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Abstract

In systems and computational biology, much effort is devoted to functional identification of systems and networks at the
molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of
human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This
network is critical to the versatility of the human hand, and its function has been debated since at least the 16th century.
Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse
interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a
population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends
on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional
discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one
anatomical tendon network harvested from a cadaver’s middle finger. We find that functionally similar but structurally
diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks,
models with low training set error [,4%] and resembling the known network have the smallest cross-validation errors
[,5%]. The low training set [,4%] and cross validation [,7.2%] errors for models for the cadaveric specimen demonstrate
what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This
work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of
biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or
assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary
history and the development of versatile machines.
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Introduction

Much attention is given to functional networks (e.g., scale-free,

small world and others) resulting from the complex interactions

between their constituents [e.g., 1–5]. For example, the mecha-

nisms of module assembly in biological molecular networks [6–8]

(with underlying motifs [9]) exhibit coordinated, complex func-

tionalities; interconnectivity among unreliable elements yields

reliable dynamic performance [10–12]. Similarly, the study of a

complex biological system as a whole can be emphasized to

understand how system properties emerge from the interaction of

multiple components [13–15].

Tendon networks at anatomical scales are intricate and poorly

understood componentsof the neuromuscular control of the hand.

Understanding their functional characteristics is critical to gaining

insight into the brain-body co-evolution that has facilitated

dexterous manipulation in modern humans, as well as improving

clinical rehabilitation strategies in orthopedic and neurological

conditions. The complexity of tendon networks of the fingers is

legendary, and thus the so-called Winslow’s rhombus is a generic

topological approximation that has been widely adopted since the

18th Century as proposed by the famous Danish-born anatomist

J.B. Winslow in 1732 [16]—especially as the descriptions

popularized by Zancolli [17] and Garcia-Elias et al [18]. It is

known that minor variations in its structure can exist across

humans [e.g., 19], and most work has focused on anatomical/

structural descriptions via dissection or imaging and material

properties [e.g., 20–27], or simplified computational models [e.g.,

28,29]. Importantly, critical structural features, e.g., tendon

multiplicity and interconnections are known to remain un-
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detected with imaging modalities, for example, Ultrasonography

(US) or Magnetic Resonance (MR) [30]. As an alternative to

structural descriptions, we have proposed functional descriptions

of such systems that underscore their sensitivity to topological

details [31]. The purpose of this work is to demonstrate that it is

possible to use sparse experimentation to, in practice, extract

topologies that capture the dominant functional features of these

poorly understood structures, which allows us to begin to

understand in detail the anatomical and neural co-adaptations

that enable dexterous manipulation in modern humans.

This work is enabled and motivated by our earlier work in [32],

where we inferred the topology of tendinous networks in

simulation. That work showed not only that network topology

matters functionally, but that it was—in principle—possible to

infer experimentally the structure of arbitrary networks using the

most informative force data. Now, we take the critical enabling

experimental step of demonstrating the validity and utility of this

approach when applied to actual physical anatomical systems,

with the imperfections, nonlinearities and actuation/measurement

noise that this implies. We do so by testing networks of ‘‘known’’

topology made of strings of synthetic Latex, as well as biological

(i.e., cadaveric) tendinous networks of unknown topology. As

mentioned above, these biological specimens are complex sheets of

collagen fibers, which for centuries have been approximated as

networks of strings [16], but for which there is no functionally

validated string-based approximation.

Methods

We describe (i) the development and implementation of the

estimation-exploration algorithm for arbitrary networks of strings,

and (ii) its application to the experimental inference of two known

networks made of synthetic Latex, and one extensor mechanism

network excised from the middle finger of a cadaveric human

hand.

The key concept in the estimation-exploration inference process

([33]) is to infer a functional model of the physical network in an

informative way that minimizes testing time and potential

damageto the tissue—both critical when testing perishable or

fragile biological specimens and systems. This three-stage process

begins with the collection of a few random input-output force data

sets (i.e., loadsets) from the network to seed the database of load

sets (Stage I, Fig. 1a). Stage II is a modeling process to synthesize

a population of candidate functional models that best replicate the

first random and then the informative data acquired in Stage I.

The fitness of each model is calculated by performing forward

simulations to predict how well the model can replicate the

available load sets in the database (Fig. 1b). Stage III is a

complementary modeling process to synthesize a population of

candidate force inputs to apply to the experimental system next

(i.e., to generate the most informative future load sets, Fig. 1c). The

fitness of each input is given by the disagreement (i.e., variance) it

produces in output responses of the models synthesized in Stage
II(i.e., an input that produces similar outputs across all models is

the least informative test to perform). In Stage Iagain, the

predicted, most-informative input is applied to the network system

(Fig. 1a). This adds a new, presumablymost informative, load set to

the database whose subsequent impact on the fitness of previously

evolved models leads to the synthesis of a new population of

models that is on average more compatible with the available

experimental data. This inference method is in essence a predator-

prey co-evolutionary process between models and the most

informative tests that promotes both accurate functional models

and efficient experimental testing thatcontinues until the termina-

tion criteria are met.

We first describe the modeling processes for Stages II and III,

which are identical for the synthetic Latex and cadaveric networks

because they are both modeled as networks of elastic strings.

Details of how we measureand apply input/output data to

generate load sets in Stage I forboth experimental systems are

described thereafter. We assume that the mechanical function of

the target network system is well approximated by a model of

discrete, interconnected/sliding strings. We further assume that all

the input and output nodes are accessible for otherwise hidden

networks, as is the case for the synthetic and anatomical networks

tested. The state of a hidden network is described by a set of

actuating forces at the input nodes, those resulting at the grounded

output nodes, and the distances between the input and output

nodes after the network attains equilibrium. Input and resultant

forces comprise the load set while the inter-nodal distances

comprise the deformation data. Both force and deformation data

are used to evolve the models to best explain a network since

ignoring either information may result in more number of

experiments (in Stage I), see supporting information S1.

Stage II: Simultaneous topological and parametric
evolution of models in simulation

We evolve a population of models (both topology and their

parametric attributes) bottom-up from a primordial mesh of strings

(Fig. 2a). The strings are arranged such that some are joined at the

nodes (shown as filled circles in Fig. 2a), while the rest overlap and

slide past each other. This connectivity allows the models to evolve

into any topology (i.e., number of strings and intermodal

connectivity) that a hidden network system may have. The length

and cross sectional area of each string are used as free parameters

to evolve the model topology and parameter values simultaneous-

ly. String length is a topological as well as a parametric variable: a

string can be considered absent from the model if it evolves to a

length for which it remains slack for all loading conditions; or

present if taut for some or all load setswhere its length influences

force transmission and inter-nodal distances. Cross sectional area

is a parametric variable that defines the load-bearing and

Author Summary

In science and medicine alike, one of the critical steps to
understand the working of organisms is to identify how a
given individual is similar or different from others. Only
then can the specific features of an individual be
distinguished from the general properties of that species.
However, doing enough input-output experiments on a
given organism to obtain a reliable description of its
function (i.e., a model) can often harm the organism, or
require too much time when testing perishable tissues or
human subjects. We have met this challenge by demon-
strating that our novel algorithm can accelerate the
extraction of accurate functional models in complex
tissues by continually tailoring each successive experiment
to be more informative. We apply this new method to the
problem of describing how the tendons of the fingers
interact, which has puzzled scientists and clinicians since
the time of Da Vinci. This new computational-experimental
method now enables fresh research directions in biological
and medical research by allowing the experimental
extraction of accurate functional models with minimal
damage to the organism. For example, it will allow a better
understanding of similarities and differences among
related species, and the development of personalized
medical treatment.

Functional Inference of Tendinous Networks
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deformation characteristics of a string for given stress-strain

relationship (linear or nonlinear). For synthetic networks in this

work, we used the linear stress-strain relations for Latex rubber

(part SLR-040-E, 1 mm thickness, 380 mm6305 mm, Small Parts

Inc.), while for the tendinous extensor mechanism we employed

nonlinear tendon properties as reported in [34]. The total number

of nodes is maintained constant, but their location is allowed to

vary in response to loading—except for the two grounded nodes

(shown as filled squares in Fig. 2a) where reaction output forces are

measured.

Stage II assumes access to the most informative database of load

sets, and consists of four parts, (i) population of models, (ii) model

analyses, (iii) theirfitness evaluation, and (iv) evolution.

(i) Population of models. We evolve eight models for each

synthetic network and five models for the finger extensor

mechanism. The models are evolved independent of each

other (i.e., no information exchange is permitted among

them). While large populations of models are desirable, the

computational cost increases with every model introduced.

As a proof of concept, we were able to evolve small

populations of eight and five models respectively within

24 hours using the available computational resources. As

mentioned before, each model stems from a primordial

mesh of strings (Fig. 2a). The length and cross-section of

each string in a model are optimized (see below) to explain

all available load sets in the database. In each model, the

three movable input nodes and the two grounded output

nodes are pre-specified in the primordial mesh (Fig. 2a). We

ensure that the distances between the grounded nodes in the

target network and those in the models are identical. Initial

distances among the input nodes can however be different

from those in the target networks. This is because we assume

that all strings are slack before the model is actuated.

(ii) Model analysis. To estimate how well a model explains

the experimental data, wesimulated the deformation and

force transmission for a given set of input forces. Given the

material properties of the Latex and tendinous tissue we

used, the strings undergo large displacements but small

strains. To solve for displacements and force transmission,

we used efficient, quadratically convergent, geometrically

and/ormaterially nonlinear finite element analysis [35,36].

Taut strings in a model behave as truss finite elements while

slack ones do not contribute to tension propagation and are

ignored in the force and stiffness calculations. A model string

of resting-length lo and cross section area A is shown in

tension in Fig. 2b. The initial coordinates of the end nodes i

and j are (xi, yi) and (xj, yj) and the nodal displacements along

the horizontal and vertical directions respectively are (u1, u2)

and (u3, u4) as shown. The new string length is

l~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xjzu3{xi{u1

� �2
z yjzu4{yi{u2

� �2
q

For the Latex networks, the stress s, and the strainM are

related as s = EM where E, the elastic modulus isassumed

constant (1.62 MPa) over a large deformation range. This

value is verified experimentally for Latex string members

subjected to small strains. The stress vs. strain properties for

the human tendinous tissue from [34] are stated below.

Figure 1. Concept depiction – the structural constitution of the hidden complex tendinous networks (e.g., inset in a) can be inferred
via the most informative force-motion data. Steps (a)–(c) are performed cyclically until a termination criterion is met after which the best model
(d) is chosen. (c) represents the evolved models from step (b) being actuated by a random set of input forces (or tests) shown using arrows. The
length of each arrow represents the magnitude of the force applied. The actuation directions may or may not be held fixed (here, shown fixed). The
actuation force set that generates the maximum discrepancy in the force-motion response between the evolved models is chosen to perform the
experiment in (a).
doi:10.1371/journal.pcbi.1002751.g001
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for[~
(l{lo)

lo
ƒ2%

s~
16

e0:874{1
e0:874[=0:02{1
� �

MPa

for [~
(l{lo)

lo
w2%

s~16z1200([{0:02)MPa

For synthetic Latex, internal axial forces Fi and Fjat the two

nodes iand j are computed as {EA[andEA[. For the

tendinous tissue, they are{sAand sA. In case l,lo, since

the string collapses in compression, both Fi and Fj are zero.

For a taut string, the force (f) and displacement (u) vectors

are

f~

f1

f2

f3

f4

2
6664

3
7775~

Fi cosh

Fi sinh

Fj cosh

Fj sin h

2
6664

3
7775, u~

u1

u2

u3

u4

2
6664

3
7775

The local internal forces in f are assembled within F, the

global internal force vector as in the conventional finite

element assembly [35–36]. Input forces (i.e., the most

informative tests) actuating the network are recorded

through the external force vector Fe. We employ Newton-

Raphson iterations to solve for the equilibrium equations.

The force residual, g(U) = F2Fe, is expanded through its

first order Taylor’s approximation.

g UzDUð Þ~g Uð Þz Lg Uð Þ
LU

DU

The change in displacementsDU is determined iteratively

such that the residual is nullified. That is

g Uð Þz Lg Uð Þ
LU

DU~0 or DU~{
Lg Uð Þ
LU

� �{1

g Uð Þ

The iterations commence with U = 0 and the displacements

are updated as U = U+DU. The residual g(U) is computed in

each step and iterations are performed until g(U) (or DU) are

acceptably close to 0. The term K =
Lg Uð Þ
LU

~
LF Uð Þ

LU
, used

to compute DU in the equation above, is the tangent stiffness

matrix that is assembled using local or elemental stiffness

matrices k obtained ask~
Lf

Lu
.

(iii) Fitness evaluation. For each model and load set, we

compare the simulated reaction forces and inter-nodal

distances against those measured experimentally. These

errors describe how well a model explains the force and

Figure 2. Models are evolved from the primordial mesh of strings in (a). Length of each string behaves as a topological and parametric
design variable. For the informative equilibrium configurations that the mesh observes, if some strings remain slack, they are eliminated from the
topology. Only taut strings in some or all configurations get retained. Length and cross sections of strings are evolved as design variables. (b) Each
taut string in the parent mesh is modeled as a large deformation truss finite element. Slack strings do not support the external loads. Analysis
performed is geometrically (for synthetic targets) and materially (for the finger extensor mechanism) nonlinear and equilibrium is achieved through
efficient, quadratically convergent Newton-Raphson iterations.
doi:10.1371/journal.pcbi.1002751.g002
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deformation of a statically loaded network system for a given

set of the most informative tests. We calculate this error as

follows. Let �RRkj be the jth reaction force measured

experimentally from the network for the kthmost informative

test, andRkjbe the corresponding reaction force from a

model. For NRnumber of output forces in a data set and for

NDS such data sets, the overall functional discrepancy (in

percent error), objR, in the reaction force response is

objR~
100

NDS

XNDS

k~1

PNR

j~1

DRkj{�RRkj D

PNR

j~1

D�RRkj D

2
66664

3
77775

Likewise, for the network, let �ddkj be the jth distance between

the input and output nodes and dkj be the corresponding

distance for a model in the kth data set. For NDdistances in a

data set, the overall discrepancy in the deformation

response, objD, is

objD~
100

NDS

XNDS

k~1

PND

j~1

Ddkj{�ddkj D

PND

j~1

�ddkj

2
66664

3
77775

The error is computed as the arithmetic mean of the two,

that is

error~
1

2
(objRzobjD)

The state-of-the-art method to evaluate fitness in machine

learning is to compute and compare two versions of this

error: the training set (e_training) and cross-validation (e_cross)

errors [e.g., 33]. The models are evolved in Stage II through

the hill climber approach [33] by minimizing e_training = er-

ror. Synthesis of models is terminated when the training set

error declines below a preset threshold value (models with

the training set errorslower than 0.5% are regarded to

explain the target system accurately), or when a steady error

value is sustained for a number of evolutionary steps. Before

proceeding to Stage III, each model is cross-validated to

predict how well it emulates the target network using data

sets different from those most informative ones used to

evolve the model topologies. This fitness criterion helps to

prevent over-fitting in the training set. To cross validate

each model after its evolution, the following, less conserva-

tive measure, e_cross is used.

e cross~
100

2
( max

NDS

PNR

j~1

DRkj{�RRkj D

PNR

j~1

D�RRkj D

2
66664

3
77775z max

NDS

PND

j~1

Ddkj{�ddkj D

PND

j~1

�ddkj

2
66664

3
77775)

Via this error, we quantify the maximal possible functional

disagreement between a model and the target network. We

avoid using a similar metric for the e_training error since the

corresponding design space is significantly non-smooth. The

minimization algorithm will have difficulties in negotiating

the jumps and therefore will take a significantly longer time

to converge. On the other hand, the average based estimates

are lower in magnitude and using those for cross validation

will give a flawed impression about the match between the

model and the corresponding network. In Stage III, to

generate a new most informative test, we seek to maximize

error to determine the actuation forces that cause maximal

discrepancy among the models evolved in Stage II. Once

such a new most informative test is found in simulation, the

experiment is performed with it and a new most informative

input-output force-deformation data set is added to the

database with the intention of differentiating better models

(those that agree with the new data set) from the worse ones

(those that disagree with the new data set) to further evolve

the population of models (see below). The inference process

is discontinued when the maximal, preset number of the

most informative data sets to which the models can be

exposed, is reached.

N Although comparing the topologies of the evolved models with

the known target network is a secondary (structural) fitness

criterion, this is only possible with the synthetic Latex

networks.

(iv) Model evolution. We employ model fitness to guide the

evolution of the population of models. We use a stochastic hill

climber search to evolve the entire population of models [33].

The length and cross section of each string (Fig. 2a) are the

free parameters that are varied to minimize the training set

error, e_training(in iii). Stochastic changes in these free

parametersare systematically performed as follows: for c as

a free parameter (string length or cross section), cnew = c6(-

new = c6(cU2cL)exp(R1+r R2) represents its altered or mutated

value about c (6 signifies that cnew can be larger or smaller

than c) where r is a uniformly distributed real number M [0,

1], cLand cU are the specified lower and upper bounds on c,

and R1 and R2 are chosen such to encourage both small and

large changes. For all the experiments performed, R1 = 28

and R2 = 9 are used for which, changes in c, if they occur, are

permitted within 3.3561024(cU2cL) and 2.72(cU2cL). If

cnew,cL, cnew is set to cL. Otherwise, if cnew exceeds cU, cnew is

set to cU. Changes in free parameters are performed as

follows. If a uniformly distributed random number p

represents the probability for change and if p,prate (e.g.,

8%), the value of the free parameter is altered. A small prate

(typically less than 15%) is chosen to prevent the hill climber

algorithm from degenerating into a random search. A new

model is created by altering only some free parameter values

c of the prior model to cnew. The new model is analyzed (see

model analysis, stage II) and if it has a lower training set

error, e_training, the new model then replaces the current

model. Else, the current model is retained. To limit the

computational cost and yet allow sufficient iterations/time

for the models to evolve after a new most informative test is

introduced, the search is continued until any one of the

following termination conditions is met: (a) The training set

error for a model is less than the chosen threshold (0.5%).

Further evolution of this model is ceased but other models in

the population are continued to evolve. (b) Before the model

evolution commences in Stage II, Fig. 1, a counter GL that

tracks favorable changes is set to 0. A favorable change is one

that lowers the training set error of any model in the

population. Another counter G (initially set to 0) used is such

that it is incremented by 1 if none of the models improve in

Functional Inference of Tendinous Networks
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the training set error in an iteration of Stage II, Fig. 1. For

any model, if the training set error is lowered, G is set to zero

and GL is incremented by 1. When G.2GL, model evolution

is stopped. It may happen that a small value of GL will lead to

premature convergence to avoid which, the minimum

permitted value for G used is 5000. (c) To permit model

evolution in finite time for a newly introduced most

informative test, a hard limit on the number of iterations in

Stage I, Fig. 1 is set to 100,000. This limit is used for both

Latex and anatomical target systems.

A few additional evolutionary strategies are also used so that the

models can evolve better and faster. In the first, very small changes

(,1%) in the free parameters are performed but with a higher rate

(5prate). In the second, major changes (.20%) are accomplished

with a smaller rate (0.2prate). Lastly, the worst model in the

population is crossed over with a random one if the former does

not exhibit improvement over a number of iterations.

After the free parameters of a chosen number of models are

evolved using the informative input-output data (Stage II, Fig. 1),

only those strings that become taut for at least one set of simulated

tests constitute the model topology. Those that remain slack for all

simulated tests do not participate in the connectivity. However,

they are retained in each model as they may get taut at a later

stage in the inference algorithm.

Stage III: Evolution of the most informative tests
Once the population of models has evolved to explain the

previous informative datasetsas per the termination criteria (Stage

II, Fig. 1), a new most informative test is generated inStage III,

Fig. 1. Whereas the fitness of the models was to explain available

data, the fitness of the tests is to make the models disagree in their

prediction. Tests that make the models disagree are likely to be

more informative because they uncover functional differences

across models.

Ideally, conducting the inference process in real time requires

the availability of a large parallel computing network to evolve the

models and the most informative actuation tests shortly after each

new load set is added to the database. Because this is not feasible

(see discussion) with manual application of loads and the need to

test perishable tissue, we did the next best thing: collected the

experimental data for the Latex and tendinous networks in

dedicated experimental sessions—and ran the algorithm off-line

using those data sets. Whenever the algorithm requests the next

most informative test (found as described below), we provide the

load set corresponding to the nearest neighbor (in the least squared

sense) to it from the available load sets.

In our experiments, the direction of each test (input force) is

fixed in the global frame, and we therefore only evolve their

magnitudes. These magnitudes Fnew are mutated in a similar

manner as the string free parameter cnew described above. If Fnew is

found to be less than FL ( = 0 N) or greater than FU ( = 5 N), the

lower and upper force bounds, Fnew is set to FL or FU respectively.

All models in Stage II, Fig. 1 are subject to these testsin simulation

and the incongruity in their force-deformation response is

quantified by an error e_test given by

e test~
1

2

100

NR

XNR

k~1

PNDS

j~1

DRkj{�RRkj D

PNDS

j~1

D�RRkj D

2
66664

3
77775z

100

ND

XND

k~1

PNDS

j~1

Ddkj{�ddkj D

PNDS

j~1

�ddkj

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

where NDS represents the number of evolved models in the

population, NR is the number of reaction forces Rkj, ND is the

number of distances dkj between the input and output nodes, �RRkj is

the mean of the reaction forces over the models and �ddkj is the

mean of the distances. Analteredtest replaces the previous test if

the corresponding e_test value is higher (a larger e_test implies

greater discrepancy suggesting that the test is more informative).

Otherwise, the previous testis retained. The termination criteria

for the evolution process for the most informative test (used in the

subsequent experiment) are similar to those used in model

evolution (Stage II, Fig. 1).

Experimental generation of input-output load sets. As

mentioned above, conducting the inference process in real time

requires the availability of a large, parallel computing network to

evolve the models and the most informative actuation tests shortly

after each new load set is added to the database. Because this is not

feasible for this first study, we collected data for both Latex and

tendinous networks in dedicated experimental sessions—and ran

the algorithm off-line using those data sets. In all three

experiments (inference of two Latex and one tendinous networks),

we collected 72 input-output data sets in response to 72 different

combinations of tests in random order to prevent any bias due to

loading order (see details in Stage I below). These tests were

designed to be evenly distributed in the 3D input space: The input

nodes were tugged with combinations of four force levels of

1.25 N, 2.50 N, 3.75 N and 5.00 N and the resulting static force-

deformation responses were measured for a total of 64 load sets

(43 = 64). Additionally, we interspersed eight more load sets for

cross validation. Here, tensions of 1.9 N and 4.4 N (23 = 8

combinations) were employed to pull each input string.

All tests were chosen to amply deform the cadaveric network

and yet be conservative to not tear the collagenous cadaver tissue.

Further, by introducing the tests used for cross validation

uniformly between those used to generate the training set, we

ensured that the cross-validation load sets were distinct from any

training load set.

For all three networks, the experiments for data collection lasted

about 8 hours, which is well within the time frame for studies of

cadaveric tissue [37]. While it is known that the human finger

tendons can uphold large forces (,90 N) [38], a conservative

range for the actuation forces was chosen for this experiment

(#5 N) to prevent rupture of tissue or tethers, or interconnections

between them during repeated loading.

The collection of the 72 load sets allowed us to execute and

validate the inference algorithm off-line. Whenever the algorithm

requested the next most informative test, we provided the load set

corresponding to the nearest neighbor (in the least squared sense)

to it from the 64 training load sets. Within each cycle of the

estimation-exploration algorithm, after the models were evolved,

their cross-validation was performed with 8 additional load sets.

Stage I: Seeding the load set database
In Stage I, we first picked a single load set from the

experimental data at random to seed the database. This load set

formed the initial database used in Stage II (Fig. 1b).

Applying the predicted most informative tests (i.e., input
forces) to the experimental synthetic Latex networks and
cadaveric specimens

Experimental setup for the ‘AFH’ and ‘aWR’ synthetic

Latex networks. We inferred two arbitrary networks: one

resembling the three letters ‘AFH’ fused together (Fig. 3a), and the

other representing Winslow’s Rhombus or ‘aWR’ (Fig. 3b) from a

synthetic Latex sheet (part SLR-040-E, 1 mm thickness,

Functional Inference of Tendinous Networks

PLOS Computational Biology | www.ploscompbiol.org 6 November 2012 | Volume 8 | Issue 11 | e1002751



Figure 3. Inference of the synthetic target networks using the informative force-motion data generated from the inference process.
The grounded nodes are shown using squares and the actuation forces are depicted using the arrows. Each model is evolved until they see 20
informative experimental data sets. (a) The ‘AFH’ target. (b) adapted Winslow’s Rhombus or ‘aWR’ target. This is an adaptation of the Zancoli’s
representation [17] of the finger extensor mechanism (Fig. 4a). In the latter, the diagonal bands and lateral offshoots overlap while in this adaptation,
the corresponding strings are fused. The top two grounded ports (through which the reaction forces are measured) are not interconnected. (c) Best
eight models evolved through the informative data from the ‘AFH’ target. (d) Best eight models evolved through the informative data from the ‘aWR’
target. Strings colored yellow are slack in the shown equilibrium configuration. Those colored red are taut. Slack strings get taut for some other
informative load set that they see during their evolution. Models (iii) in (c) and (ii) in (d) with the least cross validation errors (Table I) resemble in
structural constitution with their respective targets.
doi:10.1371/journal.pcbi.1002751.g003
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380 mm6305 mm, Small Parts Inc.). Both networks were

designed in a CAD package to fit inside a 1006100 mm square

when unloaded, and cut with a computer-controlled laser cutter.

Each string had a rectangular cross-section with in-plane width of

4 mm and thickness of 1 mm. The input-output nodes were

shaped as perforated disks with a 5 mm diameter to prevent

tearing.

Both networks had five input-output nodes, each tied to a tether

attached via an alligator clip to a swiveling, grounded electronic

dynamometer with a 2 g resolution (Fig. 3 a–b, 4c). The designated

output nodes were simply grounded to dedicated dynamometers

that measured the reaction forces. In contrast, the lengths of the

tethers attached to the input nodes were adjusted manually to

stretch or relax the network and thereby apply a specific tension to

that node. The tethers were routed above the experimental bed via

pulleys with adjustable locations so that (i) the network issuspended

above the bed to improve the accuracy in the force readings by

removing friction and stiction; and (ii) the line of action of the tests

(input loads) can be adjusted. Once the loaded network attained

equilibrium, the inter-nodal distances between the three input and

two output nodes (6 values) were measured with a dial caliper to

an accuracy of 1 mm. The deformed configuration of the network

is uniquely specified by these distances.

When loading the ‘AFH’ and ‘aWR’ networks, the location of

the input nodes was allowed to change as the networks deformed,

but the lines of action were maintained constant. For the ‘AFH’

network, the directions for the tests were fixed along 2135u, 290u
and 245u, respectively from the horizontal at the left, center and

right bottom input nodes (see Fig. 3). For the ‘aWR’ network, these

directions were 2105u, 290u and 275u, respectively.

Experimental set up for the cadaveric extensor

mechanism. As in our prior cadaveric work (e.g., [37]), a

fresh-frozen cadaver hand was thawed overnight and an extensor

mechanism was excised from the middle finger by a practicing

hand surgeon (Dr. S.S. Roach, Fig. 4b). Because it is critical to

maintain the structural integrity of the tissue throughout the

experiment, all load sets were collected within 8 hours of the

surgical excision of the extensor mechanism. The tissue was

continually kept moist using a 0.9% saline solution to prevent

desiccation. Using techniques similar to those described in [37] we

used a hydrophilic surgical glue [VetBond, 3 M Inc.] to attach

rigid tethers (i.e., Nylon strings) to the insertion slips of the extensor

digitorum communis, second palmar and second dorsal interosseous muscles

(i.e., the three input nodes) and the two terminal slips of the

extensor mechanism (i.e., the proximal and distal slips, or two output

nodes). The cadaveric specimen was suspended over the exper-

imental bed (Fig. 4c) via pulleys to eliminate stiction and friction

and the input tethers were held at constant angles of 2115u (left),

290u (middle) and 275u (right) from the horizontal. It is assumed

that these are the approximate angles along which the three

actuating muscles are orientedon the dorsum of the hand, and that

the changes in these angles are negligible when the muscles

coordinate to result in the finger ad-abduction.

Results

Inference of functional networks with informative tests
Figures 3c/d show the best eight models inferred for the ‘AFH’

and ‘aWR’ target networks, respectively. These were obtained by

inferring a total of 24 models for each network (three runs, each

with population of eightmodels). Each run used at most 20

informative load sets. Table 1 shows the training set (e_training) and

cross-validation (e_cross) errors for each model. Model (iii) in Fig. 3c

has the smallest e_crossand close to the smallest e_training errors.

Visual inspection confirms its structural resemblance with the

‘AFH’ network (Fig. 3a). Model (ii) in Fig. 3d with the least cross-

validation error is also topologically similar to the ‘aWR’ network.

Models (iii), (vi) and (viii) that have e_training errors less than 3.6%

are also structurally comparable to the ‘aWR’ system. However,

the other four models are visually dissimilar though they are

functionally similar within the e_trainingerror of 3.7% and e_cross

error of 6.4% (Table 1). Also, for e_cross errors less than 6.1%,

models in Fig. 3c are all functionally similar to the ‘AFH’ network

though topologically dissimilar. We observe structural diversity

among functionally similar models for the ‘AFH’ network to within

61.0% of e_training errors and 61.3% of e_cross errors.

Likewise, models functionally similar to the ‘aWR’ network

differ in structure within e_training and e_cross errors of 60.8% and

61.1% respectively.

The number of functional evaluations required to infer the

‘AFH’ and ‘aWR’ networks is c. 0.7 vs. 0.5 million, respectively.

The CPU times for model evolution and generation of the most

informative tests on three different machines for the synthetic

targets are presented in Supporting Information, Tables S1 and S2

respectively.

Inference of functional networks with random tests
To confirm if evolving informative tests improves the inference

process, we performed an additional three baseline inference runs

for each target network using 20 random data sets. The e_training

and e_cross errors are compared (Fig. 5), with error bars showing

the standard error over three runs. The e_training errors with

random tests are comparable to, or better than, those found using

informative tests (left plots, Fig. 5). Importantly, however, the

e_cross errors using informative tests are significantly lower for both

target networks (right plots, Fig. 5).

Comparison of parametric vs. parametric and topological
inference

We also performed simple parametric fitting to infer the target

networks in Figs. 3 (a) and (b) using the all-in-all (see Supporting

Information, Figs. S2, c–d) topologies. When performing only

parametric vs. parametric and topological inference, the numbers

of free parameters used were different. In parametric fitting, only

six strings were used to connect the three input nodes to the two

output ones. The length and cross section of each string were

evolved as in the topological inference which allowed us to use the

model evolution algorithm described before. In parametric fitting,

all the six strings participated by becoming taut and hence the all-

in-all topology did not change.

In all cases, inferring the topology of the target network yields

significantly better results (Fig. 5, green lines) than only inferring

parametric values using respective all-in-alltopologies. The stated

primary aim of this study is to infer the structure of hidden

tendinous systems. This is important both from the evolutionary

perspective where it is the actual topology that changes, and also to

plan the rehabilitation and surgical repair/replacement in cases of

minor/major injuries. A 3-input, 2-output system for instance the

synthetic networks herein can be learnt through say, a neural

network. However, such learning processes provide only a

mathematical relation but lack the physical structure and insight

into the complex biological systems. Thus, in our work we

emphasize the need for structural models. By allowing the tendon

topology to vary and comparing the data fitting results with those

obtained for a presumed, primitive (all-in-all) structure, we

demonstrate that performing parametric-only fitting with precon-

ceived topologies resulting from, say, a scientist’s ingenuity and
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insight may not necessarily lower the fitting errors. Topological

inference is essential in addition to parametric-only fitting.

Inference of a cadaver tendinous network
Figure 4 (e) shows the ten best models from the 25 total inferred

over five runs, with a population of five models per run. The

e_training errors are below 7.9% and e_cross errors are below 7.2%

(Table 2), which are comparable with those for the Latex

networks. The mean e_cross error (Fig. 6 (b), solid line) converges

after the models comply with the experimental information from

16 informative tests. There is no further alteration in their

structures with additional informative tests. All ten models differ in

topology from each other even though they are functionally

similarin that they exhibit comparable e_training and e_cross errors

within the limits aforementioned. Models (i), (iv), (viii) and (ix)

closely resemble the Winslow’s rhombus (Fig. 4 (a)), which is

Figure 4. Structural inference of the finger extensor mechanism extracted from the middle finger of a human cadaver hand. (a) The
interpretation by Zancoli [17] and Garcia-Elias [18] as Winslow’s Rhombus is widely accepted. A characteristic of this structure is the overlap between
the lateral offshoot and the diagonal band on both symmetric sides. (b) The extensor tissue was carefully extracted during the day of the experiment.
(c) the tissue mounted over the experimental bed for force-motion data extraction (d) magnified view of the extensor tissue (e) ten best inferred
networks that are all functionally equivalent within the training set and cross validation errors of 7.9% and 7.2% respectively (Table 2). The models are
structurally diverse. Strings colored yellow are not taut in the equilibrium configuration shown. Those colored red are taut. Slack strings do become
taut when some other test, used to infer the model network, is employed. Models (i), (iv), (viii) and (ix) in (e) structurally resemble with the Winslow’s
rhombus in (a) with notable deviations besides the presence of additional strings. In model (i), all modules according to the classical description in (a)
are captured except for the left lateral offshoot which is shorter in length. In (iv), a string connects the middle and terminal slips. In (viii), the central
band is replaced by a diamond. In model (ix), the left lateral offshoot does not overlap with the left diagonal band but instead, is fused with it.
doi:10.1371/journal.pcbi.1002751.g004
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consistent with the findings in [17] that ignores the transverse

bands. The cross-validation errors for models (i) and (iv) in Fig. 4

(e) are the lowest, with model (i) being marginally higher even

though its training set error is significantly lower.

Therefore, we chose models (i) and (iv) from Fig. 4 to further

investigate the functional contribution of each member string. We

eliminate one string at a time from each network and re-evaluate

the e_cross errors. For model (i), that is shown in panel (a) in Fig. 7,

the comparison of e_cross (Fig. 7 (b)) reveals that the intact model

invariably yields the lowest e_cross error, demonstrating that all

member strings in its topology are functionally relevant. In

contrast, e_cross errors are lower (strings 22 and 24 removed) or the

same (strings 7 and 10 removed) when several member strings are

removed from model (iv) (shown in panel (d) in Fig. 7). The e_cross

error decreases when member strings 22 and 24, which are in

series and connect the grounded nodes, are removed. Such a

connection does not exist in model (i) or the target network Fig. 4c/

d, which suggests they are not necessary and in fact only serve to

bias the loading on the grounded nodes and thus pollute the

reaction forces. In contrast, the e_cross error remains unchanged

when member strings that form the right lateral offshoot (member

strings 7 and 10 connected in series) are removed. Further visual

inspection of model (iv) indicates that these member strings barely

get taut when the model is actuated with the informative tests used

during its inference. This suggests that member strings 7 and 10

are not functionally necessary, but do not negatively affect the

fitness of the network for the loading tested.

Lastly, similar to the Latex networks (Fig. 5), we report a control

case (Fig. 6) with the cadaver network inference where we find that

informative tests are better than random tests for both topological

and parametric inference. The mean e_training errors are

comparable in the three cases (Fig. 6 (a)), especially after the

16th data set is introduced. However, the trend in Fig. 6 (b)

confirms that the use of informative tests lowers the e_cross errors

when both topological and parametric inference is performed.

Importantly, we also observe that simple parametric inference with

informative tests is better than the case of topological and

parametric inference with random tests.

Discussion

We demonstrate, to the best of our knowledge, the first

functional inference of a complex anatomical structure using

sparse experimentation. Without reverting to exploratory dissec-

tion (which is disruptive) or structural imaging (which is expensive

and not necessarily informative of mechanical interactions under

loading), we infer functional structure of a biological tendinous

network by co-evolving the models with informative tests. We

began by validating and calibrating our novel methodology using

two synthetic Latex target networks, and then applied our method

to the real-world problem of inference of the functional structure

of the tendinous extensor mechanism tissue excised from a cadaver

hand. Notwithstanding (i) the specific optimization procedure (we

used a stochastic hill climber search, which are hotly debated by its

supporters and retractors, but any other optimization that is

suitable to the problem at hand can be used), or (ii) our current

inability to run the estimation-exploration algorithm real time (we

collected the experimental data for the Latex and tendinous

networks in dedicated experimental sessions—and ran the

algorithm off-line using those data sets), our results clearly

illuminate and demonstrate several important features and con-

cepts about this approach. These include (i) the powerful utility of

a novel, general purpose predator-prey estimation-exploration

algorithm for topologic and parametric inference of physical

systems, and (ii) the particular functional characteristic of our test

system: the extensor mechanism of the fingers whose structure and

function have been debated since at least the 16th century.

In this first application of the predator-prey estimation-

exploration algorithm [33] for topologic and parametric inference

toactual biological (cadaveric) physical systems, we demonstrate

Table 1. Training set and cross validation errors of various models inferred through the informative data obtained from synthetic
‘AFH’ and ‘aWR’ targets (Fig. 3).

Synthetic Target Model Number Training set error (%) Cross validation error (%)

Models inferred from the ‘AFH’ target (Fig. 2c) (i) 2.9 4.2

(ii) 3.3 5.0

(iii) 2.8 3.6

(iv) 2.8 4.7

(v) 2.8 4.5

(vi) 3.0 5.7

(vii) 4.0 5.2

(viii) 2.6 6.1

Models inferred from the ‘aWR’ target (Fig. 2d) (i) 2.6 5.5

(ii) 2.4 4.5

(iii) 2.7 5.5

(iv) 3.7 5.3

(v) 2.3 5.8

(vi) 2.6 6.1

(vii) 3.3 5.6

(viii) 3.6 6.4

Three independent trials are conducted to infer both the synthetic targets in Fig. 3. The mean training set and cross validation errors for the eight selected ‘AFH’ models
are 3.0% and 4.9% respectively. These for eight chosen models representing the ‘aWR’ target are 2.9% and 5.6%.
doi:10.1371/journal.pcbi.1002751.t001
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that informative tests perform better than random tests. This is

critical when limited to a finite number of tests of the physical

specimen, which in this case is costly and can damage the

specimen by excessive testing. We define the most informative tests

as those that, in simulation (Fig. 1), are evolved to maximize

disagreement among the population of current models. We

introduce these tests sequentially in that the population of models

evolved explains the informative data available up to that point in

time. We show that a small number of informative physical tests

produce input-output data sets that significantly lower the cross-

validation error of the resulting models. Thus, the predator-prey

competition carried out in simulation findsthe most informative

tests. These tests, even with minor deviations from those predicted,

provide significantly useful experimental data to guide the

development of the next generation of models.

We remark that, for the tendinous specimen, we needed to

extract the experimental data within the first 8 hours of its excision

to avoid structural and/or material degradation. Evolving the

models with the most informative tests, as predicted in simulation

in stage III of the inference process, was not possible with the

available computational resources; the overall inference process

took much more than 8 hours. Rather, we sought to access the

closest possible tests that were informative, if not the most

informative, from the experiments performed a priori. We further

remark that for both, synthetic and biological networks, generating

the most informative test was not possible with the experimental

setup used (Figs. 3–4) as it required the input tensions to be

achieved by pulling on the tethers manually. As the inputs were

strongly interrelated, a slight manipulation of an input tether

disturbed the tensions in the others. Achieving the accuracy of the

recommended most informative test required much effort and was

cumbersome. There were discrepancies (noise and/or measure-

ment errors) even when efforts were made to load the network(s)

with the most informative tests. While structural/material

degradation was not a concern with the synthetic networks of

known topologies, inference of these was performed with

Figure 5. Topology matters and so does informative data generated from the inference process. Training set (left column) and cross
validation (right column) errors when (a) the ‘AFH’ target is inferred and (b) when the ‘aWR’ network is inferred. Solid lines represent errors with
sequential informative experimental data when both topologic and parametric inference is performed. Dotted lines correspond to cases when
random experimental data is sequentially employed for inference. Dashed lines show errors for only parametric inference with basic (Fig. S2 c–d)
topologies. Error bars represent standard errors across three executions of the inference processes. Topologically and parametrically inferred
networks with sequentially introduced informative force-motion data are more functionally proximal to the respective targets compared to (i) when
random data is used and (ii) when module/string interconnectivity is ignored during inference.
doi:10.1371/journal.pcbi.1002751.g005
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informative tests to verify if the latter, even when they not being

the most informative, can evolve models to adequately resemble

the target in structure and/or function. We show in all three cases

(synthetic and biological targets) that informative tests do infer the

networks, known or hidden, better than the random tests. This

work is, therefore, a successful proof of concept that does

demonstrate the utility of our approach and produces results that

are valuable to the field of functional inference in biological

Table 2. Training set and cross validation errors of the ten best models inferred through the informative force-motion data
obtained from the finger extensor mechanism.

Model Number Training set error (%) Cross validation error (%)

Models inferred from the ‘Finger extensor mechanism’ (Fig. 4e) (i) 3.8 6.0

(ii) 4.0 7.0

(iii) 5.8 6.9

(iv) 7.1 5.8

(v) 7.9 7.0

(vi) 5.8 7.0

(vii) 5.4 6.6

(viii) 4.2 7.2

(ix) 6.7 7.1

(x) 5.7 7.1

Five independent inference processes are executed to infer the finger extensor mechanism. The mean training set and cross validation errors for the 10 selected models
are 5.6% and 6.8%. The corresponding models are all functionally equivalent even though differing from each other in topology and parameter values.
doi:10.1371/journal.pcbi.1002751.t002

Figure 6. Topology matters and so does informative data generated from the inference process. Errors incurred during the inference of
the finger extensor mechanism. (a) Training set errors. (b) Cross validation errors. Progression of the error values are depicted as the number of data
sets are introduced for model evolution. Error values are depicted for five executions for the topologic and parametric inference using informative
tests. Bars represent standard errors. Solid lines correspond to the mean error when informative data is employed in topological and parametric
inference of the target. Dotted lines show mean errors when sequential random data sets are used (error bars depicted for 20 executions). Dashed
lines represent mean errors (error bars depicted for 20 executions) when only parametric evolution is performed using the basic topology where in
only 6 strings connect all accessible (input and output) ports and no other interconnection is allowed (Fig. S2 d). At the end of the inference process,
the mean cross validation error when models are topologically inferred using informative tests is 6.8%, better (by about 3%) than parametric-only
inference with informative tests and improved (by about 7%) compared to the topological inference with random tests. The topology chosen for
parametric-only inference (Fig. S2 d) comprises most components of the Winslow’s Rhombus (Fig. 4a) except for the lateral offshoots and transverse
bands. We observe in Fig. 4e that some inferred models do resemble the Winslow’s Rhombus structurally. The low difference (3%) in the mean cross
validation errors suggests that the disparity between the topologically and parametrically inferred models and the parametric-only inferred models
(both using informative tests) is minor but essentially topologic (we reckon this could be because of the absence of the lateral offshoots in the all-in-
all topology in Fig. S2d). The difference of 7% in (b) between models inferred using informative and random tests is however, relatively significant and
is expected to be larger with further improvements in the inference process (see discussion). As observed in [56], the margin gained with the
estimation-exploration algorithm grows with the complexity of the problem. Additionally, one may require more number of trials (which will add to
the temporal and computational cost) to achieve a certain accuracy. With the estimation-exploration algorithm, a given accuracy can be achieved
faster.
doi:10.1371/journal.pcbi.1002751.g006
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systems. Based on our earlier work in [32] where we infer the

Winslow’s Rhombus (Fig. 4a) in simulation using the most

informative force-displacement data, and supporting information

(Fig. S1 c) where we infer the structure of the ‘aWR’ and ‘A’

networks in simulation but using only the most informative force

data, we further expect that the most informative tests will perform

better than the informative ones once better computational

resources and experimental setups are available to make the

overall inference process more efficient.

We also show that simultaneous topological and parametric

inference yields better results than the parametric inference alone.

Most system identification for biomechanical models is limited to

parametric inference [38–40]—wherein the structure or topology

of the system is chosen a priori based on expert knowledge, and

parameter values are tuned to fit the experimental data. Very few

studies, (e.g. [41]) have performed simultaneous inference of both

the topology and parameters of anatomical systems. We show that

in our experiments on synthetic and biological physical systems,

the tuning of string parameters in networks with fixed topology is

insufficient to minimize cross-validation errors. Importantly, cross-

validation errors are a better estimate of model accuracy and

generalizability because they evaluate fitness with respect to input-

output data sets that were not used to train the model in the first

place.

Figure 7. Individual strings contribute significantly to the functionality of the chosen models. (a) model (i) in Fig. 4e and (c) model (iv) in
Fig. 4e with string members numbered. (b) Each string member is removed one at a time from model (i) and cross validation errors are computed.
The intact model (with no string removed) exhibits the least cross validation error. (d) Each string member is removed one at a time from model (iv)
and cross validation errors are computed. On removal of strings 22 or 24, the error decreases. This suggests that connection between middle and
distal slips should be absent. Removing string 7 or 10 from the model in (c) does not alter the cross validation error from that of the intact model. This
is because these strings do not get taut when cross validating load sets are used. Visual inspection further shows that these strings barely get taut
when the model is actuated with the informative load sets used for its evolution. This suggests that strings 7 and 10 do not participate in the network
which explains why the training set error for this model is larger (Table 2) compared to that of model (i) in (a).
doi:10.1371/journal.pcbi.1002751.g007
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A clear distinction needs to be made between topology and

parameter values. Models are assembled by exploring the space of

possible combinations of building blocks (in this case, strings and

nodes). A specific model topology is a specific connectivity map

among a specific set of building blocks (i.e., string connectivity).

The model parameters are the individual properties of each

building block (i.e., length of strings). In practice, however, it is

necessary to ‘‘parameterize’’ the topology to be able to encode (i.e.,

represent) it so that an algorithm can search the topological space.

In our case, we defined our primordial mesh of strings (Fig. 2a)

and parameterized different topologies by allowing strings to

become long enough to, in practice, ‘‘disappear’’ because they can

no longer carry tension. While this methodological distinction

between topology and parameter values may be considered

semantic—and therefore debatable—in practice such implemen-

tations can and do produce models with distinctively different

physical structures [33]. In our case, we evolve populations of

string networks with patently different number and connectivity

among load-carrying strings—which assume distinct anatomical

structures.

On the methodological side, several issues are key to accurate

inference. These include accurate assumptions pertaining to (a) the

material properties and the strain-deformation models, (b)

informative experiments capturing full network functionality and

interaction conditions, (c) automated experimental setup, (d) the

primordial connectivity representation, and (e) the choice of the

algorithm used for model evolution. If inappropriate assumptions

are used, the experimental data may not be within the set of

predictions of any feasible model topology or parameter values, or

the candidate tests generated by the inference process may not be

informative.

The inference of the extensor mechanism was also performed

assuming constant elastic modulus (1 GPa) as opposed to

nonlinear stress-strain relationship for tendons used from [34] to

evolve the models in Fig. 4. The e_cross errors of the resulting

models were about 30% (Fig. 8), much higher than the e_cross

errors (Table 2) for the models in Fig. 4. Inaccurate assumptions

for the tendon material properties led to the evolution of models

whose functionality was not in agreement with that of the target

extensor mechanism. Alternatively, while it is possible to evolve

the material properties as well along with the models, approxi-

mating the form and range of the stress-strain relation (e.g.,

exponential, transcendental, linear) may be difficult. Use of a

different set of material properties can lead to either (i) erroneous

structural and parametric predictions with high e-training or e_cross

errors for the models, or (ii) an alternate set of functionally similar

models that explain the network functionality reasonably well.

All the string networks were inferred here using the large

deformation-small strain assumption. Models may also be evolved

using the Green-Lagrange large-strain [35–36] theory. In case of

the tendinous tissue, the anatomical extensor mechanism did not

exhibit significant deformationand thus, the small-strain assump-

tion was suitable.

We inferred the hand extensor mechanism by considering only

a part of its overall functionality. We were limited to testing the

anatomical specimen as it lay flat on a hydrated surface, as

opposed to wrapped over finger joints. Even so, all string modules,

as described in the classical Winslow’s model (Fig. 4 (a)), were

nearly captured in some models.

To reproduce the most informative tests recommended by Stage

III of the estimation exploration algorithm, the setup should be

fully automated and computer-controlled. Independent motors

should be mounted with the respective input tethers wrapped

tightly around them to control the tensions. In addition to using

digital force scales, force sensors (e.g., strain gages) should also be

used to control the motor rotations via a feedback loop. Achieving

the most informative test with the automated setup (as opposed to

manual) will be less painstaking and more accurate.

The Latex and biological specimens are inferred using the string

model representations shown in Supporting Information, Fig. S2.

Both the number and interconnectivity between the strings in that

primordial network can influence model evolution. Here, we allow

the strings to be both overlapping and tightly connected (small

circles in meshes in Fig. S2). This initial mesh is chosen to facilitate

the model(s) inferred from the finger extensor mechanism to

assume the form of Winslow’s Rhombus. A primordial mesh with

no overlapping strings can yield a different set of models.

Factually, however, the extensor mechanism is a sheath of

collagen fibers. Using two-dimensional parameterizations (e.g.,

rectangular/hexagonal cells to represent the primordial mesh)

canhelp yield more topologically diverse models.

All factors mentioned above, and the noise involved in

experimental data influence the landscape of the objective

function. In view of this, functionally similar but topologically

and parametrically diverse models obtained through the Random

Mutation Hill Climber (RMHC, a variant of Genetic Algorithm

that employs only mutation) could all be local optima existing very

close to the global one in the design space. Due to the noise

present in the data, it is not expected for a global optimum to have

significantly lower e_training and e_cross errors. As an aside, we

show that the RMHC is capable of finding a close to global

optimum for smooth functions (see supporting information, Fig.

S3), even when the design space is infested with numerous local

optima, if adequate computational resources are employed. We

also show that alternative, classical optimization algorithms often

converge to a local minimum. Further, they will not be able to

negotiate the discontinuities in the design space such as those in

our problem which correspond to cases wherein nonlinear

analyses do not converge for candidate models.

One of the goals was to confirm whether the Winslow’s

Rhombus (Fig. 4 a) is an accurate string representation of the hand

extensor mechanism. On performing parametric only fitting with

this representation (but without transverse bands) as the primordial

mesh and informative data generated using the predator-prey

approach, we found that the mean e_training and e_cross errors

(supporting information, Fig. S4) were comparable to those of the

topologically and parametrically inferred models (Fig. 4 (e)) in

Fig. 6. This suggests that the Winslow’s Rhombus could belong to

the same family as these functionally similar models. As detailed

later, additional information may be necessary to extract a true

global model.

The predator-prey approach is an optimal experiment design

(OED) method wherein through competition, most informative

tests (optimal sample points) are generated to evolve the best

models that explain these tests. However, this approach is unlike

other OED methods, e.g., D-optimal, L-optimal and minimax-

optimal wherein model parameters (or their functions) are

determined by minimizing, for instance, generalized variance. In

Bayesian type OEDs, prior information on model parameters is

assumed.

With regard to the study of complex biomechanical structures

by anatomists, biomechanists and biologists, most previous work

has naturally focused on inferring the structure of the tendinous

networks via dissection or imaging. In contrast, we interrogate

biological networks through a non-invasive computational ma-

chine learning procedure. Invasive techniques may damage the

tissue, while imaging methods may miss critical functional

interactions (e.g., seen only under specific loading conditions).

Functional Inference of Tendinous Networks

PLOS Computational Biology | www.ploscompbiol.org 14 November 2012 | Volume 8 | Issue 11 | e1002751



Our non-destructive inference method yields both topological and

parametric information. For example, the specific number and

lengths of the tendinous members of the extensor mechanism

affect the distribution of tension to the finger joints [19,41]. We

suggested before that the interpretation by Zancolli [17] and

Garcia-Elias [18] of the hand extensor mechanism as Winslow’s

Rhombus is partly correct. We also illustrated that functionally

similar models that have different string connectivity can exist

to explain the functionality of the extensor mechanism. We

reckon that additional information may be necessary to identify

the details of structurally diverse models that exhibit similar

functionality.

This raises the important issues of uniqueness and observability,

which are central to computational model inference—and critical in

the context of biological populations that naturally exhibit anatomical

variability. Some 2D sub-topologies can be equivalent to each other

under certain parameter and loading sets [32]. The load transfer

patterns in these substructures can be similar despite their structural

diversity. Due to these equivalencies, some substructures in a model

can be transformed into one another resulting in a number of similar

models. Consequently, multiple local optima as opposed to single

global optimum may exist in the design space.

From the computational perspective, our use of populations of

models forrandom mutation based hill climber search is very much

conducive to the maintenance of model diversity (i.e., alternative

hypotheses) to understand the uniqueness and observability of

model topologies. This allows our search in this large dimensional

space to proceed along multiple alternative paths that do not favor

any particular local minimum. In all of our results with synthetic or

anatomical networks, we find families of solutions: multiple

different, yet functionally similar, topologies. This suggests that (i)

additional data are necessary to further constrain the search, (ii) that

different functional domains (such as deformation during finger

flexion) are necessary to make the differences across various models

observable, or (iii) that there are indeed functionally similar

implementations for the domain of behavior that we studied (load

transmission in this case). The latter idea is quite intriguing from the

evolutionary perspective as it agrees with the well-documented

natural variability in the gross anatomical structure of the extensor

mechanism across humans [19]. It suggests that, for the types of

anatomical structures achievable with collagen fibers, anatomical

variability in human population may not be functionally detrimen-

tal, and may in fact enable a wider variety of adaptations in future

generations. Thus, the popular representation of Winslow’s

Rhombus (Fig. 4 (a)) may no longer be considered a uniquely valid

or accurate representation of the extensor mechanism. Further-

more, we observe that only a few models inferred from the human

extensor mechanism concur with its classical description. While

Winslow’s anatomy book [16, pub. 1732] has no illustrations, the

first graphical string model depiction of the extensor mechanism is

by Zancolli [17] and An et al [38] wherein the tendinous network is

suggested to have crossover tendons that slide past each other. In

most models obtained with our experimental loading conditions,

sliding crossover tendons are seldom observed and they do not grant

particularly higher fitness—even though the primordial mesh was

specifically designed to allow for them. In our detailed dissections of

the extensor mechanism as well, crossover tendons were not clearly

and independently observed.

Figure 8. Additional information to accurately decipher the structural constitution of a finger extensor network is critical. First and
third columns: Best models are evolved with linear elastic tendon properties (E = 1 GPa). The models should emulate the informative experimental
data from the cadaver hand. String numbers shown with the evolved networks. Second and fourth columns: Cross validation errors (6100 for
percentage) for corresponding models on the left. The first bar represents the error when the corresponding network on the left is intact. The
following bars depict the error when the strings are snapped one at a time. The errors for the intact models are equal to or greater than 30%. From
each model, elimination of certain strings lowers the cross validation errors suggesting that the intact models do not depict the functionality of the
actual extensor mechanism accurately. If erroneous postulations are employed, the experimental data obtained by the inference process may not be
informative after all.
doi:10.1371/journal.pcbi.1002751.g008
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From the clinical perspective, damage to this network can cause

severe dysfunction of manipulation (e.g., mallet finger, swan-neck

or boutonnière deformity [42–48]), which can significantly affect a

person’s quality of life. Both non-operative and surgical methods

[49 for a brief overview, 50–55] are reported following which

subjects undergo rigorous, rehabilitative tendon gliding exercises

[49]. Through accurate structural and parametric prediction of

the target biological network with the aim to determine sources of

injuries and/or deformities specific to the patients, or the

classification of patients into structurally/functionally similar

subgroups, our methods and results can help plan surgical/

corrective strategies more effectively (e.g., multiple trial-and-error

procedures can be avoided) requiring less rigorous and more cost

effective rehabilitative follow-ups. By allowing the inference of

functional interactions in musculoskeletal systems, they are also

relevant to the understanding of the functional adaptations that led

to the evolution of the modern human hand and body.

Supporting Information

Figure S1 We establish here the information mode – whether

force or motion (distances between the accessible ports) data, or

both will be required through a data set for inferring the

functionality and physical manifestation of the target network. We

illustrate by inferring two ‘simulated’ targets, the ‘A’ network and a

minor adaptation of the Winslow’s Rhombus (Fig. S1 a, b), that the

use of force information alone will be inadequate. We perform

model evolution using a sequence of the informative data sets

generated using the inference procedure described in the paper.

The two evolved ‘A’ models and that representing the Winslow’s

rhombus are shown in Fig. S1 (c) top, bottom. Only the force

information is employed to minimize the training set error for model

synthesis. Through visual comparison, we observe that even when

the respective topologies are captured, there exist significant

discrepancies in distances between the accessible ports when

comparing the models with their respective targets. Maintaining

these distances is an essential functional requirement for which

reason, it is important to record, compare and minimize the

differences in the respective inter-nodal distances as well when

evolving the models. (a)–(b) Two simulated target networks (a: the

‘A’ target; b: adaptation of the Winslow’s rhombus) employed to

illustrate that the experimental data containing the force informa-

tion alone is not adequate for accurate topological/parametric

inference. (top) two models inferred from the ‘A’ target data (15

informative force data sets were used) and (bottom) model inferred

through simulated experiments from the adapted Winslow’s target

network (20 informative force data sets were used). The models

evolved using the informative data are topologically very similar to

the respective targets. By using only the force information, the inter-

nodal distances between the actuation and fixed (shown as squares)

ports are not captured from the targets.

(TIFF)

Figure S2 Respective representative member string fabrics used

to infer the ‘AFH’ and ‘aWR’ targets (Fig. 2a–b). In (a), 36 member

strings are used. Length bounds are kept as 0.01 mm and 100 mm.

Cross-sections are evolved within [0.01 5] mm2. In (b) 54 member

strings are employed. Length bounds used are [0.01 70] mm and

cross sections are evolved within the same limits. (c)–(d) present

respective basic topologies used to parametrically fit the informative

force-motion experimental data from the ‘AFH’ and ‘aWR’ targets.

(e) Representative member string fabric used to infer the finger

extensor tendinous network. Seventy-one member strings are used.

For each member string, lengths were evolved with the limits of

0.01 mm and 33 mm respectively while their cross sections were

bound within [0.01 11] mm2. The upper bounds on member string

lengths and cross sections were chosen based on the overall length of

the tissue (+ 50 mm) and estimated maximum thickness of one of

the input tendons (3.6–3.8 mm diameter).

(TIFF)

Figure S3 The Random Mutation Hill Climber Algorithm (RMHC)

implemented in the predator-prey strategy is capable of yielding

solutions that are close to a global optimum if adequate computational

resources are provided. Minimization of f(x) = (1+x2)(12K sin(4x)), that

has many local optima, is performed using Sequential Quadratic

Programming (SQP) and RMHC. Small squares show the initial

guesses igci used by the SQP algorithm to converge to local optima

shown by oci. If the initial guesses are far from the global optimum,

classical algorithms may not converge to the latter. The large squares

illustrate the initial guesses igsi used by the RMHC to converge to the

global optimum osi. The three attempts took 3392, 2190 and 3391

iterations respectively.

(TIFF)

Figure S4 Training and cross-validation errors when the estima-

tion-exploration algorithm is performed using the Winslow’s

Rhombus (Fig. 4a) without the transverse bands as the primordial

mesh. Error values are depicted for 10 best models for the topologic

and parametric inference using informative tests. Bars represent

standard errors. At the end of the inference process, the mean training

set and cross validation errors are 8.54% and 8.44% respectively.

(TIFF)

Table S1 CPU Time (seconds) for model evolution (8 models)

and generation of the most informative test for the ‘AFH’ synthetic

target.

(DOCX)

Table S2 CPU Time (seconds) for model evolution (8 models)

and generation of the most informative test for the ‘aWR’ synthetic

target.

(DOCX)
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