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S1 Notation

Throughout this supplementary text, underlined variables are
vectors and “hatted” variables are unit vectors. For example,
a is a vector and â is its corresponding unit vector, i.e., â =
a/ ‖a‖. We use lower case, italicized letters for scalars and
boldface for functions and operators.

S2 Joint torques for producing motion and static force are
mutually incompatible

We saw from the main text (equations 1 and 2) how the pro-
duction of free finger motion and well-directed static force pro-
duction when in contact with a surface are produced by very
different equations. As a consequence, at a given posture, the
joint torque patterns for producing motion and static force are
different from each other. Not only that, the two joint torque
patterns are mutually incompatible, i.e., the torque pattern for
producing motion in a specific direction cannot produce well-
directed static force in the same direction and vice versa. Our
experimental observation of starkly different muscle coordina-
tion patterns for motion and force is not surprising given that
mechanics necessarily dictates different joint torques for mo-
tion and force.

S3 Neuromuscular model of the index finger

A dynamical model of the index finger is depicted in
Fig. S1. It is necessary for our purposes to separate the various
components—neural signals (u(t)), muscle forces (m(t)), joint
torques (τ(t)), finger mechanical condition (x(t), a vector of
joint angles ϕ, angular velocities ϕ̇ and external forces f ), and
external boundary conditions (contact or no-contact).We use a
generic model, where the various transformations (e.g., g that
generates muscle forces) could be as simple as linear functions
or as complex as nonlinear differential equations. A simple
torque-driven model was used in the main text (equations 1
and 2). Muscle models could be of various complexities. For
example, a simple model of muscle could produce muscle
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Fig. S1. Schematic for a dynamical model of index finger tapping. The
model as shown is fairly generic. Each module (g, R, finger + environment
dynamics) is in general a nonlinear dynamical system.

force linearly proportional to the neural signal, but nonlinearly
dependent on musculotendon length and velocity (force-length
and force-velocity properties of muscle (Zajac, 1989)). In con-
trast, if the neural signal did not encode muscle forces directly,
but something like muscle equilibrium length or neural thresh-
olds (Feldman, 1986, Gribble et al., 1998, Ostry and Feldman,
2003), the function g will be a relatively complicated and
nonlinear function of both the neural signal as well as the
musculotendon lengths and velocities.

Redundancy is built-in to typical models at both neural
and muscular levels because dim(u(t)) > dim(m(t)) >
dim(τ(t)). A redundant neural system will allow for a null-
space within which “preparatory” or “anticipatory” changes in
the neural control signals can happen. For example, changes
in the neural control signals would not manifest themselves
as changes in muscle forces. Similarly, redundant musculature
will allow for changes in muscle forces that will not lead to
changes in the net joint torque.

S3.a Muscle forces and their relation to joint torques

Muscle forces are translated into joint torques by the mus-
culotendon moment arms for each muscle about each joint. In
general, it could be some nonlinear function of posture.

τ(t) = Rm(t) (S3.1)

where, R is the moment arm matrix.

S3.b Muscle forces arise from neural control signals and me-
chanics

Muscle forces are not solely a consequence of either the
neural signal or the mechanical condition of the finger (x, i.e.,
ϕ, ϕ̇, f ). Rather, it is a function of both. Mathematically stated,

m(t) = g(x(t), u(t)) (S3.2)

where, g is a nonlinear function that can accommodate various
types of controllers including direct control of muscle forces
or joint torques (e.g., Todorov, 2000), motoneuronal threshold
control (e.g., Ostry and Feldman, 2003), etc.

S3.c Affine approximation

We now simplify equation (S3.2) to a linear model. The
Taylor series expansion for the function g about some nominal
point (x0, u0) is,

g(x, u) ≈ g(x0, u0)+
∂g
∂x

∣∣∣∣∣
(x0,u0)

(x−x0)+
∂g
∂u

∣∣∣∣∣
(x0,u0)

(u−u0)

(S3.3a)
Let us consider first the special case where x = x0. Then, the
Taylor series approximation can be further simplified to,

g(x, u) ≈ Ψu +
(
g(x0, u0)−Ψu0

)
(S3.3b)

where,

Ψ =
∂g
∂u

∣∣∣∣∣
(x0,u0)

(S3.3c)

Without loss of generality, we can set the constant term (not
dependent on u) to 0 in equation (S3.3b). Therefore, we are now
left with the following simplified model that, at x0, maps the
neural control signal to muscle forces when the control signal
is close to some nominal signal u0.

m = Ψ(x0)u (S3.4)

To emphasize the dependence on mechanical condition, we
only show the dependence of Ψ on x0, although it clearly also
depends on u0.

S4 Proof of switching between mutually incompatible un-
derlying neural control strategies

We show in Fig. S2 an abstraction of the main experimental
finding of a switch in muscle coordination pattern before con-
tact occurs. The finger’s mechanical condition is nearly identi-

m(t) • mf
^ ^

t

1

c < 1

t1 t2 tf

m2

m1

mf

Contact

Motion phase Force phase

Fig. S2. This figure shows a schematic of the main experimental finding,
namely, the muscle coordination pattern vector switches from that for motion
to that for static force even before contact occurs. This schematic shows the
vector dot product of the unit vector corresponding to the time-varying muscle
coordination pattern with the unit vector of the reference muscle coordination
pattern. The reference muscle coordination pattern is that which produces
static fingertip force. The time-stamps and muscle coordination patterns of
interest are indicated using the subscripts 1, 2, and f.

cal between t1 and t2 because we found experimentally that the
transition happened rapidly (in less than 60ms). Therefore, we
make the approximation that x1 ≈ x2. Leading to, Ψ(x1) ≈
Ψ(x2). Call these Ψm (subscript ‘m’ for motion). Finally, sup-
pose that m1, m2 and mf are all generated by collinear neural
control signals, i.e., there exists û∗ and scalars k1, k2, and kf
such that

ui = kiû
∗, i = 1, 2, f (S4.5)
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Substituting these into equation (S3.4) and using appropriate
Ψ,

m1 = Ψmk1û
∗ (S4.6a)

m2 = Ψmk2û
∗ (S4.6b)

mf = Ψfkfû
∗ (S4.6c)

These relationships are succinctly summarized in Fig. S3.

Contact

t1 t2 t f

ΨΨ ΨΨf
=

m=m f
u =u f kf u*

^=
ΨΨ ΨΨm=

u u2 k2 u*^= =
m=m2

ΨΨ ΨΨm=

m m1=
k1 u*^=u u1=

Fig. S3. This figure succinctly summarizes how various relevant variables
and mappings change at each snapshot of the finger.

Finally, there are three relationships between muscle coor-
dination patterns that we know to be true based on the experi-
mental results (Fig. S2).

m̂2 · m̂f = 1 (S4.7a)

m̂1 · m̂2 = c 6= 1 (S4.7b)

m̂1 · m̂f = c 6= 1 (S4.7c)

These equalities will be used below to show that the underlying
neural control signal had to undergo a rapid switch as well.

S4.a Validation of simplified affine model

We first perform a validation of our simplified model to test
whether it allows for a change in muscle coordination pat-
tern without a change in the underlying neural control sig-
nal. Namely, whether equation (S4.7c) taken by itself can re-
sult from collinear underlying neural control signals (equa-
tions (S4.6a) – (S4.6c)).

m̂1 · m̂f 6= 1 =⇒ m̂1 6= m̂f

=⇒ ��k1Ψmû∗

��k1 ‖Ψmû∗‖
6= ��kfΨfû

∗

��kf ‖Ψfû∗‖

=⇒
(

Ψm

‖Ψmû∗‖
− Ψf

‖Ψfû∗‖

)
û∗ 6= 0

û∗ /∈ null
(

Ψm

‖Ψmû∗‖
− Ψf

‖Ψfû∗‖

)
(S4.8)

It is in general possible to find such a û∗ that satisfies equa-
tion (S4.8) because Ψm and Ψf are patently different from each
other.

S4.b Proof by reductio ad absurdum

Consider the left-hand-side of equation (S4.7b) and substi-
tute for m̂1 and m̂2 from equations (S4.6a) and (S4.6a), respec-
tively. This enforces the assumption that the underlying neural

control signals are collinear (i.e., mutually compatible). This
assumption leads to the following result.

m̂1 · m̂2 =

(
��k1Ψmû∗

)
·
(
��k2Ψmû∗

)
��k1 ‖Ψmû∗‖��k2 ‖Ψmû∗‖

= 1 (S4.9)

This is in direct contradiction with the experimental fact given
in equation (S4.7b). Therefore, we can conclude that the motion
and force phases of the task are accomplished by mutually
incompatible underlying neural control strategies. 2

S5 Generalizing to include neural and muscle redundancy

S5.a Generalization by considering neural redundancy

Neural redundancy permits changes in the underlying neu-
ral control signal that do not reflect as changes in muscle co-
ordination pattern, i.e., relaxing the collinearity assumption of
Equation (S4.5). Symbolically stated, there exist ε1, ε2, and εf
such that,

ε1 ∈ null(Ψm) (S5.10a)

ε2 ∈ null(Ψm) (S5.10b)

εf ∈ null(Ψf) (S5.10c)

leading to,

ui = kiû
∗ + εi, where i = 1, 2, f (S5.11)

Clearly neural redundancy defined as above has no effect on the
proof outlined in Section S4.b so long as εi are of small enough
magnitude for our affine approximation to be reasonable. This
is because, by substituting equations (S5.10a) – (S5.10c) in
equations (S4.6a) – (S4.6c) it is readily seen that the steps
presented in Sections S4.a and S4.b remain exactly unchanged.

S5.b Consideration of muscle redundancy

It remains to be shown that the changes in muscle coordina-
tion pattern between t1 and t2 were not merely a consequence of
muscle redundancy with no effect on joint torques. This result
is not immediately apparent because of the following reason.
From equation (S3.1) we see that if two muscle coordination
patterns m1 and m2 are such that their difference m1 −m2 ∈
null(R), then, τ1 = τ2.

Recall that the moment arm matrix depends only on the
posture (Valero-Cuevas et al., 1998, Valero-Cuevas, 2000) and
not on the contact with the surface. Therefore the matrix R at
times t1, t2, and tf are all nearly identical. This in turn leads to,

m̂2 = m̂f =⇒ τ̂2 = τ̂f (S5.12a)

Moreover, τ̂1 6= τ̂f cf. Section S2 (S5.12b)

∴ τ̂1 6= τ̂2 from equations (S5.12a) and (S5.12b)

Hence we conclude the joint torques also switched before
contact occurred. Therefore, the observed EMG switch does not
reflect an anticipatory transition within the null-space of R.
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