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Abstract—The field of complex biomechanical modeling has be-
gun to rely on Monte Carlo techniques to investigate the effects
of parameter variability and measurement uncertainty on model
outputs, search for optimal parameter combinations, and define
model limitations. However, advanced stochastic methods to per-
form data-driven explorations, such as Markov chain Monte Carlo
(MCMC), become necessary as the number of model parameters
increases. Here, we demonstrate the feasibility and, what to our
knowledge is, the first use of an MCMC approach to improve
the fitness of realistically large biomechanical models. We used a
Metropolis–Hastings algorithm to search increasingly complex pa-
rameter landscapes (3, 8, 24, and 36 dimensions) to uncover under-
lying distributions of anatomical parameters of a “truth model”
of the human thumb on the basis of simulated kinematic data
(thumbnail location, orientation, and linear and angular veloci-
ties) polluted by zero-mean, uncorrelated multivariate Gaussian
“measurement noise.” Driven by these data, ten Markov chains
searched each model parameter space for the subspace that best fit
the data (posterior distribution). As expected, the convergence time
increased, more local minima were found, and marginal distribu-
tions broadened as the parameter space complexity increased. In
the 36-D scenario, some chains found local minima but the majority
of chains converged to the true posterior distribution (confirmed
using a cross-validation dataset), thus demonstrating the feasibility
and utility of these methods for realistically large biomechanical
problems.

Index Terms—Bayesian statistics, biomechanical model, Markov
chain Monte Carlo (MCMC), Metropolis–Hastings algorithm, pa-
rameter estimation, thumb.
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I. INTRODUCTION

THE FIELD of complex biomechanical modeling has be-
gun to rely on Bayesian techniques to explore the effects of

anatomical variability and measurement uncertainty on model
predictions in an open-loop manner. Prior studies have used
Monte Carlo methods on biomechanical models of the thumb
[1], [2], arm [3], elbow [4], shoulder [5]–[7], knee [8]–[10],
spine [11], tongue [12], motor-unit populations [13], and bone
mechanics [14]. Recently, response surface mapping has also
been used to establish distributions of biomechanical model per-
formance resulting from uncertainty in input parameters [15].
A key feature of Monte Carlo methods, the most commonly
used subset of Bayesian techniques, is the explicit exploration
of the parameter space by the dense sampling of each param-
eter as per assumed probability distribution functions. Monte
Carlo simulations are “open-loop” in which independent sets
of model parameters are drawn randomly from assumed prior
distributions p(θ), which reflect all prior knowledge about the
model parameters, and fed through deterministic equations f(θ)
to predict distributions of system behavior (see Fig. 1).

Unfortunately, a severe limitation of Monte Carlo methods is
that their computational demands grow exponentially with the
number of model parameters [16]. When the number of param-
eters is large and/or each iteration is computationally expensive,
such open-loop methods become computationally prohibitive.
However, we can improve the efficiency of the simulations us-
ing advanced stochastic methods. One approach is to make the
stochastic search data driven (or “closed loop”) by drawing
dependent sets of parameters randomly from proposal distribu-
tions, feeding them through deterministic equations to predict
system behavior, and comparing the predictions to experimental
observations in a feedback manner (see Fig. 1). As a result, such
data-driven MCMC sampling is biased toward parameter values
that lead to model predictions that best agree with experimental
data in a least-squares sense [17] (see Appendix A).

While Monte Carlo methods have been applied to biomechan-
ical model parameter spaces ranging from 4 [14] to 50 dimen-
sions [1], the use of MCMC methods has not been demonstrated
for realistically large biomechanical models. To our knowledge,
MCMC methods have only been used to match 3-D models of
the human body to markerless motion capture data [18] and es-
timate neural activity from biosignals [19]–[21]. In this paper,
we use synthetic data from a model of the human thumb as a
proof-of-concept of an MCMC Metropolis–Hastings algorithm
to explore a complex 36-D model parameter space and improve
the fitness of the model. In addition, we explicitly investigate
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Fig. 1. Open-loop structure of Monte Carlo simulations is enclosed by the
gray dashed line. Note that Monte Carlo simulations always draw from the prior
distributions, while MCMC simulations draw only from the prior distributions
at the first iteration. All subsequent MCMC candidate parameter sets are pertur-
bations of the most recent parameter sets. MCMC simulations directly compare
model predictions and experimental data in a closed-loop manner. We built our
Markov chains using a Metropolis–Hastings algorithm and single-site updating
(see Section II-A for details on the notation).

the effects of parameter variability and uncertainty on biome-
chanical model performance.

II. METHODS

Using a truth model approach, we arbitrarily defined model
parameters for a 5-DOF kinematic model of the thumb. We then
generated synthetic, noisy kinematic output data for this model.
Ten independent Markov chains [22] driven by these noisy data
searched the model parameter space, which we systematically
expanded from 3 to 8, 24, and 36 dimensions, for the subspace
that best fit the data. We constructed chains with a Metropolis–
Hastings sampling algorithm [23]–[25] on dual INTEL XEON,
2.4-GHz machines. We developed custom C code using the
GNU Scientific Library [26], the MICROSOFT Visual Studio
.NET Development Environment 2003, and the INTEL C++
Compiler 9.0. We performed the postanalysis in MATLAB 7.1
for visualization purposes.

Our prior work on Monte Carlo simulations of an anatomy-
based model of the thumb [27]–[29] employed open-loop sim-
ulations and used experimental data to establish prior distribu-
tions, but did not use experimental data as a means to effec-
tively explore the parameter space [2]. In this paper, we apply
closed-loop MCMC simulations to the same model structure
with nonorthogonal and nonintersecting axes of rotation and add
model parameters to relate the model to surface marker experi-
mental data. Thus, the model has 36 independent parameters
(8 bone dimensions [30], 16 axes of rotation parameters
[27]–[29], and 12 coordinate transformation parameters [31])
summarized by θ (see Fig. 2). The input variables to the 5-DOF
serial linkage model are joint angles q and joint angular veloc-
ities q̇ representative of unimpaired kinematic behavior [31].

Fig. 2. (a) Model structure consists of 36 independent model parameters: 8
bone dimensions [30], (b) 16 axes of rotation parameters [27]–[29], and (c),
(d) 12 coordinate transformation parameters [31]. One transformation relates
the proximal end of the thumb at the base of the trapezium to a space-fixed
coordinate system on the back of the hand, while the other relates the distal end
of the thumb at the tip of the distal phalanx to a body-fixed coordinate system
on the thumbnail.

The output variables obtained deterministically from the serial
linkage model are 3-D thumbnail location, orientation, linear
velocities, and angular velocities.

The experimental data matrix X is composed of n rows of ob-
servations × k = 13 columns of kinematic outputs. The jth ob-
servation makes up the jth row of data matrix X, whose individ-
ual elements are represented by xj,k . Three-dimensional thumb-
nail location (x, y, z), orientation (expressed by four quaternion
parameters q0 , q1 , q2 , q3 [32], [33]), and linear velocity (ẋ, ẏ, ż)
are expressed in Ffixed , a fixed global reference frame whose
origin is located on the dorsum of the hand just proximal to the
distal tip of the third metacarpal [Fig. 2(c)]. Angular velocity
(ω′

x ,ω′
y ,ω′

z ) is expressed in Fthumbnail , a local reference frame
whose origin is located in the center of the thumbnail [Fig. 2(d)].
For both Ffixed and Fthumbnail , the (+)x-, y-, and z-axes point
palmarly, radially, and distally, respectively

Xj = [x y z q0 q1 q2 q3 ẋ ẏ ż ω′
x ω′

y ω′
z ]j . (1)

A. Constructing Markov Chains Using Metropolis–Hastings
Sampling Scheme

Ideally, we would know our target distribution π(θ) (the pos-
terior distribution p(θ|X), or the probability of the model pa-
rameter set θ given observed data X) and it would be a simple
analytical expression or easy to sample from directly. When this
is not the case, we can still estimate the target distribution by
sampling from a stationary distribution π∗(θ) that is propor-
tional to the target distribution π(θ) and draw inferences on
these results. We can estimate the expectation of any function
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of θ using averages of samples drawn after convergence to the
stationary distribution.

The key to the MCMC approach is the use of an appropri-
ate sampling scheme to construct ergodic Markov chains that
converge to such a stationary distribution. If run long enough,
these chains will locate and forever sample from a stationary
distribution whose existence and uniqueness is guaranteed [34]
and is our posterior distribution of interest by design. With
the Metropolis–Hastings algorithm, we build ergodic chains by
drawing each candidate parameter set θcand from a proposal
distribution q(θcand |θ(i−1)) and accepting θcand with an accep-
tance probability α as per [23]–[25]

α(θcand , θ(i−1)) = min

{
π(θcand)q(θ(i−1) |θcand)
π(θ(i−1))q(θcand |θ(i−1))

, 1

}
. (2)

At each iteration, if a randomly drawn uniform variable U(0, 1)
lies in the [0,α] range, we accept θcand and set θ(i) = θcand .
Otherwise, we reject θcand and set θ(i) = θ(i−1) .

1) Prior Distributions: Boundaries on the prior distribu-
tions p(θ) can be set to known physiologically limited ranges
(e.g., minimum/maximum bone length). Certainty or uncer-
tainty can be represented by using distributions having small
or large variances, respectively. We created bounds (mean ±
standard derivation) for our conservative, noninformative, uni-
form prior distributions using sparse published [27]–[29] and
measured data [30], [31]. Inappropriate selection of prior dis-
tribution bounds may exclude regions of the model parameter
space where the posterior distribution actually resides. However,
the shape of the prior distributions is not that critical due to the
memoryless nature of the Markov chains. If run long enough,
the chains will eventually converge to the distribution of interest
regardless of “poor” initial conditions.

2) Proposal Distributions: The initial candidate parameter
set θcand , the starting point of the chain, is drawn randomly
from the prior distributions (see Fig. 1). The remaining θcand
are perturbations of the most recent parameter set θ(i−1) by a
“jump width” vector c whose elements are independently scaled
by a uniform random variable u ∼ i.i.d. 1 U(0, 1) [35] for p =
1, . . . , dparam , the dimensionality of the model parameter space

θp,cand,temp = θp,(i−1) ± (cpup). (3)

Each c element is first arbitrarily set to 0.1% of each parameter’s
allowable range. To gauge search efficiency, we calculate the ac-
ceptance rate as the percent of the total iterations that we accept
θcand . High and low rates mean that the chain is “wandering”
excessively (need to increase c) or “stuck” (need to decrease
c), respectively. While convergence is guaranteed by ergodicity
regardless of the acceptance rate, we adjust c automatically to
achieve rates between 30% and 70% for each model parameter

1i.i.d.: independent and identically distributed.

to minimize computing time [36]. We use a reflection tech-
nique [37] to ensure that all proposed model parameters remain
within the prior distribution boundaries (LBp ,UBp)

θp,cand :=






2LBp + cpup − θp,(i−1) , if θp,cand,temp<LBp

2UBp − cpup − θp,(i−1) , if θp,cand,temp>UBp

θp,cand,temp , otherwise.
(4)

3) Likelihood Function: The likelihood function p(X|θ) is
the probability of observing data X given the model parameter
set θ. For our likelihood function, we assume that the exper-
imental data matrix X is composed of n i.i.d. observations.
We assume that each observation Xj [the jth row of data ma-
trix X, (1)] is i.i.d. from a multivariate Gaussian distribution
MVN(f(θ), Σ̂) with a vector of means f(θ) that is a deter-
ministic function of θ and a covariance matrix Σ̂ = diag(σ̂2

k ),
where k = 1, . . . , dexpt , the dimensionality of the experimental
measurements (number of columns in X).

At each iteration, we estimate σ̂2
k as the sum of the squared

residuals divided by a random variable from a χ2-distribution
with (n − 1) DOF. The variance estimates are affected by
both measurement uncertainty in Xj and modeling errors in
fpred(θ(i) , qj

, q̇
j
), where q

j
and q̇

j
represent the constant input

joint angles and joint angular velocities for the jth observation

σ̂2
k =

∑n
j=1[xj,k − fk (θ, q

j
, q̇

j
)]2

χ2
(n−1)

. (5)

After applying these assumptions and simplifying (see
Appendix A), we are left with the following acceptance proba-
bility equation (6), as shown at the bottom of the page.
If θcand does not predict the experimental data matrix X well,
α is small and θcand is less likely to be accepted.

4) Updating Scheme: The probability of proposing and ac-
cepting a “jump” from one point in our high-dimensional param-
eter space to an entirely unrelated point in the space is very low.
Thus, we adopt the “single-site” updating scheme, or “single-
component Metropolis–Hastings,” in which one element of the
model parameter set is varied at a time [37]. For each itera-
tion i, we perform an update step m for each dimension in the
model parameter space (e.g., m = 36 update steps for the 36-D
space of test case 6). At the first update step, we perturb the first
element of θcand [via (3)], shown here for the 36-D test case

θcand,(m=1),(i) =





θ1,cand

θ2,(i−1)

...

θ36,(i−1)




. (7)

α(θcand , θ(i−1)) = min





exp

{
−(1/2)

∑de x p t
k=1

∑n
j=1 [xj,k − fk (θcand , q

j
, q̇

j
)]2/σ̂2

k,(i−1)

}

exp
{

(−(1/2)
∑de x p t

k=1
∑n

j=1 [xj,k − fk (θ(i−1) , qj
, q̇

j
)]2/σ̂2

k,(i−1)

} , 1




 (6)
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We calculate the acceptance probability and either ac-
cept (θ1,(i) = θ1,cand ) or reject (θ1,(i) = θ1,(i−1)) the element
θ1,cand . At the second update step, we perturb the second ele-
ment θ2,cand and so on

θcand,(m=2),(i) =





θ1,(i)

θ2,cand

θ3,(i−1)

...

θ36,(i−1)





. (8)

B. Post Hoc Analysis

1) Assessing Convergence of MCMC Simulations: MCMC
being a stochastic process, there is no analytical expression
for predicting a sufficient number of iterations prior to running
the simulations. Thus, we run diagnostics on MCMC simulation
outputs in a post hoc manner. We use the Gelman–Rubin conver-

gence diagnostic
√

R̂ [38], [39] to assess convergence because it
is an empirical metric that is recommended for use with multiple

chains. Briefly,
√

R̂ compares the variance among independent
Markov chains to the variance within each chain [22], [36], [37]
and approaches one as the independent chains converge to and
sample from the same stationary distribution. In practice, we

want
√

R̂ to permanently fall below a threshold (1.2, per [39])
for all input and output scalars of interest, as this indicates

convergence. The iterations preceding the crossing of the
√

R̂
threshold are discarded as part of the burn-in period.

The iterations after the burn-in period are often thinned ac-
cording to a user-specified thinning interval p to reduce costs
such as computational storage and postanalysis time [22], [39].
Every pth iteration of each chain is selected and pooled. The
model parameter set at each of these pooled iterations is a draw
from the joint posteriors and can be used to draw inferences
about the model. We know of no widely accepted number of
converged iterations necessary for adequate sampling of the
posterior distribution, but due to the law of large numbers [40],
many iterations beyond convergence will only serve to refine
the distribution. We arbitrarily extended chains to obtain 25 000
converged iterations per chain, thus ensuring 1000 thinned iter-
ations with p = 25.

2) Posterior Predictive Sampling: To obtain posterior pre-
dictive samples fpred,noisy (θ(i) , qj

, q̇
j
) that account for mea-

surement noise, we add zero-mean, uncorrelated multivariate
Gaussian noise [Σ̂(i) = diag(σ̂2

(i)); (5)] to the deterministic
model predictions fpred(θ(i) , qj

, q̇
j
)

fpred,noisy (θ(i) , qj
, q̇

j
)=fpred(θ(i) , qj

, q̇
j
)+MVN(0, Σ̂(i)).

(9)
The distributions of the posterior predictive samples (over all
thinned, converged iterations) are then compared to each inher-
ently noisy experimental observation Xj .

Fig. 3. Truth model test cases used for the validation of our Metropolis–
Hastings sampling algorithm are shown. From left to right, the models were
assigned 3, 3, and (3, 8, 24, and 36) free model parameter values, respectively
(see Table I).

3) Cross-Validating the Model: Posterior predictive sam-
pling indicates how well the joint posteriors can predict the ex-
perimental data provided to the Metropolis–Hastings algorithm.
However, model cross validation must be performed using a sep-
arate set of experimental observations Xval not provided to the
algorithm. Cross validation is identical to posterior predictive
sampling except that each joint posterior draw θ(i) is used to
predict model outputs under different conditions (i.e., different
joint angles q and joint angular velocities q̇). The variance es-
timates are recalculated [see (5)] and noise is added [see (9)]
prior to comparison with Xval .

C. Validating Sampling Algorithm Using Truth Model
“Test Cases”

Truth models are used to validate algorithms because the
researcher defines the model structure, its parameter values,
and its deterministic behavior, and focuses on the algorithm’s
performance itself. In this paper, we defined a “virtual sub-
ject” having a true model parameter set θtrue and model in-
puts (joint angles q and joint angular velocities q̇). We cal-
culated the deterministic model outputs f(θtrue , q, q̇), which
were necessarily free of measurement noise. We added simu-
lated zero-mean, uncorrelated multivariate Gaussian “measure-
ment noise” MVN(0, Σ̂true) to our deterministic model outputs
f(θtrue , q, q̇) and treated the noisy results f(θtrue,noisy , q, q̇) as
experimental data, similar to our posterior predictive methods
[see (9)]. For convenience, we defined Σ̂true = diag(σ̂2

k,true).
We used these simulated “noisy” experimental data to drive our
MCMC simulations

f(θtrue,noisy , q, q̇) = f(θtrue , q, q̇) + MVN(0, Σ̂true). (10)

Due to the high-dimensional nature of the parameter space
and the fact that we were developing custom C code, we worked
through a series of truth model “test cases” to validate our al-
gorithm (see Fig. 3 and Table I).Test cases 1–3 used three free
parameters only, requiring a search of a 3-D parameter space.
Test cases 1 and 2 were planar and 3-D kinematic models of the
thumb, respectively, with orthogonal and intersecting axes of
rotation. Test case 3 was a trivial upgrade to test case 2 that used
different constants for the axes of rotation model parameters to
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TABLE I
SIX TRUTH MODEL TEST CASES WERE USED TO VALIDATE OUR METROPOLIS–HASTINGS SAMPLING ALGORITHM (SEE FIG. 3)

simulate a kinematic model of the thumb based on the “virtual
five-link model” with nonorthogonal and nonintersecting axes
of rotation (Table I). Once the sampling scheme worked for these
three test cases, we systematically increased the dimensionality
of the parameter space from 3 to 8, 24, and 36. Test case 6, with
the 36-D parameter space, is the level of complexity we are truly
interested in for practical application to experimental data.

III. RESULTS

Despite the high-dimensional model parameter space, the
MCMC simulations converged, and the joint posterior distri-
bution for all model parameters was obtained for test cases

ranging from 3 to 36 dimensions. As expected, the burn-in pe-
riod increased as the dimensionality of the model parameter
space increased (Table II). The true posterior distribution for
the 3-D test case 3 was found quickly, while the 36-D test case 6
took much longer (burn-in iterations of 919 and 56 400, respec-
tively). The Markov chains also found more local minima as the
dimensionality of the model parameter space increased. All ten
chains settled on a single minima (true posterior) for the 3-D
and 8-D test cases. The ten chains located two and four local
minima (including the true posterior) for the 24-D and 36-D test
cases, respectively.

Not surprisingly, our search of the 36-D test case 6 took the
longest to converge likely due to the “curse of dimensionality”
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TABLE II
SUMMARY OF MCMC CONVERGENCE STATISTICS IS SHOWN FOR SIX TRUTH

MODEL TEST CASES

Fig. 4. Time history of the sum of the squared residuals [summed across all
data points, see numerator of (5)] is shown for a representative model output
(thumbnail x-coordinate) for the 36-D test case 6. Each trace corresponds to the
performance of a single Markov chain. The burn-in iteration is represented by
the vertical line at iteration 56 400. The six-chain subset that located the true
posterior distribution had values on the order of 2E−4m2 . Four other chains
had larger residuals ranging from 4E−2 to 8E−2m2 , suggesting that they had
found local minima.

[16] as well as the potential for an increased number of local
minima in the fitness landscape. For test case 6, we ran ten
independent Markov chains of 105 000 iterations each on 2.4-
GHz dual INTEL XEON machines, which took 255.5 h (49 h
for MCMC simulations in C and 206.5 h for postanalysis in
MATLAB 7.1), or approximately 10.6 days of wall clock time.

For the 36-D model parameter space, the time history of the
sum of the squared residuals between the model predictions and
the simulated experimental data [numerator of (5)] showed that
a six-chain subset (majority of the ten independent chains) had
sums of squared residuals that were two orders of magnitude
smaller than the next best-performing chain. Upon further in-
spection, it was found that this six-chain subset had converged to
the true posterior distribution, while the remaining four chains (a
single two-chain subset and two individual chains) found other
local minima in the 36-D landscape (see Fig. 4). In all, four
distinct types of behavior were observed after convergence.

When including all ten Markov chains for the 36-D test case
6, the Gelman–Rubin convergence diagnostic failed to converge

to values below our threshold of 1.2. By restricting the
√

R̂
calculations to the six-chain subset, we determined a burn-in
period of 56 400 iterations (see Fig. 5). At this point, each of the
six independent chains had located the true posterior distribution

Fig. 5. For the best-performing six-chain subset from the 36-D test case 6, the

Gelman–Rubin convergence diagnostic values
√

R̂ satisfied our threshold of
1.2 (dashed line) by a burn-in iteration of 56 400 (vertical line).

Fig. 6. (a) Overdispersed initial conditions (solid squares) for ten independent
Markov chains are shown for two representative parameters for the 36-D test
case 6. Some chains (e.g., 1) located the true posterior (true parameter values
marked by a star), while others (e.g., 2) found local minima. (b) History of the
six-chain subset is shown for three representative parameters for the 36-D test
case 6. Burn-in and pooled converged iterations are shown in gray and black,
respectively. For both (a) and (b), prior distribution bounds are represented by
dashed lines, and tick marks and triangles on the axes indicate the parameter
bounds and true values, respectively.

and were sampling from the same region of the model parameter
space despite their overdispersed initial conditions.

For the 36-D test case 6, the first 7500 iterations are shown for
two representative model parameters in Fig. 6(a). This subplot
illustrates the overdispersed initial conditions of the ten Markov
chains, exploration of the parameter space, and the movement of
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Fig. 7. Marginal distributions are shown for the eight bone parameters [30]
for the 36-D test case 6 (gray bars) and the 3-D test case 3 [black bars in (a),
(d), and (f)]. Dashed lines indicate the 95% confidence intervals (for the 36-D
test case 6), while tick marks and triangles on the x-axes indicate the parameter
bounds and true values, respectively.

some of the chains toward the true posterior distribution. Note
that an open-loop Monte Carlo integrator must randomly sam-
ple from the entire volume to achieve convergence. Fig. 6(b)
shows the burn-in iterations as well as samples from the true
posterior for three representative model parameters. While only
3-D results are shown, convergence occurred in 36-D for this
test case 6, making the efficiency of the MCMC approach all
the more striking. It is clear that independent chains are able
to converge to the appropriate region of the high-dimensional
parameter space without the computationally prohibitive explo-
ration of every point in the 36-D space.

From our thinned, converged posterior distribution draws, we
immediately have the probability density function for each el-
ement of θ, also called the marginal distribution. The marginal
distributions for the 3-D test case 3 are sharp and have tight
ranges [Fig. 7(a), (d), and (f)]. With only three free model pa-
rameters, there are relatively few parameter combinations that
lead to model predictions that agree well with the simulated ex-
perimental observations. In contrast, the marginal distributions
for the 36-D test case 6 varied in breadth (Figs. 7–9). Of the eight
bone parameters, the longitudinal lengths of the thumb bones
appeared to be the most important for predicting the simulated
kinematic experimental data.

Of the 16 axes of rotation model parameters, those spec-
ifying the orientation of the most proximal joint axes (e.g.,
BETAcmcAA) had the most narrow marginal distributions, sug-
gesting their importance in the model (see Fig. 8). Almost all
model parameters associated with the 3-D frame transforma-
tions at the proximal base and distal tip of the thumb had ex-
tremely sharp marginal distributions, highlighting the sensitivity
of the model to these parameters (see Fig. 9).

Fig. 8. Marginal distributions are shown for the 16 axes of rotation parameters
[27]–[29] for the 36-D test case 6. Dashed lines indicate the 95% confidence
intervals, while tick marks and triangles on the x-axes indicate the parameter
bounds and true values, respectively.

For the 36-D test case 6, the errors in the posterior predictive
samples for the six chains were minimal [Fig. 10(a) and (b)]. De-
spite the noise in the simulated data [see (10)], the Metropolis–
Hastings algorithm was able to estimate and account for the
simulated measurement errors that we added to the “clean” de-
terministic truth model outputs to successfully locate the true
posterior distribution. The errors in the posterior predictions for
the cross-validation dataset were also minimal [Fig. 10(c) and
(d)], demonstrating that the algorithm did not simply overfit the
data given, but actually found the true parameters in the 36-D
space.

IV. DISCUSSION

We have demonstrated a proof-of-concept for our
Metropolis–Hastings sampling algorithm for a complex 36-D
model parameter space with practical application to experimen-
tal data. Contrary to the assumed notion that MCMC methods
are computationally prohibitive for nontrivial models, we have
shown the feasibility of MCMC methods to improve the fitness
of biomechanical models with large numbers of parameters.
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Fig. 9. Marginal distributions are shown for the 12 parameters for the frame
transformations at the proximal base and distal tip of the thumb [31] for the
36-D test case 6. Dashed lines indicate the 95% confidence intervals, while tick
marks and triangles on the x-axes indicate the parameter bounds and true values,
respectively.

Fig. 10. Posterior prediction [(a) and (b)] and cross-validation [(c) and (d)]
results are shown for the 36-D test case 6 for two experimental outputs: x
and y thumbnail coordinates. (a) Posterior predictive samples (gray points) are
clustered around the true model outputs (solid circles) despite the use of noisy
data [open circles; see (10)]. (b) Posterior predictive sample errors are shown for
a single data point [see box in (a)]. The solid and open circles indicate the true
error value of zero and offset of the noisy simulated data point, respectively.
(c) Model predictions (gray points) are clustered around the cross-validation
data (solid circles). (d) Close-up view of a single data point [see box in (c)] is
shown.

The advantages, limitations, implications, and applications of
this paper are described here.

A. Foundation for Bayesian Approach

MCMC methodology is often criticized for its subjective se-
lection of the prior distribution. However, proponents of the
Bayesian philosophy counter that: 1) prior information should
be used if available [22]; 2) if the MCMC simulations are run
to convergence, the use of possibly naı̈ve prior distributions be-
comes less important as the data “speak for themselves” [22],
[36]; and 3) the subjective selection of the prior distribution is
no different from the a priori subjective selection of a likelihood
function for maximum likelihood estimation [22].

The Bayesian viewpoint is particularly appropriate for biome-
chanical modeling, where anatomical variability is the rule, be-
cause each parameter has its own probability distribution. A fre-
quentist approach yields a single set (point estimate) of model
parameters that optimizes some objective function [41]. In con-
trast, a Bayesian approach such as MCMC yields distributions
(cloud estimates) of model parameters and their outputs that
have been informed by experimental data [37]. With distribu-
tions, revealing properties are immediately available: probabil-
ity densities, parameter ranges, skewness, kurtosis, and multi-
modality. Confidence intervals and means are trivial to extract.
Furthermore, the parameter marginal distributions that result
can be used as informative prior distributions for future sim-
ulations, instead of the diffuse priors used at the start of such
parameter estimation processes.

MCMC simulations are essentially stochastic, data-driven
sensitivity analyses that enable us to determine the effects of
parameter variability and uncertainty resulting from natural
anatomical variability across a population and sparseness of
experimental data, respectively. Latent parameter covariances
that may not have been explicitly measured (and may not be
measurable) can be extracted from the joint posterior, justifying
a reduction in model complexity.

B. Effects of Increasing Parameter Space Complexity

During the validation of our Metropolis–Hastings algorithm,
we gradually increased the dimensionality of the model param-
eter space from 3 to 8, 24, and 36 dimensions (Table I). As
expected, convergence time (Table II) increased with the com-
plexity of the model parameter space.

When landscape complexity increased, an increasing num-
ber of independent Markov chains located local minima. All
ten Markov chains successfully located the true posterior dis-
tribution for the 3-D and 8-D scenarios (test cases 3 and 4,
respectively). However, the number of chains to wander into
local minima were two and four for the 24-D and 36-D scenar-
ios (test cases 5 and 6, respectively). Importantly, in all cases,
the majority of the Markov chains successfully located the true
posterior distribution. In theory [34], “trapped” chains should
eventually “escape” local minima if run long enough. However,
due to the stochastic nature of the sampling method, we cannot
determine how long convergence will take a priori.
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Guided by our Gelman–Rubin convergence diagnostic, we
pooled the majority of the chains that converged and found that
they had indeed located the true posterior distribution. As the
complexity of the model parameter space increased, we found
that the marginal distributions became more varied in range and
shape (described shortly).

C. Marginal Distributions

The model parameter marginal distributions (Figs. 7–9) pro-
vide insight into the sensitivity of the model predictions to vari-
ability in the model parameters. A sharp marginal distribution
[e.g., Fig. 8(d)] suggests high sensitivity of the model predic-
tions to variation in the parameter, while a flat marginal distri-
bution [e.g., Fig. 7(c)] can be due to a variety of reasons. The
simplest reason is insensitivity of model predictions to variations
in the parameter because the parameter values do not affect the
model output [13], [42]. In this case, the parameter could be
set to a constant and removed from the model parameter space
altogether, thereby reducing the dimensionality of the parameter
space and the number of update steps per iteration.

There could also be redundancy in the model structure it-
self. The flattest marginal distributions we observed were for
model parameters that relate bone widths and lengths [Fig. 7(c)
and (e)]. In our model structure, we represent bones by their
bounding box dimensions. It may be that a “link” in our serial
linkage model could fit within this bounding box in a variety
of ways (e.g., perfectly aligned within the box or more diag-
onally oriented within the box). This redundancy could allow
for greater variance of the model parameters that relate bone
widths and lengths, but less variance in the model predictions.
Finally, the flat marginal distributions could result from unob-
servability [41] because effects of the model parameters cannot
be observed within the experimental data.

The range of the marginal distributions can highlight a need to
reassess the prior distribution bounds. For instance, a marginal
distribution that is pushed up against a parameter’s upper bound
[e.g., Fig. 7(g)] may suggest a need to reevaluate the appropri-
ateness of the bound. If the bound is nonnegotiable, then the
MCMC results point directly to limiting aspects of the model
structure.

It is interesting that the marginal distributions for the 3-D
test case 3 had tight ranges and sharp distributions as compared
to their counterparts for the 36-D test case 6 [Fig. 7(a), (d),
and (f)]. This was not expected a priori. However, these results
are not unreasonable given the increased chance of observing
the effects of parameter insensitivity, model redundancy, and
unobservability as the complexity of the model parameter space
increases.

D. Correlations Among Bone Lengths

From an anatomical perspective, it is reasonable to expect
that larger people have larger hands and that bone lengths scale
up, resulting in a positive correlation among bone lengths. How-
ever, this issue concerns trends across a population and cannot
be addressed by the truth model in this study, which focused on
modeling a single virtual subject. To ensure proper sampling of

the parameter space within our single-site updating scheme, we
removed constraints on relative bone lengths and allowed bone
dimensions to be drawn independently of the others. While this
does not explicitly enforce physiological realism, it ensures that
our Metropolis–Hastings algorithm is properly constructed such
that convergence to the posterior distribution is guaranteed. Sim-
ulation results can be checked easily for physiologically realistic
relationships upon convergence. In addition, “block-updating”
can be used to incorporate such parameter correlations and im-
prove the efficiency of the search [37], [43]. With block up-
dating, correlated model parameters are perturbed as a subset
rather than individually, as with single-component Metropolis–
Hastings. For instance, let model parameters 1–3 be correlated.
At the first update step (m = 1), we perturb the first three pa-
rameters as a block. At the second update step, we continue the
single-site updating from the 4th parameter, shown here for the
36-D test case

θcand,(m=1),(i) =









θ1,cand

θ2,cand

θ3,cand





θ4,(i−1)

...

θ36,(i−1)





. (11)

E. Gelman–Rubin Convergence Diagnostic

For the 36-D test case 6,
√

R̂ never fell below our threshold of
1.2 when calculating the shrink factor for all ten Markov chains
together [Fig. 5(a)]. This apparent lack of convergence is not due
to inadequacies of the MCMC approach, as has been successful
in other applications [23], [44], including problems with 200
dimensions [45]. The lack of convergence likely results because
we are exploring a complex, nonlinear landscape with multi-

ple local minima, and by construction,
√

R̂ will not indicate
convergence until all chains overlap in their sampling regions.
Unfortunately, we have not found literature that explains how

to deal with the failure of
√

R̂ for multimodal posterior distri-
butions.

Nonetheless,
√

R̂ remains a popular, straightforward, and
effective means to assess the progress of MCMC simulations.

We took a common sense approach and calculated
√

R̂ for the
six-chain subset that was obviously sampling from the same

subspace and found that
√

R̂ satisfied our threshold [Fig. 5(b)].

F. Posterior Distribution Multimodality: Real or Artifact?

A valid concern with the MCMC approach is how to dis-
tinguish between modes that actually exist in a population and
those that arise because of a complex high-dimensional model
parameter space and/or the search methodology. With our truth
model, we know that six of ten chains converged to the true
posterior distributions, while four chains wandered into local
minima (see Fig. 4). It may appear that we have found alterna-
tive solutions to the same problem, but further inspection reveals
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that the solutions are not equivalent and some outperform others
(Fig. 4). If we had run a nonlinear least-squares optimization
(a frequentist technique) and found two different solutions2 (a
likely occurrence given that convergence is also a challenge for
these other methods), we would immediately look at the cost
function for each solution and use the model that performs better.
We could set a cost threshold relevant to the research question,
objectively select the “best” mode, and use it to represent the
true posterior distribution.

The “Achilles heel” of all search algorithms is that local min-
ima can attract the algorithms to false solutions, often result-
ing in multimodal posterior distributions. Note that this only
occurred for test cases 5 and 6, when the model parameter
spaces were large (24-D and 36-D, respectively). One advanced
technique for dealing with multimodality is Metropolis-coupled
MCMC, or “hot-swapping” [46], [47], where one continuously
monitors a user-defined metric [e.g., the sum of the squared
residuals (Fig. 4)]. A chain that is presumably trapped in a local
minimum is given an opportunity to swap one or more states
(model parameter values) with a chain that has located a better
performing region in parameter space. Using a process analo-
gous to the genetic algorithm concepts of recombination and
crossover [48], this swapping enables chains to escape from
their local attractors.

G. Application to Clinical Questions

The Bayesian concept that “true” parameters are random vari-
ables is well suited to study how anatomical variability in mus-
culoskeletal systems affects biomechanical function and con-
tributes to the success or failure of a clinical method. The MCMC
approach is not appropriate for quick subject-specific parameter-
izations (as in [49]) due to its computationally intensive nature.
Rather, one can address whether a model structure will lead to
meaningful clinical predictions. All too often, a model structure
is assumed and its large-scale contributions to the success or
failure of the model are overlooked and overshadowed by the
need to specify its numerical details (i.e., the parameter estima-
tion problem). With MCMC, the user can test a hypothesized
model structure (e.g., anatomical kinematic constraints) against
experimental data to elucidate the capabilities and limitations of
such a structure [50].

The MCMC methods described here can be used to test
whether a “one size fits all” model will suffice for the entire
population, or if subject-specific models will be necessary. For
instance, one can run separate sets of MCMC simulations each
driven by various subsets of the experimental data. One could
compare the posterior distributions from a group of subjects
with presumably similar levels of impairment to those of a sin-
gle member of that subpopulation.

The MCMC approach can highlight critical treatment-
relevant model parameters and may be useful for defining clini-
cally relevant subpopulations (e.g., different modes) for suscep-
tibility to impairment and/or response to treatment. By tracking
posterior distribution characteristics for a population of interest

2Note that a standard serial “hill-climber” optimizer could not have found
multiple solutions without a Monte Carlo simulation on its initial conditions.

over time, it may be possible to observe the evolution of a disease
state in model parameter space. Such insights could be used to
devise objective methods of grading impairment. Strong correla-
tions between easily measured model parameters and functional
behavior could be incorporated into diagnostic tools. Further-
more, one can determine which model parameter(s) can afford
to be noisy because of anatomical and/or surgical variability.
We continue to address these issues to produce clinically useful
models for studying the functional consequences of orthopedic
and neurological diseases and treatments, and their treatment
outcomes.

APPENDIX

COMPARISON OF MONTE CARLO AND MCMC METHODS

Unencumbered by experimental data, Monte Carlo simula-
tions take an open-loop “shotgun” approach to exploration of
the parameter space. These feedforward simulations work well
for low-dimensional systems, but become impractical when the
dimensionality of the problem is scaled up [16]. The main ad-
vantage of MCMC methods is that they allow the use of simple
sampling techniques and experimental data to estimate model
parameters θ of complex multivariate systems that are difficult or
impossible to solve for in closed form or require the use of/need
computationally expensive, open-loop Monte Carlo methods.

The concept of a chain comes from the fact that each search
is akin to a biased random walk starting at a random location
in parameter space, which “drift” toward a favorable region
in parameter space. In our implementation, the “drift” is gov-
erned by the Metropolis–Hastings algorithm (described shortly),
which seeks parameter values that lead to predictions that are
most compatible with the experimental data. By starting chains
from dispersed locations, and running them long enough, the
chains will converge to our region(s) of interest in parameter
space [34].

DERIVATION OF OUR METROPOLIS–HASTINGS

ACCEPTANCE PROBABILITY

With our symmetric proposal distribution [see (3)], the
Hastings ratio q(θ(i−1) |θcand)/q(θcand |θ(i−1)) equals 1 and our
acceptance probability [(2)] simplifies to the special Metropolis
case [37]

α(θcand , θ(i−1)) = min

{
π(θcand)
π(θ(i−1))

, 1

}
. (12)

Combining (12) with Bayes’ Rule [22], [40]

π(θ) = p(θ|X) =
p(X|θ)p(θ)

p(X)
(13)

we obtain

α(θcand , θ(i−1)) = min

{
p(X|θcand)p(θcand)
p(X|θ(i−1))p(θ(i−1))

, 1

}
. (14)
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α(θcand , θ(i−1)) = min





exp

{
−(1/2)

∑de x p t
k=1

∑n
j=1 [xj,k − fk (θcand , q

j
, q̇

j
)]2/σ̂2

k,(i−1)

}

exp
{
−(1/2)

∑de x p t
k=1

∑n
j=1 [xj,k − fk (θ(i−1) , qj

, q̇
j
)]2/σ̂2

k,(i−1)

} , 1




 (18)

When using uniform prior distributions, p(θcand) and
p(θ(i−1)) cancel in (14), leaving a ratio of likelihood functions

α(θcand , θ(i−1)) = min

{
p(X|θcand)
p(X|θ(i−1))

, 1

}
. (15)

Assuming that the experimental data matrix X is composed
of n i.i.d. observations, each likelihood function can be written
as the product of the probabilities across all n observations [40]

p(X|θ) =
n∏

j=1

p(Xj |θ, qj
, q̇

j
). (16)

The arguments q
j

and q̇
j

represent the constant input joint an-
gles and joint angular velocities for the jth observation. We
assume that each observation Xj [the jth row of data matrix
X, see (1)] is i.i.d. from a multivariate Gaussian distribution
MVN(f(θ), Σ̂) with a vector of means f(θ) that is a deter-
ministic function of θ and a covariance matrix Σ̂ = diag(σ̂2

k ),
where k = 1, . . . , dexpt , represents the dimensionality of the
experimental measurements (number of columns in X).

Combining the probability density function for a multivariate
Gaussian distribution [36] and the assumed covariance matrix
Σ̂ = diag(σ̂2

k ) [using (5)], we can rewrite the likelihood in (16)
as

p(X|θ) =
de x p t∏

k=1

n∏

j=1

×
{

1√
2πσ̂2

k

exp
[
− 1

2σ̂2
k

[xj,k − fk (θ, q
j
, q̇

j
)]2

]}
.

(17)

Combining (15) and (17), assuming that σ̂2
k,cand = σ̂2

k,(i−1) ,
and simplifying, we get (18), as shown at the top of the
page.
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