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Abstract

We analyzed age-related changes in motor response in a visuomotor compensatory tracking task. Subjects used a
manipulandum to attempt to keep a displayed cursor at the center of a screen despite random perturbations to its location.
Cross-correlation analysis of the perturbation and the subject response showed no age-related increase in latency until the
onset of response to the perturbation, but substantial slowing of the response itself. Results are consistent with age-related
deterioration in the ratio of signal to noise in visuomotor response. The task is such that it is tractable to use Bayesian and
quadratic optimality assumptions to construct a model for behavior. This model assumes that behavior resembles an
optimal controller subject to noise, and parametrizes response in terms of latency, willingness to expend effort, noise
intensity, and noise bandwidth. The model is consistent with the data for all young (n = 12, age 20–30) and most elderly
(n = 12, age 65–92) subjects. The model reproduces the latency result from the cross-correlation method. When presented
with increased noise, the computational model reproduces the experimentally observed age-related slowing and the
observed lack of increased latency. The model provides a precise way to quantitatively formulate the long-standing
hypothesis that age-related slowing is an adaptation to increased noise.

Citation: Sherback M, Valero-Cuevas FJ, D’Andrea R (2010) Slower Visuomotor Corrections with Unchanged Latency are Consistent with Optimal Adaptation to
Increased Endogenous Noise in the Elderly. PLoS Comput Biol 6(3): e1000708. doi:10.1371/journal.pcbi.1000708

Editor: Konrad P. Kording, Northwestern University, United States of America

Received May 11, 2009; Accepted February 5, 2010; Published March 12, 2010

Copyright: � 2010 Sherback et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by an NSF Graduate Student Fellowship (MS), This material is also based upon work supported by grants (to FJV-C) NSF
0237258, and NIH AR050520 and AR052345. It was also supported by the Institute for Mess- und Regeltechnik, ETH Zurich (RD). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sherback@idsc.mavt.ethz.ch

Introduction

The existence of a general phenomenon of age-related

impairment of the sensorimotor system is widely accepted [1–3],

but its causes are incompletely understood and its expression varies

depending on task. Conventional wisdom is that impairment is the

result of slowing and increased sensorimotor noise. In this paper

we show that in a compensatory tracking task, age-related slowing

is confined to the later phases of the response, and that this slowing

is consistent with the adaptation of a relevant optimal control

strategy to increased noise. This suggests that slowing in this task is

consistent with adaptation to the cause of impairment, i.e.

increased noise, rather than a cause of impairment.

The hypothesis that age-related slowing is an adaptive response

to increased cortical disorder rather than a primary cause of

impairment was put forward in a survey of work on aging and

reaction times [2]. It is suggested in [2] that the elderly average

sensory data using longer timescales in order to reduce the effect of

cortical noise. Recent data confirms that age related slowing is

correlated with increased disorder in cortical Event Related

Potentials [4,5], and in [5] the same hypothesis about averaging

noise away is formed. In [6] data is presented suggesting that

slowing is too great to be accounted for by then-current empirical

speed-accuracy tradeoff models. In [7] the modeling concepts of

submovements and signal-dependent motor variability [8] were

used to analyze age effects in a target acquisition task and the

authors suggested that elevated motor noise is a primary cause of

slower performance, based on empirically parametrized speed-

accuracy tradeoffs. In this work we use a continuous compensatory

tracking task and a model based on Bayesian and quadratic

optimality consistent with past work on the sensorimotor

application of this theory [9–26]. This modeling approach

provides a quantitative way to relate noise levels to the timescales

involved in averaging data. Our task elicits responses in the form

of continuous time series that are dynamically rich compared to,

for example, static force production or reaction time data. It also

resembles dynamic activities of daily living such as driving a car on

a windy day. The nature of the controlled dynamics and

perturbations enable use of well-developed optimal control theory.

Age-related sensorimotor impairment and slowing have been

heavily investigated [1–3,27]. One hypothesis is that of generalized

slowing, as reviewed in [1,28]. Published results show wide

variability. For example, some experiments involving simple

reaction time [4,5] fail to show a significant age-related increase,

but slowing is strongly expressed in choice reaction experiments

[4,5] and is the rule rather than the exception experimentally [2].

Subtle changes in force stimuli can evoke or eliminate age effects

on response latency during fingertip force generation [29]. Age-

related degradation and delay in the peripheral components of the

sensorimotor system has been documented in cutaneous mecha-
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noreceptors [30], transmission of signals from visual to motor areas

[31], and basic visuomotor processes such as saccades [32–34].

Nevertheless, it has been known for decades that age-related

sensorimotor impairment in common experimental paradigms is

dominated by central and not peripheral effects [2,27].

We distinguish between two different kinds of ‘‘slowing’’ that are

well characterized in the engineering field: (i) response latency,

that is, delay until the onset of motor response, vs. (ii) slowed

timescales of post-onset response. These are shown in Fig. 1. This

distinction is closely related to the classical behavioral classification

of response in reaction time studies into ‘‘reaction time’’ vs.

‘‘movement time’’ after the onset of movement [35], but we avoid

this terminology to avert confusion with other published uses of

those terms. Our analysis is specifically designed to disambiguate

between these two kinds of slowing using complementary

analytical approaches. The first is a cross-correlation approach

that is strictly data-driven, phenomenological and free of

assumptions; and the second is a model-based computational

approach based on justifiable assumptions of optimal control

theory. The advantage of the model-based approach is that it

improves precision and provides a framework for mechanistically

relevant analysis of response.

It is important to note that our definition of endogenous noise is

a more general concept than physiological motor noise. For the

purposes of this paper we define endogenous noise to be any

deviation from optimal behavior (possibly of sensory, motor,

conduction, or neural processing origin). We address the roles of

specific sources such as muscular ‘‘motor noise’’ or cortical

‘‘functional dysregulation’’ [4] in the Discussion.

The experimental procedure was identical to that described in

[25]. The paradigm is compensatory tracking with a controlled

dynamical system implemented in software. A band limited

Gaussian perturbation [36] continuously moves a displayed cursor

on a horizontal line and the subject is asked to provide a corrective

control input to make the cursor track the stationary midpoint of

the line. Ideally the subject would provide an input that perfectly

canceled the perturbation, but they cannot due to lack of

foreknowledge of the perturbation, delays, and noise in the

sensorimotor system. Fig. 2 shows a brief representative section of

the time histories of the perturbation p, the control input u, and

the displayed cursor error e.

The cursor’s motion results from simple but marginally unstable

dynamics:

de

dt
~uzp ð1Þ

Equation 1 states that the horizontal velocity of the cursor de=dt
is the sum of the subject’s control input u (defined as the left-right

deviation of the manipulandum from its initial position) and the

software-supplied perturbation p. Thus the horizontal position of

the cursor (i.e., error e) is the time integral of this velocity. These

cursor dynamics are marginally unstable, similar to [37]. They

resemble driving a car on a windy day such that, if the subject does

not correct, then the cursor will wander off the screen in

approximately 10 seconds. These dynamics are a compromise

Figure 1. Slowing and latency. This figure gives an example of the
distinction between slowing of the post-onset response vs. response
latency. We use this distinction to analyze a more complex visuomotor
response. The figure shows the response of two different systems to an
impulse at time t~0. Both systems consist of delays in series with
second-order viscoelastic systems. The solid line shows a shorter delay
in the onset of response (less response latency) but longer settling time
(slower post-onset response). The dashed line shows the converse.
doi:10.1371/journal.pcbi.1000708.g001

Figure 2. Time series data. Representative time series data: All
elderly subjects, trial 7. Note identical p(t) and two of the outlying
elderly subjects, 19 and 22.
doi:10.1371/journal.pcbi.1000708.g002

Author Summary

In a hand-eye coordination task that requires continuous
movement to correct for a disturbance, it turns out that
signs of response to the disturbance appear no later in the
elderly than in the young. The elderly motion is noisy and
less efficient, however, and once movements in response
to a disturbance begin, they are at a lower speed. One can
model subject response by assuming that it results from
combining noise and a response that is mathematically
optimal given this noise, delay, and a least-squares sort of
control objective. This modeling approach is appropriate
for young and most elderly subjects. The model holds that
increased noise should lead to no change in delay until
response gets underway, but should make the response
itself proceed at a slower speed. This is consistent with the
data and with a causal link from the observed noise and
disorder in elderly motor function to the observed age-
related slowing.

Aging, Slowing, Latency, and Optimality
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between the static e~pzt and the excessively difficult

d2e=dt2~uzp, for which total loss of control was seen even in

some young subjects.

The data for eleven of the young subjects appeared in [25].

Repeated testing was performed eight months later on eight of the

young subjects as described in [25]. Subjects 1 and 10 participated

and no longer displayed the outlying behavior described in this

paper, and other subjects remained well described by the optimal

control model. All the young subject data used in this paper for

comparison to the elderly is from the first session.

Introduction to the optimal control modeling approach
We used a computational model to improve the precision of the

response latency estimates and to investigate quantitatively the

slowing of the post-onset response. The structure of this

continuous linear feedback control task is suited to modeling

using concepts from Linear Quadratic Gaussian (LQG) optimal

control [38]. We need only make standard assumptions of

quadratic optimality and additive Gaussian noise, and minimalist

assumptions about a feedback loop structure as shown in Fig. 3, to

arrive at our modeling framework. The quadratic optimality

assumption is that the expected value of the following cost,

integrated over an arbitrarily long time frame, is to be minimized:

e2(t)z(r dv=dt)2 ð2Þ

where r is a weight, dv=dt is the time derivative of the ideal control

input (that is, hand motion u before adding endogenous noise m),

and e is the tracking error. The resulting LQG control strategy is

to choose a control input by multiplying a problem-dependent

static gain matrix and the Bayesian optimal estimate of the state of

the system. These are referred to as the Linear Quadratic

Regulator (LQR) gain matrix and the Kalman state estimate [38].

For a survey of applications of optimality as an organizing

principle of animal behavior see [16,17]. This approach is

particularly relevant to the study of sensorimotor behavior because

the delays and noises under which the task is performed are taken

into account when computing the optimal control strategy. The

use of this model to analyze visuomotor response is not a claim

that it is the best possible model; its advantages are simplicity and

parsimony [25]. We have not found a better model for response in

our task in the literature, and we show later that a standard way of

forming linear model fits (without any restrictions to optimality)

does not do substantially better.

The standard LQG model introduced above is based on an

additive noise model. It is well known that sensorimotor noise is

signal-dependent, that is, its variance is a function of the amplitude

of the corrupted signal [8,11]. Considering the effects of signal-

dependent noise will require us to make some mild assumptions,

but ultimately leave us with the same model as the additive noise

model, with a different interpretation of the r parameter. The

remainder of this paragraph describes our approach. The most

straightforward model of signal-dependent noise is to assume that

the variance is proportional to the variance of the corrupted signal,

that is, multiplicative noise. Two approaches may then be taken to

solve the control design problem: either adopt time-varying

control policies [18], or restrict ones’ attention to much simpler

time-invariant control strategies and examine the role of

multiplicative noise in that tractable case. We do the latter. The

well-known principle that estimation and control can be treated

separately for the additive noise LQG problem does not hold for

signal dependent noise [18], but it proves tractable and consistent

with the data to continue treating the problem as having separate

control and estimation components. First, in terms of optimal

control given a state measurement, it has been shown that under

the relatively mild time-invariance and multiplicative noise

assumptions, control cost and multiplicative noise levels have a

summed joint effect during optimal LQR control design [39]: a

positive coefficient describing the intensity of the multiplicative

noise is added to a freely chosen positive control cost during

control design. This leads to a situation where we cannot

disambiguate these two effects during model fitting unless we

make a poor assumption that the noise is purely multiplicative.

Second, in terms of estimation, the restriction to time-invariant

control implies a time-invariant Kalman filter, which is equivalent

to designing the filter with some appropriate level of additive noise.

Ultimately, the approach described in this paper is to note that the

tractable approximate approach to signal-dependent noise under

mild assumptions is to use the same model as in the additive noise

case, and then to note that the remaining difference is only in the

interpretation of the parameter r: in an additive noise model, it is

purely a freely chosen control cost, while in the approximate time-

invariant solution to the multiplicative noise model, the parameter

r is the sum of a coefficient of noise intensity, and a freely chosen

control cost.

The optimal control model structure is shown in Fig. 3 and its

components are described in the caption. In our approach, the

four parameters used to fit the optimal control model to the data

from any given trial are:

1. response latency

2. intensity of the endogenous noise m - this measures the signal

variance per unit of bandwidth. The bandwidth is the next

parameter.

3. endogenous noise bandwidth [38], vm - the endogenous noise

bandwidth is implemented by a prefilter on m that is not shown

in Fig. 3.

Figure 3. Model structure. This block diagram shows the closed loop
system model for the optimal control approach. Only the shaded parts
are physically outside of the subject: the controlled dynamics G and the
addition of the perturbation p. Endogenous noise is represented by m.
The displayed cursor error e is delayed by Gt . The delayed signal acts on
the optimal controller KLQG that outputs an ideal control input v. The
expected sum of the squares of the outputs in the upper right is
minimized by the choice of KLQG . The weighting and differentiation in
the cost function are implemented by rGzu . The latency parameter
affects Gt , the control cost parameter appears directly, and the noise
parameters affect the statistics of m.
doi:10.1371/journal.pcbi.1000708.g003

Aging, Slowing, Latency, and Optimality
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4. a parameter r that includes the effects of ‘‘control cost’’ (a free

design variable expressing aversion to motion) and multiplica-

tive or ‘‘signal dependent’’ noise [8,11], as described earlier

Once we fit parameters in the assumed modeling framework,

the model is fully defined and we can predict properties of the

control output u. Iterative Nelder-Mead [40] minimization of the

squared discrepancy between predicted and observed subject

response was used to fit models. The resulting controllers have

nine states because the plant has nine states (the delay is modeled

with a fourth order approximation, one state in the computer,

three states in noise filters, and one state in Gzu), but less than five

states are significant in the fitted controllers, based on analysis of

Hankel Singular Values (HSVs) [38].

Results

The first two results make no use of the optimal control model.

The third result is a set of tests of the relevance of the optimal

control model. The remaining results involve properties of the

fitted optimal control models.

No change in response latency
To determine the response latency in this task, we examined the

cross correlation of the random signal driving the perturbation,

and the subjects’ response. The cross correlation [36] is a simple

phenomenological way to analyze the temporal relationships

between the discretized signals p (the perturbation) and u (the

control input or ‘‘correction’’ by the subject) without making any

modeling assumptions. The perturbation p was a discrete-time

approximation to band-limited Gaussian noise [36], created by

passing a sequence of normally distributed random numbers

(discrete time white noise) through a first order filter Gp with a

cutoff frequency of 0:05 Hz. This filter is required to ensure that

the perturbation is not ‘‘too jumpy’’ for the subject to react.

This filter induces autocorrelation in p [36], thus in our analysis

we use the pre-filtered or ‘‘whitened’’ [36] signal, pW :~(1=Gp)p
to remove spurious effects. We use indexing subscripts to denote

samples at time t0 through tN{1 and compute the cross-

correlation

rU (k)~
XN{1{k

i~0

pW (ti)u(tizk) ð3Þ

Using the cross correlation to infer response latency is straight-

forward because it wanders randomly near zero for low values of

lag index k until the effects of the perturbation p are seen in u.

These effects occur because the subject attempts to negate the

effects of p. Therefore the cross-correlation begins to show a

negative (i.e., corrective) trend at a value of k corresponding to the

response latency, and we use this to measure latency.

Application of our model-free cross-correlation method yields

mean inferred response latencies dMF of 267 and 263 ms for

young and elderly subjects. The precision of the inferred quantities

is evidenced by the median intrasubject standard deviations of 36

and 44 ms. A two-tailed t-test [41] was used to compare the 12

young to the 12 elderly using the mean from each subject to avoid

repeated measures bias. The measurements’ distribution was

consistent with normality with or without using logarithms. The t-

test indicates that the 4 ms difference between the two means is

not statistically significant (p~0:64). The averaged cross-correla-

tion data of young and elderly subjects is presented in Fig. 4.

The elderly perform worse: slower and with increased
noise

We observed increased disorder in the response of elderly

subjects. Good performance in these tests corresponds to low root

mean squared (RMS) cursor error e. A subject’s behavior is more

efficient if they obtain the same level of performance using less

corrective motion, that is, low RMS control input velocity du=dt.

Significantly, young subjects choose different strategies in this

task, leading to a Pareto optimal curve in Fig. 5. We calculated

the line fit to the data of the young subjects using the optimal

control model by varying the control cost and noise intensity

parameters in a coupled way according to the multiplicative/

signal-dependent nature of noise in sensorimotor tasks [9,11].

Despite uniform physiological health among the young, and the

instructions to ‘‘keep the error as small as possible,’’ some

provided less corrective effort and tolerated larger amounts of

error. In repeated trials spaced months apart, some subjects

shifted location along this Pareto front, and the outlying young

subjects 1 and 10 moved onto this front. In Fig. 5 the elderly fall

almost completely to one side of the curve fit to the young. When

compared to the young, they move their hand more but

accomplish less. Without assuming any model, it is reasonable

to conclude that this is not intentional, and that it demonstrates

increased noise or disorder in their response.

The elderly also have a lower average RMS control input rate

du=dt - that is, they move more slowly. The effect is visible in Fig. 5.

The p value of a two-tailed t-test on the logarithm of the subject

means across twelve young vs. twelve old subjects is 0:44.

Removing subjects that were always poorly fit by the optimal

control model (1,10,19,24) yields p~0:22. The existence of age

related slowing is well established elsewhere. In this experiment, it

is reasonable to suppose that the high p value results from the

effort/performance tradeoff seen in the young subjects’ data in

Fig. 5.

Figure 4. Cross-correlations. The mean cross-correlations for young
and elderly show that there is no aggregate increase in response
latency. This analysis is free of assumptions and makes it clear that there
is a change in the post-onset response, but no change in the response
latency. We removed spurious effects by subtracting rU (0) from each
trial. The effects of perturbations on response persist longer when post
onset response is slow, as seen here in elderly data. These averages
were obtained at each lag value by averaging across trials 3–10 for all
subjects, and then averaging across subjects.
doi:10.1371/journal.pcbi.1000708.g004

Aging, Slowing, Latency, and Optimality
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The optimal control model is relevant to all young and
most elderly subjects’ behavior

Despite the use of a fitting process, there exist opportunities for

the optimal control model to be tested. To be precise, the model

parametrizes an infinitesimal fraction of all possible functional

control strategies, and thus despite the fitting process it has

opportunities to be inconsistent with either the data or with the

results of accepted analysis methods. These are enumerated below.

First, a fitted model implies a certain level of RMS cursor error

e. This is not a prediction outside of the data set, as all the

measured variables are coupled by the feedback loop. However, it

is evident from theory and experiment that it is possible for the

observed RMS e to be significantly different from that which

would be expected based on the fitted model, and this provides an

opportunity to prove the model false. This is can be understood

with the following equations, based on zero assumed initial

conditions:

e(t)~

ðt

0

½u(t)zp(t)�dt ð4Þ

e2(t)~(

ðt

0

u(t)dt)2z2

ðt

0

u(t)dt

ðt

0

p(t)dtz(

ðt

0

p(t)dt)2 ð5Þ

This indicates that the accuracy of the model’s predicted RMS

error level e rests on the accuracy of its model of the interaction of

u(t) and p(t) - that is, the subject response to the perturbation. By

restricting our models to be optimal controllers, we are restricting

the choices available to our fitting method to represent this

interaction. The ratio of predicted and observed RMS e is near

one as shown in Fig. 6. There is some loss of accuracy due to the

use of a statistical model of endogenous noise over a finite time

frame. Again, the outlying behavior by young subjects 1 and 10

was not reproduced on repeated testing.

Second, the model would be inconsistent with the data if the

fitted models did not obtain significantly different parameters for

different subjects (consistent with their supposed meaning), in cases

where direct inspection of the data shows that such differences

exist. This is not a difficult test, as the modeling method is of

course designed to capture this difference, but it is still useful to

inspect the results. Summary statistics of the model parameters in

Table 1 indicate that the method is able to detect intersubject

differences and yield sensible results. The base 10 logarithm of all

parameters was taken for normality. The table gives mean values

for the young and old, the aggregate SD, the median intra-subject

SD, and the median intra-trial SD. After the four parameters, a

parameter proportional to motor noise amplitude normalized to

control input amplitude is given. This demonstrates that the age-

related reduction in signal to noise ratio implied by Fig. 5 is

observed in our parameters. The two-tailed t-test p-value for

logarithms of the twelve young subject means vs. twelve elderly

subject means for this quantity is p~0:066. It decreases to

p~0:040 if the subjects that were poorly fit by the optimal control

model (1,10,19,24) are excluded.

Third, the agreement between observed and fitted Fourier

transformed auto- and cross- correlations [36] of input and

perturbation for the optimal control model are good. It is difficult

to make this statement precise because spectral analysis is an

engineering technique to guide model creation rather than a

statistical tool for testing hypotheses [36]. There exists a metric

resembling the R2 measure, coherence, but it is valid only for a

general form of empirical linear model fitting [36]. In Fig. 7 we

show spectral data from the trials with median fit cost from young

and elderly subjects. The spectral fits of (1,10,19,24) were generally

poor and those of 22 were poor for some trials. Remarks: There

exist multi-taper methods for constructing experimental spectral

estimates with confidence intervals [42] but these rely heavily on

assumptions about stationarity of statistical processes. Due to the

signal-dependence of noise, these assumptions are invalid. Another

commonly used measure of linear dynamical model fit quality is

Figure 5. Effort/performance tradeoff. The left panel presents normalized RMS tracking error e against RMS control input velocity du=dt for
young subjects (1–12), showing the existence of a tradeoff between effort and performance. The displayed line traces an effort/performance tradeoff
implied by the model, and borne out in the data for the young subjects. Subjects well fit by the optimal control model (see the optimal control results
section) are marked with circles. Subjects 1 and 10 (shown with triangles) are outliers in this panel and were not well fit by the optimal control model.
They did not reproduce the outlying behavior shown here during repeated trials as shown in [25]. The effort/performance tradeoff line is obtained by
varying the control cost parameter in the optimization while also adjusting the noise intensity to account for the multiplicative or ‘‘signal dependent’’
nature of the noise. The right panel shows that the elderly (13–24) are generally unable to obtain as favorable an effort-performance tradeoff. The
displayed reference line is not a fit to the data. Rather, it is the same line as in the young data, provided for comparison. Again subjects well fit by an
optimal control model are indicated with circles, while subjects 19, 22, and 24 are indicated with triangles.
doi:10.1371/journal.pcbi.1000708.g005
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coherence. Conceptually, this is a frequency-dependent R2-type

goodness-of-linear-fit measure [42] but coherence is well-defined

(such that it falls in [0,1]) only for empirical data smoothed using

certain tapers [36], and not for arbitrary linear models including

ours. The experimental spectral data shown in this paper are such

smoothed empirical data, and the coherence is invariably nearly

one at low frequency and nearly zero over 10 radians per second.

In terms of our model, this loss of coherence is due to dominance

of endogenous noise. Were the behavior at higher frequencies

actually productively structured, and the label of endogenous noise

therefore incorrect, then we would expect to see over-predicted

RMS error levels. This is not the case generally. Thus low

coherence at high frequencies is not a failing of our model, but a

manifestation of the limited ability of the subjects to execute

productive motion at those frequencies.

Fourth, the optimal control model would be in doubt if its

inferred latency values were inconsistent with the result from the

cross-correlation method; this is not the case, as described in detail

in the next subsection. Along similar lines, the increase in disorder

visible in Fig. 5 should be captured in our model’s parameters as

increased multiplicative noise and therefore reflected in the fitted r
parameter. Specifically, direct inspection of the data in the left

panel of Fig. 5 shows significant differences in RMS control input

u that should be correlated with age-related changes in the

multiplicative noise/control cost parameter r. Fig. 8 shows that

the expected relationship holds for the young, where it is

reasonable to assume that the effect of multiplicative noise on

this parameter is relatively uniform due to uniform health, and

variations in r result only from altered willingness to expend effort.

What is more interesting is that Fig. 7 also shows that r tends to be

larger for the elderly given some level of observed RMS control

input u. This is consistent with the empirical observation of

increased multiplicative noise.

Fifth, the optimal control model would be in doubt if more

general linear system identification techniques were able to better

fit the data. Even with a restriction to the set of all stabilizing linear

controllers with similar state dimension, the optimal controllers

represent an infinitesimal fraction of that set, due to restrictions on

the LQG cost function implied by our parametrization [38]. We

therefore compared the fit costs attained by our model fitting

method to those obtained using the more general n4sid [43] model

fitting method available in Matlab [40]. The mean ratio of the fit

costs was 1.009, and the standard deviation was 0.0062.

Sixth, the optimal control model predicts that there is a

volitional degree of freedom in response, parametrized by the

control cost component of the parameter r. Therefore a

population with uniform multiplicative noise properties should

fall along a corresponding Pareto front. This is indeed observed

among the young as shown in Fig. 5.

Last, we have a catch-all that if some phenomenon exists in the

data that is not qualitatively consistent with the model, the model

is flawed in that sense. We observe intermittent periods of stillness

(du=dt~0) that are not predicted by our model, as is visible in

Figure 6. Observed vs. implied tracking error. The observed RMS tracking errors are consistent with those implied by the fitted model.
Agreement is excellent if results are averaged across trials for each subject, as shown on the left. The amount of experimental scatter can be seen on
the right. One subject-trial is off the right hand panel. Young subjects are denoted with circles unless they were poorly fit by the optimal control
model (1,10), then they are shown with downward pointing triangles. Elderly subjects are denoted by squares except the poorly fit 19 and 24
denoted by upright triangles.
doi:10.1371/journal.pcbi.1000708.g006

Table 1. Inferred parameter summary.

parameter mean young
mean
elderly SD MISSD MITSD

control cost/mult.
noise r

20.7257 20.3010 0.4552 0.1817 0.4446

latency 20.5879 20.6252 0.1109 0.0268 0.1099

noise int. 22.7556 22.6408 0.5756 0.4205 0.5729

noise bandwidth
(BW)

0.9495 0.9039 0.2713 0.2428 0.2668

BW*int./(Mean Sq.

du=dt)
21.8566 21.7332 0.3745 0.2607 0.3448

Statistics of inferred parameters and a derived measure of multiplicative noise
intensity. Base-10 logarithms are used for normality. MISSD is median intra-
subject SD, and MITSD is median intra-trial SD across trials 3–10. BW is
bandwidth in radians per second of the endogenous noise filter Gm , and int. is
the intensity (variance per bandwidth) of the endogenous noise before that
filter. The quantity (BW*int./(Mean Sq. du=dt)) is the power of the endogenous
noise relative to the power of the exciting signal based on the fitted
parameters.
doi:10.1371/journal.pcbi.1000708.t001
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Fig. 2. These tended to occur in lower-performing subjects, and

became very pronounced for the worst-performing elderly

subjects. They appear to be either periods of inattention or

control deadbands or deadzones similar to those reported in [44].

This discrepancy reflects the approximate nature of our assump-

tion of quadratic optimality - evidently, if the appropriate

corrective motion is sufficiently small, it is sometimes ignored.

This flaw does not seem important to the phenomena we address

in this paper.

Besides consistency with the data, a good model should be

parsimonious, and we demonstrate this for young subjects in [25].

Delayed proportional control of limited bandwidth would be a

Figure 7. Typical spectral fit. This shows representative spectral fits for young (left) and elderly (right) subjects. Discrete data points are circles,
and lines are fits. They were selected by choosing the trials with median fit cost from each group. The top panel is the magnitude of the closed loop
transfer function T compared to the experimental cross spectrum of u and d . The next panel is the phase of the same quantity. It decreases,
wrapping around, as the effects of latency and limited bandwidth build up. The bottom panel is the fitted and observed power spectral density of the
control input u. The apparent overfitting is due to the model fitting process’ knowledge of the perturbation, and the dominance of the low frequency
behavior by response to the known perturbation rather than endogenous noise.
doi:10.1371/journal.pcbi.1000708.g007

Figure 8. Relationship of r to input velocity. The left panel shows that among a uniformly healthy young population whose multiplicative noise
characteristics can be expected to be uniform, a relationship between the control cost/multiplicative noise parameter r and observed RMS du=dt
exists as expected. Data points from outlying subjects 1 and 10 are shown with triangles and omitted from the displayed empirical least-squares
linear fit. The increase in this parameter at any given level of RMS du=dt for the elderly is shown in the right frame. This is consistent with increased
noise.
doi:10.1371/journal.pcbi.1000708.g008
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conceptually simpler model of response. For high values of the

multiplicative noise/control cost parameter r, our control model

becomes very similar to this strategy, and indeed the data for lower

performing subjects is well described in this way. Proposed

methods to fit both optimal and less parsimonious non-optimal

models to the behavior of healthy young subjects are surveyed in

[45]. Rather than adopting different modeling approaches for

different cohorts we simply use the optimal approach throughout.

Based on the above results, we conclude that the optimal control

model is appropriate as a model of the behavior of all young

subjects, and for the elderly except subjects 19, 24, and marginally

22. The model was consistent with the behavior of all but two

young subjects during a first session, and with the behavior of all

young subjects upon repeated testing [25].

Latency values are more precise with the optimal control
model

The inferred mean latencies using the model-based method for

young and elderly groups are 260 ms and 247 ms, therefore we

cannot attribute elderly impairment to increased response latency.

The median intra-subject standard deviations are 14 ms for the

young and 20 ms for the elderly, which is significantly less that the

variability of the cross-correlation method applied to the same

data. The difference in means is not significant: Averaging inferred

latencies within each subject, grouping them into 12 young and 12

elderly, and applying the two-tailed t-test yields a p-value of 0.175.

A histogram of the model-based inferred response latencies is

presented in Fig. 9, aiding interpretation and confirming

normality.

The optimal control model predicts slowing as a result of
increased noise

This is a computational result obtained by taking the models

fitted to the young and increasing the noise bandwidth parameter,

the noise intensity parameter, or the multiplicative noise/control

cost parameter r. The magnitude of the predicted closed loop

subject response to the perturbation decreases in each case, and

particularly at higher frequencies. This implies slowed response.

Within the structure of the optimal controller, this is associated

with smaller elements in the LQR gain matrix (in the case of r)

and longer timescales in the Kalman Filter (in the case of the noise

parameters). This is consistent with both classic results concerning

signal-dependent or multiplicative noise [7,8,11,39] and the

intuitive suggestion about averaging timescales in [2].

Within our data, the behavioral changes seen in nine of the

twelve elderly can be replicated by retuning of the optimal models

found in the young to increase noise. This follows directly from the

fact that nine of twelve elderly subjects’ behavior is well fit by our

model without significant changes from latency values from the

young group.

Optimal models fitted to the elderly are less complex
We examined the normalized Hankel Singular Values (HSVs)

of the optimal control models that we fit to the behavior of our

subjects. We found that models fit to the elderly subjects have

smaller third and fourth normalized HSVs as shown in histograms

in Fig. 10. Taking the logarithms of the mean normalized third

and fourth HSVs for each subject and again applying t-tests on

young and elderly groups yields p-values of 0.018 and 0.026,

indicating that simpler models are fitted by our method to the

behavior of the elderly group. Higher HSVs were negligible.

Discussion

The principal experimental result of this work is that age-related

impairment in a dynamic compensatory tracking task takes the

form of reduced efficiency of corrective motion without an

increase in response latency. This is a robust result in that it can be

obtained with a phenomenological cross-correlation method free

of assumptions, and reproduced with greater precision by a more

sophisticated model-based approach. The optimal control model

presented in this paper has testable implications for behavior in

this task as surveyed in the results. These indicate that it is relevant

as a model of behavior for all young subjects and most elderly

subjects. Therefore the model is relevant to analysis of at least the

initial phases of age-related changes in sensorimotor response. We

then have the computational result that if one adjusts the

parameters used in the optimal control models fitted to the

young to account for increased noise levels, the control strategy

changes in a way consistent with slowing. Thus analysis of the

computational model is consistent with the hypothesis that slowing

of post-onset response is an optimal adaptation to increased

endogenous noise. This hypothesis has been suggested before

without formulating an explicit model [2]. This hypothesis has also

been suggested based on an analysis involving hypothesized

submovements and empirical speed-accuracy tradeoffs [7], rather

than Bayesian and quadratic optimality.

Both our empirical and model-based results are inconsistent

with the generalized slowing hypothesis of aging as reviewed in

[1,28]. Fig. 5 shows that the elderly are unable to obtain as

favorable a speed/accuracy tradeoff as the young. This is

inconsistent with the hypothesis that slowing might be due to a

choice involving this tradeoff put forward in [46].

Elderly impairment is shown in Fig. 5 to manifest as

inefficient, disorderly movement; therefore we try to clarify

the definition and role of endogenous noise in this paper. As

described in the introduction, we define ‘‘endogenous noise’’ as

deviations from optimal behavior, and therefore include

suboptimal performance due to sensory, motor, conduction, or

neural processing imperfections. A similar definition is unavoid-

Figure 9. Latency from the optimal control model. Inferred
latencies using the optimal control model, confirming the absence of
increased response latency in the elderly. The young are thin black lines,
the elderly are wide gray bars. This is a histogram, meaning that we
compared inferred latencies to a set of evenly spaced reference values,
and incremented a count of subject trials corresponding to the nearest
reference value.
doi:10.1371/journal.pcbi.1000708.g009
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able when defining noise in dynamic response, and it is best

viewed as simply self-consistent. For example, in static force

production tasks or target reaching tasks, there is implicitly a

reasonable and simple model of what the subject ‘‘wants’’ to do,

and noise is defined similarly as a deviation of behavior from

that model. Any distinction between (a) involuntary cortical

‘‘dysfunction,’’ and (b) voluntary suboptimal or non-functional

behavior, is bound to be scientifically unsatisfactory absent some

quantitative measure of subject intent. Therefore we make no

such distinction. This does not mean that our claim that the

elderly have worsened endogenous signal-to-noise rests on our

model. Instead we refer the reader to the deviation of the elderly

from the Pareto front in Fig. 5, an indication that the effort/

performance tradeoff has worsened with age. This can only be

due to a worsened mixture of productive behavior (i.e. signal) to

unproductive behavior (noise).

We emphasize that optimal modeling does not assume that

the subjects behave perfectly. It is better understood as a

modeling approach that treats behavior as the sum of the effects

of an optimal controller and a random noise source, acting in a

feedback loop. The series of successful predictions of the optimal

model were detailed in the Results section. Importantly, our

report of outlying subjects shows that significantly suboptimal

strategies are viable but atypical, and thus that our assumed

form of optimality is not a trivial implication of success in the

task.

Adaptation of motor control strategies with age has been

reported elsewhere [32]. Evidence for altered control strategies

in the elderly is presented in [47],which showed that different

neural adjustments are used by the elderly during learning in an

isometric contraction reference tracking task. In addition, [48]

reports the use of co-contraction to suppress noise using EMG

measurements. This co-contraction was associated with slowing,

and thus suggests one way to implement a slowed and less

complex controller.

We investigated the possibility that reduced complexity of

elderly control strategies in this task caused reductions in

response latency that offset expected aging effects, as sug-

gested by well-documented age-complexity-latency interactions

[1,4,5,27,28,49,50]. Complexity has proven to be a ‘‘slippery’’

concept in the psychology of aging [49]. Furthermore,

quantifying complexity in a dynamic task is intrinsically more

difficult that in a discrete choice task. In our experimental

paradigm, unlike in a choice reaction task, the complexity of the

subject’s response is not constrained. We consider our task as at

least as complex as a one-bit choice reaction task in the sense

that there are two possible directions that the subject may move

their hand, and furthermore the amplitude of the motion must

be determined. There have been reports of methods to measure

the complexity in a time series (the data format of our dynamic

perturbation-rejection task) such as entropy based methods

[50,51]. In the time series entropy paradigm, complexity is a

property of the signal rather than the neural control system, and

it is determined by the output signal of the system of interest.

These entropy methods based on measuring only the output of a

system imply a paradoxical assertion that a system that outputs

noise (such as thermal noise from a resistor) is more complex

than a system that outputs structured signals (such as a brain).

The paradox can be resolved by viewing complexity as a

property of the system rather than of the signal. In the

experiment, we can only infer a system model from the signals

input to and output by the subject. This justifies treating

complexity in terms of systems’ input-output relationships as

identified in dynamical modeling. The linearity of optimal

response in our experimental paradigm made available the well-

developed tools of linear system theory, in particular, the

Hankel Singular Value (HSV). Our results show that the elderly

employ strategies of reduced controller complexity according to

this metric. We report a computational result but draw no

immediate physiological conclusions about this for two reasons.

First, we can only speculate on the relevance of this result to

response latency because the dependent variables of response

latency and inferred HSVs have too much variance (even within

the homogenous young group) to allow us to demonstrate a

HSV-latency effect within our data. Second, higher order terms

in computational models can display epiphenomena and

generally call for independent confirmation.

Concepts from our modeling approach resemble those in

contemporary work involving Parkinson’s disease. It was found in

[52] that in a pointing task with a penalty associated with

deviations from a desired time-to-completion, affected patients

were slower than healthy subjects to adjust to requests for

increased speed - without any change in endpoint accuracy. This

result contrasts with our empirical observation of increased

disorder in elderly subjects, though the comparison is necessarily

indirect due to the differences in tasks and measures.

In conclusion, the major contribution of the optimal control

model is that it quantitatively specifies the extent to which

Figure 10. Complexity: Hankel Singular Values. These histograms of normalized third and fourth Hankel Singular Values (HSVs) of inferred
controllers suggest that the complexity of the behavior of the elderly is reduced (see the Discussion). The young are thin black lines, the elderly are
wide gray bars. Fifth and higher HSVs are negligible.
doi:10.1371/journal.pcbi.1000708.g010
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subjects should use slower control strategies to reduce the effects

of noise. This is subtly different from less mathematically precise

ways of arriving at this reasonable strategy. Specifically our

model holds that the slowing should take the form of longer

timescales during the response dynamics, and makes no

prediction of longer latency until the onset of these response

dynamics. This is consistent with the surprising experimental

result that there is no increase in latency until onset of response

in this relatively complex task.

Methods

Ethics statement
All subjects completed consent forms approved by Cornell

University’s Committee on Human Subjects and brief health

questionnaires.

Experimental method
The young subjects numbered 1 through 12 were healthy

volunteers between 20 and 32 years of age. The elderly subjects

numbered 13 through 24 were between 65 and 92 years of age.

The manipulandum was a calibrated optical mouse modified to

only record lateral hand motion, and mounted on ball bearings to

reduce friction. Subjects were free to use the hand with which they

felt most comfortable. Two self-reported left-handed subjects

chose to use their right hands because they are accustomed to

using computer mice with the right hand. This did not seem to

affect the data, as the outliers were all using their right-dominant

hand. There were ten 60-second trials. The first 9 seconds of data

from each trial were discarded. Trials started every two minutes to

prevent fatigue. Each trial consisted of a different random

perturbation time history, and all subjects had the same

perturbation time histories in the same order. The results of the

first two trials are neglected to allow for learning effects. All young

and all but one elderly subjects’ behavior converged in this time, as

measured by RMS cursor error and input velocity. The software

sampled the control input u, added the perturbation p, and

updated error e at a rate of 100 samples/second. This rate ensures

that closed loop behavior is unaffected by software-induced delay,

and that measurement resolution covers the timescales of motor

behavior in the hand and arm.

Scalar latency measurements from cross-correlation data
To assign a specific time value for response latency based on

cross correlations, we looked at the peak of the second derivative of

the cross correlation with respect to lag index k (see Eqn. 3.

Because derivatives introduce spurious numerical noise, we

smoothed rU (k) by forward and backwards discrete filtering to

obtain r(k) before calculating the second derivative. We used a

second order Butterworth filter [40] with a 20 Hz cutoff

frequency.

Modeling approach
Consistent with today’s literature, we assume quadratic

optimality and Gaussian noises. We present a linear plant to be

controlled. The dynamics of our task and the basic dynamics

assumed to exist in the human are jointly described by the state

space matrix equation:

dx=dt~AxzB

v

pw

mw

2
64

3
75 ð6Þ

x~

xg

xp

xm

xt

xzu

2
666666664

3
777777775

; A~

Ag BgCp BgCm 0 0

0 Ap 0 0 0

0 0 Am 0 0

BtCg 0 0 At 0

0 0 0 0 Azu

2
666666664

3
777777775

;

B~

Bg 0 0

0 Bp 0

0 0 Bm

0 0 0

Bzu 0 0

2
666666664

3
777777775

ð7Þ

y

z

� �
~Cxz

1 0

0 rDzu

� �
n

v

� �
ð8Þ

C~
DtCg 0 0 Ct 0

0 0 0 0 rCzu

� �
ð9Þ

The state x includes states from each sub-system: a state xg from

the controlled dynamics in the software, one state xp for the pre-

filter on the external perturbation, two states (vector xm) for the

pre-filter on the motor noise, four states (vector xt) for a fourth

order Pade approximation to some delay that is assumed to exist in

the human, and one state xzu needed to implement differentiation

of the control input u over the frequency range of interest for use

in the cost function. The inputs to (7) are an ideal noise-free

control input v, a pre-filter white perturbation pw with known

statistical properties, and a pre-filter white endogenous noise mw

with known intensity. Intensity is defined as variance per sampled

bandwidth. The measurement output y available to the subject is

Cxzn, where C is such that the states involved in the

approximation to the delay affect the measurement so that the

cursor error e (identical to xg in the general notation) can only be

observed after the delay. The measurement noise is n. Each of the

subsystems is represented above in standard state-space form by

A,B,C, and D matrices [38] with appropriate subscripting. The D

matrices are zero except for Dzu and Dt. For example the

perturbation pre-filter subsystem in isolation is given by

dxp=dt~ApxpzBppw :~{0:3xpz0:3pw ð10Þ

p~Cxp :~xp ð11Þ

The above equations are in matrix form; sometimes the matrices are

scalars, and sometimes 0 is actually a matrix of zeros, as appropriate.

The cursor dynamics are given by Ag~0,Bg~1,Cg~1 so that

xg~e. The control-effort differentiation dynamics are given by

Azu~100,Bzu~1,Czu~{9999,Dzu~100. These dynamics imple-

ment differentiation of the control input across the frequency range

of interest while avoiding technical problems during LQG synthesis.

The other sub-systems (endogenous noise prefiltering Gm and

latency Gt) are now presented. The pre-filters Gp and Gm allow us

to solve the relevant equations without unreasonably assuming

white noise disturbances in the physical system. The endogenous
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noise prefilter Gm is a critically damped second order system

dxm=dt~AmxmzBmmw :~
0 1

{v2
m {

ffiffiffi
2
p

vm

� �
xmz

0

1

� �
mw ð12Þ

m~Cmxm~xm(1) ð13Þ

Our approach lumps all latencies in the system into one system Gt,

but in our simple single-input-single-output task this makes no

difference. The state space matrices At,Bt,Ct, and Dt for Gt vary

depending on the parameter, and are non-unique and unenlight-

ening. This is tolerable because they are easily created with

commercial software implementation of the Pade approximation

[40] for any given latency value and approximation order.

The measurement noise n was estimated to be at a negligible

level for all subjects by having subjects read the instructions in a

very small font. If the measurement noise is taken to be white, this

acuity corresponded to a level of noise low enough that optimal

response is insensitive to it. Non-white measurement noise models

were not pursued because their effects are ultimately indistin-

guishable in their effects on subject response u from changes in the

main endogenous noise m.

The matrix A is large and complex, but commercial software

can assemble it automatically given a block diagram and

straightforward equations for its components [40].

We assume that the subject behaves so as to minimize the

following quadratic cost:

E½e2(t)z(rdv=dt)2� ð14Þ

where E is the expectation operator [38]. This assumption is

chosen because it is tractable, consistent with contemporary

methods, and a simple way to capture the concept of ‘‘reasonable’’

control strategies. In conjunction with the linear model, this

assumption implies Linear Quadratic Gaussian (LQG) optimal

control [38]. LQG control is implemented by the series

combination of a Kalman filter (a Bayesian optimal state

estimator) and a controller that minimizes a cost defined as a

quadratic function of input and state variables. The Kalman filter

is of the form

dx̂x=dt~Ax̂xzBvzL(y{Cx̂x) ð15Þ

This equation holds that the state estimate x̂x evolves based on a

known state space dynamical matrix A, the input matrix B
describing the effects of control inputs on the state, and a Kalman

gain L times the difference between the observed measurement

y~Gtezn and the expected measurement. The assumption that

the A,B,C matrices and the noise statistics are known implies an

assumption that response is practiced and an internal model is

formed. The Kalman gain L is obtained by solving a Riccati

equation involving A,B,C, and noise variances [38], a process

automated in commercial software [40]. The ideal control input v

is then

v~{KLQRx̂x ð16Þ

where KLQR is a static gain matrix, similarly obtained by solving a

Riccati equation [38] involving A,B,C and the control cost.

Our model of the response, KLQG, is then defined by

dx̂x=dt~½A{BKLQR{LC�x̂xzLy :~Hx̂xzLy ð17Þ

v~{KLQRx̂x ð18Þ

u~vzm ð19Þ

Forms of LQG control are widely used in both control

engineering and the modeling of sensorimotor response, as

described in [9,17,22,25]. In any such approach, the optimal

controller is uniquely defined when the controlled system and the

statistical properties of all disturbances are specified.

Our model fitting procedure is done in the frequency domain. It

is technically equivalent to using a weighted function of the

discrepancy between the experimental and predicted values of the

cross- correlation of u and p as well as those of the autocorrelation of

u in the correlation- or lag-domain. We chose to use the frequency

domain for easy comparison of the smoothed experimental cross

correlation to the predicted closed loop transfer function T from p
to u, because the effects of added noise are visible in a

straightforward way in the power spectrum of u, and because it

lends itself to frequency weighting in the cost function as explained

later. A purely time domain fitting process was not used because the

expected effect of endogenous noise on the time series is zero,

making this key aspect of response invisible to the fitting process.

The predicted closed loop transfer function T and predicted power

spectrum Puu are specified by our model and the four parameters.

In order to compare it to experimental data they can be evaluated at

the sampling rate R multiplied by the discrete frequencies vk

corresponding to the Discrete Fourier Transformed experimental

data [36]. This is done in the weighted cost function

XB

k~A

(DvkT(Rvk,c){vkT̂T(vk)D2z10Dv2
kPuu(Rvk,c){v2

kP̂Puu(vk)D) ð20Þ

In this cost function, T̂T is the smoothed Discrete Fourier

Transformed cross-correlation of p and u, Puu is the predicted

power spectrum of u, and P̂Puu is the un-smoothed experimental

power spectrum of u [36]. The parameter set is represented by c. It is

appropriate to not smooth the experimental power spectrum

because response at low and middle frequencies is dominated by

linear response to a perturbation that is known during analysis. The

frequency weighting in the cost function emphasizes data at crucial

frequencies near the closed loop bandwidth, rather than low

frequency behavior that is not sensitive to key features such as

latency, thereby reducing the variance of inferred parameters and

the quality of the spectral fit in that frequency range. Results were

insensitive to varying the weight of 10 across the range of 3 to 30;

some weight is required to avoid over-fitting T at the expense of Puu.

The sensitivity of the predicted closed loop transfer function T
and the predicted power spectrum Puu to the parameters can be

summarized as follows. One can distinguish between direct effects

that occur regardless of whether the control strategy adapts, and

indirect effects due to changes in the control strategy that are

assumed to result from the subjects’ understanding of their own

latency and endogenous noise. Our method assumes that both

direct and indirect effects manifest in the data. Increasing the

control cost/multiplicative noise parameter r indirectly but

(20)
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strongly decreases DT D and DPuuD at all frequencies, especially high

frequencies. This occurs solely through the its effect on KLQR.

Increasing the latency parameter has a direct effect on the phase of

T at higher frequencies, and indirect effects through the Kalman

filter design that tend to cancel out some of the changes in phase of

T across a lower frequency range. These indirect effects are due to

the effects of changing A,B,C (which expresses changes in

At,Bt,Ct, and Dt) when solving the Riccati equations for the

Kalman filter. Increasing the endogenous noise intensity param-

eter has a direct effect of increasing Puu, especially in a range near

1–3 radians per second depending on T , and an indirect effect of

decreasing T at higher frequencies, again through effects the

Kalman filter design. Increasing the endogenous noise bandwidth

parameter directly causes an increase in the predicted Puu at

higher frequencies and has relatively small indirect effects on T ,

again through similar effects on the Kalman filter design.

Further details can be found in [25].

The Hankel Singular Value
Our measure of control strategy complexity is size of the Hankel

Singular Values (HSVs) [38] of the fitted optimal subject response.

The number of significant HSVs is the effective state dimension or

order of a linear system model. For example, one could take

reasonably noisy data from a second order system and fit a higher

order model to it, but the first two HSVs would be much larger than

the rest. In this sense the method resembles Principal Components

Analysis for linear dynamical systems. Where Principal Components

Analysis involves the Singular Value Decomposition (SVD) of a

covariance matrix, HSV analysis looks at the SVD of the product of

the controllability and observability Gramians [38]. The controlla-

bility Gramian indicates the sensitivity of the system’s states to the

inputs, and the observability Gramian indicates the extent to which

changing the system’s states leads to measurable outputs. System

states are variables that capture all information from the past

relevant to future system behavior. State dimension is essentially

identical to a concept already introduced to the aging literature as a

measure of complexity, i.e., the number of dynamical degrees of

freedom that can be regulated independently [49]. A system state

variable is precisely such a dynamical degree of freedom.

The controllability Gramian of the LQG controller in Eqns. 17,

18 is

ð?
0

eHtLLT eHT tdt ð21Þ

The observability Gramian is

ð?
0

eHT tKT
LQRKLQReHtdt ð22Þ

Without altering input-output relationships from y to v, one can

express the LQG controller using a linearly transformed state

x : ~Tx̂x such that the state equations of KLQG are expressed in

so-called ‘‘balanced’’ form, characterized by the Gramians being

equal, diagonal, and monotonically decreasing along the diagonal.

This process is described in [38] and automated in commercial

software [40]. Their SVD is then trivial, and the singular value

corresponding to each state in x indicates its relevance to input-

output behavior.

While, to our knowledge, we are the first to use HSVs in the

neurophysiological field, they have a long history of use in

system and control theory, where they are the standard method

to make decisions on what order of model is required to

approximate the behavior of dynamical systems [53]. It is often

the case that a few states are influential and the remainder may

be neglected.

Based on the preceding development, the complexity of

implementing the inferred controllers may be quantified by

examining the extent to which high order models are required

to describe the behavior of the system - that is, whether the

higher order HSVs are large. We normalized the magnitude of

all HSVs by the subject’s mean first HSV in order to eliminate

the gross effect of altered gain, which we do not consider a

form of complexity (omitting this refinement only amplifies the

age differences). The dynamical significance of larger third and

fourth HSVs in models fit to young subjects is that simpler low

order models are less able to describe their response.

The HSVs are sensitive to all of our model parameters, but

respond most strongly to multiplicative noise/control cost r:

reductions in this parameter are associated with high order

models. The HSVs are unique for a given set of the parameter

values, because the parameter values fully define the modeled

system, and the HSVs are a property of the system.

Acknowledgments

Joern Diedrichsen, Gerald Loeb, Madhu Venkadesan, Lore Thaler,

Maurice Smith, Evangelos Theodorou, Aldo Faisal, Emo Todorov, Rob

Clewley, and anonymous reviewers made helpful comments. This article is

solely the responsibility of the authors and does not necessarily represent

the official views of the National Institute of Arthritis and Musculoskeletal

and Skin Diseases (NIAMS), the National Institute of Neurological

Diseases and Stoke (NINDS), the NIH or the NSF.

Author Contributions

Conceived and designed the experiments: MS RD. Performed the

experiments: MS. Analyzed the data: MS FJVC RD. Contributed

reagents/materials/analysis tools: MS. Wrote the paper: MS.

References

1. Hartley A (2006) The changing role of the speed of processing construct in the
cognitive psychology of human aging. In: Handbook of the Psychology of Aging.

London, UK: Academic Press. pp 183–207.

2. Welford AT (1980) Relationships between reaction time and fatigue, stress, age,

and sex. In: Reaction Times. London, UK: Academic Press.

3. Welford AT (1958) Ageing and Human Skill. Oxford, UK: Oxford University

Press.

4. Yordanova J, Kolev V, Hohnsbein J, Falkenstein M (2004) Sensorimotor slowing

with aging is mediated by a functional dysregulation of motor-generation

processes: evidence from high-resolution event potentials. Brain 127: 351–362.

5. Falkenstein M, Yordanova J, Kolev V (2006) Effects of aging on slowing of

motor-response generation. Int J Psychophysiology 59: 22–29.

6. Salthouse TA (1979) Adult age and the speed-accuracy tradeoff. Ergonomics 22:

811–821.

7. Liao MJ, Jagacinski RJ, Greenberg N (1997) Quantifying the performance
limitations of older and younger adults in a target acquisition task. J Exp Psych

23: 1644–164.

8. Schmidt RA, Zelaznik H, Hawkins B, Frank JS, Quinn JT (1979) Motor-output

variability: a theory for the accuracy of rapid motor acts. Psychological Rev 86:

415–450.

9. Kleinman D, Baron S, Levison WH (1971) A control theoretic approach to man-

vehicle systems analysis. IEEE Trans Automatic Control 16: 824–832.

10. Baron S, Kleinman D (1969) The human as an optimal controller and

information processor. IEEE Trans Man Machine Systems 10: 9–17.

11. Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor

planning. Nature 394: 780–784.

12. He J, Levine W, Loeb GE (1991) Feedback gains for correcting small

perturbations to standing posture. IEEE Trans Automatic Control 36: 322–332.

Aging, Slowing, Latency, and Optimality

PLoS Computational Biology | www.ploscompbiol.org 12 March 2010 | Volume 6 | Issue 3 | e1000708



13. Kuo AD (1995) An optimal contorl model for analyzing human postural

balance. IEEE Trans Biomed Eng 42: 87–101.
14. Wolpert DM, Ghahramani Z (2000) Computational principles of movement

neuroscience. Nat Neuroscience 3: 1212–1217.

15. Paulin MG (2005) Evolution of the cerebellum as a neuronal machine for
Bayesian state estimation. Journal of Neural Engineering 2: 219–234.

16. Todorov E, Jordan M (2002) Optimal feedback control as a theory of motor
coordination. Nat Neuroscience 5: 1226–1235.

17. Todorov E (2004) Optimality principles in sensorimotor control. Nat

Neuroscience 7: 907–915.
18. Todorov E (2005) Stochastic optimal control and estimation methods adapted to

the noise characteristics of the sensorimotor system. Neural Computation 17:
1084–1108.

19. Koerding KP, Wolpert DM (2004) The loss function of sensorimotor learning.
PNAS 101: 9839–9842.

20. Koerding KP, Wolpert DM (2006) Bayesian decision theory in sensorimotor

control. Trends in Cognitive Sciences 10: 319–326.
21. Lockhart DB, Ting LH (2007) Optimal sensorimtor transformations for balance.

Nature Neuroscience 10: 1329–1336.
22. Diedrichsen J (2007) Optimal task-dependent changes of bimanual feedback

control and adaptation. Current Biol 17: 1675–1679.

23. Jagacinski RJ, Flach JM (2003) Control Theory for Humans. Mahwah, NJ,
USA: Lawrence Erlbaum.

24. Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural
coding and computation. Trends in Neuroscience 27: 712–719.

25. Sherback M, D’Andrea R (2008) Visuomotor optimality and its utility in
parametrization of response. IEEE Trans Biomed Eng 55: 1783–1791.

26. Deneve S, Duhamel J, Pouget A (2007) Optimal sensorimotor integration in

recurrent cortical networks: a neural implementation of Kalman filters.
Neuroscience 27: 5744–5756.

27. Birren JE, Fisher LM (1995) Aging and speed of behavior: Possible consequences
for psychological functioning. Annual Review of Psychology 46: 329–353.

28. Salthouse TA (2000) Aging and measures of processing speed. Biological

psychology 54: 35–54.
29. Cole KJ, Rotella DL (2001) Old age affects fingertip forces when restraining and

unpredictably loaded object. Experimental Brain Res 136: 535–542.
30. Cole KJ, Rotella DL, Harper JG (1999) Mechanisms for age-related changes of

fingertip forces during precision gripping and lifting in adults. Neuroscience 19:
3238–3247.

31. van der Lubbe RHJ, Verleger R (2001) Aging and the simon task.

Psychophysiology 39: 100–110.
32. Moschner C, Baloh WW (1994) Age-related changes in visual tracking.

J Gerontology 49: 235–238.

33. Abrams RA, Pratt J, Chasteen AL (1998) Aging and movement: variability of

force pulses for saccadic eye movements. Psychology and Aging 13: 387–395.
34. Abel AL, Troost BT, Dell’Osso LF (1983) The effect of age on normal saccadic

characteristics and their variability. Vision Research 23: 33–37.

35. Magill RA (2006) Motor Learning and Control. BostonMA, , USA: McGraw-
Hill.

36. Kay S (1988) Modern Spectral Estimation. Englewood CliffsNJ, , USA: Prentice-
Hall.

37. Venkadesan M, Guckenheimer J, Valero-Cuevas FJ (2007) Manipulating the

edge of instability. Journal of Biomechanics 40: 1653–1661.
38. Skogestad S (2005) Multivariable Feedback Control. West Sussex, England:

Wiley.
39. Kleinman D (1969) Optimal stationary control of linear systems with control-

dependent noise. IEEE Trans Automatic Control 14: 824–832.
40. MATLAB Version 7.2. Natick, MA, USA: The Mathworks Inc.

41. Neter J, Kutner M, Nachtsheim CJ, Wasserman W (1996) Applied Linear

Statistical Models. Boston, MA, USA: McGraw-Hill.
42. Shumway RH, Stoffer DS (2000) Time series analysis and its applications. New

York, NY, USA: Springer.
43. Favoreel W, de Moor B, van Overschee P (2000) Subspace state space system

identification for industrial processes. J Process Control 10: 149–155.

44. Wolpert DM, Miall RC, Winter JL, Stein JF (1992) Evidence for an error
deadzone in compensatory tracking. Journal of Motor Behavior 24: 299–308.

45. McRuer D (1980) Human dynamics in man-machine systems. Automatica 16:
237–253.

46. Welford AT (1968) Fundamentals of Skill. London, UK: Methuen.
47. Christou EA, Poston B, Enoka JA, Enoka RM (2007) Different neural

adjustments improve endpoint accuracy with practice in young and old adults.

Neurophysiology 97: 3340–3350.
48. Seidler-Dobrin RD, He J, Stelmach GE (1998) Coactivation to reduce variability

in the elderly. Motor Control 2: 314–330.
49. Newell KM, Vaillancourt DE, Sosnoff JJ (2006) Aging, complexity, and motor

performance. In: Handbook of the psychology of aging. London, UK: Academic

Press.
50. Vaillancourt DE, Sosnoff J, Newell KM (2004) Age-related changes in

complexity depend on task dynamics. J Applied Psych 97: 454–455.
51. Vaillancourt DE, Newell KM (2002) Aging and the time and frequency structure

of force output variability. J Applied Psych 94: 903–912.
52. Mazzoni P, Hristova A, Krakauer JW (2007) Why don’t we move faster?

Parkinson’s disease, movement vigor, and implicit motivation. Neuroscience 27:

7105–7116.
53. Anderson BDO (1993) Controller design: Moving from theory to practice.

Control Systems Magazine 13: 16–25.

Aging, Slowing, Latency, and Optimality

PLoS Computational Biology | www.ploscompbiol.org 13 March 2010 | Volume 6 | Issue 3 | e1000708


