric is based on the assumption that neuromuscular activity can modulate the

oscillations that are purely due to mechanics; a relatively smaller n would reflect a

faster response.

Magnitude of first and second peaks: m1 = max

k

(D[k]),m2 = max

k

(D[k]), k > n

Together with the previous metric, this represents the degree of preparedness of the

chick and its ability to counteract perturbations.

Ratio of second and first peak: m2
m1

This metric quantifies how effectively the chick can attenuate the perturbation-

induced oscillations.

Time difference between first and second peak: d = t2 � t2

Where a smaller difference corresponds to a higher oscillation frequency, which in

turn can indicate a faster response.

Ratios of first peak or second peak and perturbation amplitude: r = m1,2/p

This metric’s value corresponds to the chick’s ability to absorb a perturbation.

6.3.9 Statistical Analysis

Since the resulting distributions of these all metrics, for both the quiet stance and the

stance perturbation experiments were found to be non-normally distributed by inspec-

tion of P-P and Q-Q plots, we applied Kruskal-Wallis tests to determine differences

across all three incubation conditions and Mann-Whitney U tests for pairwise differ-

ences as these statistical tests are suitable for non-normal distributions. The statistical

significance level was set to p < .05. We tested for the effects of light condition on the
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Figure 6.4: Representative example of center of pressure excursion (i.e., COP vector
squared) dynamics during the second before (left plot) and after the perturbation (right
plot). The right plot exhibits the typical 2-peak response profile, with the second peak
smaller than the first. Also shown are the metrics we computed for each perturbation.
The example shown is from a 12L condition chick, experiencing a perturbation of ampli-
tude 16 mm.

three quiet stance metrics and the seven stance perturbation response metrics, comparing

between the three groups. Furthermore, to assess the influence of perturbation direction

on each of the three light conditions, we repeated the statistical comparisons (two-way

design) for lateral perturbation directions (45, 90 and 135�), anterior-posterior directions

(0 or 180�), assuming sagittal and frontal symmetry. To assess the influence of perturba-

tion amplitude, we compared the metrics across the three light conditions for small ( 7

mm) and large perturbations (> 7 mm). We chose 7 mm as cutoff was to for equal num-

bers of perturbations in each subsample. Individual perturbations were removed from

the analysis, if the value of one of the seven metrics exceeded its distribution by more
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than two standard deviations. In total, we removed 31 perturbations from analyses, 14

perturbations from 24L condition, 13 from 24D and 11 from 12L conditions.

6.4 Results

6.4.1 Quiet stance experiment

Analyses of static postural control compared forces during quiet stance under all 3 light

conditions 24D (51 trials), 12L (76 trials) and 24L (50 trials). Results indicated that all

3 classic measures of sway [Prieto et al., 1993], mean distance, mean speed and sway

area (Figures 6.5-6.7), were significantly different, both across conditions as well as in

pairwise comparisons. In particular, hatchlings incubated in 24L conditions swayed the

smallest mean distance, at the lowest speed and over the smallest sway area, whereas

hatchlings incubated in 24D conditions swayed the greatest mean distance, at the highest

speed and over the largest sway area. Thus there was a consistent continuum in that all

parameters for the 3 hatchling groups were negatively correlated with the extent of light

exposure. Similarly, the linear coefficients of the drift function and the intercept coeffi-

cients of the diffusion function are were significant across all light conditions as well as

in pairwise comparisons. 24L animals had the smallest drift linear coefficient and dif-

fusion intercept, whereas 24D animals had the largest, once again showing a consistent

continuum. While the classical metrics simply suggested a difference in the sway pattern

across the three incubation conditions, the drift/diffusion analysis indicated, for reasons

discussed below, that the 3 groups of hatchlings employed different control strategies.

Since the results nevertheless do not provide an insight into the maturity of motor com-

petence, we performed postural perturbations to test for differences in dynamic postural

control.
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Figure 6.5: Mean distance from COP centroid distribution across the three incubation
conditions. Note that while there is considerable overlap between conditions, we also
observe a positive correlation between incubation duration and the magnitude of this
metric, with 24D chicks exhibiting the largest mean distance.

6.4.2 Stance perturbation experiment

We recorded 586 successful perturbations in total, representing a 61% success rate for

hatchlings in 24L condition; 462 successful perturbations (43% success rate) for hatch-

lings in 24D conditions, and 605 successful perturbations (53% success rate) for hatch-

lings in 12L conditions. We found significant differences across conditions in the fol-

lowing metrics: the amplitude of the second peak, the ratio of second and first peak

amplitude, the ratio of second peak to perturbation amplitude and the area covered by

the post-perturbation center of pressure (Figures 6.9-6.12). In particular, hatchlings

incubated in 24L attenuated the oscillations by the largest degree, as indicated by the rel-

atively small ratio of second to first peak magnitude. Furthermore, these chicks resisted

the initial perturbation to a greater extent as evidenced by the smallest ratio of center
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Figure 6.6: Mean speed distribution across the three incubation conditions. Unlike mean
distance, the distributions for each condition are more separated, indicating the positive
correlation between incubation duration and the magnitude of this metric, with 24D
chicks having the largest mean speed.

of pressure maximum excursion to perturbation amplitude. As in earlier trends, hatch-

lings incubated in 24D conditions exhibited the greatest excursion in the second peak

and the ratio of second peak to first peak amplitude. Regarding the metrics that did not

exhibit significant differences: the maximum excursion value was reached at approxi-

mately the same time and the perturbation oscillations occurred at similar frequencies

across hatchlings in all groups.

We then investigated the effect of perturbation direction by restricting the compari-

son across incubation conditions to lateral perturbations (45, 90 and 135�) and found the

same significant differences as above. However, comparing anterior-posterior perturba-

tions (0 or 180�) across light conditions, we found that the second peak excursion was
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Figure 6.7: Sway area distribution across the three incubation conditions. As before, a
positive correlation between incubation duration and this metric can be seen, with 24D
chicks covering the largest COP area during quiet stance.

no longer significantly different across conditions. Besides perturbation direction, we

also investigated the effect of perturbation amplitude, separating the data into responses

to perturbations of amplitudes smaller and larger than 7 mm, and find that the above

reported differences between light conditions do not change when controlling for per-

turbation amplitude.

6.5 Discussion

The results of this study are contrary to our null hypothesis that by the time of their

hatching, domestic chicks (Gallus gallus) have reached a specific level of maturation

that makes them equally competent at motor skills, regardless of light exposure and
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Figure 6.8: Representative example of center of pressure dynamics during the second
before (top plot) and the second after the perturbation (middle plot), as well as the indi-
vidual COP coordinates plotted against time (bottom plot, upper graph: y-coordinate,
lower graph: x-coordinate). In the middle plot, the red arrow shows the direction of
the perturbation, while the green plot shows the orientation of the chick. The example
shown is from a 12L condition chick, experiencing a perturbation of amplitude 16 mm.

incubation duration. While an earlier study [Sindhurakar and Bradley, 2010] found no
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Figure 6.9: 2nd peak magnitude distribution. The values from 24L condition are most
concentrated on the left.

significant differences in common gait parameters across 12L, 24D and 24L incuba-

tion light conditions, we show here that during quiet stance, light does have a signif-

icant impact on motor behavior, as measured by several common and novel metrics

computed from posturographic data [Prieto et al., 1993, Gottschall et al., 2009]. Fur-

thermore, since the quiet stance results by themselves do not allow an interpretation

with regards to maturational progress, we applied force platform perturbations, using

a robot. While the analysis of the perturbation response data again showed significant

differences across the three conditions, they indicate, in addition, that 24L chicks return

to stable stance most rapidly. This in turn suggests that under increased light exposure,

the in-ovo-maturation process is improved and possibly accelerated. In the following,

we will discuss and interpret the results from the two parts of the study in greater detail.

In the quiet stance experiments, chicks from the 24D condition exhibited the

largest mean speed and distance from COP centroid and covered the largest sway
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Figure 6.10: 2nd peak to 1st peak ratio distribution. The values from 24L condition are
most concentrated on the left, indicating the most rapid attenuation by these chicks.

area. Traditionally, a large sway area is associated with the COP profile seen in

patients suffering from neurological disorders such as paresis or Parkinson’s dis-

ease [Baszczyk et al., 2007]. This would at first glance suggest that 24D chicks are

the least progressed in their maturation, despite having had the longest incubation and

thus having had the most time to develop. However, the association of large sway

area and maturational deficit needs to be supported by more direct evidence. On

the one hand, aging and neurological disorders lead to a greater lack of stability, as

indicated by an increased fall-rate in the relevant populations [Overstall et al., 1977,

Baszczyk et al., 2007]. Conversely, a larger sway area can also be indicative of supe-

rior control [Cabrera and Milton, 2004], if the objective is to minimize expenditure of

computational resources - the controller would intervene only when stance reaches a

critical point.
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Figure 6.11: 2nd peak magnitude to perturbation magnitude ratio distribution. The
values from 24L condition are most concentrated on the left, indicating that these chicks
respond most effectively.

Therefore, based on the assumption that rapid attenuation of impulse-like perturba-

tions to quiet stance reflect stabilization competence and thus the progress in maturation

of motor competence, we analyzed the response to perturbations.

The lack of significant differences with regard to first peak time, peak time differ-

ence, maximum excursion and the ratio of maximum excursion to perturbation ampli-

tude, suggests that the immediate dynamics observed afer a perturbation is dominated by

the purely mechanical interplay between the perturbation and the anatomy of the chick.

Being morphologically equal [Sindhurakar and Bradley, 2010], chicks seem equally

(un)prepared for the perturbation and reach the first peak in a similar manner. How-

ever, the later response, reflected by the properties of the second peak, is affected by the

incubation condition, with 24L chicks apparently returning to a stable quiet stance most

rapidly, as evidenced by the smaller magnitude of the second peak, the smaller ratio of
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Figure 6.12: Post-perturbation sway area distribution. Chicks from 24L condition
occupy the smallest area after a perturbation.

second peak to first peak and the smaller ratio of second peak to perturbation amplitude

in this condition.

We conclude that by the time of hatching, chicks are not equally competent at motor

skills, Instead, we assume that other developmental milestones override neurodevelop-

ment in determining the time of hatching, thus causing chicks incubated under different

light conditions to hatch at different stages of acquiring kinetic skills. Surprisingly,

chicks that have spent the longest amount of time in ovo, 24D, appear to be the least

progressed maturationally, suggesting that neuromuscular development in 24L chicks

is accelerated by at least 2 days (or 10 %). We speculate that neuromuscular devel-

opment is affected directly by light, which probably stimulates neurotrophic factors or

encourages early in-ovo motor practice.
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Chapter 7

Summary and Conclusions

Having read this dissertation, I hope that the reader now understands the need for a hier-

archical and successively more general view of motor redundancy, going from one level

of redundancy to the next. Espousing this view aids both in the design of experiments

and the interpretation of observed dynamics: for instance, it makes obvious the need to

constrain the endpoint force vectors in isometric tasks to study redundancy solely at the

muscle level. While this will not prevent dynamics at all more special levels of redun-

dancy, such as motor unit redundancy, it does prevent the ”leveraging” of more general

redundancy levels. It can be argued that for instance, in [Danna-Dos Santos et al., 2010]

not sufficient care was taken to minimize wrench dynamics in a fatiguing submaximal

isometric tripod grasp. Specifically, no feedback on the tangential components of force

was provided to subjects and tangential force dynamics were not analyzed, other than

quantifying their mean. The authors concluded, based on fine-wire EMG measurements

in 12 muscles that the nervous system employs a constant activation proportions strat-

egy (see Chapter 2) of multi-muscle control. However, we found in Chapter 2 that fol-

lowing such a strategy leads to violations of the minimum tangential force constraint -

in [Danna-Dos Santos et al., 2010], only a verbal encouragement was given to minimize

that component. Thus, in order to enforce a synergy on the muscle level, constraints at

the wrench level are by necessity violated. In conclusion, a proper design of this exper-

iment would include feedback on the tangential component of force while a correct

interpretation of the observed EMG dynamics needs to include a precise quantification

of changes in tangential force.
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The aforementioned term ”leveraging of redundancy” implies that the nervous sys-

tem takes advantage of redundancy at all levels, for instance, to mitigate effects of mus-

cle fatigue (studied in Chapter 2 and 3) or the adaptation of tactile sensors in the skin

(see below). We found here that for submaximal tasks, the nervous system not only

improves its performance - in terms of endurance time - by allowing dynamics in both

muscle activation and force spaces (not proportional to each other), but it is actually

required to produce such dynamics for it to succeed at the motor task. Suppressing these

dynamics, on the other hand, when muscle synergies are enforced, leads to immediate

task failure.

We need to distinguish between necessary and optional motor redundancy

dynamics. The results from the studies by Kouzaki et al. [Kouzaki et al., 2002,

Kouzaki et al., 2004, Kouzaki and Shinohara, 2006] - entirely at the muscle activation

level, because we cannot measure individual muscle forces - indicate that in sumax-

imal tasks, the nervous system goes further than just the necessary dynamics, which

can be masked by the limited surface EMG resolution, in that it completely deacti-

vates rectus femoris and the vasti in alternation, to allow for their recovery of force

production ability. These optional muscle activation dynamics are very encouraging

with respect to the development of medical devices that either compensate for muscle

weakness or dysfunction or enhance force production in healthy humans. In a recent

paper [Decker et al., 2010], it was shown that taking over the CNS’ job and actively

stimulating electrically, in an alternating fashion, rectus femoris and two of the vasti, in

subjects with debilitating spinal cord injury significantly improved their endurance in a

cycling task, compared to a protocol, where the same muscles were stimulated simulta-

neously. This result indicates that even the very short periods of 100 ms of deactivation

allowed for muscle recovery, sufficient for task performance improvement.
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Opportunities for fatigue mitigation exist at the level of wrench redundancy as

well, although experimental results are currently lacking. For the task of static tripod

grasp, some initial simulations suggest a benefit of varying fingertip vectors, as com-

pared to a strategy whereby these vectors are kept constant. However, the experimen-

tally observed dynamics (Chapter 4) of applied forces are very different: they exhibit

a drift and jump behavior, whereby longer periods of slow changes (drifts) alternate

with shorter periods of large changes (jumps) within the two-dimensional manifold of

mechanically task-irrelevant normal force dynamics. These drift and jump dynamics are

reminiscent of microsaccade dynamics, observed in another highly redundant system:

vision. One suggested purpose of microsaccades is that they represent a mechanism

to prevent perceptual fading, a consequence of the depletion of chemicals in photore-

ceptors [Skavenski et al., 1979, Rolfs, 2009]: during a ”jump” event, i.e. the actual

microsaccade, the sensory system switches from using one subset of photoreceptors,

possibly depleted during the ”drift” phase, to another subset, which is undepleted, thus

allowing the previous subset to recover. Two hypotheses that emerge from this interpre-

tation for motor systems that exhibits redundancy at the wrench level are: 1.) the drift

and jump dynamics of fingertip forces serve to mitigate or prevent adaptation of tactile

receptors in the fingertips by increasing and decreasing the force at each fingertip and

2.) these dynamics reflect the targeted dynamic activation of the 21 muscles actuating

thumb, index and middle fingers, to mitigate fatigue and even allow recovery of some

muscles. These fascinating hypotheses deserve further experimental work.

Lastly, potential benefits of redundancy have been investigated at the posture and

kinematic levels as well. Most experimental studies have indeed reported kinematic

changes in repeated performances of the task, such as increased coupling between

arm segments or increased kinematic variability, due to repetitive movement-induced

fatigue [Cote et al., 2002, Gates and Dingwell, 2008, Fuller et al., 2009]. Such fatigue
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was found to be non-detrimental to task performance. Since these changes occurred long

before exhaustion, it can be argued that the changes reflect a fatigue-mitigating strategy.

Mathematically, the increased coupling reflects a fatigue-induced collapse of the pos-

ture solution space. Furthermore, there exist a number of modeling studies, mostly from

the ergonomics research community [Ma et al., 2011], which deal with the prediction of

optimal posture in a static motor task, minimizing muscle fatigue dynamically. Using a

biomechanical model of the arm, with very simple dynamics of fatigue and recovery, the

authors can predict fatigue and discomfort for all admissible postures and muscle activa-

tion patterns in a one-handed drilling task, and compute an optimal posture or work-rest

schedule, respectively.

I conclude that there remain great opportunities for the study of beneficial dynam-

ics at each level of motor redundancy, both in terms of modeling and experimentation.

Besides, a reinterpretation of motor variability observed in previously conducted exper-

iments, in the light of the motor redundancy hierarchy promoted here, might lead to new

insights into the benefits of redundancy and the true reasons for observed failures.
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