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Epigraph

VIRTUE, then, being of two kinds, intellectual and moral, intellectual virtue in the main

owes both its birth and its growth to teaching (for which reason it requires experience

and time) while the moral virtue comes about as a result of a habit, whence also its name

ηθιkή is one that is formed by the slight variation from of the word έθos (habit). From

this it is also plain that none of the moral virtues arises in us by nature; for nothing

that exist by nature can form a habit contrary to its nature. For instance the stone

which by nature moves downwards cannot be habituated to move upwards, not even if

one tries to train it by throwing it up ten thousand times; nor can fire be habituated to

move downwards, nor can anything else that by nature behaves in one way be trained to

behave in another. Neither by nature nor contrary to nature do the virtues arise in us;

rather we are adapted by nature to receive them, and are made perfect by habit.

The Nicomachean Ethics, Aristotle, 384-323 B.C1

1Text taken from the book ’Aristotle:The Nicomachean Ethics’ translated by David Ross(Ross 2009)
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3.2.1 Fokker Planck equation in Itô calculus . . . . . . . . . . . . . . . . 71
3.2.2 Fokker Planck equation in Stratonovich calculus . . . . . . . . . . 77

3.3 Path integrals and SDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.1 Path integral in Stratonovich calculus . . . . . . . . . . . . . . . . 88
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Abstract

Motivated by the limitations of current optimal control and reinforcement learning meth-

ods in terms of their efficiency and scalability, this thesis proposes an iterative stochas-

tic optimal control approach based on the generalized path integral formalism. More

precisely, we suggest the use of the framework of stochastic optimal control with path

integrals to derive a novel approach to RL with parameterized policies. While solidly

grounded in value function estimation and optimal control based on the stochastic Hamil-

ton Jacobi Bellman (HJB) equation, policy improvements can be transformed into an ap-

proximation problem of a path integral which has no open algorithmic parameters other

than the exploration noise. The resulting algorithm can be conceived of as model-based,

semi-model-based, or even model free, depending on how the learning problem is struc-

tured. The new algorithm, Policy Improvement with Path Integrals (PI2), demonstrates

interesting similarities with previous RL research in the framework of probability match-

ing and provides intuition why the slightly heuristically motivated probability matching

approach can actually perform well. Applications to high dimensional robotic systems

are presented for a variety of tasks that require optimal planning and gain scheduling.

In addition to the work on generalized path integral stochastic optimal control, in

this thesis we extend model based iterative optimal control algorithms to the stochastic

xiii



setting. More precisely we derive the Differential Dynamic Programming algorithm for

stochastic systems with state and control multiplicative noise. Finally, in the last part of

this thesis, model based iterative optimal control methods are applied to bio-mechanical

models of the index finger with the goal to find the underlying tendon forces applied for

the movements of, tapping and flexing.

xiv



Chapter 1

Introduction

1.1 Motivation

Given the technological breakthroughs of the last three decades in the areas of computer

science and engineering, the speedup in processing power has reached the point where

computationally expensive algorithms are now days implemented and executed in an

efficient and fast way. At the same time, advancements in memory technology offered the

capability for fast and reliable storage of huge amount of information. All this progress

in computer science has benefitted robotics due to the fact that computationally heavy

control, estimation and machine learning algorithms can now be executed online and

in real time. The breakthroughs of technology in terms of computational speed and

increasing memory size created new visions in robotics. In particular, future robots will

not only perform in industrial environments but they will also safely co-exist with humans

in environments less structural and more dynamic and stochastic than the environment

of a factory.
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Despite all this evolution, learning for a robot how to autonomously perform human-

like motor control tasks such as object manipulation, walking, running etc, remains an

open problem. There is a combination of characteristics in humanoid robots which is

unique and it does not often exist in other cases of dynamical systems. These systems are

usually high dimensional. Depending on how many degrees of freedom are considered,

their dimensionality can easily exceed 100 states. Moreover their dynamical model is

usually unknown and hard estimate. In cases where a model is available, it is an ap-

proximation of the real dynamics, especially if one considers contact phenomena with the

environment as well as the various sources of stochasticity such as sensor and actuation

noise. Therefore, there is a level of uncertainty in humanoid robotic systems which is

structural and parametric, because it results from the lack of accurate dynamical models,

as well as stochastic due to noisy and imperfect sensors.

All these characteristics of humanoid robots open the question of how humans resolve

these issues due to the fact that they also perform motor control tasks in stochastic

environments and deal with contact phenomena and sensor noise. As for the characteristic

of dimensionality, this is also present in an even more pronounced way in bio-mechanical

systems. It suffices to realize that just for the control of the hand there are up to 30

actuated tendons.

Motivated by all these issues and difficulties, this thesis proposes a new stochastic op-

timal control formalism based on the framework of path integral control, which extends to

optics of robot learning and reinforcement learning. Path integral control framework and

its extensions to iterative optimal control are the central topic sof this thesis. Moreover,

inspired by the mystery of bio-mechanical motor control of the index finger, this thesis

2



investigates the underlying control strategies and studies their sensitivity with respect to

model changes.

Since reinforcement learning and stochastic optimal control are the main frameworks

of this thesis, a complete presentation should incorporate views coming from different

communities of science and engineering. For this reason, in the next two sections we dis-

cuss the optimal control and reinforcement learning frameworks from the control theoretic

and machine learning point of view. In the last section of this introductory chapter we

provide an outline of this work with a short description of the structure and the contents

of each chapter.

1.2 Stochastic optimal control theory

Among the areas of control theory, optimal control is one of the most significant, with

a plethora of applications from the very early development of aerospace engineering, to

robotics, traffic control, biology and computational motor control. With respect to other

control theoretic frameworks, optimal control was the first to introduce optimization as

a method to find controls. In fact, optimal control can be thought as a constrained

optimization problem that has the characteristic that the constraints are not static, in

the sense of algebraic equations, but they correspond to dynamical systems and therefore

they are represented by differential equations. The addition of differential equations as

constraints in the optimization problem leads to the property that in optimal control

theory the minimum is not represented by one point x∗ in state space but by a trajectory

τ ∗ = (x∗1, x
∗
2..., x

∗
N ), which is the optimal trajectory.

3



There are two fundamental principles that establish the theoretical basis of optimal

control theory in its early developments. These principles are the Pontryagin Maximum

principle and the Bellman Principle of Optimality or Dynamic Programming. The maxi-

mum principle was introduced by Lev Semenovich Pontryagin a Russian mathematician,

in his work The Mathematical Theory of Optimal Processes which was first published in

Russian in 1961 and then translated in english in 1962 (Pontryagin, Boltyanskii, Gamkre-

lidze & Mishchenko 1962). The Dynamic Programming framework was introduced in

1953, by Richard Ernest Bellman, an applied mathematician at the University of South-

ern California.

In the history of optimal control theory, there has been criticism due to the fact that

most of the design and analysis of optimal control theory takes place in time domain.

Therefore there was no definite answer regarding the stability margins of optimal con-

trollers and their sensitivity with respect to unknown model parameters and uncertainty.

Rudolff Kalman, in his paper ”When is a linear control system optimal?” which was

published in 1964 (Kalman 1964), studied the stability margins of optimal controllers for

a special class of disturbances.

Almost one decade later, early research on robust control theory (Safonov & Athans

1976),(Doyle 1978), investigated the stability margins of stochastic optimal controllers

and showed that stochastic optimal controllers have poor stability margins. Most of the

analysis and design in robust control theory takes place in frequency domain. As a result,

many of the applications of robust control theory dealt with the cases of infinite horizon

optimal control problems and time invariant dynamical systems. In these cases the anal-

ysis in frequency domain is straight forward since the close loop system is time invariant

4



and the application of Fourrier or Laplace transform does not result in convolution. The

risk sensitive optimal control framework and its connection to differential game theory

and to H∞ control provided a method to perform robust control for time varying systems

and finite horizon optimal control problems, provided that the disturbances are bounded.

1.3 Reinforcement learning: The machine learning view of

optimal control theory

In the theory of machine learning (Bishop 2006), there are 3 learning paradigms, super-

vised, unsupervised and reinforcement learning. Starting with the domain of supervised

learning, the goal is to find high level mathematical representations of the kind yi = f(xi)

between data sets xi,yi. Thus, in most cases the data set xi,yi is given and the question

is weather or not the function f(x) can be found. Classical applications of supervised

learning are problems like function approximation, regression and classification. In unsu-

pervised learning the goal is to discover structure in data sets. Applications of unsuper-

vised learning techniques are found in the problems of image segmentation, compression

and dimensionality reduction.

The most recent branch of machine learning is the area of reinforcement learning. In

a typical reinforcement learning scenario an agent explores the environment such that

it finds the set of optimal actions which will move the agent to a desired state. The

desirability to reach a goal state is encoded by the reward function. The reward is state

depended, and therefore, it has high values in the states close to the goal. An additional

characteristic of reinforcement learning is that the reward is the only feedback provided
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to the agent. From this feedback the agent has to find a policy u(x, t) such that it

maximizes its reward, i.e., the optimal policy. The policy u(x, t) can be a function of

state and/or time, depended on how the learning problem is formulated. Essentially the

optimal policy provides the actions at given state and/or time that the agent needs to

take in order to maximize its reward.

Reinforcement learning can be also thought as a generalization of Markov Decision

Processes(MDP) (Russell & Norvig 2003), (Sutton & Barto 1998). The essential compo-

nents of MDPs are an initial state x0, a transition model T (xi+1,ui,xi) and the reward

function R(x). In MDPs the goal for the agent is to maximize the total expected reward.

However, for the case of reinforcement learning the transition model and the reward

function may be unknown and subject to be learned by the agent as it explores the

environment.

When the agent is a dynamical system, reinforcement learning can be thought as an

optimal control problem. In both cases, the task is to optimize a cost function or total

expected reward subject to constraints imposed by the dynamics of the system under

consideration.

1.4 Dissertation outline

There are 9 chapters in this thesis including the introductory chapter. Chapter 2 is a

review of the theory of stochastic optimal control. More precisely we start chapter 2 with

the definition of a stochastic optimal control problem and the Dynamic Programming

framework. Our discussion continues with the Pontryagin maximum principle and its
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connection to dynamic programming. Next the iterative optimal control methods are

presented starting with stochastic differential dynamic programming and showing how it

is related to Differential Dynamic Programming. Having in mind the criticism of optimal

control theory related to robustness, we discuss risk sensitive optimal control framework

and its connection to differential game theory. We close chapter 2 with the entropy

formulation of stochastic optimal control.

Chapter 3 contains important mathematical background on forward and backward

partial differential equations(PDEs), stochastic differential equations(SDEs) and path

integrals. Essentially the goal in this chapter is to highlight the connection of these three

mathematical structures which are commonly used in mathematical physics and control

theory. More precisely we start with the history of path integrals and the way how it is

introduced in quantum mechanics. We continue by investigating the connection between

forward PDEs, SDEs and path integrals. The Feynman-Kac lemma is presented and its

role in bridging the gap between backwards PDEs and SDEs is discussed. After presenting

the connection between PDEs, SDEs and path integrals we focus our discussion on PDEs

and we investigate the relation between backward and forward PDEs in 3 different levels.

Chapter 4 contains the main theory of path integral control formalism and its applica-

tion to stochastic optimal control. In particular the stochastic optimal control problem is

transformed to an approximation of a path integral through the application of Feynman-

Kac lemma. The presentation continues with the derivation of the path integral optimal

control for the case of stochastic dynamical systems with state dependent control transi-

tion matrices. Variations of the path integral formalism based on the Itô and Stratonovich

stochastic calculus and the special classes of dynamical systems, are presented. In this
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chapter we go one step further with the iterative version of path integral control and its

risk sensitive version.

Chapter 5 is a review of model free reinforcement learning algorithms with an emphasis

on policy gradient methods. Starting with the vanilla policy gradient method and the

REINFORCE algorithm we show the main derivations of the estimated corresponding

gradient for each one of these algorithms. Next, the concept of the natural gradient is

introduced, and the Episodic Natural Actor Critic is discussed.

Chapter 6 is dedicated to applications of path integral stochastic optimal control to

learning robotic control problems. More precisely, we start with an introduction to dy-

namic movement primitives (DMPs) and their mathematical representation as nonlinear

dynamical systems with adjustable attractor landscapes. Next, we explain how DMPs

are used for optimal planning and control of robotic systems. We continue with the ap-

plication of iterative path integral control to DMPs and the presentation of the resulting

algorithm, called Policy Improvement with Path Integrals (PI2). In the remaining of

chapter 6, applications of PI2 to robotic optimal control and planning problems are dis-

cussed. These applications include planing and variable stiffness control on simulated as

well as real robots.

In chapters 7 and 8, the optimal control framework is applied to bio-mechanical mod-

els of the index finger with the goal to understand the underlying control strategies and

to study their sensitivity. In particular, chapter 7 is a review of current methodologies in

modeling bio-mechanical systems based on the characteristic skeletal mechanics, muscle

redundancy and the tendon routing. Moreover the differences between tendons driven

and torque driven systems are discussed and a review on previous work of optimal control
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and its application to bio-mechanical and psychophysical systems is given. In chapter 8

the basic physiology of the index finger is presented. Furthermore ,the iterative optimal

control algorithm is used on two bio-mechanical models of the index finger. The under-

lying control strategies are computed for a flexing and a tapping movement and their

sensitivity with respect to model change is discussed.

In the last chapter 9, we conclude and discuss future research.
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Chapter 2

Optimal Control Theory

In this chapter we review the theory of optimal control starting from the Pontryagin

maximum principle and the Dynamic Programming framework. In particular in section

2.1 we discuss Dynamic Programming and we explain the concept of a value function

or cost to go. Moreover we derive the Hamilton Jacobi Bellman (HJB) equation, a

fundamental Partial Differential Equation (PDE) in control. Solving the HJB equation

results in finding the value function and defining the optimal control policy. In section 2.2,

we review Pontryagin maximum principle, and we derive the Euler Langrange equations.

Furthermore we provide the connection between the Pontryagin Maximum Principle and

Hamiltonian approach in mechanics.

The application of Dynamic Programming to infinite and/or finite horizon nonlinear

optimal control problems in continuous state - action spaces yields a family of iterative

algorithms for optimal control. We start our presentation of iterative algorithms in sec-

tion 2.3 with the derivation of Stochastic Differential Dynamic Programming(SDDP) for

state dependend, control dependend and additive noise and we illustrate how SDDP is a

generalization of its deterministic version i.e., Differential Dynamic Programming(DDP).
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In section 2.4, the connection between the risk sensitive optimal control and the dif-

ferential game theory is discussed. In particular, our presentation includes the derivation

of the HJB equation for the case of risk sensitive cost functions and the case of differential

game theoretic optimal control. Finally in section 2.5, we present the entropy formulation

of stochastic control theory and in the last section we conclude our discussion of optimal

control theory

2.1 Dynamic programming and the Bellman principle of

optimality: The continuous case

The goal in stochastic optimal control is to control a dynamical system while minimizing

a performance criterion. Thus, the stochastic optimal control problem is a constrained

optimization problem where constraints are not only algebraic equation or inequalities but

differential equations which consist of the model of the dynamical system. In mathemati-

cal terms, the stochastic optimal control problem (Stengel 1994), (Basar & Berhard 1995),

(Fleming & Soner 2006), (Bellman & Kalaba 1964) for a nonlinear dynamical systems is

expressed as follows:

min
u
J(u,x) = min

u

〈
φ(xtN ) +

∫ tN

t0

L(x,u)dt
〉

(2.1)

with L(x,u) = q(x) + 1
2uTRu subject to the constrains:

dx =
(
f(x) + G(x)u

)
dt+ B(x)dw (2.2)
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or in a more compact form:

dx = F (x,u)dt+ B(x)dw (2.3)

with F (x,u) = f(x) + G(x)u and x ∈ <n as the state and u ∈ <m as the control

vector. The immediate cost L(x,u) includes the state dependent cost q(x) and the

control dependent cost uTRu while φ(xtN ) is the terminal cost. The main idea in optimal

control is to find the control or policy u = u(x, t) for which the cost function J(u,x) is

minimized. The minimum of the cost function, the so called value function or cost to

go, V (x) it is defined as V (x) = minu J(x,u). The value function is a function only of

state since the optimal control - policy u∗ = u∗(x, t) is a function of the state. Therefore

we can write:

min
u
J(x,u) = J(x,u∗) = J(x,u∗(x, t)) = V (x) (2.4)

From the equations above it is clear that the value function depends only on the state.

The concept of the value function is essential for the Bellman principle of optimality and

the development of the Dynamic Programming framework. More precisely the Bellman

principle (Dorato, Cerone & Abdallah 2000) states that:

Bellman Principle of Optimality: If u∗(x, τ) is optimal over the interval [t, tN ],

starting at state x(t) then u∗(x, τ) is necessarily optimal over the subinterval [t, t + ∆t]

for any ∆t such that T − t ≥ ∆t ≥ 0.

Proof by contradiction: Let us assume that there exists a policy u∗∗(x, t) that

yields a smaller value for the cost
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〈
φ(xtN ) +

∫ tN

t+∆t
L(x,u)dτ

〉
(2.5)

than u∗(x, t) over the subinterval [t+ ∆t, T ]. It make sense to create the new control

law

u(τ) =


u∗(τ) for t ≤ τ ≤ t+ ∆t,

u∗∗(τ) for t+ ∆t ≤ τ ≤ tN

(2.6)

Then over the interval [t, tN ] we have

〈∫ t+∆t

t
L(x∗,u∗)dτ +

∫ tN

t+∆t
L(x∗∗,u∗∗)dτ + φ(xtN )

〉
=〈∫ t+∆t

t
L(x∗,u∗)dτ

〉
+
〈∫ tN

t+∆t
L(x∗∗,u∗∗)dτ + φ(x∗∗tN )

〉
<

〈∫ t+∆t

t
L(x∗,u∗)dτ

〉
+
〈∫ tN

t+∆t
L(x∗,u∗)dτ + φ(x∗tN )

〉
(2.7)

Since u∗ is optimal, by assumption, over the interval [t, tN ] and the inequality above

implies that u results in a smaller value of the cost function than the optimal we reach a

contradiction.

The principle of optimality for the continuous case is formulated as follows:

V (x, t) = min
u[x,(t,t+∆t)]

〈∫ t+∆t

t
L(x,u, τ)dτ + V (x, t+ ∆t)

〉
(2.8)

= min
u[x,(t,t+∆t)]

〈
−
∫ t

t+∆t
L(x,u, τ)dτ + V (x, t+ ∆t)

〉
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= −
∫ t

t+∆t
L(x∗,u∗, τ)dτ + V (x, t+ ∆t)

In the last line, we are assuming for the analysis that the optimal trajectory and

control x∗ and u∗ are known and thus the expectation drops. The total derivative of the

value function V (x, t) with respect to time is expressed as follows:

dV (x, t)
dt

= −L(x∗,u∗, τ) (2.9)

Since the value function V is a function of the state which is a random variable, we

can apply the Itô differentiation rule and obtain:

dV =
(
∂V

∂t
+ (∇xV )TF(x,u, t)

)
dt+

1
2
tr

(
(∇xxV ) B(x)B(x)Tdt

)
(2.10)

By equating the two equation above we arrive at:

∂V

∂t
+ L(x∗,u∗, τ) + (∇xV )TF(x∗,u∗, t) +

1
2
tr

(
(∇xxV ) B(x∗)B(x∗)T

)
= 0 (2.11)

The equation above can be also written in the form:

inf
u

(
∂V

∂t
+ L(x∗,u∗, τ) + (∇xV )TF(x∗,u∗, t) +

1
2
tr

(
(∇xxV ) B(x∗)B(x∗)T

))
= 0

(2.12)

Since the term ∂V
∂t does not depend on u the equations can be re-arranged as:
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−∂V
∂t

= inf
u

(
L(x,u, τ) + (∇xV )TF(x,u, t) +

1
2
tr

(
(∇xxV ) B(x)B(x)T

))
(2.13)

The equation above is the so called Hamilton - Jacobi - Bellman PDE derived for

the case of stochastic dynamical systems. Since F (x,u) = f(x) + G(x)u and L(x,u) =

q(x) + 1
2uTRu the right hand side of the equation above is convex with respect to the

controls u and therefore its minimization will results in the following equation:

u∗(x, t) = −R−1G(x)T∇xV (2.14)

The optimal control policy u∗(x, t) will move the system towards the direction of the

minimum value function since it is proportional to the negative direction of the gradient

of the value function, projected on the state space x by the multiplication with G(x) and

weighted with the inverse of the control cost matrix R. Now substitution of the optimal

controls in the HJB equation yields the following PDE:

−∂V
∂t

= q(x, t) + (∇xVt)T f(x, t)− 1
2

(∇xVt)TB(x)R−1B(x)T (∇xVt)

+
1
2
tr

(
(∇xxVt)B(x)B(x)T

)
(2.15)

with the boundary terminal condition V (x(tN ) = φ(x(tN )). The equation above is a

backward PDE of second order and nonlinear. Its solution is required in order to find the

value function V (x, t) and then the gradient of value function is computed to determine
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the optimal control policy. There are few special cases of the PDE in (2.15) depending

on the cost function. More precisely if the stochastic optimal control problem is infinite

horizon with the cost function:

min
u
J(u,x) = min

u

〈∫ ∞
t0

L(x,u)dt
〉

(2.16)

then the value function V (x) is not a function of time and thus the resulting PDE is

expressed as:

0 = q(x, t) + (∇xVt)T f(x, t)− 1
2

(∇xVt)TB(x)R−1B(x)T (∇xVt) +
1
2
tr

(
(∇xxVt)B(x)B(x)T

)

For the case of the discounted cost function of the form:

min
u
J(u,x) = min

u

〈∫ ∞
t0

e−βtL(x,u)dt
〉

(2.17)

the partial time derivative of the value function will be equal to ∂V
∂t = βV , and thus

the PDE in (2.15) is formulated as follows:

−βV = q(x, t) + (∇xVt)T f(x, t)− 1
2

(∇xVt)TB(x)R−1B(x)T (∇xVt)

+
1
2
tr

(
(∇xxVt)B(x)B(x)T

)
(2.18)
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In all cases of cost functions above, the solution of the corresponding PDEs especially

in high dimensional state spaces is challenging and this is what makes, in general the op-

timal control problem difficult when applied to high dimensional and nonlinear dynamical

systems. For linear systems, the PDE above collapses to the so called Riccati equations

(Stengel 1994),(Dorato et al. 2000), the solution of which provides a linear control policy

in the state x of the form u(x, t) = −K(t) x where the matrix K(t) ∈ <n×m is the control

gain.

2.2 Pontryagin maximum principle

In this section we discuss the Pontryagin’s Maximum principle (Pontryagin et al. 1962),

(Stengel 1994) one of most important principles in the history of the optimal control

theory. In our presentation of Pontryagin mimimum principle, we are dealing with deter-

ministic systems and therefore, the deterministic optimal control problem:

J(u,x) = φ(xtN ) +
∫ tN

t0

L(x,u)dt (2.19)

subject to dynamics dx
dt = F (x,u) = f(x) +G(x)u. The constraint is pushed into the

cost function and with lagrange multiplier (Stengel 1994). More precisely the augmented

cost function is expressed by the equation:

JA(u,x) = φ(xtN ) +
∫ tN

t0

L(x,u)dt+
∫ tN

t0

λT
(
dx
dt
− F (x,u)

)
dt

or
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JA(u,x) = φ(xtN ) +
∫ tN

t0

(
L(x,u)− λT

(
dx
dt
− F (x,u)

))
dt

By defining the Hamiltonian as H(x,u) = L(x,u) + λTF (x,u) the augmented cost

function can be rewritten in the form:

JA(u,x) = φ(xtN ) +
∫ tN

t0

(
H(x,u)− λT dx

dt

)
dt

Integration by parts will result in:

JA(u,x) = φ(xtN )+
∫ tN

t0

H(x,u)dt+
(
λ(t0)Tx(t0)−λ(tN )Tx(tN )

)
+
∫ tN

t0

λTxdt (2.20)

Now we will find the variation in the augmented cost δJA which is expressed by the

equation that follows:

δJA = ∇xJ
T
Aδx +∇uJ

T
Aδu

Thus we will have that:

δJA = ∇xφ
T δx |t=tN +∇x

(
λ(t0)Tx(t0)− λ(tN )Tx(tN )

)
δx

+
∫ tN

t0

(
∇xHT δx +∇x

(
λ̇
T
x(t)

)
δx +∇uHT δu

)
dt

By rearranging the terms the equation above is formulated as follows:
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δJA =
(
∇xφ

T − λ(tN )
)
δx |t=tN +λ(t0)T δx +

∫ tN

t0

((
∇xHT + λ̇

T
)
δx +∇uHT δu

)
dt

or

δJA = δJA(t0) + δJA(tN ) + δJA(t0 → tN )

For δJA = 0 we require that δJA(tN ) = δJA(t0) = δJA(t0 → tN ) = 0 and thus we will

have that:

∇uH = 0 (2.21)

and λ(t) = ∇xH which since H(x,u) = L(x,u)+λTF (x,u) is formulated as follows:

λ̇(t) = ∇xL(x,u) + λT∇xF (x,u) (2.22)

with the boundary terminal condition:

λ(tN ) = ∇xφ(x)|t=tN (2.23)

The equations (2.21),(2.22) and (2.23) are the so called Euler Lagrange equations.

There are few important observations based on the structure of the Euler Lagrange equa-

tions. The Lagrange multiplier or adjoint vector otherwise λ represents the cost sensitivity
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to dynamic effects. This sensitivity is specified at the final time tN by providing a bound-

ary condition for the solution of λ. Another way of interpreting the role of the adjoint

vector λ is that it quantifies the sensitivity of the cost as a function to state perturba-

tions on the optimal trajectory beginning from the terminal state x(tN ) and backward

propagating towards x(t0). Thus the idea in these backward propagation scheme is that

in order to decide which way to go it helps to know the effects of the future variation

from the resulting path in state space. This knowledge is encoded in the adjoint vector

λ. Clearly the optimal strategy is resulted by tracing paths back from the destination

and therefore looking in that way into the future outcomes of possible variations.

The necessary and sufficient conditions for optimality of x∗(t) and u∗(t) in the inter-

val [t0, tN ] if the dynamic systems under consideration is normal and the optimal path

contains no conjugate points afre expressed by the equations:

∇xH
(

x∗,u∗,λ∗, t
)

= 0 (2.24)

∇xxH
(

x∗,u∗,λ∗, t
)
≥ 0 (2.25)

The Pontryagin minimum principle of optimality states that if the variables x∗(t),λ∗(t)

are kept fixed then for any admissible neighboring non-optimal control history u(t) in

[t0, tN ] we have that:

H∗ = H∗
(

x∗(t),u∗(t),λ∗(t), t
)
≤H∗

(
x∗(t),u(t),λ∗(t), t

)
(2.26)
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if H is stationary and convex the minimum principle is satisfied. If it is the one but

no the other then the minimum principle is not satisfied . A stronger condition for the

minimum principle is formulated as follows:

J(u∗ + δu)− J(u∗) = (2.27)

=
∫ tN

t0

[
H∗
(

x∗(t),u∗(t) + δu,λ∗(t), t
)
−H∗

(
x∗(t),u∗(t),λ∗(t), t

)]
dt ≥ 0 (2.28)

2.3 Iterative optimal control algorithms

There is a variety of optimal control algorithms depending on 1) the order of the expansion

of the dynamics, 2) the order of the expansion of the cost function and 3) the existence

of noise.

More precisely, if the dynamics under consideration are linear in the state and the

controls, deterministic, and the cost function is quadratic with respect to states and

controls, we can use one of the most established tools in control theory: the Linear

Quadratic Regulator (Stengel 1994). For such type of optimal control problems the dy-

namics are formulated as f(x,u) = Ax + Bu, F (x,u) = 0 and the immediate cost

l (τ,x(τ),u(τ,x(τ))) = xTQx + uTRu. Under the presence of stochastic dynamics

F (x,u) 6= 0, the resulting algorithm is called the Linear Gaussian Quadratic Regula-

tor (LQG).

For nonlinear deterministic dynamical systems, expansion of the dynamics is per-

formed and the optimal control algorithm is solved in iterative fashion. Under a first
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LQR LQG iLQR iLQG DDP SDDP
Linear Dynamics x x - - - -
Quadratic Cost x x - - -

FOE of Dynamics - x x - -
SOE of Cost - x x x x

SOE of Dynamics - - - x x
Deterministic x x - x -

Stochastic - x - x - x

Table 2.1: Optimal Control Algorithms according to First Order Expansion (FOE) or
Second Order Expansion (SOE) of dynamics and cost function and the existence of Noise.

order expansions of the dynamics and a second order expansion of the immediate cost

function l (τ,x(τ),u(τ,x(τ))) the derived algorithm is called Iterative Linear Quadratic

Regulator (iLQR) (Li & Todorov 2004). A better approximation of dynamics up to the

second order results in one of the most well know optimal control algorithm especially

in the area of Robotics, Differential Dynamic Programming (Jacobson & Mayne 1970).

Both iLQR and DDP are iterative algorithms that start with an initial trajectory in states

and controls x̄ and ū and result in an optimal trajectory x∗, an optimal open loop control

command u∗, and a sequence of control gains L which are activated whenever deviations

from the optimal trajectory x∗ are observed. The difference between iLQR and DDP

is that DDP provides a better approximation of the dynamics but with an additional

computational cost necessary to find the second order derivatives.

In cases where noise is present in the dynamics either as multiplicative in the con-

trols or state, or both, we have the stochastic version of iLQR and DDP, the Iterative

Linear Quadratic Gaussian Regulator (iLQG) (Todorov 2005) and the Stochastic Differ-

ential Dynamic Programming (SDDP) (Theodorou 2010). Essentially SDDP contains as

special cases all the previous algorithms iLQR, iLQG and DDP since it requires second

order expansion of the cost and dynamics and it takes into account control and state
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dependent noise. This is computationally costly because second order derivatives have

to be calculated. An important aspect of stochastic optimal control theory is that, in

cases of additive noise, the optimal control u∗ and the optimal control gains L are both

independent of the noise and, therefore, the same with the corresponding deterministic

solution. In cases where the noise is control or state dependent, the resulting solutions

iLQG and SDDP differ from the solutions of the deterministic versions iLQR and DDP.

In the table 2.1 we provide the classification of the optimal control algorithms based on

the expansion of dynamics and cost function as well as the existence of noise.

2.3.1 Stochastic differential dynamic programming

We consider the class of nonlinear stochastic optimal control problems with cost

vπ(x, t) =
〈
h(x(T )) +

∫ T

t0

` (τ,x(τ), π(τ,x(τ))) dτ
〉

(2.29)

subject to the stochastic dynamics of the form:

dx = f(x,u)dt+ F (x,u)dw (2.30)

where x ∈ <n×1 is the state, u ∈ <m×1 is the control and dw ∈ <p×1 is brownian

noise. The term h(x(T )) in the cost function (2.29), is the terminal cost while the

` (τ,x(τ), π(τ,x(τ))) is the instantaneous cost rate which is a function of the state x

and control policy π(τ,x(τ)). The cost-to - go vπ(x, t) is defined as the expected cost
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accumulated over the time horizon (t0, ..., T ) starting from the initial state xt to the final

state x(T ).

To enhance the readability of our derivations we write the dynamics as a function

Φ ∈ <n×1 of the state, control and instantiation of the noise:

Φ(x,u, dω) ≡ f(x,u)dt+ F (x,u)dw (2.31)

It will sometimes be convenient to write the matrix F (x,u) ∈ <n×p in terms of its rows

or columns:

F (x,u) =


F 1
r (x,u)

...

Fnr (x,u)

 =
[
F 1
c (x,u), . . . , F pc (x,u)

]

Every element of the vector Φ(x,u, dω) ∈ <n×1 can now be expressed as:

Φj(x,u, dω) = f j(x,u)δt+ F jr (x,u)dw

Given a nominal trajectory of states and controls (x̄, ū) we expand the dynamics around

this trajectory to second order:

Φ(x̄ + δx, ū + δu, dw) =

Φ(x̄, ū, dw) +∇xΦ · δx +∇uΦ · δu + O(δx, δu, dw)
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where O(δx, δu, dw) ∈ <n×1 contains all the second order terms in the deviations in

states, controls and noise1. Writing this term element-wise:

O(δx, δu, dw) =


O(1)(δx, δu, dw)

...

O(n)(δx, δu, dw)

 ,

we can express the elements O(j)(δx, δu, dw) ∈ < as:

O(j)(δx, δu, dw) =
1
2

 δx

δu


 ∇xxΦj ∇xuΦj

∇uxΦj ∇uuΦj


 δx

δu

 . (2.32)

We would now like to express the derivatives of Φ in terms of the given quantities.

Beginning with the first-order terms, we find that:

∇xΦ = ∇xf(x,u)δt+∇x

(
m∑
i=1

F ic dw
(i)
t

)

∇uΦ = ∇uf(x,u)δt+∇u

(
m∑
i=1

F ic dw
(i)
t

)

Next we find the second order derivatives and we have that:

∇xxΦ(j) = ∇xxf
(j)(x,u)δt+∇xx

(
F (j)
r (x,u)dwt

)
∇uuΦ(j) = ∇uuf

(j)(x,u)δt+∇uu

(
F (j)
r (x,u)dwt

)
∇uxΦ(j) = ∇uxf

(j)(x,u)δt+∇ux

(
F (j)
r (x,u)dwt

)
1Not to be confused with “big-O”.
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∇xuΦ(j) =
(
∇uxΦ(j)

)T

After expanding the dynamics up to the second order we can transition from contin-

uous to discrete time. More precisely the discrete-time dynamics are formulated as:

δxt+δt =

(
In×n +∇xf(x,u)δt+∇x

(
m∑
i=1

F (i)
c ξ

(i)
t

√
δt

))
δxt

+

(
∇uf(x,u)δt+∇u

(
m∑
i=1

F (i)
c ξ

(i)
t

√
δt

))
δut

+ F (x,u)
√
δtξt + Od(δx, δu, ξ, δt)

with δt = tk+1 − tk corresponding to a small discretization interval. Note that the term

Od is the equivalent of O but in discrete time and therefore it is now a function of δt. In

fact, since Od contains all the second order expansion terms of the dynamics it contains

second order derivatives wrt state and control expressed as follows:

∇xxΦ(j) = ∇xxf
(j)(x,u)δt+∇xx

(
F (j)
r (x,u)ξt

)√
δt

∇uuΦ(j) = ∇uuf
(j)(x,u)δt+∇uu

(
F (j)
r (x,u)ξt

)√
δt

∇uxΦ(j) = ∇uxf
(j)(x,u)δt+∇ux

(
F (j)
r (x,u)ξt

)√
δt

∇xuΦ(j) =
(
∇uxΦ(j)

)T
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The random variable ξ ∈ <p×1 is zero mean and Gaussian distributed with covariance Σ =

σ2Im×m The discretized dynamics can be written in a more compact form by grouping

the state, control and noise dependent terms, and leaving the second order term separate:

δxt+δt = Atδxt +Btδut + Γtξt + Od(δx, δu, ξ, δt) (2.33)

where the matrices At ∈ <n×n, Bt ∈ <n×m and Γt ∈ <n×p are defined as

At = In×n +∇xf(x,u)δt

Bt = ∇uf(x,u)δt

Γt =
[

Γ(1) Γ(2) ... Γ(m)

]

with Γ(i) ∈ <n×1 defined Γ(i) = ∇uF
(i)
c δut +∇xF

(i)
c δxt + F

(i)
c . For the derivation of

the optimal control it is useful to expresses Γt as the summation of terms that depend on

variations in state and controls and terms that are independent of such variations. More

precisely we will have that:

Γt = ∆t(δx, δu) + F (x,u) (2.34)

where each column vector of ∆t is defined as ∆(i)
t (δx, δu) = ∇uF

(i)
c δut +∇xF

(i)
c δxt.

2.3.1.1 Value function second order approximation

As in classical DDP, the derivation of stochastic DDP requires the second order expansion

of the cost-to-go function around a nominal trajectory x̄:
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V (x̄ + δx) = V (x̄) + V T
x δx +

1
2
δxTVxxδx (2.35)

Substitution of the discretized dynamics (2.33) in the second order Value function

expansion (8.7) results in:

V (x̄t+δt + δxt+δt) = V (x̄t+δt) + V T
x (Atδxt +Btδut + Γtξ + Od)

+ (Atδxt +Btδut + Γtξ + Od)
T Vxx (Atδxt +Btδut + Γtξ + Od) (2.36)

Next we will compute E (V (x̄t+δt + δxt+δt)) which requires the calculation of the expec-

tation of the all the terms that appear in the equation above. This is what the rest of

the analysis is dedicated to. More precisely in the next two sections we will calculate the

expectation of the terms:

〈
V T
x δxt+δt

〉
and

〈
δxTt+δtVxxδxt+δt

〉
(2.37)

where the state deviation δxt+δt at time instant t + δt is given by the linearized

dynamics:

δxt+δt = Atδxt +Btδut + Γtξ + Od (2.38)
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The analysis that follows in section 2.3.1.1 consist of the computation of the expecta-

tion of the four terms which result from the substitution of the linearized dynamics (2.38)

into E
〈
V T
x δxt+δt

〉
. In section 2.3.1.1 we compute the expectation of the 16 terms that

result from the substitution of (2.38) into
〈
δxTt+δtVxxδxt+δt

〉
.

Expectation of the 1st order term of the value function.

The expectation of the first order term results in:

〈
V T
x (Atδxt +Btδut + Γtξt + Od)

〉
= V T

x

(
Atδxt +Btδut +

〈
Od

〉)
(2.39)

In order to find the expectation of Od ∈ <n×1 we need to find the expectation of each

one of the elements of this column vector. Thus we will have that:

〈
O(j)(δx, δu, ξt, δt)

〉
=

〈
1
2

 δx

δu


T  ∇xxΦ(j) ∇xuΦ(j)

∇uxΦ(j) ∇uuΦ(j)


 δx

δu


〉

= (2.40)

=
δt

2

 δx

δu


T  ∇xxf

(j) ∇xuf
(j)

∇uxf
(j) ∇uuf

(j)


 δx

δu

 = Õj

Therefore we will have that:

〈
V T
x δxt+δt

〉
= V T

x

〈
Atδxt +Btδut + Õd

〉
(2.41)
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Where the term Õd is defined as:

Õd(δx, δu, δt) =



Õ(1)(δx, δu, δt)

...

...

Õ(n)(δx, δu, δt)


(2.42)

The term ∇xV
T Õd is quadratic in variations in the states and controls δx, δu an thus

there are the symmetric matrices F ∈ <n×n , Z ∈ <m×m and L ∈ <m×n such that:

V T
x Õd =

1
2
δxTFδx +

1
2
δuTZδu + δuTLδx (2.43)

with

F =

 n∑
j=1

∇xxf
(j)Vxj

 (2.44)

Z =

 n∑
j=1

∇uuf
(j)Vxj

 (2.45)

L =

 n∑
j=1

∇uxf
(j)Vxj

 (2.46)

From the analysis above we can see that the expectation ∇xV T δxt+δt is a quadratic

function with respect to variations in states and controls δx, δu. As we will prove in
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the next section the expectation of δxTt+δt∇xxV
T δxt+δt is also a quadratic function of

variations in states and controls δx, δu.

Expectation of the 2nd order term of the value function.

In this section we compute all the terms that appear due to the expectation of the second

approximation of the value function
〈
δxTt+δt∇xxV δxt+δt

〉
. The term δxt+δt is given by

the stochastic dynamics in (2.38). Substitution of (2.38) results in 16 terms. To make

our analysis clear we classify these 16 terms terms above into five classes. More precisely

we will have that:

〈
δxTt+δtV

T
xxδxt+δt

〉
= E1 + E2 + E3 + E4 + E5 (2.47)

where the terms E1,E2,E3,E4 and E5 are defined as follows:

E1 =
〈
δxTt A

T
t VxxAtδxt

〉
+
〈
δuTt B

T
t VxxBtδut

〉
+
〈
δxTt A

T
t VxxBtδut

〉
+
〈
δuTt B

T
t VxxAtδxt

〉
E2 =

〈
ξTt ΓTt VxxAtδx

〉
+
〈
ξTt ΓTt VxxBtδu

〉
+
〈
δxTATt VxxΓtξt

〉
+ E

〈
δuTBT

t VxxΓtξt

〉
+
〈
ξTt ΓTt VxxΓtξt

〉
E3 =

〈
OT
d VxxΓtξt

〉
+
〈
ξTt ΓTt VxxOd

〉
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E4 =
〈
δxTt A

T
t VxxOd

〉
+
〈
δuTt B

T
t VxxOd

〉
+
〈

OT
d VxxBtδut

〉
+
〈

OT
d VxxAtδxt

〉
E5 =

〈
OT
d VxxOd

〉

In the first category we have all these terms that depend neither on ξt and nor on

Od(δx, δu, ξt, δt). These are the terms that define E1. The second category E2 includes

terms that depend on ξt but not on Od(δx, δu, ξt, δt). In the third class E3, there are

terms that depends both on Od(δx, δu, ξt, δt) and ξt . In the fourth class E4, we have

terms that depend on Od(δx, δu, ξt, δt). Finally in the fifth class E5, we have all these

terms that depend on Od(δx, δu, ξt, δt) quadratically. The expectation operator will

cancel all the terms that include noise up the first order. Moreover, the mean operator

for terms that depend on the noise quadratically will result in covariance.

We compute the expectations of all the terms in the E1 class. More precisely we will

have that:

〈
δxTt A

T
t VxxAtδxt

〉
= δxTt A

T
t VxxAtδxt〈

δuTt B
T
t VxxBtδut

〉
= δuTt B

T
t VxxBtδut〈

δxTt A
T
t VxxBtδut

〉
= δxTt A

T
t VxxBtδut〈

δuTt B
T
t VxxAtδxt

〉
= δuTt B

T
t VxxAtδxt

(2.48)

We continue our analysis by calculating all the terms in the class E2. More presicely

we will have:
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〈
ξTt ΓTt VxxAtδx

〉
= 0〈

ξTt ΓTt VxxBtδu
〉

= 0〈
ξTt ΓTt VxxAtδx

〉T
= 0〈

ξTt ΓTt VxxBtδu
〉T

= 0

(2.49)

The terms above are equal to zero since the brownian noise is zero mean. The ex-

pectation of the term that does not depend on Od(δx, δu, ξt, δt) and it is quadratic with

respect to the noise is given as follows:

〈
ξTt ΓTt VxxΓtξt

〉
= tr

(
ΓTt VxxΓtΣω

)
(2.50)

Since matrix Γ depends on variations in states and controls δx, δu we can further

massage the expressions above so that it can be expressed as quadratic functions in

δx, δu .

tr
(
ΓTt VxxΓtΣω

)
= σ2

dωδttr





Γ(1)T

...

...

Γ(m)T


Vxx

(
Γ(1) ... ... Γ(m)

)


(2.51)

33



= σ2
dωδt

m∑
i=1

Γ(i)TVxxΓ(i) (2.52)

The last equation is written in the form:

tr
(
ΓTt VxxΓtΣω

)
= δxT F̃δx + 2δxT L̃δu + δuT Z̃δu

+ 2δuT Ũ + 2δxT S̃ + γ (2.53)

Where the terms F̃ ∈ <n×m, L̃ ∈ <n×m, Z̃ ∈ <m×m, Ũ ∈ <m×1, S̃ ∈ <n×1 and γ ∈ <

are defined as follows:

F̃ = σ2δt
m∑
i=1

∇xF
(i)
c

TVxx∇xF
(i)
c (2.54)

L̃ = σ2δt
m∑
i=1

∇xF
(i)
c

TVxx∇uF
(i)
c (2.55)

Z̃ = σ2δt
m∑
i=1

∇uF
(i)
c

TVxx∇uF
(i)
c (2.56)

Ũ = σ2δt
m∑
i=1

∇uF
(i)
c

TVxxF
(i)
c (2.57)

S̃ = σ2δt
m∑
i=1

∇xF
(i)
c

TVxxF
(i)
c (2.58)

γ = σ2δt
m∑
i=1

F (i)
c

TVxxF
(i)
c (2.59)

For those terms that depend both on Od(δx, δu, ξt, δt) and on the noise class E3 we

will have: 〈
OT
d VxxΓtξt

〉
=
〈
tr
(
VxxΓtξtO

T
d

)〉
= tr

(
VxxΓtE

(
ξtO

T
d

))
(2.60)
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By writing the term Od(δx, δu, ξt, δt) in a matrix form and putting the noise vector

insight the this matrix we have:

〈
OT
d VxxΓtξt

〉
= tr

(
VxxΓtE

[
ξtO

(1) ... ξtO
(n)

])
(2.61)

Calculation of the expectation above requires to find the terms
〈√

δtξtO
(j)

〉
more

precisely we will have:

〈√
δtξtO

(j)

〉
=

1
2

〈√
δtξtδx

TΦ(i)
xxδx

〉
+

1
2

〈√
δtξtδu

TΦ(i)
uuδu

〉
+
〈√

δtξtδu
TΦ(i)

uxδx
〉

(2.62)

We first calculate the term:

〈√
δtξtδx

T∇xxΦ(i)δx
〉

=
〈√

δtξtδx
T
(
∇xxf

(i)δt+∇xxF
(i)
r ξt
√
δt
)
δx
〉

(2.63)

=
〈√

δtξtδx
T
(
∇xxf

(i)δt
)
δx
〉

+
〈√

δtξtδx
T
(
∇xxF

(i)
r ξt
√
δt
)
δx
〉

The term
〈√

δtξtδx
T
(
∇xxf

(i)δt
)
δx
〉

= 0 since it depends linearly on the noise and〈
ξt

〉
= 0. The second term

〈√
δtξtδx

T
(
∇xxF

(i)
r ξt
√
δt
)
δx
〉

depends quadratically in

the noise and thus the expectation operator will result in the variance on the noise. We

follow the analysis:

〈√
δtξtδx

T∇xxΦ(i)δx
〉

=
〈√

δtξtδx
T∇xx

(
F (i)
r ξt
√
δt
)
δx
〉

(2.64)

Since the ξt =
(
ξ(1), ..., ξ(m)

)T
and F

(i)
r =

(
F (i1), ...., F (im)

)
we will have that:
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〈√
δtξtδx

T∇xxΦ(i)δx
〉

=
〈
δtξtδx

T∇xx

 m∑
j=1

F (ij)ξ(j)

 δx
〉

(2.65)

=
〈
δtξtδx

T

 m∑
j=1

∇xx

(
F (ij)ξ(j)

) δx
〉

=
〈
δtξtδx

T

 m∑
j=1

ξ(j)∇xx

(
F (ij)

) δx
〉

By writing ξt in vector form we have that:

〈√
δtξtδx

T∇xxΦ(i)δx
〉

=
〈
δt



ξ(1)

...

...

ξ(m)


δxT

 m∑
j=1

ξ(j)∇xx

(
F (ij)

) δx
〉

The term δxT
(∑m

j=1 ξ
(j)∇xx

(
F (ij)

))
δx is scalar and it can multiply each one of the

elements of the noise vector.



δt

〈
ξ(1)δxT

(∑m
j=1 ξ

(j)∇xx

(
F (ij)

))
δx
〉

...

...

δt

〈
ξ(m)δxT

(∑m
j=1 ξ

(j)∇xx

(
F (ij)

))
δx
〉


(2.66)
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Since
〈
ξ(i)ξ(i)

〉
= σ2 and

〈
ξ(i)ξ(j)

〉
= 0 we can show that:

〈√
δtξtδx

T∇xxΦ(i)δx
〉

= σ2δt



δxT∇xxF
(i1)
r δx

...

...

δxT∇xxF
(im)
r δx


(2.67)

In a similar way we can show that:

〈√
δtξtδx

T∇uuΦ(i)δx
〉

= σ2δt



δuT∇uuF
(i1)
r δu

...

...

δuT∇uuF
(im)
r δu


(2.68)

and

〈√
δtξtδu

T∇xuΦ(i)δx
〉

= σ2δt



δuT∇uxF
(i1)
r δx

...

...

δuT∇uxF
(im)
r δx


(2.69)

Since we have calculated all the terms of expression (2.62) we can proceed with the

computation of (2.60). According to the analysis above the term
〈

OT
d VxxΓtξt

〉
can be

written as follows:

〈
OT
d VxxΓtξt

〉
= tr (VxxΓt (M + N + G)) (2.70)
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Where the matrices M ∈ <m×n, N ∈ <m×n and G ∈ <m×n are defined as follows:

M = σ2δt


δxT∇xxF

(11)
r δx ... δxT∇xxF

(1n)
r δx

... ... ...

δxT∇xxF
(m1)
r δx ... δxT∇xxF

(mn)
r δx

 (2.71)

Similarly

N = σ2δt


δxT∇xuF

(1,1)
r δu ... δxT∇xuF

(1,n)
r δu

... ... ...

δxT∇xuF
(m,1)
r δu ... δxT∇xuF

(m,n)
r δu

 (2.72)

and

G = σ2δt


δuT∇uuF

(1,1)
r δu ... δuT∇uuF

(1,n)
r δu

... ... ...

δuT∇uuF
(m,1)
r δu ... δuT∇uuF

(m,n)
r δu

 (2.73)

Based on (2.34) the term Γt depends on ∆ which is a function of the variations in

states and control up to the 1th order. In addition the matrices M, N and G are also

functions of the deviations in state and controls up to the 2th order. The product of ∆

with each one of the matrices M, N and G will result into 3th order terms that can be

neglected. By neglecting these terms we can show that:

〈
OT
d VxxΓtξt

〉
= tr (Vxx(∆ + F ) (M + N + G)) (2.74)
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= tr (VxxF (M + N + G))

Each element (i, j) of the product C = VxxF can be expressed as C(i,j) =
∑n

r=1 V
(i,r)
xx F (r,j)

where C ∈ <n×p. Furthermore the element (µ, ν) of the product H = CM is formulated

H(µ,ν) =
∑n

k=1 C(µ,k)M(k,ν) with H ∈ <n×n . Thus, the term tr (VxxFM) can be now

expressed as:

tr (VxxFM) =
n∑
`=1

H(`,`) (2.75)

=
n∑
`=1

m∑
k=1

C(`,k)M(k,`)

=
n∑
`=1

m∑
k=1

(
n∑
r=1

V
(k,r)
xx F (r,`)

)
M(k,`)

Since M(k,`) = δtσ2
dω1

δxT∇xxF
(k,`)δx the vectors δtσ2

dω1
δxT and δx do not depend

on k, `, r and they can be taken outside the sum. Thus we can show that:

tr (VxxFM) =
n∑
`=1

m∑
k=1

((
n∑
r=1

V
(k,r)
xx F (r,`)

)
σ2δtδxT∇xxF

(k,`)δx

)
(2.76)

= δxTσ2δt

n∑
`=1

m∑
k=1

((
n∑
r=1

V
(k,r)
xx F (r,`)

)
∇xxF

(k,`)

)
δx

= δxTM̃δx
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where M̃ is a matrix of dimensionality M̃ ∈ <n×n and it is defined as:

M̃ = σ2δt

n∑
`=1

m∑
k=1

((
n∑
r=1

V
(k,r)
xx F (r,`)

)
∇xxF

(k,`)

)
(2.77)

By following the same algebraic steps it can been shown that:

tr (VxxFN ) = δxT Ñδu (2.78)

with Ñ matrix of dimensionality Ñ ∈ <n×m defined as:

Ñ = σ2δt
n∑
`=1

m∑
k=1

((
n∑
r=1

V
(k,r)
xx F (r,`)

)
∇xuF

(k,`)

)
(2.79)

and

tr (VxxFG) = δuT G̃δu (2.80)

with G̃ matrix of dimensionality Ñ ∈ <m×m defined as:

G̃ = σ2δt

n∑
`=1

m∑
k=1

((
n∑
r=1

V
(k,r)
xx F (r,`)

)
∇uuF

(k,`)

)
(2.81)

Thus the term
〈

OT
d VxxΓtξt

〉
is formulated as:
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〈
OT
d VxxΓtξt

〉
=

1
2
δxTM̃δx +

1
2
δuT G̃δu + δxT Ñδu (2.82)

Similarly we can show that:

〈
ξTt ΓTt VxxOd

〉
=

1
2
δxTM̃δx +

1
2
δuT G̃δu + δxT Ñδu (2.83)

Next we will find the expectation for all terms that depend on Od(δx, δu,dω, δt) and

not on the noise. Consequently, we will have that:

〈
δxTt A

T
t VxxOd

〉
= δxTt A

T
t VxxÕd = 0〈

δuTt B
T
t VxxOd

〉
= δuTt B

T
t VxxÕd = 0〈

OT
d VxxAtδxt

〉
= Õd

T
VxxAtδxt = 0〈

OT
d VxxBtδut

〉
= Õd

T
VxxBtδut = 0

(2.84)

where the quantity Õd has been defined in (2.42). All the 4 terms above are equal

to zero since they have variations in state and control of the order higher than 2 and

therefore they can be neglected.

Finally we compute the terms of the 5th class and therefore we have the expression

E5 =
〈

OT
d VxxOd

〉
=
〈
tr
(
VxxOdOT

d

)〉
= tr

(
Vxx

〈
OdOT

d

〉)
(2.85)
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=


Vxx

〈

O(1)

...

O(n)




O(1)

...

O(n)



T

〉


The product O(i)O(j) is a function of variation in state and control of order 4 since each

term O(i) is a function of variation in states and control of order 2. Consequently, the

term E5 = E
(
OT
d VxxOd

)
is equal to zero.

With the computation of the expectation of term that is quadratic wrt Od we have

calculated all the terms of the second order expansion of the cost to go function. In

the next section we derive the optimal controls and we present the SDDP algorithm.

Furthermore we show how SDDP recover the deterministic solution as well as the cases

of only control multiplicative, only state multiplicative and only additive noise.

2.3.1.2 Optimal controls

In this section we provide the form of the optimal controls and we show how previous

results are special cases of our generalized stochastic DDP formulation. Furthermore

after we computed all the terms of expansion of the cost to go function V (xt) at statext
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we show that its form remains quadratic wrt variations in state δxt under the constraint

of the nonlinear stochastic dynamics in (2.30). More precisely we have that:

V (x̄t+δt + δxt+δt) = V (x̄t+δt) +∇xV TAtδxt +∇xV TBtδut

+
1
2
δxTFδx +

1
2
δuTZδu + δuTLδx +

1
2
δxTt A

T
t VxxAtδxt +

1
2
δuTt B

T
t VxxBtδut

+
1
2
δxTt A

T
t VxxBtδut +

1
2
δuTt B

T
t VxxAtδxt +

1
2
δxT F̃δx + δxT L̃δu +

1
2
δuT Z̃δu

+ δuT Ũ + δxT S̃ +
1
2
γ +

1
2
δxTM̃δx +

1
2
δuT G̃δu + δxT Ñδu

(2.86)

The unmaximized state, action value function is defined as follows:

Q(xk,uk) = `(xk,uk) + V (xk+1) (2.87)

Given a trajectory in states and controls x̄, ū we can approximate the state action

value function as follows:

Q(x̄ + δx, ū + δu) = Q0 + δuTQu + δxTQx +
1
2

[
δxT δuT

] Qxx Qxu

Qux Quu


 δx

δu


(2.88)
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By equating the coefficients with similar powers between the state action value func-

tion Q(xk,uk) and the immediate reward and cost to go `(xk,uk) and V (xk+1) respec-

tively we can show that:

Qx = `x +AtVx + S̃

Qu = `u +AtVx + Ũ

Qxx = `xx +ATt VxxAt + F + F̃ + M̃

Qxu = `xu +ATt VxuBt + L + L̃ + Ñ

Quu = `uu +BT
t VuuBt + Z + Z̃ + G̃

(2.89)

where we have assumed a local quadratic approximation of the immediate reward

`(xk,uk) according to the equation:

`(x̄ + δx, ū + δu) = `0 + δuT `u + δxT `x +
1
2

[
δxT δuT

] `xx `xu

`ux `uu


 δx

δu

 (2.90)

with `x = ∂`
∂x , `u = ∂`

∂u , `xx = ∂2`
∂x2 , `uu = ∂2`

∂u2 and `ux = ∂2`
∂u∂x . The local variations in

control δu∗ that maximize the state action value function are expressed by the equation

that follows:

δu∗ = argmax
u

Q(x̄ + δx, ū + δu) = −Q−1
uu (Qu +Quxδx) (2.91)

The optimal control variations have the form δu∗ = l + Lδx where l = −Q−1
uuQu is

the open loop control or feedforward command and L = −Q−1
uuQux is the closed loop -

feedback gain. All the terms in (2.92) are functions of the gradient of the value function
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Vx and the Hessian Vx,x. This quantities are backward propagated from the terminal

boundary conditions as follows:

If the noise is only control depended then M̃, Ñ, L̃, F̃ , S̃ will be zero since ∇xxF (u) =

0,∇xuF (u) = 0 and ∇xF
(i)
c (x) = 0 while if it is state dependent then Ñ, G̃, Z̃, L̃, Ũ will

be zero since ∇xuF (x) = 0,∇uuF (x) = 0 and ∇uF
(i)
c (x) = 0.

In the next two sub-sections we show that differential dynamic programming (DDP)

and iterative linear quadratic regulators are special cases of the stochastic differential

dynamic programming.

2.3.2 Differential dynamic programming

There are two cases in which we can recover the DDP equations. In particular, for the

special case where the stochastic dynamics have only additive noise F (u,x) = F then the

terms M̃, Ñ, G̃, F̃ , L̃, Z̃, Ũ , S̃ will be zero since they are functions of ∇xxF and ∇xuF

and ∇uuF and it holds that ∇xxF = 0, ∇xuF = 0 and ∇uuF = 0. In systems with

additive noire the control does not depend on the statistical characteristics of the noise.

In addition, for the case of deterministic systems the terms M̃, Ñ, G̃, F̃ , L̃, Z̃, Ũ , S̃

will be zero because these terms depend on the variance of the noise σdωi = 0, ∀i =

1, ...,m. Clearly in both of the cases above the resulting algorithm corresponds to DDP

in which the equation are formulated as follows:
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Qx = `x +AtVx

Qu = `u +AtVx

Qxx = `xx +ATt VxxAt

Qxu = `xu +ATt VxuBt

Quu = `uu +BT
t VuuBt

(2.92)

2.4 Risk sensitivity and differential game theory

The relation of risk sensitivity and differential game theory was first studied for the case

on linear dynamics and quadratic cost function in (Jacobson 1973) When the case of im-

perfect state measurement is considered, the relation between the two frameworks was in-

vestigated in (Whittle 1991),(Whittle 1990),(Basar 1991)and (Runolfsson 1994). Another

research direction on risk sensitivity and differential game theory considers the case of non-

linear stochastic dynamics and markov processes (James, Baras & Elliot 1994),(Fleming

& Soner 2006). In addition to the theoretical developments, applications of risk sensi-

tivity and differential game theoretic approaches to reinforcement learning showed the

robustness of the resulting control policies against disturbances and uncertainty in highly

nonlinear systems (Morimoto & Atkeson 2002),(Morimoto & Doya 2005). One of the main

issues with these risk sensitive RL approaches is their poor scalability to high dimensional

dynamical systems.
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2.4.1 Stochastic differential games

The ultimate goal in stochastic optimal control framework (Stengel 1994), (Basar &

Berhard 1995), (Fleming & Soner 2006) is to control a dynamical system while minimiz-

ing a performance criterion. For the case on nonlinear stochastic systems the stochastic

optimal control problem is expressed as the minimization of a cost function. However

when disturbances are present then the stochastic optimal control problem can be for-

mulated as a differential game with two opponents that is formulated as:

min
u

max
v

J(x,u) = min
u

max
v

〈
φ(xtN ) +

∫ tN

t0

L(x,u,v)dt
〉

(2.93)

with L(x,u,v) = q(x)+ 1
2uTRu−γvTv and under the stochastic nonlinear dynamical

constrains:

dx = (f(x) + G(x)u) +
√
ε

γ
C(x)L (vdt+ dw) (2.94)

or

dx = F (x,u,v)dt+ C(x)Ldw (2.95)

with F (x,u,v) = f(x) + G(x)u +
√

ε
γC(x)Lv and L is a state independent matrix

defined as LLT = Σε . Essentially there are two controllers, u ∈ <m×1 the stabilizing

controller and v ∈ <p×1 the destabilizing one while x ∈ <n×1 is the state and dw is

brownian noise. The parameters ε, γ are positive. The stabilizing controller minimizes

the cost function while the stabilizing one intents to maximize it. The value function is
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defined as the optimal of the cost function J(x,u,v) and therefore is a function only of

the state:

V (x) = min
u

max
v

J(x,u,v) = min
u

max
v

J(x,u∗,v∗) (2.96)

The stochastic Isaacs HJB equation associated with this stochastic optimal control

problem is expressed as follows:

−∂tV = min
u

max
v

(
L + (∇xV )TF +

1
2
tr
(
(∇xxV )CΣεCT

))
(2.97)

Since the the left hand side of the HJB is convex with respect to control u and concave

with respect to v the min and max are exact lead to the optimal controls:

u∗(x) = −R−1G(x)T (∇xV ) (2.98)

and optimal destabilizing controller:

v∗(x) =
1
γ

C(x)T (∇xV ) (2.99)

Substitution of the optimal stabilizing and destabilizing control to the HJB results

into the nonlinear second order PDE:

−∂tV = q + (∇xV )T ft −
1
2

(∇xV )TGR−1GT (∇xV )− 1
2γ

(∇xV )TBBT (∇xV ) (2.100)

+
ε

2γ
tr
(
(∇xxV )CΣεCT

)
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The PDE above can be written in the form:

−∂tV = q + (∇xV )T f − 1
2

(∇xV )TH(x)(∇xV ) +
ε

2γ
tr
(
(∇xxV )CΣεCT

)
(2.101)

where the introduced term H(x) is defined as

H(x) = G(x)R−1G(x)T − 1
γ

C(x)ΣεC(x)T (2.102)

From (2.101) and (2.102) we see that for γ → ∞ the Isaacs HJB is reduced to the

HJB. In the next section we show under which conditions the nonlinear and second order

PDE can be transformed to a linear PDE. Linear PDEs are easier to be solve via the

application of the Feynman- Kac lemmas which provides a probabilistic representations

of the solution of these PDEs. In the next session after transforming the PDE into a

linear, we provide the Feynman Kac lemma.

2.4.2 Risk sensitive optimal control

We consider the optimal control problem (Basar & Berhard 1995) where the state dy-

namics are described by the Ito stochastic differential differential equation:

dx = (f(x) + G(x)u)dt+
√
ε

γ
C̃(x)Ldw (2.103)
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where w(t), t > 0 is an n-dimensional Wiener Precess, γ is a positive parameter and

ut ∈ U is the control and Σε = LLT . The objective is to find the control law that

minimizes the performance criterion:

J(x,u) = ε log
〈

exp
1
ε

(
φ(tN ) +

∫ tN

t0

L(x,u)dt
)〉

(2.104)

For our analysis we need the following conditions:

i) Functions f(x),G(x) and L(x,u) are continuously differentiable in (t,x,u) ∈ [0, tf ]×

<n × U , φ is twice differentiable in x ∈ <n and φ and L are nonnegative.

ii) C(x) is continuously differentiable in (t,x) ∈ [0, tf ]×<n × U and C(x)C(x)T > 0.

iii) F(x,u),∇xF,L(x,u),Lx, φ(x(tf )),∇xφ are bounded on [0, tf ]×<n × U .

iv) U is closed and bounded subset of <m

Let us assume that:

V (x, t) = inf
u
J(x,u) = ε log Φ(x, t) (2.105)

where Φ(t,x) is the value function that corresponds to the cost function:

Φ(t,x) = inf
u

〈
exp

1
ε

(
φ(tN ) +

∫ tN

t0

L(x,u)dt
)〉

(2.106)

or

Φ(t,x) =
〈

exp
1
ε

(
φ(tN ) +

∫ tN

t0

L(x∗,u∗)dt
)〉

(2.107)
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where x∗,u∗ is the optimal state and control trajectory. The total derivative ∀t = t0

is given by:

dΦ
dt

= −1
ε
L(x∗,u∗)Φ(t,x) (2.108)

and thus we have that:

dΦ = −1
ε
L(x∗,u∗)Φ(t,x)dt (2.109)

By using the Ito differentiation rule we will have that:

dΦ =
(
∂tΦ + (∇xΦ)TF

)
dt+

ε

2γ
tr
(
∇ΦxxC̃ΣεC̃T

)
(2.110)

By equating the two last equation above we will the resulting PDE expressed as

follows:

−∂tΦ = (∇xΦ)T F +
ε

2γ
tr
(
∇xxΦC̃ΣεC̃T

)
+

1
ε
LΦ (2.111)

In this PDE F = F(x∗,u∗) and L = L(x∗,u∗). The PDE above can be also written

as follows:

0 = inf
u∈U

(
∂tΦ + (∇xΦ)T F +

ε

2γ
tr
(
∇xxΦC̃ΣεC̃T

)
+

1
ε
LΨ

)

or in form:

∂tΦt = inf
u∈U

(
(∇xΦ)T F +

ε

2γ
tr
(
∇xxΦC̃ΣεC̃T

)
+

1
ε
LΦ

)
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with the boundary condition Φ(x, t) = exp
(

1
εφ(x(tN ))

)
and F = F(x∗,u) and L =

L(x∗,u). This is the Hamilton Jacobi Bellman equation for the case of the risk sensitive

stochastic optimal control problem. Since CCT > 0 the PDE above is a uniformly

parabolic PDE. Moreover under the conditions 1, 2, 3, 4 the second order PDE has unique

bounded positive solution. The value function V (x, t) is related to Φ(x, t) through (2.105)

and therefore V (x, t) is smooth and satisfies the uniformly parabolic PDE:

∂tVt = inf
u∈U

(
(∇xV )T F + L +

ε

2γ
(∇xV )T C̃C̃T (∇xV ) +

ε

2γ
tr
(
∇xxΨC̃ΣεC̃T

))
(2.112)

with the boundary condition V (x(tN ) = φ(x(tN )). To obtain the equation above we

make use of the equalities:

1
ε

Φ (∂tV ) = ∂tΦ (2.113)

1
ε

Φ (∇xV ) = ∇xΦ (2.114)

∇xxΦ =
1
ε

(∇xV ) (∇xV )T +
1
ε

(∇xxV ) Φ (2.115)

The optimal control law can be found explicitly and thus is given by:

u = −R−1G(x) (∇xV ) (2.116)

Substitution of the optimal control back to the parabolic PDE results in Hamilton

Jacobi Bellman equation.
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−∂tVt = q + (∇xV )T f − 1
2

(∇xV )TGR−1GT (∇xV )

+
1

2γ
(∇xV )T C̃ΣεC̃T (∇xV ) +

ε

2γ
tr
(
∇xxΨC̃ΣεC̃T

)

We write the equation above in a more compact form:

−∂tVt = q + (∇xV )T f − 1
2

(∇xV )TM(x)(∇xV ) +
ε

2γ
tr
(
∇xxΨC̃ΣεC̃T

)
(2.117)

where the term M(x) is defined as:

M(x) = G(x)R−1G(x)T − 1
γ

C̃(x)ΣεC̃(x)T (2.118)

The PDE above is equivalent the stochastic Isaacs HJB in (2.101) if C̃(x)ΣεC̃(x)T =

C(x)ΣεC(x)T . Thus the following theorem as stated in (Basar & Berhard 1995) with

some slight modifications2establishes the equivalence between stochastic differential games

and Risk sensitivity:

Theorem: The stochastic differential game expressed by (2.120) and (2.94) is

equivalent under the conditions 1,2,3, and 4 with the risk sensitive stochastic optimal

control problem defined by (2.103) and (2.104) in the sense that the former admits a

game value function with continuously differentiable in t and twice differentiable in x if
2In (Basar & Berhard 1995) pp 183 the corresponding theorem is stated for the case where C(x) = C̃(x)

while in the present form there is the assumption C̃(x)ΣεC̃(x)T = C(x)ΣεC(x)T .
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and only of the later admits an optimum value function with same features. Furthermore

the optimal control and value functions are identical and they are specified by:

u∗(x) = −R−1GT∇xV (2.119)

where

−∂tVt = q + (∇xV )T f − 1
2

(∇xV )TGR−1GT (∇xV )

+
1

2γ
(∇xV ) C̃ΣεC̃T (∇xV ) +

ε

2γ
tr
(
∇xxΨC̃ΣεC̃T

)

with boundary condition VtN = φtN , iff the following conditions holds C̃(x)ΣεC̃(x)T =

C(x)ΣεC(x)T . The parameters γ, λ > 0 and Σε defined as Σε = LLT .

The use of the two parameters ε and γ in the analysis above may seem a bit confusing.

As a first observation, ε and γ are tuning parameters in the cost function and therefore

it does not make sense to multiply the process noise in the stochastic dynamics since in

most control applications the stochastic dynamics are given and their uncertainty is not

a matter of manipulation and user tuning.

To resolve the confusion we consider the special case where ε = γ which is the most

studied in the control literature. In this case the parameters ε, γ drop from the stochastic

dynamics and they appear only in the cost functions. When ε 6= γ this is a generalization

since we can now ask an additional question: Given the cost functions in risk sensitive and

differential game optimal control problems and the difference between the risk parameter

ε and the distrurbance weight γ what is the form of the stochastic dynamics for which
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these two problems are equivalent. Clearly for the dynamics (2.94) and (2.103) the two

stochastic optimal control problems are equivalent. Due to this generalization we keep

ε, γ for path integral stochastic differential games and path integral risk sensitivity.

In the next section we derive the risk sensitive path integral control and we show under

which conditions it is equivalent with the path integral stochastic differential games.

2.5 Information theoretic interpretations of optimal control

One of the first information theoretic interpretations of stochastic optimal control is the

work by (Saridis 1996). In this work, an alternative formulation of stochastic optimal

control is proposed which relates the minimization of the performance index in optimal

control with the concept of Shannon Differential Entropy. Moreover, the entropy formu-

lation is not only applied to provide interpretations of the optimal control problem but

it is also used to generated alternative views for the frameworks of stochastic estimation

and adaptive control in a unified way. In this section, we are going to restrict our analysis

to the case of optimal control problem and its entropy interpretation.

More precisely, we start our analysis with the ”traditional” formulation of the optimal

control problem which consists of a cost function under minimization of the form:

J(u,x) = φ(xtN ) +
∫ tN

t0

L(x,u)dt (2.120)
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subject to the stochastic dynamics: dx = (f(x) + G(x)u)dt + B(x)dω. We define the

differential entropy:

H

(
u(x, t), p(u),x(t0)

)
= −

∫
Ωx0

∫
Ωx

p

(
u,x(t0)

)
log p

(
u,x(t0)

)
dx dx0 (2.121)

where p
(

u,x(t0)
)

is the probability of selecting u while x0 is the initial state and

Ωx,Ωx0 the spaces of the states and the initial conditions. Next, we are looking for the

probability distribution which best represents the random variable u. The answer to this

request is given by Jayne’s maximum entropy principle which states that the best distribu-

tion is the one that maximizes the entropy formulation above. This maximization proce-

dure is subjected to the constrains that E
(
J(u,x)

)
= K and also

∫
p

(
u,x(t0)

)
dx0 = 1.

As stated in (Saridis 1996), this problem is more general than the optimal control since

the parameter K is fixed and unknown and it depends on the selection of the controls

u(x, t). The unconstrained maximization problem is now formulated as follows:

Υ = β H

(
u(x, t), p(u),x(t0)

)
− γ
(
E

(
J(u,x)

)
−K

)
− α

(∫
p

(
u,x(t0)

)
dx0 − 1

)
∝ −

∫ (
β p

(
u,x(t0)

)
log p

(
u,x(t0)

)
+ γ p

(
u,x(t0)

)
J(u,x)

)
dx

− α
(∫

p(u,x(t0))dx0 − 1
)

(2.122)

The objective function above is concave with respect to the probability distribution

since the second derivative ∂Υ
∂p = −β 1

p < 0. Thus to find the maximum we take the first
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derivative of the objective function with respect to the distribution p(u) and equal to

zero. More precisely we have:

−β log p(u)− β − γJ(u,x)− α = 0 (2.123)

The worst case distribution and therefore the one which maximizes the differential

entropy H
(

u(x, t), p(u),x(t0)
)

is expressed as follows:

p(u) =
exp

(
− γ

βJ(u,x)
)

exp
(
− β

β+α

) (2.124)

by assuming that 1
λ = γ

β and exp
(
− β

β+α

)
=
∫

exp
(
− 1

λJ(u,x)
)
dx we will have

the final result:

p(u) =
exp

(
− 1

λJ(u(x, t),x)
)

∫
exp

(
− 1

λJ(u(x, t),x)
)
dx

(2.125)

Substitution of the worst distribution results in the maximum differential entropy

expressed by the equation:

H

(
u(x, t), p(u),x(t0)

)
= ζ +

1
λ
E

(
J(u(x, t),x)

)
(2.126)

where ζ = β+α
β . Given the form of the probability p(u) total time derivative expressed

as follows:
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dp(u)
dt

=
d

dt

exp
(
− 1

λJ(u,x)
)

exp
(
− β

β+α

)
 = − 1

λ
L(u,x) p(u) (2.127)

At the same time we know that dp(u)
dt = ∂p(u)

∂t + ∂p
∂x

T
ẋ. By equating the two equations

we will have:

∂p(u)
∂t

+∇xp
T ẋ +

1
λ

L(u,x) p(u) = 0 (2.128)

We now consider the following properties:

∇xp =
1
λ
∇xJ(x,u) p(u), and

∂p

∂t
=

1
λ

∂J

∂t
p(u) (2.129)

Substitution of the equation above results in the following PDE:

(
∂J(u)
∂t

+∇xJ(x,u)T f(x,u, t) + L(u,x)
)

1
λ
p(u) = 0 (2.130)

which is the generalized HJB equation. By assuming that ∀p(u) > 0 the equation

above yields:

∂J(u)
∂t

+∇xJ(x,u)T f(x,u, t) + L(u,x) = 0 (2.131)

The minimization of the equation yields the optimal control that minimizes the dif-

ferential entropy H
(

u(x, t), p(u),x(t0)
)

. More precisely we will have that

−∂J(u)
∂t

= min
u

(
∇xJ(x,u)T f(x,u, t) + L(u,x)

)
(2.132)
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2.6 Discussion

In this chapter we have presented basic concepts and principles in the theory of optimal

control starting from the Bellman principle of optimality and the Pontryagin maximum

principle. We discussed a class of model based iterative optimal control approaches by

deriving the Stochastic Differential Dynamic programming (SDDP) algorithm for non-

linear systems with state and control multiplicative noise. The connection between risk

sensitive and differential game theoretic optimal control problems was illustrated. In the

previous section we presented information theoretic interpretations of optimal control

problem.

The next chapter introduces fundamental mathematical concepts in physics and con-

trol theory. These mathematical concepts include PDEs, and SDEs and the path integral.

Besides the presentation of each one of these concepts, emphasis is also given their con-

nection.
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Chapter 3

Path Integrals, Feynman Kac Lemmas and their connection

to PDEs

The goal in this chapter is to introduce important, for the mathematical developments of

this work, concepts in the area of PDEs and their connection to path integral formalisms

and SDEs. Essentially we can think about the 3 mathematical formalisms of PDEs, Path

integrals and SDEs as different mathematical representations of the same underlying

physical processes. But, why are there more that one mathematical representation of the

same phenomenon? The reason is because these mathematical structures offer represen-

tations on a macroscopic or microscopic level. In fact, PDEs provide a macroscopic view

while SDEs and path integrals formalisms offer a more microscopic view of an underlying

physical process.

Among other sciences and engineering fields, the aforementioned mathematical tools

are also used in the physics and control theoretic communities. These communities are

dealing with different problems. As an example, while in physics it is important to predict

the position of a particle under a magnetic field, in control theory the question is how to

construct a magnetic filed such that the particle has a desired behavior. Clearly in both
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cases one could use PDEs, on the one hand, to predict the outcome of the force field, on

the other hand, to find the control policy which when applied meets the desired behavior.

So, both communities are using PDEs but for different purposes. This fact results also

in different terminology. What is called a ”force field”, for physics, it can be renamed as

”control policy” in control theory.

The observations above are not necessarily objective, but they are very much related

to our experiences as we were trying to understand and bring together concepts from

physics and control theory. With this background in our mind, in this chapter our goal

is to bring together concepts from physics and control theory with emphasis on the

connection between PDEs, SDEs and Path Integrals. More precisely, section 3.1 is a

short journey in the world of quantum mechanics and the work on Path Integrals by one

of the most brilliant intellectuals in the history of sciences, Dr. Richard Feynman. By no

means, this section is not a review his work. This section just aims to show that the core

concepts of this thesis, which is the Path Integral, has its historical origins in the work

by Richard Feynman.

In sections 3.2 and 3.4 we highlight the convection between the forward Fokker Planck

PDEs and the underlying SDE for both the Itô and the Stratonovich calculus. With

the goal to establish the connection between the path integral formalism and SDEs, in

section 3.3, we derive the path integral for the general stochastic integration scheme

for 1-dimensional SDE and then we specialize for the cases of Itô and the Stratonovich

calculus. In section 3.4 the derivation of the Itô path integral for multi-dimensional SDEs

is presented. The last two sections are aiming to show how forwards PDEs are connected

to Path Integrals and SDEs.
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Forward PDEs such as the Fokker Planck equation or the Chapman- Kolmogorov

PDE in its forward form, are typically used in estimation problems. In particular in

the case where stochasticity is considered only for the state space dynamics, the Fokker

Planck PDE is the appropriate mathematical description, while in cases in which there is

also measurement uncertainty (partial observability), the forward Chapman-Kolmogorov

equation is the corresponding PDE. However, in an optimal control setting, the PDEs

are usually backward and since they are related to the concept of the value function and

the Bellman principle of optimality. Is there any connection between these backward

PDEs, SDEs and the corresponding Path Integrals formalisms? The answer is that this

connection exists and it is established via the Feynman- Kac lemma in section (3.5). The

Feynman Kac lemma is of great importance because is provides a way to probabilistically

represent solution of PDEs. In section (3.5) we provide the full proof of the Feynman-Kac

lemma, which in its complete form, is rarely found in the literature. In section 3.6 we

discuss special cases of the Feynman-Kac lemma.

Besides the connection between the forward and backward PDEs, SDE and Path in-

tegrals we also discuss how the forward and backward Chapman-Kolmogorov equations

are connected in 3 different levels which are: i) through the mathematical concept of fun-

damental solutions of PDEs, ii) via a slightly modified version the proof of the Feynman

-Kac lemma and iii) through the Generalized Duality between the optimal estimation and

control problems. All these issues are addressed in sections 3.7, 3.8 and 3.9. In the last

section we conclude and prepare the discussion for the next chapter.
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3.1 Path integrals and quantum mechanics

Since the mathematical construction of the path integral plays a central role in this work,

it would have been a severe gap if this work did not include an introduction to path

integrals and their use for the mathematical representation of quantum phenomena in

physics. Therefore, in the next two subsections, we discuss the concept of least action

in classical mechanics and its generalization to quantum mechanics via the use of the

path integral. Moreover, we provide the connection between the path integral and the

Schrődinger equation, one of the most important equations in quantum physics.

The Schrődinger equation was discovered in 1925 by the physicist and theoretical

biologist, Erwin Rudolf Josef Alexander Schrődinger (Nobel-Lectures 1965). The initial

idea of the path integral goes back Paul Adrien Morice Dirac, a theoretical physicist who

together with Schrődinger was awarded the Nobel Prize in Physics in 1933 for their work

on discovery of the new productive forms of atomic theory. Richard Phillips Feynman

(Nobel-Lectures 1972), also a theoretical physicist and Nobel price winner in 1965 for his

work on quantum electrodynamics, completed the theory of path integral in 1948.

3.1.1 The principle of least action in classical mechanics and the

quantum mechanical amplitude.

Let us assume the case where a dynamical system moves from an initial state xA to a

terminal state xB. The principle of least action (Feynman & Hibbs 2005) states that the

system will follow the trajectory x∗A,x
∗
1, ...,x

∗
N−1,x

∗
B that is the extremum of the cost

function:
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S =
∫ tB

tA

L(x, ẋ, t)dt (3.1)

where L(x, ẋ, t) is the Langragian of the system defined as L = Ekin − U with Ekin

being the total kinetic energy and U being the potential energy of the system and S is

the so called action. For a particle of mass m moving in a potential V (x), the Lagrangian

is L(x, ẋ) = 1
2mẋ

2 − V (x). By using the Calculus of variations, the optimal path can be

determined. We start by taking the Taylor series expansion of S(x + δx) and we have:

S(x + δx) =
∫ tB

tA

L(x + δx, ẋ + δẋ, t)dt

=
∫ tB

tA

(
L(x, ẋ, t) + δxT∇xL + δẋT∇ẋL

)
dt

= S(x) +
∫ tB

tA

(
δxT∇xL + δẋT∇ẋL

)
dt

After integrating by parts we will have

∆S =
[
δxT∇ẋL

]T
t0

−
∫ T

t0

δxT
[
d

dt

(
∇ẋL

)
−∇xL

]
dt

Given the condition δx(t0) = 0 and δxT = 0 we will have:

∆S = −
∫ tB

tA

δxT
[
d

dt

(
∇ẋL

)
−∇xL

]
dt

To find the optimal trajectory we set ∆S = 0. Therefore the condition that the

optimal trajectory satisfies is expressed as:
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d

dt

(
∇ẋL

)
−∇xL = 0

The equation above is the so called Euler- Lagrange equation. In quantum mechanics,

for a motion of a particle from x0 to xT there is the concept of amplitude K(x0,xT ) that

is associated with it. This amplitude is defined as the sum of contributions φ(x) of all

the trajectories that start from x0 and end in xT . The contributions φ(x) are defined as:

φ(xA → xB) = const× exp
(
j

h
S(xA → xB)

)

where S(x) is the action, and const is a normalization factor. Based on the definition

of contributions of individual paths (Feynman & Hibbs 2005), the amplitude is defined

as:

K(xA,xB) = K(xA → xB) =
∑

φ(xA → xB) =
∑

const× exp
(
j

h
S(xA → xB)

)
(3.2)

The probability of going from xA to xB is defined as the square of the amplitude

K(xA,xB) and thus it is expressed as p(xA → xB) = |K(xA,xB)|2 (Feynman & Hibbs

2005) .

Clearly, the mathematical term of the contribution of each individual path φ(xA →

xB) is represented by a complex number. This is because light can be thought not only

as moving particles with tiny mass but also as waves traveling via different paths towards

the same destination. Moreover, although the concept of amplitude K(xA → xB) is

65



associated with the probability p(xA → xB), it remains somehow an abstract concept.

One can further understand it, by looking into how laws of classical mechanics arise

from the quantum mechanical law and how the path integral formulation provides a

mathematical representation for this relationship.

To investigate the relation between classical and quantum mechanical laws it is impor-

tant to realize that the term h̄ = h
2π = 1.055×10−27erg ·sec where h is Planck’s constant,

is a very small number. In addition, in classical mechanics the action S is much larger

than h̄ due to the scale of masses and time horizons of bodies and motions. Thus the fact

that 1
h̄

is a very large number increases the sensitivity of the phase variable θ = S(x+δx)

h̄

of a path with respect to the changes of the action S(x) of the corresponding path. Small

deviation of the action S(x + δx) create enormous changes in the phase variable θ of the

path. As a consequence, neighbored paths of the classical extremum, will have very high

phases with opposite signs which will cancel out their corresponding contributions. Only

paths in the vicinity of the extremum path will be in-phase and they will contribute and

create the extremum path which satisfies the Euler-Langrange equation. Thus, clearly in

the classical mechanics there is only one path from x0 to xT .

In the quantum world, the scale of masses and time horizons of bodies and motions

are such that the action S(x) is comparable to the term 1
h̄

. In this case, deviations of

the action S(x + δx) do not create enormous changes and thus all paths will interfere

by contributing to the total amplitude and the total probability of the motion of the

corresponding particle from x0 to xT . We realize that the path integral in 3.2 provides a

simple and intuitive way to understand how classical mechanical and quantum mechanical
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phenomena are related by just changing the scales of body masses and time horizons. Es-

sentially the path integral provides a generalization of the concept of action from classical

mechanics to the quantum mechanical word.

Before we close this subsection, we present some alternative mathematical represen-

tations of the path integral in equation 3.2 . More precisely in a compact form, the path

integral is written as:

K(xA



By continuing this process of splitting the paths from xA to xB into subpaths, the

path integral takes the form:

K(xA,xB) = lim
dt→0

∫
...

∫ ∫ N∏
i=1

K

(
xi+1,xi

)
dx1dx2...dxN (3.4)

where the kernel K(xi+1,xi) is now defined as:

K(xi+1,xi) =
1
A

exp
[
i

h̄
δt L

(
xi+1 − xi

δt
,
xi+1 + xi

2
,
ti+1 + ti

2

)]
(3.5)

and A =
(

2πih̄dt
m

)1/2

. The equations (3.4) and (3.5) above realize the path integral

formulation in discrete time. The path integral formulation is an alternative view of

Quantum Mechanics in the next section we discuss the Schrődinger equation and its

connection to path integral.

3.1.2 The Schrődinger equation

In this section, we show how one of the most central equations in quantum mechanics,

the Schrődinger equation, is derived from the mathematical concept of path integrals.

The connection between the two descriptions is of critical importance since it provides a

more complete view of quantum mechanics (Feynman & Hibbs 2005), but it is also an

example of mathematical connection between path integrals and PDEs.

The derivation starts with the waive function ψ(x, t) which can be though as an

amplitude with the slight difference that the associate probability P (x, t) = |ψ(x, t)|2 is

the probability of being at state x at time t without looking into the past. Since the wave

function is an amplitude function it satisfies the integral equation:
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ψ(xN , tN ) =
∫ ∞
−∞

K(xN , tN ; xN−1, tN−1)ψ(xN−1, tN−1)dxN−1 (3.6)

Substitution of the kernel K(xN , tN ; xN−1, tN−1) yields:

ψ

(
x(t+ δt), t+ δt

)
=

=
∫ ∞
−∞

exp
[
i

h̄
δtL

(
x(t+ δt)− x(t)

δt
,
x(t+ δt) + x(t)

2

)]
ψ(x, t)dx(t)

For simplifying the notation we make the substitutions, x(t+ δt) = x and x(t) = y.

ψ

(
x, t+ δt

)
=
∫ ∞
−∞

exp
[
i

h̄
δtL

(
x− y
δt

,
x + y

2

)]
ψ(y, t)dy(t)

Substitution of the Langragian results in:

ψ

(
x, t+ δt

)
=

=
1
A

∫ ∞
−∞

exp
[
im

2h̄

(
x− y

)T(
x− y

)
δt

]
exp

[
− i

h̄
δt V

(
x + y

2

)]
ψ(y, t)dy(t)

=
1
A

∫ ∞
−∞

exp
[
imvTv

2h̄δt

]
exp

[
− i

h̄
δt V

(
x +

1
2
v
)]
ψ(y, t)dy(t)
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where v = x− y. Next the second exponential function is expanded, while ψ(y, t) is

expended around x. More precisely we will have:

ψ

(
x, t+ δt

)
=

=
1
A

∫ ∞
−∞

exp
[
imvTv

2h̄δt

][
1− i

h̄
δtV (x, t)

][
ψ(x, t)−∇ψTv +

1
2
vT∇xxψv

]
dy(t)

By using the following equalities 1
A

∫ +∞
−∞ v exp

(
im

2h̄δt
vTv

)
dv = 0 as well as the equa-

tion 1
A

∫ +∞
−∞ vvT exp

(
jm

2h̄δt
vTv

)
dv = ih̄δt

m In×n the wave function is formulated as:

ψ

(
x, t+ δt

)
= ψ(x, t)− i

h̄
δtV (x, t)ψ(x, t) +

ih̄δt

2m
tr

(
∇xxψ

)

The last step is to take the Taylor series expansion of ψ
(

x, t+ δt

)
= ψ(x, t) + δt∂tψ:

ψ(x, t) + δt∂tψ = ψ(x, t)− iδt

h̄
V (x, t)ψ(x, t) +

ih̄δt

2m
tr

(
∇xxψ

)

The final version of the Schrődinger equation takes the form:

∂tψ = − i
h̄

[
− h̄2

2m
tr

(
∇xxψ

)
+ V (x, t)ψ

]
(3.7)

By introducing the operator H = − h̄2

2m tr

(
∇xx

)
+ V (x, t) the Schrődinger equation

is formulated as:

∂tψ = − i
h̄
Hψ (3.8)
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With the derivation of the Schrődinger equation, we close our introduction to path

integrals in quantum mechanics.

3.2 Fokker Planck equation and SDEs

The Fokker planck PDE is of great importance in statistical mechanics as it has been used

to describe the evolution of the probability of particles as a function of space and time. It

can be thought as the equivalent of the Schrődinger equation in quantum mechanics. In

the next two sections, we will derive the Fokker Planck PDE starting from the underlying

Itô and Stratonovich stochastic differential equation (Chirikjian 2009).

3.2.1 Fokker Planck equation in Itô calculus

We start with the following stochastic differential equation:

dx = f(x, t)dt+ B(x, t)dw (3.9)

in which x ∈ <n×1 is the state, and dw = w(t) − w(t + dt) with w(t) ∈ <p×1 a

Wiener process (or Brownian motion process). The equation above is an Itô stochastic

differential equation if its solution:

x(t)− x(0) =
∫ t

0
f(x, t)dτ +

∫ t

0
B(x, t)dw(τ) (3.10)

can be interpreted in the sense:
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lim
µ→∞

E

([∫ t

0
B(x(τ), τ)dτ −

µ∑
k=1

B(x(tk−1), tk−1) [w(tk)−w(tk−1)]

]2)
= 0 (3.11)

where t0 = 0 < t1 < t2 < ... < tN = t. The drift part of the SDE in 3.9 is also

interpreted as:

lim
µ→∞

E

([∫ t

0
f(x(τ), τ)dτ − 1

µ

µ∑
k=1

f(x(tk−1), tk−1)

]2)
= 0 (3.12)

for the cases where the function f(x, t) is not pathological, then the limit can be

pushed inside the expectation. Consequently, the equation above is true due to the fact

that

lim
µ→∞

∫ t

0
f(x(τ), τ)dτ =

1
µ

µ∑
k=1

f(x(tk−1), tk−1) (3.13)

For the derivation of the corresponding Fokker Planck equation we will make use of

the expectation of terms of the form E (Zdx) and E
(
dx M dxT

)
where Z ∈ <n×1 and

M ∈ <n×n . Thus we will have:

E (Zdx) = E

(
Z f(x, t)dt

)
= Z f(x, t)dt (3.14)

E
(
dxMdxT

)
= E

(
dwTB(x, t)TMB(x, t)dw

)
= tr

(
B(x, t)TMB(x, t)dt

)
(3.15)
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where we have used the properties of the Wiener process E (dw) = 0, E
(
dw dwT

)
=

dtIm×m. Now we are ready to derive the Fokker Planck PDE and we start with the partial

derivative of the probability function p(x(t)|y, t) where y = x(0). To avoid any confusion,

it is important to understand the notation p(x(t)|y, δt). In particular p(x(t)|y, δt) is

interpreted as the probability of being at state x at time t1 given that the state at time

t2 < t1 is y(t2) and t1 − t2 = δt. Consequently, in case where t1 = t and t2 = 0, the

transition probability p(x|y, t) is absolutely meaningful. The partial derivative of p(x|y, t)

with respect to time is expressed as follows:

∂p(x|y, t)
∂t

= lim
δt→0

p(x|y, t+ δt)− p(x|y, t)
δt

(3.16)

the probability p(x|y, t+δt) can be also written via the Chapman Kolmogorov equation

as p(x|y, t+ δt) =
∫
p(x|z, t)p(z|y, δt)dz. Therefore we will have that:

∂p(x|y, t)
∂t

= lim
δt→0

∫
p(x|z, t)p(z|y, δt)dz− p(x|y, t)

δt
(3.17)

Lets define the function ψ(x, t) ∈ < that is compactly supported and it is C2. We

project ∂p(x|y,t)
∂t on ψ(x, t) in Hilbert space and we have that:

∫
∂p(x|y, t)

∂t
ψ(x)dx = lim

δt→0

1
δt

∫ (∫
p(x|z, t)p(z|y, δt)dz− p(x|y, t)

)
ψ(x, t)dx (3.18)

by exchanging the order of integration we will have that:

73



∫
∂p(x|y, t)

∂t
ψ(x, t)dx = lim

δt→0

1
δt

(∫ ∫
p(x|z, t)p(z|y, δt)ψ(x)dxdz−

∫
p(x|y, t)ψ(x)dx

)
(3.19)

The Taylor series expansion of ψ(x) = ψ(z + dx) where dx = x − z is expressed as

follows:

ψ(x) = ψ(z) +∇zψ(z) (x− z) +
1
2

(x− z)T ∇zzψ(z) (x− z) (3.20)

We substitute the expanded term ψ(x) in the first term of the left side of (3.19) and

we have:

∫ ∫
p(x|z, t)p(z|y, δt)

(
ψ(z) +∇zψ(z) dx +

1
2
dxT ∇zzψ(z) dx

)
dxdz =∫

p(z|y, t)ψ(z)dz +
∫ ∫

p(x|z, t)p(z|y, δt)
(
∇zψ(z) dx +

1
2
dxT ∇zzψ(z) dx

)
dxdz

(3.21)

The terms
∫
p(x|z, δt)∇zψ(z)Tdx dy and

∫
p(x|z, δt) dxT ∇zzψ(z)dx dy can be writ-

ten in the form E
(
∇zψ(z)Tdx

)
and E

(
dxT ∇zzψ(z) dx

)
which, according to (3.14) and

(3.15) are equal to ∇zψ(z)T f(z, t)dt and tr
(

B(z, t)T∇zzψ(z) B(z, t)dt
)

. By substituting

(3.21) in to (3.19) it is easy to show that:
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∫
∂p(x|y, t)

∂t
ψ(x)dx =

∫
p(z|y, t)

(
∇zψ(z)T f(z, t) +

1
2
tr

(
∇zzψ(z) B(z, t)B(z, t)T

))
dz

(3.22)

where the terms
∫
p(z|y, t)ψ(z)dz in (3.21) and −

∫
p(x|y, t)ψ(x)dx in (3.19) are equal

and therefore they have been cancelled out. In the final step we integrate by part the

ride side of the equation above and therefore we will have that:

∫
∂p(x|y, t)

∂t
ψ(x)dx (3.23)

=
∫
−∇z · (f(z, t)p(z|y, t)) +

1
2
tr

(
∇z∇Tz

(
B(z, t)B(z, t)T p(z|y, t)

))
ψ(z)dz

Since x, z ∈ <n and the integrals are calculated in the entire <n the equation above

is written in the following form:

∫ (
∂p(x|y, t)

∂t
+∇x · (f(x, t)p(x|y, t))− 1

2
tr

(
∇x∇Tx

(
B(x, t)B(x, t)T p(x|y, t)

)))
ψ(x)dx

(3.24)
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We now apply the fundamental theorem of calculus of variations (Leitmann 1981)

according to which: let f(x) ∈ Ck , if
∫ b
a f(x)h(x)dx = 0, ∀ h(x) ∈ Ck and h(a) =

h(b) = 0 then f(x) = 0. Consequently we will have that:

∂p(x|y, t)
∂t

+∇x · (f(x, t)p(x|y, t))− 1
2
tr

(
∇x∇Tx

(
B(x, t)B(x, t)T p(x|y, t)

))
= 0 (3.25)

or with B = B(x, t)B(x, t)T in the form:

∂p(x|y, t)
∂t

= −
n∑
i=0

∂

∂xi

(
f(x, t)p(x|y, t)

)
+

1
2

n∑
i,j=1

∂2

∂xi∂xj

(
Bi,j(x, t)p(x|y, t)

)
(3.26)

where the operator (∇x∇Tx )i,j = ∂2

∂xi∂xj
. The PDE above is the so called Fokker Planck

Equation which is a forward, second order and linear PDE. From the derivation it is clear

that the Fokker Planck equation describes the evolution of the transition probability of a

stochastic dynamical system of the form (3.9) over time. In fact, lets consider a number

of trajectories as realizations of the same stochastic dynamics then the 2nd term, which

corresponds to drift, in (3.37) controls the direction of the trajectories while the 3rd term,

that corresponds to diffusion, quantifies how much these trajectories spread due to noise

in the dynamics (3.9). As we will show in the next section the FKP PDE differs from

the forward Kolmogorov PDE only in one term but we will leave this discussion for the

future section.
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3.2.2 Fokker Planck equation in Stratonovich calculus

In this section we derive the Fokker Planck PDE in case where the underlying stochastic

differential equation is integrated in the Stratonovich sense. We start our analysis with

the stochastic differential equation in (3.9) if its solution is interpreted as the integral:

x(t)− x(0) =
∫ t

0
f (S)(x, τ)dτ +

∫ t

0
B(S)(x, τ)⊕ dw(τ) (3.27)

where the superscript S is used to distinguish that the function f(x, t) and B(x, t)

are evaluated in the Stratonovich convention and therefore they are different from the

corresponding functions in the Itô calculus. More precisely the Stratonovich integration1

is defined as:

∫ t0

t
f(τ)⊕w(τ) = lim

t→∞

n∑
i=1

f

(
ti + ti−1

2

)
(w(ti)−w(ti−1)) (3.28)

where the equal sign above is understood in the mean square sense. Clearly, the drift

part of solution (3.27) of the stochastic differential equation (3.9) can be interpreted as:

∫ t

0
f (S)(x, τ)dτ =

1
n

lim
n→∞

n∑
i=1

f
(

x(ti) + x(ti−1)
2

,
ti − ti−1

2

)
(3.29)

while the diffusion part is interpreted as:

∫ t

0
B(S)(x, τ)⊕ dw(τ) =

1
n

lim
n→∞

n∑
i=1

B
(

x(ti) + x(ti−1)
2

,
ti − ti−1

2

)
(w(ti)−w(ti−1))

(3.30)
1The symbol ⊕ is used to represent the Stratonovich integral.
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The equalities (3.29) and (3.30) are understood in the mean square sense. In order

to find the Fokker Planck equation for the case of the Stratonovich integration of (3.9)

we will first find the connection between Itô and Stratonovich integrals. Through this

connection we will be able to find the Stratonovich Fokker Planck PDE without explicitly

deriving it. More precisely, we rewrite (3.9) in scalar form expressed by the equation:

dxi = fS
i (x, t)dt+

m∑
j=1

BS
i,j(x, t)⊕ dwj (3.31)

where the terms fS
i (x, t) and BS

i,j(x, t) are given below:

fS
i (x, t)dt = fi

(
x
(
tk + tk−1

2

)
, t

)
dt, BS

i,j(x, t) = Bi,j

(
x
(
tk + tk−1

2

)
, t

)

We will take the Taylor series expansion of the term above since x
(
tk+tk−1

2

)
=

x(tk−1) + 1
2dx. More precisely we have that:

fi

(
x(tk−1) +

1
2
dx
)
dt (3.32)

= fi

(
x(tk−1)

)
dt+

1
2

(
∇x(tk−1)fi (x(t))

)T
dx dt

= fi

(
x(tk−1)

)
dt+

1
2

(
∇x(tk−1)fi (x(t))

)T (
f(x, t)dt+ B(x, t)dw

)
dt

= fi

(
x(tk−1)

)
dt+

1
2

(
∇x(tk−1)fi (x(t))

)T
f(x, t)dt2 +

1
2

(
∇x(tk−1)fi (x(t))

)T
B(x, t)dwdt
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Since, dt2 → 0 and dwdt→ 0, the 2nd and 3rd term in the equation above drop and

this we have the result:

fi

(
x(tk−1) +

1
2
dx
)
dt = fi

(
x(tk−1)

)
dt (3.33)

We continue with the term Bi,j

(
x
(
tk+tk−1

2

)
, t

)
and we will have that:

Bi,j

(
x(tk−1) +

1
2
dx
)
dwj (3.34)

= Bi,j

(
x(tk−1)

)
dwj +

1
2
∇x(tk−1)Bi,j (x(t))T dx dwj

= Bi,j

(
x(tk−1)

)
dωj +

1
2
∇x(tk−1)Bi,j (x(t))T

(
f(xtk−1

)dt+ B(xtk−1
)dw

)
dwj

= Bi,j

(
x(tk−1)

)
dwj +

1
2
∇x(tk−1)Bi,j (x(t))T B(xtk−1

) dw dwj

= Bi,j

(
x(tk−1)

)
dwj +

1
2

n∑
l=1

∂Bi,j(xtk−1
)

∂xl
Bi,l(xtk−1

) dt

where we have used the fact that dw dwj = dt and dwdt→ 0. By substituting back

into (3.31) we will have:

dxi = fi(x, t)dt+
m∑
j=1

Bi,j (x) dwj +
m∑
j=1

n∑
l=1

∂Bi,j (x)
∂xl

Bi,l (x) dt (3.35)

The stochastic differential equation above is expressed in Itô calculus and it is equiv-

alent to its Stratonovich version equation (3.31). In other words the Stratonovich inter-

pretation of the solution of (3.31) is equivalent to the Itô interpretation of the solution

of the equation (3.35). Now that we found the equivalent of the Stratonovich stochastic
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differential equation in Itô calculus, the Stratonovich Fokker Planck equation is nothing

else than the Itô Fokker Planck equation of the stochastic differential equation:

dx =
(

f(x, t)− C(x)
)
dt+ B (x) dw,

1
2
Ci(x) =

m∑
j=1

n∑
l=1

∂Bi,j (x)
∂xl

Bi,l (x) (3.36)

Thus, the Stratonovich Fokker Planck equation has the form:

∂p(x|y, t)
∂t

= −∇y ·
((

f(y)− C(y)
)
p(x|y, t)

)
+

1
2
tr

(
∇y∇Ty

(
B(y, t)B(y, t)T p(x|y, t)

))
(3.37)

The difference between the Stratonovich and Itô Fokker Planck PDEs is in the extra

term C(x). In the question, which calculus to use, the answer depends on the appli-

cation and the goal of the underlying derivation. It is generally accepted (Chirikjian

2009),(Øksendal 2003) that the Itô calculus is used for the cases where expectation op-

erations have to be evaluated while the Stratonovich calculus has similar properties with

the usual calculus. In this section we have derived the connection between the two cal-

culi and therefore, one could take advantage of both by transforming the Stratonovich

interpreted solution of a stochastic differential equation in to its Itô version and then

apply Itô calculus. Besides these conceptual differences between the two calculi, there

are additional characteristics of Itô integration which we do not find in the Stratonovich

calculus and vice versa. More detailed discussion on the properties of the Itô integration

can been found in (Øksendal 2003), (Karatzas & Shreve 1991), (Chirikjian 2009) and

(Gardiner 2004).
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Both Itô and Stratonovich stochastic integrations are special cases of a more general

stochastic integration rule in which functions (3.32) are evaluated ∀α ∈ [0, 1] as follows:

fαi (x, t) = fi

(
x (αtk + (1− α)tk−1) , t

)
, Bα

i,j(x, t) = Bi,j

(
x (αtk + (1− α)tk−1) , t

)

Similarly as before since x (αtk + (1− α)tk−1) = x (tk) + αdx we take the Taylor

series expansions of the terms above and therefore we will have that:

fi

(
x (tk) + αdx

)
= fi

(
x (αtk + (1− α)tk−1) , t

)
dt = fi

(
x (tk) , t

)
dt (3.38)

and

Bi,j

(
x(tk−1) + αdx

)
dωj = Bi,j

(
x(tk−1)

)
dωj + α

n∑
l=1

∂Bi,j(xtk−1
)

∂xl
Bi,l(xtk−1

) dt

(3.39)

Consequently, the term C(x) ∈ <n×1 in (3.36) is now defined as follows:

Ci(x) = α

m∑
j=1

n∑
l=1

∂Bi,j (x)
∂xl

Bi,l (x) (3.40)

Clearly, for α = 0 we have the Itô calculus while for α = 1
2 we have the Stratonovich.
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3.3 Path integrals and SDEs

The path integral formalism can been thought as an alternative, to Fokker Planck and

Langevin equations, mathematical description of nonlinear stochastic dynamics (Lau &

Lubensky 2007). In this section we will start with the derivation of the path integral

formalism for the one dimensional stochastic differential equation:

dx = f(x, t)dt+B(x, t)dw (3.41)

We start with the 1 dimensional cases because it is easier to understand the derivation

and the rational behind the path integral concept. After the 1 dimensional case extensions

to multidimensional cases are strait-forward for the case of Itô integration while the

Stratonovich involves additional analysis. We will discretize the 1-dimensional stochastic

differential equation as follows:

x(t+ δt)− x(t) =
∫ t+δt

t
f

(
βx(t) + (1− β)x(t+ δt)

)
dτ

+
∫ t+δt

t
B

(
αx(t) + (1− α)x(t+ δt)

)
n(τ)dτ

where the constants α, β ∈ [0, 1]. Since the drift and the diffusion term are evaluated

at βx(t) + (1 − β)x(t + δt) and αx(t) + (1 − α)x(t + δt) they can be taken outside the

integral and thus the equations above is expressed as:
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x(t+δt)−x(t) = f

(
βx(t)+(1−β)x(t+δt)

)
δt+B

(
αx(t)+(1−α)x(t+δt)

)∫ t+δt

t
n(τ)dτ

(3.42)

The path integral derivation is based on the statistics of the state path x(t0 → tN ).

We discretize the state path to the segments x(ti) with t0 < t1 < t2 < ... < tN and we

define δt = ti − ti−1. The probability of the path now is defined as follows:

P

(
xN , tN ;xN−1, tN−1; ...;x1, t1|x0, t0

)
=
〈
δ[xN − φ(tN ;x0, t0]...δ[x1 − φ(t1;x0, t0]

〉

The function φ(ti;xi−1, ti−1) is the solution of the stochastic differential equation

(3.41) for x(ti) given that x(ti−1) = xi−1. Due to the fact that the noise is delta correlated,

in different time intervals the noise is uncorrelated and therefore we will have that:

P

(
xN , tN ;xN−1, tN−1; ...;x1, t1|x0, t0

)
=

N∏
i=1

〈
δ[xi − φ(ti;xi−1, ti−1]

〉

where the function
〈
δ[xi − φ(ti;xi−1, ti−1]

〉
= P

(
xi, ti|xi−1, ti−1

)
and thus it corre-

sponds to conditional probability that the random variable x(t) is state xi at time ti given

that at ti−1 we have that x(ti−1) = xi−1. We can use the transition probabilities to calcu-

late the probability P (xN , tN |x0, t0) that is the probability of being at state x(tN ) = xN

given that the initial state is x(t0) = x0 at time t0. More precisely we have that:
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P

(
xN , tN |x0, t0

)
=
∫
dxN−1...

∫
dx1

N∏
i=1

〈
δ[xi − φ(ti;xi−1, ti−1]

〉
(3.43)

To find the path integral we need to evaluated the function δ[xi−φ(ti;xi−1, ti−1] and

then substitute to the equation above. The analysis for the evaluation of the function

δ[xi−φ(ti;xi−1, ti−1)] requires the discretized version of the stochastic differential equation

(3.41) expressed in (3.42). We can rewrite discrete version in the form:

xi = xi−1 + δt fi +Bi

∫ ti

ti−1

n(τ)dτ

where fi = f (βxi + (1− β)xi−1) and Bi = B (αxi + (1− α)xi−1) and we introduce the

function h(xi, xi−1) defined as follows:

h(xi, xi−1) =
xi − xi−1 − fiδt

Bi
−
∫ ti

ti−1

n(τ)dτ

for which the condition h[φ(ti;xi−1, ti−1), xi−1] = 0. By using the property of the

delta function δ(g(x)) = δ(x−x0)
|g′(x0| we will have that:

δ[h(xi, xi−1)] =
∣∣∣∣∂h(xi, xi−1)

∂xi

∣∣∣∣−1

xi=φ(ti)

δ[xi − φ(ti;xi−1, ti−1)]

The transition probability P (xi, ti|xi−1, ti−1) is now written as:
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P (xi, ti|xi−1, ti−1) =
〈
δ[xi − φ(ti;xi−1, ti−1)]

〉
=
∣∣∣∣∂h(xi, xi−1)

∂xi

∣∣∣∣
xi=φ(ti)

〈
δ[h(xi, xi−1)]

〉

The term ∂h(xi,xi−1)
∂xi

is expressed by the equation:

∂h(xi, xi−1)
∂xi

=

(
1− β δt (∂xfi)

)
Bi −

(
xi − xi−1 − fi δt

)
(∂xBi)

B2
i

=
1
Bi

[
1− β δt (∂xfi)− α

(∂xBi)
Bi

(
xi − xi−1 − fi δt

)]

From the property of the inverse Fourier transform of the delta function δ(t) =∫ +∞
−∞ dω exp (jωt) 1

2π with j2 = −1 we will have that:

δ[h(xi, xi−1)] =
∫
dω

2π
exp

(
jωh(xi, xi−1)

)
=
∫ +∞

−∞

dω

2π
exp

(
jω

(
xi − xi−1 − fiδt

Bi
−
∫ ti

ti−1

n(τ)dτ
))

The expectation operator over the noise results in:

〈
δ[h(xi, xi−1)]

〉
=
∫
dω

2π
exp

(
jω
xi − xi−1 − fiδt

Bi

)〈
exp

(
jω

∫ ti

ti−1

n(τ)dτ
)〉
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By considering the Taylor series expansion of the exponential function and applying

the expectation, it can be shown that:

〈
exp

(
jω

∫ ti

ti−1

n(τ)dτ
)〉

=

=
〈

1 +
jω
∫ ti
ti−1

n(τ)dτ

1!
−
ω2(
∫ ti
ti−1

n(τ)dτ)2

2!
−
jω3(

∫ ti
ti−1

n(τ)dτ)3

3!
....

〉
= 1 +

ω2δt

2
= exp−(

1
2
ω2δt)

Therefore
〈
δ[h(xi, xi−1)]

〉
=
∫ +∞
−∞

dω
2π exp

(
jω xi−xi−1−fiδt

Bi
− 1

2ω
2δt)

)
. By putting ev-

erything together the transition probability P (xi, ti|xi−1, ti−1) will take the form:

P (xi, ti|xi−1, ti−1) =
∫

dω

2πBi
exp

(
jω
xi − xi−1 − fiδt

Bi
+

1
2
ω2δt

)
×
[
1− β δt (∂xfi)− α

(∂xBi)
Bi

(
xi − xi−1 − fi δt

)]

From the expression above we work with the term:

− α(∂xBi)
2πBi

∫
dω exp

(
jω
xi − xi−1 − fiδt

Bi
+

1
2
ω2δt

)(
xi − xi−1 − fi δt

Bi

)
= −α(∂xBi)

2πBi

∫
dω j exp

(
− 1

2
ω2δt

)
∂ω

(
exp

(
jω
xi − xi−1 − fiδt

Bi

))
= −α(∂xBi)

2πBi

∫
dω

(
jωδt

)
exp

(
jω
xi − xi−1 − fiδt

Bi
− 1

2
ω2δt

)

The transition probability is expressed as follows:
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P (xi, ti|xi−1, ti−1) =
∫

dω

2πBi
exp

(
jω
xi − xi−1 − fiδt

Bi
− 1

2
ω2δt

)
×
[
1− β δt (∂xfi)− jωα(∂xBi)δt

]

The term
[
1− β δt (∂xfi)− jωα(∂xBi)δt

]
' exp

[
1− β δt (∂xfi)− jωα(∂xBi)δt

]
as

δt→ 0. Thus we will have:

P (xi, ti|xi−1, ti−1)

=
∫

dω

2πBi
exp

(
jω
xi − xi−1 − fiδt+ α(∂xBi)δtBi

Bi
− 1

2
ω2δt− β δt (∂xfi)

)
=
∫

dω

2πBi
exp

([
j
ω

Bi

(
δx

δt
− fi + α(∂xBi)Bi

)
− 1

2
ω2δt− β (∂xfi)

]
δt

)
=

exp [−β(∂xfi)δt]√
2πδtBi

∫
dω√

2πδtBi
exp

([
j
ω

Bi

(
δx

δt
− fi + α(∂xBi)Bi

)
− 1

2
ω2

]
δt

)

we define the quantity η = j
Bi

(
δx
δt −fi+α(∂xBi)Bi

)
. We can now write the transition

probability as follows:

P (xi, ti|xi−1, ti−1)

=
exp [−β(∂xfi)δt]√

2πδtBi

∫
dω√

2πδtBi
exp

([
ωη − 1

2
ω2

]
δt

)
=

exp [−β(∂xfi)δt]√
2πδtBi

∫
dω√

2πδtBi
exp

([
ωη − 1

2
ω2 − 1

2
η2

]
δt

)
exp

(
1
2
η2δt

)
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=
exp [−β(∂xfi)δt]√

2πδtBi
exp

(
1
2
η2δt

)∫
dω√

2πδtBi
exp

([
ωη − 1

2
ω2 − 1

2
η2

]
δt

)
=

exp [−β(∂xfi)δt]√
2πδtBi

exp
(

1
2
η2δt

)
=

1√
2πδtBi

exp
(
−
[

1
2B2

i

(
δx

δt
− fi − α(∂xBi)Bi

)2

+ β (∂xfi)
]
δt

)

The last line is valid up to the first order in δt. Clearly the path integral is given by

the product of all the transition probabilities along the path x0, x1, ..., xN . More precisely

we will have that:

P

(
xN , tN |x0, t0

)
=
∫

dx1√
2πδtBi

...

∫
dxN−1√

2πδtBN−1

∫
dxN√

2πδtBN

× exp
(
−

N∑
i=1

[
1

2B2
i

(
δx

δt
− fi + α(∂xBi)Bi

)2

+ β (∂xfi)
]
δt

)

=
∫ xN

x0

D(x) e−S(x)

whereD(x) =
∏N
i=1

dxi√
2πδtBi

and S(x) =
∑N

i=1

[
1

2B2
i

(
δx
δt−fi+α(∂xBi)Bi

)2

+β (∂xfi)
]
δt

is the action defined on the path x1, ..., xN .

3.3.1 Path integral in Stratonovich calculus

The path integral defined above is general since for different values of the parameters

α and β it can recover the Stratonovich and the Itô path integral mathematical forms.

In particular, for the values α = β = 1
2 the path integral above corresponds to the
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Stratonovich calculus while for the cases of α = β = 0 the resulting path integral cor-

responds to the Itô calculus. Thus the Stratonovich path integral for the 1 dimensional

case is expressed as

P

(
xN , tN |x0, t0

)
=
∫

dx1√
2πδtB1

...

∫
dxN−2√

2πδtBN−2

∫
dxN−1√

2πδtBN−1

× exp
(
−

N∑
i=1

[
1

2B2
i

(
δx

δt
− fi +

1
2

(∂xBi)Bi

)2

− 1
2

(∂xfi)
]
δt

)

or in a more compact form:

P

(
xN , tN |x0, t0

)
=
∫ N−1∏

i=1

dxi exp
(
−
∑N

i=1

[(
δx
δt
−fi+ 1

2
(∂xBi)Bi√

2Bi

)2

− 1
2 (∂xfi)

]
δt

)
√

2πδtBi

where fi = f (0.5xi + 0.5xi−1) and Bi = B (0.5xi + 0.5xi−1).

3.3.2 Path integral in Itô calculus

Similarly the Itô path integral for the scalar case is expressed as:

P

(
xN , tN |x0, t0

)
=
∫

dx1√
2πδtB1

...

∫
dxN−2√

2πδtBN−2

∫
dxN−1√

2πδtBN−1

× exp
( N∑
i=1

[
1

2B2
i

(
δx

δt
− fi

)2]
δt

)
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or in a more compact form:

P

(
xN , tN |x0, t0

)
=
∫ N−1∏

i=1

dxi√
2πδtBi

× exp
(
−

N∑
i=1

[
1

2B2
i

(
δx

δt
− fi

)2]
δt

)

where fi = f (xi−1) and Bi = B (xi−1).

3.4 Path integrals and multi-dimensional SDEs

In this section we derive the path integral for the multidimensional SDE (Schulz 2006).

More precisely we consider the multidimensional SDE:

dx = f(x, t)dt+ B(x, t)dw (3.44)

in which x ∈ <n×1, f(x) : <n×1 → <n×1 and B(x) : <n×1 → <n×p. We will consider

the Itô representation of the SDE:

x(ti) = x(ti−1) + f(x, t)dτ +
∫ ti

ti−1

B(x, t)dw(τ) (3.45)

Similarly to the 1D case we define φ(xti−1 , ti−1) as the solution of the SDE above, as

follows:

φ(xti−1 , ti−1) = x(ti−1) + f(x, t)dτ +
∫ ti

ti−1

B(x, t)dw(τ) (3.46)

Moreover we define the term h(xti ,xti−1) as:
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h(xti ,xti−1) = x(ti)− x(ti−1)− f(x, t)dτ −
∫ ti

ti−1

B(x, t)dw(τ) (3.47)

The probability of hitting state xN at tN starting from x0 at t0 is formulated as

follows:

P

(
xN , tN |x0, t0

)
=
∫
dxN−1...

∫
dx1

N∏
i=1

〈
δ[xi − φ(ti; xi−1, ti−1]

〉
(3.48)

To calculate the probability above the delta function
〈
δ[xi−φ(ti; xi−1, ti−1]

〉
has to

be found. The Fourier representation of delta function yields:

δ[xi − φ(ti; xi−1, ti−1] = det

(
Jxti

h(xti ,xti−1)
)
δ[h(xti ,xti−1)]

= det

(
Jxti

h(xti ,xti−1)
)∫

dω

(2π)n
exp

(
jωTh(xti ,xti−1)

)

where Jxti
is the Jacobian. For the Itô SDE above the jacobian Jxti

= In×n and

therefore det
(

Jxti
h(xti ,xti−1)

)
= 1. Thus we will have that:

δ[xi − φ(ti; xi−1, ti−1] = δ[h(xti ,xti−1)]〈
δ[xi − φ(ti; xi−1, ti−1]

〉
=
〈∫

dω

(2π)n
exp

(
jωTh(xti ,xti−1)

)〉
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Substitution of the term h(xti ,xti−1) yields the equation:

〈
δ[xi − φ(ti; xi−1, ti−1]

〉
=
∫

dω

(2π)n
exp

(
jωT

(
x(ti)− x(ti−1)− f(x, t)dτ

))
×
〈

exp
(
jωTB(xti−1 , ti−1)dw(ti−1)

)〉

We will further analyze the term:

〈
exp

(
jωTB(xti−1 , ti−1)dw(ti−1)

)〉
=
〈
I +

1
1!
jωTB(x, t)dw(t)

〉
−
〈

1
2!
ωTB(x, t)dw(t)dw(t)TB(x, t)Tω

〉
+
〈

O(dwi(t)dwj(t)dwk(t))
〉

Since dw(t) is Wiener noise we have that
〈
dw(t)dw(t)T

〉
= In×ndt. In addition

the term O(dwi(t)dwj(t)dwk(t)) has terms of order higher than quadratic in dwi. The

expectation of this term will result zero. More precisely, for these terms that are of order

ν > 2, where ν is an even number the expectation result in terms of order µ > 1 in dt

and therefore all these terms are zero. For the remaining terms, of order order ν > 2,

where ν is an odd number, the expectation will result in zero since
〈
dw(t)

〉
= 0. Thus,

since limdt→0

〈
O(dwi(t)dwj(t)dwk(t))

〉
= 0 we will have:

〈
exp

(
jωTB(xti−1 , ti−1)dw(ti−1)

)〉
= I − 1

2!
ωTB(x, t)B(x, t)Tωdt

= exp
(
− 1

2
ωTB(x, t)B(x, t)Tωdt

)
92



By substituting back we will have:

〈
δ[xi − φ(ti; xi−1, ti−1]

〉
=
∫

dω

(2π)n
exp

(
jωT

(
x(ti)− x(ti−1)− f(x, t)dτ

))
× exp

(
− 1

2
ωTB(x, t)B(x, t)Tωdt

)
=
∫

dω

(2π)n
exp

(
jωTA

)
exp

(
− 1

2
ωTBωdt

)

where A = x(ti) − x(ti−1) − f(x, t)dτ and B = B(x, t)B(x, t)T . The transition

probability therefore is formulated as follows:

〈
δ[xi − φ(ti; xi−1, ti−1]

〉
=
∫

dω

(2π)n
exp

(
jωTA− 1

2
ωTBωdt

)
(3.49)

This form of the transition probability is very common in the physics community. In

engineering fields, the transition probability is derived according to the distribution of

the state space noise that is considered to be Gaussian distributed. Therefore it seems

that the transition above is different than the one that would have been derived if we

were considering the Gaussian distribution of the state space noise. However as we will

show in the rest of our analysis, (3.49) takes the form of Gaussian distribution. More

precisely we will have that:

〈
δ[xi − φ(ti; xi−1, ti−1]

〉
=
∫

dω

(2π)n
exp

(
jωTBdt(Bdt)−1A− 1

2
ωTBωdt

)
exp

(
− j2

2
AT (Bdt)−TBdt(Bdt)−1A

)

93



× exp
(
j2

2
AT (Bdt)−TBdt(Bdt)−1A

)

=
∫

dω

(2π)n
exp

[
−

(
jω + (Bdt)−1A

)T
(Bdt)

(
jω + (Bdt)−1A

)
2

]
× exp

(
− 1

2
AT (Bdt)−TBdt(Bdt)−1A

)
=

√
det (Bdt)√

(2π)n
×
∫
dω exp

[(
jω + (Bdt)−1A

)T
(Bdt)

(
jω + (Bdt)−1A

)]
× 1√

(2π)ndet (Bdt)
exp

(
−AT (Bdt)−1A

)

since for term:

√
det (Bdt)√

(2π)n

∫
dω exp

[(
jω + (Bdt)−1A

)T
(Bdt)

(
jω + (Bdt)−1A

)]
= 1 (3.50)

Finally we will have that:

〈
δ[xi − φ(ti; xi−1, ti−1]

〉
=

1√
(2π)ndet (Bdt)

exp
(
− 1

2
AT (Bdt)−1A

)

Clearly the transition probability above has the form of a Gaussian distribution.

Substitution of the transition probabilities in (3.48) yields the final result:

P

(
xN , tN |x0, t0

)
=
∫ N∏

i=1

dxi
(2πδt)m/2|BBT |1/2

× exp
(
− 1

2

N∑
i=1

wwwwδxδt − f(x)
wwww2

BBT
δt

)
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where the term
ww δx
δt − f(x)

ww2

BBT
=
(
δx
δt − f(x)

)T
BBT

(
δx
δt − f(x)

)
. With this section

we have derived the path integral from the stochastic differential equation and therefore

we have completed the presentation of the connection between the three different ways of

mathematically expressing nonlinear stochastic dynamics. These 3 different mathematical

representations are the stochastic differential equations, the corresponding Fokker Planck

PDE and the path integral formalism. In the next section we focus on forward and

backward PDEs, the so called forward and backward Chapman Kolmogorov PDEs, and

we discuss the probabilistic representation of the their solutions.

3.5 Cauchy problem and the generalized Feynman Kac

representation

The Feynman- Kac lemma provides a connection between stochastic differential equations

and PDEs and therefore its use is twofold. On one side it can be used to find probabilistic

solutions of PDEs based on forward sampling of diffusions while on the other side it can

be used to find solution of SDEs based on deterministic methods that numerically solve

PDEs. There are many cases in stochastic optimal control and estimation in which

PDEs appear. In fact as we have seen in chapter 2, on the control side there is the so

called Hamilton-Jacobi-Bellman PDEs which describes how the value function V (x, t) of

a stochastic optimal control problem varies as a function of time t and state x.

In this work, we compute the solution of the linear version of the HJB above with the

use of the Feynman - Kac lemma (Øksendal 2003),and thus, in this section we provide the

generalized version of the Feynman-Kac Lemma based on the theoretical development in
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(Karatzas & Shreve 1991) and (Friedman 1975). This lemma is of a great significance for

our analysis and application of path integral control and therefore we believe that it is

essential to provide the proof of the lemma.

Let us assume an arbitrary but fixed time T > 0 and the constant L > 0 and λ ≥ 0.

Furthermore we consider the functions Ψ(x, t) : [0, T ] × <n×1 → <, F(x, t) : [0, T ]× ∈

<n×1 → < and q(x, t) : [0, T ] × <n×1 → [0,∞] to be continuous and satisfying the

conditions:

(i) |Ψ(x, t)| ≤ L
(

1 + ||x||2λ
)

or (ii) Ψ(x, t) ≥ 0; ∀x ∈ <n×1 (3.51)

(iii) |F(x, t)| ≤ L
(

1 + ||x||2λ
)

or (iv) F(x, t) ≥ 0; 0 ≤ t ≤ T, x ∈ <n×1

(3.52)

Feynman - Kac Theorem: Suppose that the coefficients fi(x) and Bi,j(x) satisfy

the linear growth condition ||fi(x)||2 + ||Bi,j(x)||2 ≤ K2(1 + ||x||2) where K is a positive

constant. Let Ψ(x, t) : [0, T ]×<n×1 → < is continuous and Ψ(x, t) ∈ C1,2 and it satisfies

the Cauchy problem:

−∂tΨt = − 1
λ
qtΨt + fTt (∇xΨt) +

1
2
tr
(
(∇xxΨt)BBT

)
+ F(x, t) (3.53)

in [0, T )×<n×1 with the boundary condition:

Ψ(x, T ) = ξ(x); x ∈ <(n× 1) (3.54)
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as well as the polynomial growth condition:

max
0≤t≤T

|Ψ(x, t)| ≤M
(
1 + ||x||2µ

)
; x ∈ <n×1 (3.55)

For some M > 0, µ ≥ 1 then Ψ(x, t) admits the stochastic representation

Ψ(x, t) =
〈
ξ(xT ) exp

(
− 1
λ

∫ T

t
q(xs, s)ds

)
+
∫ T

t
F(xθ, θ) exp

(
− 1
λ

∫ T

t
q(x, s)ds

)
dθ

〉
(3.56)

on [0, T ]×<n×1; in particular, such a solution is unique.

Proof: Let us consider G(x, t0), t) = Ψ(x, t) Z(t0, t) where the term Z(t0, t) is

defined as follows:

Z(t0, t) = exp
(
− 1
λ

∫ t

t0

Q(x)dτ
)

(3.57)

We apply the multidimensional version of the Itô lemma:

dG(x, t0, t) = dΨ(x, t) Z(t0, t) + Ψ(x, t) dZ(t0, t) + dΨ(x, t) dZ(t0, t) (3.58)

Since dΨ(x, t) dZ(t0, t) = 0 we will have that: dG(x, t0, t) = dΨ(x, t) Z(t, tN ) +

Ψ(x, t) dZ(t0, t). We calculate the differentials dΨ(x, t), dZ(t, tN ) according to the Itô

differentiation rule. More precisely for the term dZ(t0, tN ) we will have that:
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dZ(t0, t) = − 1
λ
Q(x)Z(t0, t) dt (3.59)

while the term dΨ(x, t) is equal to:

dΨ(x, t) = ∂tΨ dt+ (∇xΨ)T dx +
1
2
dxT (∇xxΨ) dx

= ∂tΨ dt+ (∇xΨ)T
(

f(x, t)dt+ B(x)dw

)
(3.60)

+
1
2

(
f(x, t)dt+ B(x)dw

)T
(∇xxΨ)

(
f(x, t)dt+ B(x)dw

)

Since the following properties (Øksendal 2003) hold, dwTdw → 0, dwdt → 0, the

equation above is further simplified into:

dΨ(x, t) = ∂tΨ dt+ (∇xΨ)T f(x, t) dt+
1
2

(
B(x)dw

)T
(∇xxΨ)

(
B(x)Ldw

)
+ (∇xΨ)T B(x)dw

By considering dwdwT → Idt we will have the equation that follows:

dΨ(x, t) = ∂tΨ dt+ (∇xΨ)T f(x, t)dt+
1
2
tr

(
(∇xxΨ) BBT

)
dt+ (∇xΨ)T B(x)dw

(3.61)
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Since we have found the total differential in Ψ(x, t) we can substitute back to (3.59)

and we get the following expression:

dG(x, t0, t) = Z(t, tN ) dt

(
− 1
λ
Q(x)Ψ + ∂tΨ + (∇xΨ)T f(x, t) +

1
2
tr

(
(∇xxΨ) BBT

))

+ Z(t0, t) (∇xΨ)T B(x)Ldw

According to the backward Kolmogorov PDE (3.53) the term inside the parenthesis

equals F(x, t) and therefore the equation above is formulated as:

dG(x, t0, t) = Z(t0, t)
(
−F(x, t)dt+ (∇xΨ)T B(x)Ldw

)

With the definition of τp as τp , {s ≤ t; ||x|| > p} we integrate the equation above in

the time interval t ∈ [t0, tN ∧ τn] and we will have then following expression:

∫ tN∧τp

t0

dG(x, t0, t) = −
∫ tN∧τp

t0

F(x, t)Z(t0, t)dt+
∫ tN∧τp

t0

Z(t0, t) (∇xΨ)T C(x)Ldw

(3.62)

Expectation of the equation above is taken over the sampled paths τ = (x0, ...,xtN )

starting from the state x0. The resulting equation is expressed as follows:

〈∫ tN∧τp

t0

dG(x, t0, t)
〉

=

=
〈
−
∫ tN∧τp

t0

F(x, t)Z(t0, t)dt+
∫ tN∧τp

t0

Z(t0, t) (∇xΨ)T C(x)Ldw
〉
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We change the order to the time integration and expectation and due to the fact that

E(dw) = 0 the last term of the right side of the equation above drops. Consequently we

will have:

〈∫ tN∧τp

t0

dG(x, t0, t)
〉

= −
〈∫ tN∧τp

t0

F(x, t)Z(t, tN )dt
〉

(3.63)

The left hand side of the equation above is further written as:

〈
G(x, t0, tN )1τp>tN + G(x, t0, τp)1τp<tN − G(x, t0, t0)

〉
= −

〈∫ tN∧τp

t0

F(x, t)Z(t0, t)dt
〉

(3.64)

or

〈
G(x, t0, t0)

〉
=
〈∫ tN∧τp

t0

F(x, t)Z(t, tN )dt+ G(x, t0, tN )1τp>tN + G(x, t0, τp)1τp<tN

〉
(3.65)

Since G(x, t, t0) = Ψ(x, t)Z(t0, t) and Z(t0, t) = exp
(
− 1
λ

∫ t
t0
Q(x)dτ

)
all the terms

G(x, t0, tN ),G(x, t0, t0) and G(x, τp, tN ) are further specified by the equations that follow:

G(x, t0, t0) = Ψ(x, t0)

G(x, t0, tN ) = Ψ(x, t) exp
(
− 1
λ

∫ tN

t0

Q(x)dτ
)

G(x, t0, τn) = Ψ(x, τp) exp
(
− 1
λ

∫ τp

t0

Q(x)dτ
)

Substituting the equations above to (3.65) results in:
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Ψ(x, t0) = G(x, t0, t0) =
〈∫ tN∧τp

t0

F(x, t) exp
(
− 1
λ

∫ tN

t0

Q(x)dτ
)〉

+
〈

Ψ(x, τp) exp
(
− 1
λ

∫ τp

t0

Q(x)dτ
)

1τp≤tN

〉
+

〈
Ψ(x, tN ) exp

(
− 1
λ

∫ tN

t0

Q(x)dτ
)

1τp>tN

〉
(3.66)

The next step in the derivation is to find the limit of the right hand side of the

equation above as p→∞. More precisely either by using (iii) in (3.51)and the dominated

convergence theorem or by considering the monotone convergence theorem (see section

3.11) and (iv) in (3.51) the limit of the first term in (3.66) equals:

lim
p→∞

〈∫ tN∧τp

t0

F(x, t) exp
(
− 1
λ

∫ tN

t0

Q(x)dτ
)〉

=
〈∫ tN

t0

F(x, t) exp
(
− 1
λ

∫ tN

t0

Q(x)dτ
)〉

The second term in (3.66) is bounded as:
〈
|Ψ(x, t)|1τp≤T

〉
≤M

(
1 + p2µ

)
P (τp ≤ T )

where the probability P (τp ≤ T ) is expressed as follows:

P (τp ≤ T ) = P

(
max
t≤θ≤T

||xθ|| ≥ p
)
≤ p2m

〈
max
t≤θ≤T

||xθ||2m
〉

≤ Cp−2m
(
1 + ||x||2m

)

where the first inequality results from the chebyshev inequality and the second in-

equality comes from the property
〈

maxt≤θ≤s ||xθ||2m
〉
≤ C

(
1 + ||x||2m

)
eC(T−s) where
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t ≤ s ≤ T . Clearly as p → ∞ we have
〈
|Ψ(x, t)|1τp≤T

〉
≤ M

(
1 + p2µ

)
P (τn ≤ T ) → 0.

Thus:

lim
p→∞

〈
Ψ(x, τp) exp

(
− 1
λ

∫ τp

t0

Q(x)dτ
)

1τp≤tN

〉
= 0

Finally the third term converges to

〈
Ψ(x, tN ) exp

(
− 1
λ

∫ tN

t0

Q(x)dτ
)〉

The final result of the Feynman Kac lemma is given by the equation that follows:

Ψ(x, t) =
〈
ξ(xT ) exp

(
− 1
λ

∫ T

t
q(xs, s)ds

)
+
∫ T

t
F(xθ, θ) exp

(
− 1
λ

∫ T

t
q(x, s)ds

)
dθ

〉

with Ψ(x, tN ) = ξ(xT ). This is the end of the proof of the Feynman-Kac lemma.

Since the Feynman-Kac lemma requires the condition of the linear growth of the

elements of the drift term f(x, t) and the diffusion matrix B(x, t) in (3.9) one could

ask what kind of dynamical systems fulfill these conditions. But before we discuss the

generality of the applicability of the Feynman-Kac lemma to a variety of dynamical

systems in control and planning application it is critical to identify the conditions under

which a solution to the Cauchy problems exist.

The conditions that guarantee the existence of the solutions as they are reported in

(Karatzas & Shreve 1991) and proven in (Friedman 1975) are given bellow:
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i) Uniform Ellipticity: There exist as positive constant δ such that:

n∑
i=1

n∑
j=1

αi,j(x, t)ξiξj ≥ δ||ξ||2 (3.67)

holds for every ξ ∈ <n×1 and (t,x) ∈ [0,∞)×<n×1.

ii) Boundness: The functions f(x, t), q(x, t), α(x, t) are bounded in [0, T ]×<n×1.

iii) Holder Continuity: The functions f(x, t), q(x, t), α(x, t) and F(x, t) are uniformly

Holder continuous in [0, T ]×<n×1.

iv) Polynomial Growth: the functions Ψ(x(tN )) = ξ(x(tN )) and F(x, t) satisfy the (i)

and (iii) in (3.51)

Conditions (i),(ii) and (iii) can be relaxed by assuming that they are locally true.

Essentially, the Feynman- Kac lemma provides solution of the PDE (3.53) in a prob-

abilistic manner, if that solution exists, and it also tells us that this solution is unique.

The conditions above are sufficient conditions for the existence of the solution of (3.53).

With the goal to apply the Feynman- Kac lemma to learning approximate solution for

optimal planning and control problems, it is important to understand how the conditions

of this lemma are related to properties and characteristics of the dynamical systems under

consideration.

• The condition of linear growth, for the case of control, is translated as the require-

ment to deal with dynamical systems in which their vector field as a function of

state is bounded either by a linear function or by number. Therefore the Feyn-

man Kac lemma can be applied either to linear dynamical systems of the form

103



ẋ = Ax + Bu or nonlinear dynamical systems of the form ẋ = f(x) + G(x)u in

which fi(x) < M ||x||. Examples of nonlinear functions that satisfy the linear growth

condition are functions such as cos(x), sin(x). The dynamical systems under con-

sideration can be stable or unstable, for as long as their vector field satisfies the

linear growth condition then they ”qualify” for the application of the Feynman-Kac

lemma.

• But what happens for the case of dynamical systems in which the vector field f(x)

cannot be bounded ∀x ∈ <n such as for example the function f(x) = x2? The

answer to this question is related to the locality condition. In particular if we know

that the dynamical system under consideration operates in a pre-specified region

of the state space then an upper bound for the vector field can almost always be

found. Consequently the conditions of boundedness in combination with the relaxed

condition of locality are important for the application of Feynman-Kac lemma to a

rather general class of systems.

• Finally, our view in applying the Feynman Kac lemma and the path integral control

formalism is for systems in which an initial set of state space trajectories is given or

generated after an initial control policy has been applied. Thus these systems are

initially controlled and clearly their vector field cannot be unbounded as a function

of the state.

We will continue this discussion of the application of Feynman - Lemma for optimal

control and planning for the chapter of path integral control formalism. In the next section

we will try to identify the most important special case of the Feynman Kac lemma.
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3.6 Special cases of the Feynman Kac lemma.

There are many special cases of the Feynman Kac lemma in the literature (Øksendal

2003),(Friedman 1975),(Karatzas & Shreve 1991),(Fleming & Soner 2006) which,at a first

glance, might look confusing and different. Nevertheless, under the generalized version

of the Feynman Kac lemma it is easy to recover and recognize all these special cases. We

start with the case where there is no discount cost which is equivalent to q(x) = 0. The

backward Kolmogorov PDE, then is formulated as:

−∂tΨt = fTt (∇xΨt) +
1
2
tr

(
(∇xxΨt)BBT

)
+ F(x, t); in [0, T )×<n×1 (3.68)

with the Feynman - Kac representation:

Ψ(x, t) =
〈
ξ(xT ) +

∫ T

t
F(xθ, θ)dθ

〉
(3.69)

and Ψ(x, tN ) = ξ(xT ). If the forcing term F(x, t) = 0 ∀x ∈ <n×1, t ∈ [0, T ) then it

drops from (3.68) while the Feynman- Kac representation of the resulting PDE is given

by Ψ(x, t) = E (ξ(xT )). Moreover if the drift term f(x, t) = 0 ∀x ∈ <n×1, t ∈ [0, T ) the

backward Kolmogorov PDE (3.68) collapses to:

−∂tΨt =
1
2
tr

(
(∇xxΨt)BBT

)
; in [0, T )×<n×1 (3.70)

For the case where B(x, t) = B the difference between the backward Kolmogorov and

forward Kolmogorov PDEs, for this special case of (3.70), is only the sign of the partial
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derivative of Ψ with respect to time. To see that we just need to apply the transformation

Ψ(x, t) = Φ(x, T − t) = Φ(x, τ) and thus we will have that ∂tΨt = −∂τΦτ . The backward

kolmogorov PDE is now transformed to a the forward PDE:

∂τΦτ =
1
2
tr

(
(∇xxΨt)BBT

)
; in [0, T )×<n×1 (3.71)

The PDE above is the forward Kolmogorov PDE which corresponds to SDEs without

the drift term and only diffusion term. In the most general cases, the transformation

Ψ(x, t) = Φ(x, T − t) = Φ(x, τ) of the backward Kolmogorov PDE results in a forward

PDE which does nor always correspond to the forward Kolmogorov PDE. In fact, this

is true only in the case F(x, t) = 0, q(x) = 0 and f(x, t) = 0 ∀x ∈ <n×1, t ∈ [0, T )

and constant diffusion matrix B. For the most general case the transformation Ψ(x, t) =

Φ(x, T − t) = Φ(x, τ) results in the PDEs given by the equation that follows:

∂τΦ(i)
τ = − 1

λ
q(x, T − τ)Φ(i)

τ + f (i)
τ

T (∇xΦ(i)
τ ) +

1
2
tr
(

(∇xxΦ(i)
τ )BBT

)
+ F(x, T − τ)

(3.72)

with the initial condition Φ(x, 0) = exp(− 1
λφ(tN )). By substituting q̃(x, τ) = q(x, T−

τ) and F̃(x, τ) = F(x, T − τ) the Feynman Kac representation takes the form:

Φ(x, τ) =
〈
ξ(x0) exp

(
− 1
λ

∫ τ

0
q̃(x, s)ds

)
+
∫ τ

0
F̃(x, θ) exp

(
− 1
λ

∫ τ

t
q̃(x, s)ds

)
dθ

〉
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The forward PDE in (3.72) and its probabilistic solution above is another form of the

Feynman- Kac lemma. In the next section we show how the backward and forward PDEs

are related for the most general case.

3.7 Backward and forward Kolmogorov PDE and their

fundamental solutions

After discussing the solution to the Cauchy problem and presenting special cases of the

Feynman-Kac lemma, in this section we investigate the connection between the forward

and backward Kolmogorov PDEs. The backward Kolmogorov PDE, as we will show in the

next chapter, appears under certain conditions in a general optimal control problem while

the forward Kolmogorov PDE is of great importance in nonlinear stochastic estimation.

It is therefore of great importance to understand their connection in a mathematical as

well as an intuitive level.

Towards this goal, we will start our analysis with the definition of the fundamental

solution (Karatzas & Shreve 1991) of a second order PDE.

Definition: Let consider the nonnegative function D(y, t; x, τ) with 0 < t <

τ, x,y ∈ <n and ξ ∈ C and τ ∈ [0, T ]. The function D(y, t; x, τ) is a fundamental

solution of the PDE:

−∂tΨt = − 1
λ
qtΨt + f(xt)T (∇xΨt) +

1
2
tr

(
(∇xxΨt)B(x, t)B(x, t)T

)
(3.73)
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if the function Ψ(y, t) =
∫
<n D(y, t; x, τ)ξ(x)dx, satisfies the PDE above and

limt→τ− Ψ(y, t) = ξ(y, τ).

Before we proceed with the theorem which establishes the connection between the

forward and backward Kolmogorov PDE through the concept of fundamental solution, lets

understand the ”physical” meaning of the function D(y, t; x, τ) for 0 < t < τ, x,y ∈ <n.

Let us assume for the moment that q(x) = 0 then through the Feynamn Kac lemma

of the solution of the PDE is represented as Ψ(x, t) = E (ξ(xT )). Inspection of the

last equation and Ψ(y, t) =
∫
<n D(y, t; x, τ)ξ(x)dx tell us that any fundamental solution

of the backward Kolmogotov PDE can be thought as an transition probability of the

stochastic process x which evolves according to the stochastic differential equation (3.9).

Consequently, we can write that D(y, t; x, τ) = p(x, τ |y, t). Another property of the

function of fundamental solution of a second order PDE comes from the fact that:

lim
t→τ−

Ψ(y, t) = lim
t→τ−

∫
D(y, t; x, τ)ξ(x)dx = ξ(y, τ) (3.74)

From the equation above, it is easy to see that the fundamental solution has the prop-

erty that limt→τ− D(y, t; x, τ) = δ(y−x) where δ(x) is the Dirac function. Clearly, since

there is a probabilistic interpretation of D(y, t; x, τ) the transition probability p(x, τ |y, t)

inherits the same property and therefore p(x, τ |y, t) = δ(y − x) for t = τ .

Now, we present the theorem (Karatzas & Shreve 1991),(Friedman 1975) that estab-

lishes the connection between the forward and backward Kolmogorov PDE, trough the

concept of fundamental solution.
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Theorem: Under the conditions of Uniform Ellipticity of α(x, t), Holder conti-

nuity and boundeness of f(x, t),F(x, t), α(x, t) a fundamental solution of 3.73 exist.

Furthermore for any fixed τ,x the function ψ(y, t) = D(y, t; x, τ) satisfies the back-

ward Kolmogorov PDE. In addition if the function (∂/∂xi)f(x, t), (∂/∂xi)α(xik) and

(∂2/∂x2
i )α(xik) are bounded and Holder continuous the for fixed t,x the function ψ(y, τ) =

D(y, t; x, τ) satisfies the forward Kolmogorov equation:

∂τψ(y, τ) = −
n∑
i=1

∂

∂yi

(
fi(y, τ)ψ(y, τ)

)
+

1
2

n∑
i,j=1

∂

∂yi∂yj

(
Bi,j(y, τ)ψ(y, τ)

)
−q(y, t)ψ(y, τ)

(3.75)

The proof of the theorem can be found in (Friedman 1975). Clearly, the funda-

mental solution D(y, t; x, τ) establishes a connection between the forward and backward

Kolmogorov PDE. Essentially, if D(y, t; x, τ) is considered as a function of x, t then it

satisfies the former, while when it is thought as a function of y, τ then it satisfies the

later.

To better understand this connection, lets study the example of the diffusion dx =

µdt + σdω. From the analysis above we know that the transition probability of this

diffusion is a fundamental solution. Lets verify if this statement true. More precisely,

the aforementioned diffusion can been written in the form x(t+ dt)− x(t) = µdt+ σdω.

By substituting with x(t + dt) = x(τ) for τ = t + dt and x(t) = y(t), we will have

x(τ)− y(t) = µ(τ − t) +σdω. With this new form, the transition probability is expressed

by the equation that follows:
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p(x, τ |y, t) = D(y, t;x, τ) =
1√

2πσ2(t− τ)
exp

(
− (x− y − µ (τ − t))2

2σ2(t− τ )

)
(3.76)

The backward and forward Kolmogorov PDEs for the stochastic diffusions dx = µdt+

σdω are formulated as follows:

− ∂

∂t
p(x, τ |y, t) = µ

∂

∂y
p(x, τ |y, t) +

1
2
σ2 ∂

2

∂y2
p(x, τ |y, t)

∂

∂τ
p(x, τ |y, t) = −µ ∂

∂x
p(x, τ |y, t) +

1
2
σ2 ∂

2

∂x2
p(x, τ |y, t)

The verify the theorem of the fundamental solution we compute the following terms:

∂

∂y
p(x, τ |y, t) =

(
x− y − µ (τ − t)

σ2(τ − t)

)
p(x, τ |y, t)

∂2

∂y2
p(x, τ |y, t) =

−1
σ2(τ − t)

(
1 +

x− y − µ (τ − t)
σ2(τ − t)

)
p(x, τ |y, t)

∂

∂x
p(x, τ |y, t) = − ∂

∂y
p(x, τ |y, t)

∂2

∂y2
p(x, τ |y, t) =

1
σ2(τ − t)

(
− 1 +

x− y − µ (τ − t)
σ2(τ − t)

)
p(x, τ |y, t)

In addition to the partial derivative with respect to the state x and y, the time

derivatives of the transition probability are formulated as follows:

∂

∂τ
p(x, τ |y, t) =

(
− 1
τ − t

+
x− y − µ(τ − t)

σ2(τ − t)
+

(x− y − µ(τ − t))2

σ2(τ − t)2

)
p(x, τ |y, t)
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∂

∂t
p(x, τ |y, t) =

(
1

τ − t
− x− y − µ(τ − t)

σ2(τ − t)
− (x− y − µ(τ − t))2

σ2(τ − t)2

)
p(x, τ |y, t)

By computing the terms in the left sides of the PDEs and the time derivatives ∂
∂tp(x, τ |y, t)

and ∂
∂τ p(x, τ |y, t) it is easy to show that, indeed, p(x, τ |y, t) satisfies the backward Kol-

mogorov in y, τ and the forward Kolmogorov in x, t.

3.8 Connection of backward and forward Kolmogorov PDE

via the Feynman Kac lemma

The connection between the backward and the forward Kolmogorov PDEs can be also

seen in the derivation of the Feynman Kac lemma. Towards an understanding in depth

of the connection between the two PDEs, our goal in this section is to show that in the

derivation of the Feynman Kac lemma both PDEs are involved. In particular, we are

assuming that the backward Kolmogorov PDE holds, and while we are trying to find its

solution, the forward PDE appears from our mathematical manipulations. More precisely,

we will start our derivation from equation (3.61) in the Feynman Kac lemma but we will

assume for simplicity that q(x, t) = 0. More precisely we will have that:

dG(x, t0, t) = dt

(
∂tΨ + (∇xΨ)T f(x, t) +

1
2
tr
(
∇xxΨBBT

))
+ (∇xΨ)T B(x)Ldw

By integrating and taking the expectation of the equation above and since
〈
dw
〉

= 0:
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〈
dG(x, t0, t)

〉
=
〈∫ (

∂tΨ + (∇xΨ)T f(x, t) +
1
2
tr
(
∇xxΨBBT

))
dt

〉

The expectation above is taken with respect to the transition probability p(x, t|x0, t0)

defined based on the Itô diffusion (3.9). Consequently we will have:

〈
dG(x, t0, t)

〉
=
∫ ∫

p(x, t|x, t0)

(
∂tΨ + (∇xΨ)T f(x, t) +

1
2
tr
(
∇xxΨBBT

))
dtdx

We are skipping few of the steps that we followed in the Feynman- Kac lemma,

however it is easy to show that the equation above can be written in the form:

〈
Ψ(x(tN )

〉
−Ψ(x(t0)) =

=
∫ ∫

p(x, t|x0, t0)

(
∂tΨ + (∇xΨ)T f(x, t) +

1
2
tr
(
∇xxΨBBT

))
dtdx

we integrate by parts and therefore:

∫
<n
p(x, tN |x0, t0)Ψ(x(tN ))dx−Ψ(x(t0)) =∫

<n

∫
Ψ

(
− ∂tp(x, t|x0, t0) +∇x (f(x, t)p(x, t|x0, t0))

)

+
∫
<n

∫
Ψ

(
1
2
tr
(
∇x∇Tx

(
p(x, t|x0, t0)BBT

)))
dtdx

+
∫
<n
p(x, t|x0, t0)Ψ(x, t)dx|t=tNt=t0
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The last term
∫
<n p(x, t|x0, t0)Ψ(x, t)dx|t=tNt=t0

is further written as:

∫
<n
p(x, tN |x0, t0)Ψ(x, t)dx−

∫
<n
p(x, t0|x0, t0)Ψ(x, t)dx

From the equation above we conclude the following:

Ψ(x(t0)) =
∫
<n
p(x, t0|x0, t0)Ψ(x, t0)dx (3.77)

and also

−∂tp(x, t|x0, t0) +∇x (f(x, t)p(x, t|x0, t0)) +
1
2
tr

(
∇x∇Tx

(
p(x, t|x0, t0)BBT

))
= 0

(3.78)

The first equation tells us that the transition probability p(x, t|x0, t0) acts as a Dirac

function since limt→t+0
p(x, t|x0, t0) = δ(x−x0). We have arrived at the same conclusion,

regarding the transition probability, with the result in the previous section where we

showed that, in fact this is a general property of the fundamental solutions of PDEs and

therefore since the transition limt→t+0
p(x, t|x0, t0) is a fundamental solutions, it inherits

the same property. Clearly in this section we do not use the theory of fundamental

solutions but we find the same result by slightly changing the derivation of the Feynman-

Kac lemma. The second equation is nothing else than the forward Kolmogorov PDE and it

tells us that that the transition probability p(x, t|x0, t0) satisfies the forward Kolmogorov

PDE in x and t . Essentially the derivation of the Feynman- Kac lemma can be used

to 1) find the probabilistic interpretation of the solution of the backward kolmogorov

equation and thus provide a solution to the Cauchy problem. 2) Shown that the transition
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probability acts as a dirac function thus it shares the same property with the fundamental

solution of the PDEs and 3) Prove that the forward kolmogorov can be thought as an

outcome of the Feynman-Kac lemma and thus to offer another perceptual view of the

connection between the forward and backward Kolmogorov PDEs.

The discussion so far seems a bit abstract. So one could ask why all these? What do

really this PDEs represent? Where do we find them in engineering?

3.9 Forward and backward Kolmogorov PDEs in estimation

and control

We will close this chapter on the connection between the forward and backward Kol-

mogorov PDEs with the discussion on how these PDEs appear in nonlinear control and

estimation problems. We start our analysis with the Zakai equation which is found in

nonlinear estimation theory. More precisely we consider the nonlinear filtering problem

in which the stochastic dynamics are expressed by the equation:

dx = f(x, t)dt+ B(x, t)dw

while the observations are given by the diffusion:

dy = h(x, t)dt+ dv
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The goal is to estimate the state of the stochastic dynamics which is equivalent of

finding the probability density p(x, t) of the state x at time t. This probability density

satisfies the Zakai equation:

∂p = −
n∑
i=0

∂

∂xi

(
f(x, t)p

)
dt+

1
2

n∑
i,j=1

∂

∂xi∂xj

(
Bi,j(x, t)p

)
dt+ ph(x, t)Tdy

with B = B(x, t)B(x, t)T . The PDE above is linear, second order and stochastic. The

stochasticity is incorporated due the the last term which is a function of the observations

dy. Substitution of the observation model to the PDE above, results in the following

linear stochastic PDE:

∂p = −
n∑
i=0

∂

∂xi

(
f(x, t)p

)
dt+

1
2

n∑
i,j=1

∂

∂xi∂xj

(
Bi,j(x, t)p

)
dt+ ph(x, t)Th(x, t)dt

+ ph(x, t)Tdv

From the equation above we can see that for h(x, t) = 0 the forward Zakai equation

collapses to a forward Chapman- Kolmogorov PDE. As it will be shown in the next

chapter, the backward chapman Kolmogorov PDE appears in optimal control and it has

the form:

−∂tΨt = − 1
λ
qtΨt + fTt (∇xΨt) +

1
2
tr
(
(∇xxΨt)BBT

)
With respect to the forward Zakai PDE, the backward Chapman Kolmogorov is also

linear but deterministic. This last difference is one of the main reasons why the duality
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between optimal linear filtering and linear control was not generalized for the nonlinear

case. Recently (Todorov 2008) , the generalized duality was exploited when the backward

Zakai equation in nonlinear smoothing is considered. Essentially the backward Zakai

equation can be turned into a deterministic PDE and then a direct mapping between

the two PDEs can be made in the same way how it is made between the backward and

forward Riccati equations in linear control and filtering problems.

3.10 Conclusions

In this chapter we investigated the connection between SDEs, linear PDEs and Path

Integrals. My goal was to give an introduction to these mathematical concepts and their

connections by keeping a balance between a pedagogical and intuitive presentation and

a presentation that is characterized by rigor and mathematical precision.

In the next chapter, the path integral formalism is applied to stochastic optimal

control and reinforcement learning and the generalized path integral control is derived.

More precisely, the backward Chapman Kolmogorov is formulated and the Feynman-Kac

lemma is applied. Finally the path integral control is derived. Extensions of path integral

control to iterative and risk sensitive control are presented.

3.11 Appendix

We assume the stochastic differential equation dx = f(x, t)dt + B(x, t)dw . If the

drift f(x, t) and diffusion term B(x, t) satisfy the condition:||f(y, t)||2 + ||B(y, t)||2 <

K

(
1+max||y(s)||2

)
then

〈
max0<s<t ||xs||2m

〉
≤ C

(
1+
〈
||xo||2m

〉)
eCt, ∀0 ≤ t ≤ T .
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Hölder Continuity Definition: A function f(x) : <n → < is Hölder continuous

is there is α > 0 such that |f(x)− f(x)| ≤ |x− y|α.

Monotone Convergence Theorem: if fn is a sequence of measurable function with

0 ≤ fn ≤ fn+1, ∀n then limn→∞
∫
fndµ =

∫
limn→∞ fndµ.

Dominated Convergence Theorem: Let fn the sequence of real value and measur-

able functions. If the sequence convergence pointwise to the function f and it is dominated

by some integrable function g then limn→∞
∫
fndµ =

∫
fdµ. A function is dominated by

g if |fn(x)| < g(x).
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Chapter 4

Path Integral Stochastic Optimal Control

After discussing the connection between PDEs, SDEs and the Path Integrals in this chap-

ter we present the application of path integral formalism to stochastic optimal control

and reinforcement learning problems. While reinforcement learning (RL) is among the

most general frameworks of learning control to create truly autonomous learning systems,

its scalability to high-dimensional continuous state-action system, e.g., humanoid robots,

remains problematic. Classical value-function based methods with function approxima-

tion offer one possible approach, but function approximation under the non-stationary

iterative learning process of the value-function remains difficult when one exceeds about

5-10 dimensions. Alternatively, direct policy learning from trajectory roll-outs has re-

cently made significant progress (Peters 2007), but can still become numerically brit-

tle and full of open tuning parameters in complex learning problems. In new develop-

ments, RL researchers have started to combine the well-developed methods from statis-

tical learning and empirical inference with classical RL approaches in order to minimize

tuning parameters and numerical problems, such that ultimately more efficient algo-

rithms can be developed that scale to significantly more complex learning system (Dayan
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& Hinton 1997, Kober & Peters 2009, Peters & Schaal 2008a, Toussaint & Storkey 2006)

and (Ghavamzadeh & Yaakov 2007, Deisenroth, Rasmussen & Peters 2009, Vlassis, Tou-

ssaint, Kontes & S. 2009, Jetchev & Toussaint 2009).

In the spirit of these latter ideas, in this chapter we derive the necessary mathe-

matical background for the development of a new method of probabilistic reinforcement

learning based on the framework of stochastic optimal control and path integrals. We

start our analysis motivated by the original work of (Kappen 2007, Broek, Wiegerinck

& Kappen. 2008) and we extend the path integral control framework in new directions

which include 1) stochastic dynamics with state dependent control and diffusion matrices,

2) the iterative version of the proposed framework and 3) different integration schemes

of stochastic calculus which include but they are not limited to Itô and Stratonovich

calculus.

The present chapter is organized as follows: in section 4.1, we go through the first steps

of Path Integral control, starting with the presentation of a general stochastic optimal

control problem and the corresponding HJB equation. We continue with the transfor-

mation of HJB to a linear and second order PDE, the so called the Backward Chapman

Kolmogorov PDE. This transformation allows us to use the Feynman-Kac lemma, from

chapter 3, and to represent the solution for the backward Chapman Kolmogorov PDE

as the expectation of the exponentiated state depended part of the cost function over all

possible trajectories.

In section 4.2 we derive the path integral formalism for stochastic dynamic systems

in which the state is partitioned into directly actuated and not directly actuated parts.

There is a plethora of dynamical systems that have this property such as Rigid body and
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Multi-body dynamics as well as the Dynamic Movement Primitives. DMPs are nonlinear

attractors with adjustable landscapes and they can be used to represent state space

trajectories as well as control policies. We will continue the discussion on DMP and their

application to robotic optimal control and planning in chapter 6. The derivation of path

integral for such type of systems is based on the Itô calculus and it is presented step by

step.

In section 4.3 the generalized path integral control for the case of systems with state

dependent control transition and diffusion matrices is derived. The derivation is presented

in details in the appendix of the present chapter and it consists of 2 lemmas and 1

theorem. All the analysis in sections 4.2 and 4.3 is according to Itô calculus. To complete

the presentation on the generalized path integral control we present the derivation of the

optimal controls in Stratonovich calculus. Furthermore, we discus the case in which the

Stratonovich and the Itô calculus lead to the same results in the terms of the final formula

that provides the path integral optimal controls.

With the goal to apply the Path Integrals control to high dimensional robotic control

and planning problems, in section 4.6 we present the Iterative version of the path integral

control and we have a discussion on the convergence analysis of the proposed algorithm

(PI2). When the iterative path integral control approach is applied to DMPs then the

resulting algorithm is the so called Policy Improvement with Path Integrals (PI2). This

algorithm is presented in great detail in chapter 6.

Finally, in section 4.7 we discuss the risk sensitive version of path integral control.

More precisely we derive the condition under which the path integral control formalism

could be applied for the case of stochastic optimal control problems with risk sensitive
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cost functions. In the last section we discuss the main points of this chapter and we

conclude.

4.1 Path integral stochastic optimal control

The goal in stochastic optimal control is to control a stochastic dynamical system while

minimizing a performance criterion. Therefore, in mathematical term a stochastic optimal

control problem can be formulated as follows:

V (x) = min
u
J(x,u) = min

u

〈
φ(xtN ) +

∫ tN

to
L(x,u, t)dt

〉
(4.1)

subject to the stochastic dynamical constrains:

dx = (f(x, t) + G(x, t)u) dt+ B(x, t)Ldw (4.2)

with xt ∈ <n×1 denoting the state of the system, Gt = G(x, t) ∈ <n×p the control

matrix, Bt = B(x, t) ∈ <n×p is the diffusions matrix ft = f(x, t) ∈ <n×1 the passive

dynamics, ut ∈ <p×1 the control vector and dw ∈ <p×1 brownian noise. L ∈ <p×p is a

state independent matrix with Σw = LLT . As immediate reward we consider

Lt = L(xt,ut, t) = qt +
1
2
uTt Rut (4.3)

where qt = q(xt, t) is an arbitrary state-dependent cost function, and R is the positive

definite weight matrix of the quadratic control cost. The stochastic HJB equation (Stengel
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1994, Fleming & Soner 2006) associated with this stochastic optimal control problem is

expressed as follows:

−∂tVt = min
u

(
Lt + (∇xVt)TFt +

1
2
tr
(
(∇xxVt)BtΣwBT

t

))
(4.4)

To find the minimum, the reward function (4.3) is inserted into (4.4) and the gradient

of the expression inside the parenthesis is taken with respect to controls u and set to

zero. The corresponding optimal control is given by the equation:

u(x, t) = ut = −R−1G(x)T (∇xV (x, t)) (4.5)

Substitution of the optimal control into the stochastic HJB (4.4) results in the follow-

ing nonlinear and second order PDE:

−∂tVt = qt + (∇xVt)T ft −
1
2

(∇xVt)TGtR−1GT
t (∇xVt) +

1
2
tr
(
(∇xxVt)BtΣwBT

t

)
(4.6)

To transform the PDE above into a linear one, we use a exponential transformation

of the value function Vt = −λ log Ψt. Given this logarithmic transformation, the partial

derivatives of the value function with respect to time and state are expressed as follows:

∂tVt = −λ 1
Ψt
∂tΨt (4.7)

∇xVt = −λ 1
Ψt
∇xΨt (4.8)

∇xxVt = λ
1

Ψ2
t

∇xΨt ∇xΨT
t − λ

1
Ψt
∇xxΨt (4.9)
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Inserting the logarithmic transformation and the derivatives of the value function we

obtain:

λ

Ψt
∂tΨt = qt −

λ

Ψt
(∇xΨt)T ft −

λ2

2Ψ2
t

(∇xΨt)TGtR−1GT
t (∇xΨt) (4.10)

+
1
2
tr (Γ) (4.11)

where the term Γ is expressed as:

Γ =
(
λ

1
Ψ2
t

∇xΨt ∇xΨT
t − λ

1
Ψt
∇xxΨt

)
BtΣwBT

t (4.12)

The tr of Γ is therefore:

Γ = λ
1

Ψ2
tr
(
∇xΨT

t BtΣwBt∇xΨt

)
− λ 1

Ψt
tr
(
∇xxΨtBtΣwBT

t

)
(4.13)

Comparing the underlined terms in (4.11) and (4.55), one can recognize that these

terms will cancel under the assumption λG(x)R−1G(x)T = B(x)ΣwB(x)T = Σ(xt) =

Σt. The resulting PDE is formulated as follows:

−∂tΨt = − 1
λ
qtΨt + fTt (∇xΨt) +

1
2
tr ((∇xxΨt)Σt) (4.14)

with boundary condition: ΨtN = Ψ(x, tN ) = exp
(
− 1
λφ(xtN )

)
. The partial differential

equation (PDE) in (4.14) corresponds to the so called Chapman Kolmogorov PDE, which

is of second order and linear. Analytical solutions of even linear PDEs are plausible only

in very special cases which correspond to systems with trivial low dimensional dynamics.
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In this work we compute the solution of the linear PDE above with the use of the Feynman

- Kac lemma (Øksendal 2003). The Feynman- Kac lemma provides a connection between

stochastic differential equations and PDEs and therefore its use is twofold. On one side it

can be used to find probabilistic solutions of PDEs based on forward sampling of diffusions

while on the other side it can be used find solution of SDEs based on deterministic methods

that numerically solve PDEs. The solution of the PDE above can be found by evaluating

the expectation:

Ψ (x, ti) =
〈
e−

R tN
ti

1
λ
q(x)dtΨ(xtN )

〉
τ i

(4.15)

on sample paths τ i = (xi, ...,xtN ) generated with the forward sampling of the diffusion

equation dx = f(x, t)dt + B(x, t)Ldw. Under the use of the Feynman Kac lemma the

stochastic optimal control problem has been transformed into an approximation problem

of a path integral. With a view towards a discrete time approximation, which will be

needed for numerical implementations, the solution (4.15) can be formulated as:

Ψ (x, ti) = lim
dt→0

∫
p (τ i|xi) exp

− 1
λ

φ(x(tN )) +
N−1∑
j=i

q(x, tj)dt

dτ i (4.16)

where τ i = (xti , .....,xtN ) is a sample path (or trajectory piece) starting at state xti and

the term p (τ i|xi) is the probability of sample path τ i conditioned on the start state xti .

Since equation (4.16) provides the exponential cost to go Ψti in state xti , the integration

above is taken with respect to sample paths τ i =
(
xti ,xti+1 , .....,xtN

)
. The differential

term dτ i is defined as dτ i = (dxti , ....., dxtN ). After the exponentiated value function
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Ψ(x, t) has been approximated, the optimal control are found according to the equation

that follows:

u(x, t) = λR−1G(x)T
∇xΨ(x, t)

Ψ(x, t)
(4.17)

Clearly optimal controls in the equation above act such that the stochastic dynamical

system visits regions of the state space with high exponentiated values function Ψ(x, t)

while in the optimal control formulation (4.5) controls will move the system towards part

of the state space with minimum cost-to-go V (x, t). This observation is in complete agree-

ment with the exponentiation of value function Ψ(x, t) = exp
(
− 1
λV (x, t)

)
. Essentially,

the resulting value function Ψ(x, t) can be thought as a probability of the state and thus

states with high cost to go V (x, t) will be less probable(= small Ψ(x, t)) while state with

small cost to go will be most probable. In that sense the stochastic optimal control has

been transformed from a minimization to maximization optimization problem. Finally

the intuition behind the condition λG(x, t)R−1G(x, t)T = B(x, t)ΣwB(x, t)T is that,

since the weight control matrix R is inverse proportional to the variance of the noise, a

high variance control input implies cheap control cost, while small variance control inputs

have high control cost. From a control theoretic stand point such a relationship makes

sense due to the fact that under a large disturbance (= high variance) significant control

authority is required to bring the system back to a desirable state. This control authority

can be achieved with corresponding low control cost in R.

With the goal to find the Ψ(x, t) in equation (4.16), in the next section we derive the

distribution p (τ i|xi) based on the passive dynamics. This is a generalization of results

in (Kappen 2007, Broek et al. 2008).
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4.2 Generalized path integral formalism

To develop our algorithms, we will need to consider a more general development of the

path integral approach to stochastic optimal control than presented in (Kappen 2007) and

(Broek et al. 2008). In particular, we have to address that in many stochastic dynamical

systems, the control transition matrix Gt is state dependent and its structure depends on

the partition of the state in directly and non-directly actuated parts. Since only some of

the states are directly controlled, the state vector is partitioned into x = [x(m)T x(c)T ]T

with x(m) ∈ <k×1 the non-directly actuated part and x(c) ∈ <l×1the directly actuated

part. Subsequently, the passive dynamics term and the control transition matrix can be

partitioned as ft = [f (m)
t

T
f (c)
t

T
]T with fm ∈ <k×1, fc ∈ <l×1 and Gt = [0k×p G(c)

t

T
]T

with G(c)
t ∈ <l×p. The discretized state space representation of such systems is given as:

xti+1 = xti + ftidt+ Gtiutidt+ Btidwti ,

or, in partitioned vector form:

 x(m)
ti+1

x(c)
ti+1

 =

 x(m)
ti

x(c)
ti

+

 f (m)
ti

f (c)
ti

 dt+

 0k×p

G(c)
ti

utidt+

 0k×p

B(c)
ti

 dwti . (4.18)

Essentially the stochastic dynamics are partitioned into controlled equations in which

the state x(c)
ti+1

is directly actuated and the uncontrolled equations in which the state x(m)
ti+1
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is not directly actuated. Since stochasticity is only added in the directly actuated terms

(c) of (4.18), we can develop p (τ i|xi) as follows.

p (τ i|xti) = p (τ i+1|xti)

= p
(
xtN , .....,xti+1 |xti

)
= ΠN−1

j=i p
(
xtj+1 |xtj

)
,

where we exploited the fact that the start state xti of a trajectory is given and does not

contribute to its probability. For systems where the control has lower dimensionality than

the state (4.18), the transition probabilities p
(
xtj+1 |xtj

)
are factorized as follows:

p
(
xtj+1 |xtj

)
= p

(
x(m)
tj+1
|xtj
)
p
(
x(c)
tj+1
|xtj
)

= p
(
x(m)
tj+1
|x(m)
tj

,x(c)
tj

)
p
(
x(c)
tj+1
|x(m)
tj

,x(c)
tj

)
∝ p

(
x(c)
tj+1
|xtj
)
, (4.19)

where we have used the fact that p
(
x(m)
ti+1
|x(m)
ti

,x(c)
ti

)
is the Dirac delta function, since

x(m)
tj+1

can be computed deterministically from x(m)
tj

,x(c)
tj

. For all practical purposes,1 the

transition probability of the stochastic dynamics is reduced to the transition probability

of the directly actuated part of the state:

p (τ i|xti) = ΠN−1
j=i p

(
xtj+1 |xtj

)
∝ ΠN−1

j=i p
(
x(c)
tj+1
|xtj
)
. (4.20)

1The delta functions will all integrate to 1 in the path integral.
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Since we assume that the noise ε is zero mean Gaussian distributed with variance Σw,

where Σw = LLT ∈ <l×l, the transition probability of the directly actuated part of the

state is defined as:2

p
(
x(c)
tj+1
|xtj
)

=
1(

(2π)l · |Σtj |
)1/2 exp

(
−1

2

wwwx(c)
tj+1
− x(c)

tj
− f (c)

tj
dt
www2

Σ−1
tj

)
, (4.21)

where the covariance Σtj ∈ <l×l is expressed as Σtj = B(c)
tj

ΣwB(c)
tj

T
dt. Combining (4.21)

and (4.20) results in the probability of a path expressed as:

p (τ i|xti) ∝
1

ΠN−1
j=i

(
(2π)l‖Σtj |

)1/2 exp

−1
2

N−1∑
j=1

wwwx(c)
tj+1
− x(c)

tj
− f (c)

tj
dt
www2

Σ−1
tj

.
Finally, we incorporate the assumption (4.56) about the relation between the control

cost and the variance of the noise, which needs to be adjusted to the controlled space as

Σtj = B(c)
tj

ΣwB(c)
tj

T
dt = λG(c)

tj
R−1G(c)

tj

T
dt = λHtjdt with Htj = G(c)

tj
R−1G(c)

tj

T
. Thus,

we obtain:

p (τ i|xti) ∝
1

ΠN−1
j=i

(
(2π)l|Σtj |

)1/2 exp

− 1
2λ

N−1∑
j=i

wwwwwwx(c)
tj+1
− x(c)

tj

dt
− f (c)

tj

wwwwww
2

H−1
tj

dt

.
2For notational simplicity, we write weighted square norms (or Mahalanobis distances) as vTMv =

‖v‖2M.
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With this formulation of the probability of a trajectory, we can rewrite the the path

integral (4.16) as:

Ψti =

= lim
dt→0

∫ exp

− 1
λ

φtN +
∑N−1

j=i qtjdt+ 1
2

∑N−1
j=i

wwwwwx
(c)
tj+1
−x

(c)
tj

dt − f (c)
tj

wwwww
2

H−1
tj

dt




ΠN−1
j=i

(
(2π)l/2|Σtj |1/2

) dτ
(c)
i

(4.22)

Or in a more compact form:

Ψti = lim
dt→0

∫
1

D(τ i)
exp

(
− 1
λ
S(τ i)

)
dτ

(c)
i , (4.23)

where, we defined

S(τ i) = φtN +
N−1∑
j=i

qtjdt+
1
2

N−1∑
j=i

wwwwwwx(c)
tj+1
− x(c)

tj

dt
− f (c)

tj

wwwwww
2

H−1
tj

dt,

and

D(τ i) =
N−1∏
j=i

(
(2π)l/2|Σtj |1/2

)
.
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Note that the integration is over dτ (c)
i =

(
dx(c)

ti
, ....., dx(c)

tN

)
, as the non-directly ac-

tuated states can be integrated out due to the fact that the state transition of the non-

directly actuated states is deterministic, and just added Dirac delta functions in the

integral (cf. Equation (4.19)). Equation (4.23) is written in a more compact form as:

Ψti = lim
dt→0

∫
exp

(
− 1
λ
S(τ i)− logD(τ i)

)
dτ

(c)
i

= lim
dt→0

∫
exp

(
− 1
λ
Z(τ i)

)
dτ

(c)
i , (4.24)

where Z(τ i) = S(τ i) + λ logD(τ i). It can be shown (see appendix) that this term is

factorized in path dependent and path independent terms of the form:

Z(τ i) = S̃(τ i) +
λ(N − i)l

2
log (2πdtλ) ,

where

S̃(τ i) = S(τ i) +
λ

2

N−1∑
j=i

log |Btj | (4.25)

with B = B(c)
tj

B(c)
tj

T
. This formula is a required step for the derivation of optimal

controls in the next section. The constant term λ(N−i)l
2 log (2πdtλ) can be the source

of numerical instabilities especially in cases where fine discretization dt of stochastic

dynamics is required. However, in the next section, and in a great detail in Appendix A,

lemma 1, we show how this term drops out of the equations.

130



4.3 Path integral optimal controls

For every moment of time, the optimal controls are given as uti = −R−1GT
ti(∇xtiVti).

Due to the exponential transformation of the value function, the equation of the optimal

controls can be written as

uti = λR−1Gti

∇xti
Ψti

Ψti

.

After substituting Ψti with (4.24) and canceling the state independent terms of the cost

we have:

uti = lim
dt→0

λR−1GT
ti

∇
x

(c)
ti

(∫
e−

1
λ
S̃(τ i)dτ

(c)
i

)
∫
e−

1
λ
S̃(τ i)dτ

(c)
i

 ,

Further analysis of the equation above leads to a simplified version for the optimal controls

as

utidt =
∫
P (τ i) uL (τ i) dτ

(c)
i , (4.26)

with the probability P (τ i) and local controls uL (τ i) defined as

P (τ i) = e−
1
λ
S̃(τ i)R

e−
1
λ
S̃(τ i)dτ i

(4.27)

The local control can now be expressed as:

uL(τ i) = R−1G(c)
ti
TH−1

ti
G(c)
ti
dwti ,
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By substituting Hti = G(c)
ti

R−1G(c)
ti
T in the equation above, we get our main result for

the local controls of the sampled path for the generalized path integral formulation:

uL(τ i) = R−1G(c)
ti
T
(
G(c)
ti

R−1G(c)
ti
T
)−1

G(c)
ti
dwti . (4.28)

Given the local control above the optimal control in (4.26) are now expressed by the

equation that follows:

utidt =
∫
P (τ i) R−1G(c)

ti
T
(
G(c)
ti

R−1G(c)
ti
T
)−1

G(c)
ti
dwtidτ

(c)
i , (4.29)

The equations in boxes (4.29) and (4.27) the solution for the generalized path integral

stochastic optimal control problem. The numerical evaluation of the integral above is

expressed by the equation

u (τ i) dt =
#Paths∑
k=1

p̃(k) (τ i) R−1G(c)
ti
T
(
G(c)
ti

R−1G(c)
ti
T
)−1 (

G(c)
ti
dw(k)

ti

)
(4.30)

The equation above can also be written in the form:

u (τ i) dt = R−1G(c)
ti
T
(
G(c)
ti

R−1G(c)
ti
T
)−1

#Paths∑
k=1

p̃(k) (τ i)
(
G(c)
ti
dw(k)

ti

)
(4.31)
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• Given:

– The system dynamics xti+1 = xti + (fti + Gtut) dt+ Btidwti (cf. 4.2)

– The immediate cost Lt = qt + 1
2uTt Rut (cf. 4.3)

– A terminal cost term φtN

– Trajectory starting at ti and ending at tN : τ i = (xti , .....,xtN )

– A partitioning of the system dynamics into (c) controlled and (m) uncontrolled
equations, where n = c + m is the dimensionality of the state xt (cf. Section
4.2)

• Optimal Controls:

– Optimal controls at every time step ti: utidt =
∫
P (τ i) uL (τ i) dτ

(c)
i

– Probability of a trajectory: P (τ i) = e−
1
λ
S̃(τ i)R

e−
1
λ
S̃(τ i)dτ i

– Generalized trajectory cost: S̃(τ i) = S(τ i) + λ
2

∑N−1
j=i log |Btj | where

∗ S(τ i) = φtN +
∑N−1

j=i qtjdt+ 1
2

∑N−1
j=i

wwwwwx
(c)
tj+1
−x

(c)
tj

dt − f (c)
tj

wwwww
2

H−1
tj

dt

∗ Htj = G(c)
tj

R−1G(c)
tj

T
and B = B(c)

tj
B(c)
tj

T

– Local Controls: uL(τ i) = R−1G(c)
ti
T
(
G(c)
ti

R−1G(c)
ti
T
)−1 (

G(c)
ti
dwti

)
.

Table 4.1: Summary of optimal control derived from the path integral formalizm.

Given that this result is of general value and constitutes the foundation to derive our

reinforcement learning algorithm in the next section, but also since many other special

cases can be derived from it, we summarized all relevant equations in Table 4.1.

The Given components of Table 4.1 include a model of the system dynamics, the

cost function, knowledge of the system’s noise process, and a mechanism to generate

trajectories τ i. It is important to realize that this is a model-based approach, as the

computations of the optimal controls requires knowledge of εi. εi can be obtained in two

ways. First, the trajectories τ i can be generated purely in simulation, where the noise
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is generated from a random number generator. Second, trajectories could be generated

by a real system, and the noise εi would be computed from the difference between the

actual and the predicted system behavior, that is, G(c)
ti
εi = ẋti− ˆ̇xti = ẋti−(fti +Gtiuti).

Computing the prediction ˆ̇xti also requires a model of the system dynamics.

In the next section we show how our generalized formulation is specialized to different

classes of stochastic dynamical systems and we provide the corresponding formula of local

controls for each class.

4.4 Path integral control for special classes of dynamical

systems

The purpose of this section is twofold. First, it demonstrates how to apply the path

integral approach to specialized forms of dynamical systems, and how the local controls

in (4.28) simplify for these cases. Second, this section prepares the special case which we

will need for our reinforcement learning algorithm in presented in the next chapter.

The generalized formulation of stochastic optimal control with path integrals in Table

4.1 can be applied to a variety of stochastic dynamical systems with different types of

control transition matrices. One case of particular interest is where the dimensionality

of the directly actuated part of the state is 1D, while the dimensionality of the control

vector is 1D or higher dimensional. As will be seen below, this situation arises when the

controls are generated by a linearly parameterized function approximator. The control
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transition matrix thus becomes a row vector G(c)
ti

= g(c)T
ti
∈ <1×p. According to (4.28),

the local controls for such systems are expressed as follows:

uL(τ i) =
R−1g(c)

ti

g(c)T
ti

R−1g(c)
ti

(
g(c)T
ti

dwti

)
.

Since the directly actuated part of the state is 1D, the vector x(c)
ti

collapses into the

scalar x(c)
ti

which appears in the partial differentiation above. In the case that g(c)
ti

does

not depend on x
(c)
ti

, the differentiation with respect to x
(c)
ti

results to zero and the the

local controls simplify to:

uL(τ i) =
R−1g(c)

ti
g(c)T
ti

g(c)T
ti

R−1g(c)
ti

dwti

The generalized formula of the local controls (4.28) was derived for the case where

the control transition matrix is state dependent and its dimensionality is G(c)
t ∈ <l×p

with l < n and p the dimensionality of the control. There are many special cases of

stochastic dynamical systems in optimal control and robotic applications that belong

into this general class. More precisely, for systems having a state dependent control

transition matrix that is square (G(c)
ti
∈ <l×l with l = p) the local controls based on

(4.28) are reformulated as:

uL(τ i) = dwti . (4.32)

Interestingly, a rather general class of mechanical systems such as rigid-body and

multi-body dynamics falls into this category. When these mechanical systems are ex-

pressed in state space formulation, the control transition matrix is equal to rigid body
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inertia matrix G(c)
ti

= M(θti) (Sciavicco & Siciliano 2000). Future work will address this

special topic of path integral control for multi-body dynamics.

Another special case of systems with partially actuated state is when the control

transition matrix is state independent and has dimensionality G(c)
t = G(c) ∈ <l×p. The

local controls, according to (4.28), become:

uL(τ i) = R−1G(c)T
(
G(c)R−1G(c)T

)−1
G(c)dwti . (4.33)

If G(c)
ti

is square and state independent, G(c)
ti

= G(c) ∈ <l×l, we will have:

uL(τ i) = dwti . (4.34)

This special case was explored in (Kappen 2005a), (Kappen 2007), (Kappen 2005b)

and (Broek et al. 2008). Our generalized formulation allows a broader application of

path integral control in areas like robotics and other control systems, where the control

transition matrix is typically partitioned into directly and non-directly actuated states,

and typically also state dependent.

4.5 Itô versus Stratonovich path integral stochastic optimal

control

The derivation of the Path Integral for the systems with partitioned state into directly

and no directly actuated parts was performed based on the Itô stochastic calculus. In

136



this section we derive the path integral control for the case of Stratonovich stochastic

calculus. We consider the dynamics:

dx = f(x, t)dt+ g(x)(udt+ dw) (4.35)

We follow the same argument required to apply the path integral control framework

and we come up with the path integral formulation expressed according to Stratonovich

caclulus. For a general integration scheme we have shown that the path integral takes

the form:

P

(
xN , tN |x0, t0

)
=
∫ N−1∏

i=1

(
dxi√

2πδtBi

)

× exp
(
−

N∑
i=1

[
1

2B2
i

(
δx

δt
− fi + α(∂xBi)Bi

)2

+ β (∂xfi)
]
δt

)

For the Stratonovich calculus we can chose α = 1
2 and β = 1

2 and we will have the

path integral:

P

(
xN , tN |x0, t0

)
=
∫ N−1∏

i=1

(
dxi√

2πδtBi

)
exp

(
−

N∑
i=1

[
1

2B2
i

(
δx

δt
− fi +

1
2

(∂xBi)Bi

)2]
δt

)

× exp
(
− 1

2

N∑
i=1

(∂xfi)δt
)

we can write the equation above in the form:
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P

(
xN , tN |x0, t0

)
=
∫ N−1∏

i=1

(
dxi√

2πδtBi

)
exp

(
−

N∑
i=1

[
1

2B2
i

(
δx

δt
− f̃i

)2]
δt

)

× exp
(
− 1

2

N∑
i=1

(∂xfi)δt
)

where f̃i = fi − 1
2(∂xBi)Bi. The derivation of the optimal control for the scalar case

follows the same steps as in appendix but with the difference of using f̃i instead of fi

and the additional term
∑N

i=1(∂xfi)δt . It can be shown that the optimal control is now

formulated as :

u(xti) =
∫
p(τi)uLdτi

=
∫
p(τi)

(
ẋ− f̃(x)

)
dτi

In the next section we discuss the iterative version of path integral control.

4.6 Iterative path integral stochastic optimal control

In this section, we show how Path Integral Control is transformed into an iterative process,

which has several advantages for use on a real robot. The analysis that follows holds for

any stochastic dynamical systems that belongs to the class of systems expressed by (4.2).

When the iterative path integral control is applied to Dynamic Movement Primitives then

the resulting algorithm is the so called Policy Improvement with Path Integrals (PI2).
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However, we will leave the discussion for PI2 for the next chapter and in this section we

present the general version of iterative path integral control.

In particular, we start by looking into the expectation (4.15) in the Feynman Kac

Lemma that is evaluated over the trajectories τ i =
(
xti ,xti+1 , .....,xtN

)
sampled with

the forward propagation of uncontrolled diffusion dx = f(x, t)dt + B(x, t)Ldw. This

sampling approach is inefficient since it is very likely that parts of the state space relevant

to the optimal control task may not be reached by the sampled trajectories at once. In

addition, it has poor scalability properties when applied to high dimensional robotic

optimal control problems. Besides the reason of poor sampling, it is very common in

robotics applications to have an initial controller-policy which is manually tuned and

found based on experience. In such cases, the goal is to improve this initial policy by

performing an iterative process. At every iteration (i) the policy δu(i−1) is applied to

the dynamical system to generate state space trajectories which are going to be used for

improving the current policy. The policy improvement results from the evaluation of the

expectation (4.16) of the Feynman - Kac Lemma on the sampled trajectories and the use

of the path integral control formalism to find δu(i). The old policy δu(i−1) is updated

according to δu(i−1) + δu(i) and the process repeats again with the generation of the

new state space trajectories according to the updated policy. In mathematical terms the

iterative version of Path Integral Control is expressed as follows:

V (i)(x) = min
δu(i)

J(x,u) = min
δu(i)

〈∫ tN

to

(
q(x, t) + δu(i)T R δu(i)

)
dt

〉
(4.36)
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subject to the stochastic dynamical constrains:

dx =
(
f (i)(x) + G(x)δu(i)

)
dt+ B(x)Ldw (4.37)

where f (i)(xt) = f (i−1)(xt)+G(x)δu(i−1) where δu(i−1) is the control correction found

in the previous iteration. The linear HJB equation is now formulated as:

−∂tΨ(i)
t = − 1

λ
qtΨ

(i)
t + f (i)

t
T (∇xΨ(i)

t ) +
1
2
tr
(

(∇xxΨ(i)
t )Σ

)
(4.38)

The solution of PDE above is given by

Ψ(i) (xt) =
〈
e−

R tN
ti

1
λ
q(x)dtΨ(xtN )

〉
τ (i)

(4.39)

where τ (i) = (xt, .....,xtN ) are sampled trajectories generated by the diffusion: dx =

f(x, t)dt+ B(x, t)Ldw. The optimal control at iteration (i) is expressed as:

δu(i) = λR−1G(x)T
∇xΨ(i)(x, t)

Ψ(i)(x, t)
(4.40)

and it is applied to the dynamics f (i)(xt). The application of the new control results

in updating the previous control δu(i−1) and creating the new dynamics f (i+1)(x) =

f (i)(x) + G(x)δu(i) = f (i−1)(x) + G(x)
(
δu(i) + δu(i−1)

)
. At the next iteration (i+ 1) of
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the iterative path integral control, the corresponding exponentiated value function Ψ(i+1)

is given by the following PDE:

−∂tΨ(i+1)
t = − 1

λ
qtΨ

(i+1)
t + f (i+1)

t
T (∇xΨ(i+1)

t +
1
2
tr
(

(∇xxΨ(i+1)
t )Σ

)
(4.41)

The solution of the PDE is now expressed as:

Ψ(i+1) (xt) =
〈
e−

R tN
ti

1
λ
q(x)dtΨ(xtN )

〉
τ (i+1)

(4.42)

where τ (i+1) = (xt, .....,xtN ) are sampled trajectories generated by the diffusion: dx =

f (i+1)(xt)dt+ B(x)dω.

Our ultimate goal for the iterative path integral control is to find the sufficient con-

ditions so that at every iteration the value function improves V (i+1)(x, t) < V (i)(x, t) <

.... < V (0)(x, t). Since in the path integral control formalism we make use of the trans-

formation Ψ(x, t) = exp
(
− 1
λV (x, t)

)
it suffices to show that Ψ(i+1)(x, t) > Ψ(i)(x, t) >

.... > Ψ(0)(x, t). If the last condition is true then at every (i) iteration the stochastic

dynamical system visits to regions of state space with more and more probable states( =

states with high Ψ(x, t)). These states correspond to small value function V (x, t). To find

the condition under which the above is true, we proceed with the analysis that follows.

Since we know that f (i+1)(x) = f (i)(x) + G(x)δu(i) we substitute in (4.41) and we will

have that:
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−∂tΨ(i+1)
t = − 1

λ
qtΨ

(i+1)
t + f (i)

t
T (∇xΨ(i+1)

t ) +
1
2
tr
(

(∇xxΨ(i+1)
t )Σ

)
(4.43)

+ δu(i)TGT (∇xΨ(i+1)
t )

substitution of δu results in:

−∂tΨ(i+1)
t = − 1

λ
qtΨ

(i+1)
t + f (i)

t
T (∇xΨ(i+1)

t ) +
1
2
tr
(

(∇xxΨ(i+1)
t )Σ

)
(4.44)

+
λ

Ψ(i)
t

(∇xΨ(i)
t )TGRGT (∇xΨ(i+1)

t )

or in a more compact form:

−∂tΨ(i+1)
t = − 1

λ
qtΨ

(i+1)
t + f (i)

t
T (∇xΨ(i+1)

t ) +
1
2
tr
(

(∇xxΨ(i+1)
t )Σ

)
+ F (x, t)

where

F(x, t) =
λ

Ψ(i)(x, t)
∇xΨ(i)(x, t)T GRGT ∇xΨ(i+1)(x, t) (4.45)

correspond to a force term which is the inner product of the gradients of the value

functions at iterations (i) and (i + 1) under the metric M = λ
Ψ(i)(x,t)

GRGT . Clearly

M > 0 since the matrix product GRGT > 0 is positive definite and λ > 0,Ψ(x, t) > 0.

Comparing the two PDEs at iteration (i) and (i+ 1) and by using the differential linear

operator A (i) = − 1
λqt + f (i)

t
T∇x + 1

2 tr(Σ∇xx) we have:
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−∂tΨ(i+1)
t = A (i)Ψ(i+1)

t + F(x, t)

−∂tΨ(i)
t = A (i)Ψ(i)

t

(4.46)

under the terminal condition Ψ(i)
tN

= exp
(
− 1
λφ(xtN )

)
and Ψ(i+1)

tN
= exp

(
− 1
λφ(xtN )

)
.

In the next two subsection we study the two PDEs above, with the goal to find the

connection between Ψ(i) and Ψ(i+1).

4.6.1 Iterative path integral Control with equal boundary conditions

In this section we will simplify our analysis and we will assume that over the itera-

tions i the boundary conditions of the corresponding PDEs are the same thus Ψ(i)
tN

=

exp
(
− 1
λφ(xtN )

)
, ∀i. Our analysis is fairly intuitive. We claim that Ψ(i+1) < Ψ(i) if

F(x, t) > 0 ∀x, t. To see this result we rewrite equation (4.60) in the following form:

−∂tΨ(i+1)
t = − 1

λ
qtΨ

(i+1)
t + f (i)

t
T (∇xΨ(i+1)

t ) +
1
2
tr
(

(∇xxΨ(i+1)
t )Σ

)
+

1
λ
δu(i)T R δu(i+1)TΨ(i+1)

t (4.47)

where we used the fact that δu(i+1) = λR−1G(x)T ∇xΨ(i)(x,t)

Ψ(i+1)(x,t)
or in a more compact

form:

−∂tΨ(i+1)
t = − 1

λ
q̃tΨ

(i+1)
t + f (i)

t
T (∇xΨ(i+1)

t ) +
1
2
tr
(

(∇xxΨ(i+1)
t )Σ

)
(4.48)
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where the term q̃ = q̃(x, t, δu(i), δu(i+1)) is defined as q̃ = q(x, t)− 1
λδu

(i)T R δu(i+1)T .

To find the relation between Ψ(i)(x, t) and Ψ(i+1)(x, t) we first transform the PDE above

into a forward PDE and then we follow some intuitive arguments. More precisely we

assume the transformation Ψ(x, t) = Φ(x, T − t) = Φ(τ). Thus we will have that:

∂tΨt = −∂τΦτ (4.49)

The PDE at iteration (i) takes now the form:

∂τΦ(i)
τ = − 1

λ
q(x, T − τ)Φ(i)

τ + f (i)
τ

T (∇xΦ(i)
τ ) +

1
2
tr
(

(∇xxΦ(i)
τ )Σ

)
(4.50)

with the initial condition Φ(x, 0) = exp(− 1
λφ(tN )). At iteration (i+ 1) we will have:

∂τΦ(i+1)
τ = − 1

λ
q̃(x, T − τ)Φ(i+1)

τ + f (i)
τ

T (∇xΦ(i+1)
τ ) +

1
2
tr
(

(∇xxΦ(i+1)
τ )Σ

)
(4.51)

under the initial condition Φ(x, 0) = exp(− 1
λφ(tN )). Clearly there are 3 cases depending

on the sign of F (x, t) and therefore the sign of 1
λδu

(i)T R δu(i+1)T . More precisely we

will have that:

• If F(x, T−t) > 0⇒ δu(i)T R δu(i+1)T > 0. By comparing (4.50) with (4.51) we see

that state cost q̃ subtracted from Φ(i+1) is smaller than the state cost q subtracted

from Φ(i) and therefore Φ(i+1)(x, T−t) > Φ(i)(x, T−t) =⇒ Ψ(i+1)(x, t) > Ψ(i)(x, t).
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• If F(x, T − t) = 0 ⇒ δu(i)T R δu(i+1)T = 0 the two PDEs (4.50) and (4.51) are

identical. Therefore under the same boundary condition Φ(i+1)(x, 0) = Φ(i)(x, 0)

we will have that Φ(i+1)(x, T − t) = Φ(i)(x, T − t) =⇒ Ψ(i+1)(x, t) = Ψ(i)(x, t).

• If F(x, T−t) < 0⇒ δu(i)T R δu(i+1)T > 0. By comparing (4.50) with (4.51) we see

that state cost q̃ subtracted from Φ(i+1) is smaller than the state cost q subtracted

from Φ(i) and therefore Φ(i+1)(x, T−t) < Φ(i)(x, T−t) =⇒ Ψ(i+1)(x, t) < Ψ(i)(x, t).

4.6.2 Iterative path integral control with not equal boundary conditions

In this section we deal with the more general case in which the boundary conditions for

the PDEs in (4.46) are not necessarily equal. To study the relation between Ψ(i+1) and

Ψ(i) we define the function ∆Ψ(i+1,i) = Ψ(i+1) − Ψ(i). Since the two PDEs in (4.46) are

linear we can subtract the PDE in Ψi from the PDE in Ψi+1 and we will have:

−∂t∆Ψ(i+1,i)
t = A (i)∆Ψ(i+1,i) + F(x, t) (4.52)

Now we apply the generalized version of the Feynman-Kac lemma and we represent

the solution of the PDE above in a probabilistic manner. More precisely we will have:

∆Ψ(i+1,i)(x, t) =
〈

∆Ψ(i+1,i)(x, tN ) exp
(
− 1
λ

∫ T

t
q(xs, s)ds

)〉
+
〈∫ T

t
F(xθ, θ) exp

(
− 1
λ

∫ T

t
q(x, s)ds

)
dθ

〉

We identify 3 cases:
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• Clearly in case ∆Ψ(i+1,i)(x, tN ) = 0 then, if F(xθ, θ) > 0 ⇒ ∆Ψ(i+1,i)(x, t) >

0⇒ Ψ(i+1)(x, t) > Ψ(i)(x, t). This case was discussed in the previous subsection in

which we came to the same conclusion that F(xθ, θ) > 0 by using more intuitive

arguments.

• If ∆Ψ(i+1,i)(x, tN ) < 0 then the conditions, for Ψ(i+1)(x, t) > Ψ(i)(x, t) to be true,

are given as follows:

−
〈

∆Ψ(i+1,i)(x, tN ) exp
(
− 1
λ

∫ T

t
q(xs, s)ds

)〉
<

〈∫ T

t
F(xθ, θ) exp

(
− 1
λ

∫ T

t
q(x, s)ds

)
dθ

〉

The condition above results in :
〈∫ T

t F(xθ, θ) exp
(
− 1
λ

∫ T
t q(x, s)ds

)
dθ

〉
> 0 which

is a necessary but not sufficient condition.

• If ∆Ψ(i+1,i)(x, tN ) > 0 then the condition
〈∫ T

t F(xθ, θ) exp
(
− 1
λ

∫ T
t q(x, s)ds

)
dθ

〉
>

0 becomes the sufficient condition such that Ψ(i+1)(x, t) > Ψ(i)(x, t).

4.7 Risk sensitive path integral control

To arrive in the Path integral control formalism for the risk sensitive setting we make use

of (2.117) and (2.118) and the transformation V (x, t) = −λ log Ψ(x, t). More precisely

we will have that:
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λ

Ψt
∂tΨ = q − λ

Ψ
(∇xΨ)T f − λ2

2Ψ2
(∇xΨ)TM(x)(∇xΨ) +

ε

2γ
tr
(

Γ̃
)

(4.53)

where the term Γ̃ is expressed as:

Γ̃(x) = λ
1

Ψ2
∇xΨ ∇xΨT C̃ΣεC̃T − λ 1

Ψ
∇xxΨC̃ΣεC̃T (4.54)

The tr of Γ̃ is therefore:

Γ̃(x) = λ
1

Ψ2
tr
(
∇xΨT C̃ΣεC̃∇xΨ

)
− λ 1

Ψ
tr
(
∇xxΨC̃ΣεC̃T

)
(4.55)

Comparing the underlined terms in (4.11) and (4.55), one can recognize that these

terms will cancel under the assumption:

λM(x) =
ε

γ
C̃(x)ΣεC̃(x)T = Σ(xt) = Σt (4.56)

which results in:

λ

(
G(x)R−1G(x)T − 1

γ
C̃(x)C̃(x)T

)
=
ε

γ
C̃(x)ΣεC̃(x)T (4.57)

Again since ε
γ C̃(x)ΣεC̃(x)T is positive definite ∀ε, γ > 0, we will have that:

λ

(
G(x)R−1G(x)T − 1

γ
C̃(x)C̃(x)T

)
> 0 (4.58)
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The previous equation can be written in the form:

λG(x)R−1G(x)T =
λ+ ε

γ
C̃(x)ΣεC̃(x)T (4.59)

With this simplification, (4.11) reduces to the following form:

−∂tΨ = − 1
λ
qΨt + fT (∇xΨ) +

ε

2γ
tr
(

(∇xxΨ)C̃ΣεC̃T
)

(4.60)

with boundary condition: ΨtN = exp
(
− 1
λφtN

)
. The analysis so far results in the following

theorem.

Theorem: The exponentiated value function Ψ(x, t) = exp
(
− 1
λV (x, t)

)
of the risk

sensitive stochastic optimal control problem defined by (2.103),(2.104) is given by the

linear and second order PDE:

−∂tΨ = − 1
λ
qΨt + fT (∇xΨ) +

ε

2γ
tr
(

(∇xxΨ)C̃ΣεC̃T
)

with terminal condition ΨtN = exp
(
− 1
λφtN

)
iff the following assumption holds

λG(x)R−1G(x)T =
λ+ ε

γ
C̃(x)ΣεC̃(x)T

where the parameters ε, γ, λ > 0 and Σε = LLT .

Clearly, a quick inspection of (4.41) and (4.60) leads to the conclusion that the PDEs

are identical if C̃(x)ΣεC̃(x)T = C(x)ΣεC(x)T . Given the last assumption and (4.59)

the stochastic differential game formulated by (2.120), (2.94) and stochastic risk sensitive
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optimal control problem given by (2.103),(2.104) are equivalent. Essentially, condition

(4.59) guarantees that the equivalence between differential games and risk sensitivity in

optimal control carries over inside the path integral control formalism.

The theorem that follows is the synopsis of our analysis and it is central in this work

since it establishes the connection between risk sensitive control and differential game

theory under the path integral control formalism. More precisely:

Theorem: Consider the stochastic differential game expressed by (2.120) and (2.94)

and the risk sensitive stochastic optimal control problem defined by (2.103) and (2.104).

These optimal control problems are equivalent under the path integral formalism. Their

common optimal control solution is expressed by:

u∗(x) = λR−1GT ∇xΨ
Ψ

(4.61)

where

−∂tΨ = − 1
λ
qΨt + fT (∇xΨ) +

ε

2γ
tr
(

(∇xxΨ)C̃ΣεC̃T
)

with boundary condition ΨtN = exp
(
− 1
λφtN

)
, iff the following conditions hold

i) λG(x)R−1G(x)T = λ+ε
γ C̃(x)ΣεC̃(x)T and

ii) C̃(x)ΣεC̃(x)T = C(x)ΣεC(x)T

with the parameters γ, λ > 0 and Σε defined as Σε = LLT .
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4.8 Appendix

This section contains the derivation for the factorization of the cost function Z (τ i), into

path dependent and path independent terms, the lemmas L1 and L2 and one theorem T1.

The theorem provides the main result of the generalized path integral control formalism

expressed by (4.26), (4.27), (4.28). Its proof is based on results proven in the lemmas L1

and L2.

Derivation of the factorization of Z (τ i).

We start our derivation from the equation 4.24. Our goal is to factorize the following

quantity into path dependent and path independent terms. More precisely we have:

Z(τ i) = S(τ i) + λ logD(τ i) (4.62)

D(τ i) =
N−1∏
j=i

(
(2π)l/2|Σtj |1/2

)
.

Since Σtj = B(c)
tj

ΣwB(c)
tj

T
dt = λG(c)

tj
R−1G(c)

tj

T
dt = λHtjdt with Htj = G(c)

tj
R−1G(c)

tj

T

Z (τ i) = S (τ i) + λ log
N−1∏
j=i

(2π)n/2 |Σ(xti)|1/2

= S (τ i) + λ
N−1∑
j=i

log
(

(2π)n/2 |B(x, tj)ΣwB(x, tj)Tdt|1/2
)

= S (τ i) + λ
N−1∑
j=i

log
(

(2π)n/2 |B(x, tj)ΣwB(x, tj)Tdt|1/2
)
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= S (τ i) + λ
N−1∑
j=i

log
(

(2π)n/2 |B(x, tj)ΣwB(x, tj)Tdt|1/2
)

= S (τ i) + λ
N−1∑
j=i

log
(
|2πB(x, tj)ΣwB(x, tj)Tdt|1/2

)

= S (τ i) +
λ

2

N−1∑
j=i

tr log
(

2πB(x, tj)ΣwB(x, tj)Tdt
)

Here we will assume just for simplicity that Σw = σ2
wIn×n.

Z (τ i) = S (τ i) +
λ

2

N−1∑
j=i

tr

[
log
(

2πσ2
wIn×ndt

)
+ log

(
B(x, tj)B(x, tj)T

)]

= S (τ i) +
λ

2

N−1∑
j=i

tr

[
log
(

2πσ2
wIn×ndt

)
+ log

(
B(x, tj)B(x, tj)T

)]

= S (τ i) +
λ

2

N−1∑
j=i

[
n log

(
2πσ2

wdt
)

+ tr log
(

B(x, tj)B(x, tj)T
)]

= S (τ i) +
λNn

2
log
(
n2πσ2

wdt
)

+
λ

2

N−1∑
j=i

tr log
(

B(x, tj)B(x, tj)T
)

= S (τ i) +
λ

2

N−1∑
j=i

log |B(x, tj)B(x, tj)T |+
λ(N − i)n

2
log
(
2πσ2

wdt
)

Finally the full cost to go is:

Z (τ i) = S̃ (τ i) +
λNn

2
log
(
2πσ2

wdt
)

where
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S̃ (τ i) = S (τ i) +
λ

2

N−1∑
i=0

log |B(x, tj)|

where B(x, tj) = B(x, tj)B(x, tj)T and

S (τ i) = φtN +
N−1∑
j=i

(
qtj +

1
2

wwwwwwx(c)
tj+1
− x(c)

tj

dt
− f (c)

tj

wwwwww
2

Htj

)
dt

In cases where Σw 6= σ2
wIn×n the results are the same with the equations besides the

term B(x, tj) that is now defined as B(x, tj) = B(x, tj)ΣwB(x, tj)T .

Lemma 1

The optimal control solution to the stochastic optimal control problem ex-

pressed by (4.1),(4.2) and (4.3) is formulated as:

uti = lim
dt→0

[
−R−1G(c)

ti
T

∫
p̃ (τ i)∇x

(c)
ti

S̃(τ i)dτ i

]

where p̃ (τ i) =
exp (− 1

λ
S̃(τ i))R

exp (− 1
λ
S̃(τ i))dτ i is a path dependent probability distribution.

The term S̃(τ i) is a path function defined as S̃(τ i) = S(τ i)+ λ
2

∑N−1
j=i log |B(x, tj)|

that satisfies the following condition limdt→0

∫
exp

(
− 1
λ S̃(τ i)

)
dτ i ∈ C(1) for any

sampled trajectory starting from state xti. Moreover the term Htj is given by

Htj = G(c)
tj

R−1G(c)
tj
T while the term S(τ i) is defined according to

S(τ i) = φtN +
N−1∑
j=i

qtjdt+
1
2

N−1∑
j=i

wwwwwwx(c)
tj+1
− x(c)

tj

dt
− f (c)

tj

wwwwww
2

Htj

dt.
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Proof:

The optimal controls at the state xti is expressed by the equation uti = −R−1Gti∇xti
Vti .

Due to the exponential transformation of the value function Ψti = −λ log Vti the equation

of the optimal controls is written as:

uti = λR−1Gti

∇xti
Ψti

Ψti

.

In discrete time the optimal control is expressed as follows:

uti = lim
dt→0

(
λR−1GT

ti

∇xti
Ψ(dt)
ti

Ψ(dt)
ti

)
.

By using equation (4.24) and substituting Ψ(dt)(xti , t) we have:

uti = lim
dt→0

(
λR−1GT

ti

∇xti

∫
exp

(
− 1
λZ(τ i)

)
dτ i∫

exp
(
− 1
λZ(τ i)

)
dτ i

)
.

Substitution of the term Z(τ i) results in the equation:

uti = lim
dt→0

λR−1GT
ti

∇xti

∫
exp

(
− 1
λ S̃(τ i)− λ(N−i)l

2 log (2πdtλ)
)
dτ i∫

exp
(
− 1
λ S̃(τ i)− λ(N−i)l

2 log (2πdtλ)
)
dτ i

 .

Next we are using standard properties of the exponential function that lead to:

uti = lim
dt→0

λR−1GT
ti

∇xti

[∫
exp

(
− 1
λ S̃(τ i)

)
exp

(
−λ(N−i)l

2 log (2πdtλ)
)
dτ i

]
∫

exp
(
− 1
λ S̃(τ i)

)
exp

(
−λ(N−i)l

2 log (2πdtλ)
)
dτ i

 .
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The term exp
(
−λNl

2 log (2πdtλ)
)

does not depend on the trajectory τ i, therefore it

can be taken outside the integral as well as outside the gradient. Thus we will have that:

uti = lim
dt→0

λR−1GT
ti

exp
(
−λ(N−i)l

2 log (2πdtλ)
)
∇xti

[∫
exp

(
− 1
λ S̃(τ i)

)
dτ i

]
exp

(
−λ(N−i)l

2 log (2πdtλ)
) ∫

exp
(
− 1
λ S̃(τ i)

)
dτ i

 .

The constant term drops from the nominator and denominator and thus we can write:

uti = lim
dt→0

λR−1GT
ti

∇xti

∫
exp

(
− 1
λ S̃(τ i)

)
dτ i∫

exp
(
− 1
λ S̃(τ i)

)
dτ i

 .

Under the assumption that term exp
(
− 1
λ S̃(τ i)

)
dτ i is continuously differentiable in

xti and dt we can change order of the integral with the differentiation operations. In

general for ∇x
∫
f(x, y)dy =

∫
∇xf(x, y)dy to be true, f(x, t) should be continuous in

y and differentiable in x. Under this assumption, the optimal controls can be further

formulated as:

uti = lim
dt→0

λR−1GT
ti

∫
∇xti

exp
(
− 1
λ S̃(τ i)

)
dτ i∫

exp
(
− 1
λ S̃(τ i)

)
dτ i

 .
Application of the differentiation rule of the exponent results in:

uti = lim
dt→0

λR−1GT
ti

∫
exp

(
− 1
λ S̃(τ i)

)
∇xti

(
− 1
λ S̃(τ i)

)
dτ i∫

exp
(
− 1
λ S̃(τ i)

)
dτ i

 .
The denominator is a function of xti the current state and thus it can be pushed inside

the integral of the nominator:

154



uti = lim
dt→0

λR−1GT
ti

∫ exp
(
− 1
λ S̃(τ i)

)
∫

exp
(
− 1
λ S̃(τ i)

)
dτ i
∇xti

(
− 1
λ
S̃(τ i)

)
dτ i

 .
By defining the probability p̃ (τ i) =

exp (− 1
λ
S̃(τ i))R

exp (− 1
λ
S̃(τ i))dτ i the expression above can be

written as:

uti = lim
dt→0

[
λR−1GT

ti

∫
p̃ (τ i)∇xti

(
− 1
λ
S̃(τ i)

)
dτ i

]
.

Further simplification will result in:

uti = lim
dt→0

[
−R−1GT

ti

∫
p̃ (τ i)∇xti

S̃(τ i)dτ i

]
.

We know that the control transition matrix has the form G(xti)
T = [0T Gc(xxti )

T ].

In addition the partial derivative ∇xti
S̃(τ i) can be written as:

∇xti
S̃(τ i)T = [∇

x
(m)
ti

S̃(τ i)T ∇x
(c)
ti

S̃(τ i)T ].

By using these equations we will have that:

uti = lim
dt→0

−R−1[0T G(c)
ti
T ]
∫
p̃ (τ o)

 ∇x
(m)
ti

S̃(τ i)

∇
x

(c)
ti

S̃(τ i)

 dτ i
 .

The equation above can be written in the form:

uti = lim
dt→0

−[0T R−1G(c)
ti
T ]
∫
p̃ (τ i)

 ∇x
(m)
ti

S̃(τ i)

∇
x

(c)
ti

S̃(τ i)

 dτ i
 .
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or

uti = lim
dt→0

−[0T R−1G(c)
ti
T ]


∫
p̃ (τ i) · ∇x

(m)
ti

S̃(τ i)dτ i∫
p̃ (τ i) · ∇x

(c)
ti

S̃(τ i)dτ i


 .

Therefore we will have the result

uti = lim
dt→0

[
−R−1G(c)

ti
T

∫
p̃ (τ i)∇x

(c)
ti

S̃(τ i)dτ i

]
.

Lemma 2

Given the stochastic dynamics and the cost in(4.1),(4.2) and(4.3) the gradi-

ent of the path function S̃(τ i) in (4.25), with respect to the directly actuated

part of the state x(c)
ti

is formulated as:

∇
x

(c)
ti

S̃(τ i) =
1

2dt
αTti

(
∇

x
(c)
ti

H−1
ti

)
αti−H−1

ti

(
∇

x
(c)
ti

f (c)
ti

)
αti−

1
dt

H−1
ti
αti+

λ

2
∇

x
(c)
ti

log |Bti |

where Hti = G(c)
ti

R−1G(c)
ti

T
and αtj =

(
x(c)
ti+1
− x(c)

ti
− f (c)

ti
dt
)

.

Proof:

We are calculating the term ∇
x

(c)
to

S̃(τ o) . More precisely we have shown that

S̃(τ i) = φtN +
N−1∑
j=i

qtjdt+
1
2

N−1∑
j=i

‖
x(c)
tj+1
− x(c)

tj

dt
− f (c)

tj
‖2Htj

dt+
λ

2

N−1∑
j=i

log |Btj |.
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To limit the length of our derivation we introduce the notation γtj = αTtj h−1
tj
αtj and

αtj =
(
x(c)
tj+1
− x(c)

tj
− f (c)

tj
dt
)

and it is easy to show that ‖
x

(c)
tj+1
−x

(c)
tj

dt − f (c)
tj
‖2Htj

dt = 1
dtγtj

and therefore we will have:

S̃(τ i) = φtN +
1

2dt

N−1∑
j=i

γtj +
tN∑
to

Qtjdt+
λ

2

N−1∑
j=i

log |Btj |.

In the analysis that follows we provide the derivative of the 1th, 2th and 4th term of

the cost function. We assume that the cost of the state during the time horizon Qti = 0.

In cases that this is not true then the derivative ∇
x

(c)
ti

∑tN
ti
Qtidt needs to be found as well.

By calculating the term ∇
x

(c)
to

S̃(τ o) we can find the local controls u(τ i). It is important

to mention that the derivative of the path cost S(τ i) is taken only with respect to the

current state xto .

The first term is:

∇
x

(c)
ti

(φtN ) = 0. (4.63)

Derivative of the 2th Term ∇
x

(c)
ti

[
1

2dt

∑N−1
i=1 γti

]
of the cost S(τ i).

The second term can be found as follows:

∇
x

(c)
ti

 1
2dt

N−1∑
j=i

γtj

 .
The operator ∇

x
(c)
to

is linear and it can massaged inside the sum:

1
2dt

N−1∑
j=i

∇
x

(c)
tj

(
γtj
)
.
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Terms that do not depend on x(c)
ti

drop and thus we will have:

1
2dt
∇

x
(c)
ti

γti .

Substitution of the parameter γti = αTti H−1
ti

αti will result in:

1
2dt
∇

x
(c)
ti

[
αTti H−1

ti
αti
]
.

By making the substitution βti = H−1
ti

αti and applying the rule ∇
(
u(x)Tv(x)

)
=

∇ (u(x)) v(x) +∇ (v(x)) u(x) we will have that:

1
2dt

[
∇

x
(c)
ti

αti βti +∇
x

(c)
ti

βti αti

]
. (4.64)

Next we find the derivative of αto :

∇
x

(c)
ti

αti = ∇
x

(c)
ti

[
x(c)
ti+1
− x(c)

ti
− fc(xti)dt

]
.

and the result is

∇
x

(c)
ti

αti = −Il×l −∇x
(c)
ti

f (c)
ti
dt.

We substitute back to (4.64) and we will have:

1
2dt

[
−
(
Il×l +∇

x
(c)
ti

f (c)
ti
dt

)
βti +∇

x
(c)
ti

βti αti

]
.
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− 1
2dt

(
Il×l +∇

x
(c)
ti

f (c)
ti
dt

)
βti +

1
2dt

∇
x

(c)
ti

βti αti .

After some algebra the result of ∇
x

(c)
ti

(
1

2dt

∑N−1
i=1 γti

)
is expressed as:

− 1
2dt

βti −
1
2
∇

x
(c)
ti

f (c)
ti

βti +
1

2dt
∇

x
(c)
ti

βti αti .

We continue with further analysis of each one of the terms in the expression above.

More precisely we will have:

First Subterm: − 1
2dt βti

(
− 1

2dt
βti

)
= −

(
1

2dt
H−1
ti

αti

)
= −1

2
H−1
ti

αti

= −1
2

H−1
ti

(
(x(c)
ti+1
− x(c)

ti
)

1
dt
− f (c)

ti

)
.

Second Subterm: −1
2∇x

(c)
ti

f (c)
ti

βti

(
1
2
∇

x
(c)
ti

f (c)
ti

βti

)
= −1

2
∇

x
(c)
ti

fc(xti) βti = −1
2
∇

x
(c)
ti

f (c)
ti

(
H−1
ti

αti
)

= −1
2
∇

x
(c)
ti

fc(xti) H−1
ti

αti

Third Subterm: 1
2dt ∇x

(c)
ti

βti αti

(
1

2dt
∇

x
(c)
ti

βti αti

)
= ∇

x
(c)
ti

βti

(
1

2dt
αti

)
= ∇

x
(c)
ti

βti
1
2

(
(x(c)
ti+1
− x(c)

ti
)

1
dt
− f (c)

ti

)
.
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We substitute βti = H−1
ti

αti and write the matrix H−1
ti

in row form:

= ∇
x

(c)
ti

(
H−1
ti

αti
) 1

2dt
αti =

= ∇
x

(c)
ti





H(1)−T

ti

H(2)−T

ti

.

.

.

H(l)−T

ti



αti



1
2dt
αti = ∇

x
(c)
ti



H(1)−T

ti
αti

H(2)−T

ti
αti

.

.

.

H(l)−T

ti
αti



1
2dt
αti .

We can push the operator ∇
x

(c)
ti

insight the matrix and apply it to each element.

=



∇T
x

(c)
ti

(
H(1)−T

ti
αti

)
∇T

x
(c)
ti

(
H(2)−T

ti
αti

)
.

.

.

∇T
x

(c)
ti

(
H(l)−T

ti
αti

)



1
2dt
αti .

We again use the rule ∇
(
u(x)Tv(x)

)
= ∇ (u(x)) v(x) + ∇ (v(x)) u(x) and thus we

will have:
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=



(
∇

x
(c)
ti

H(1)−T

ti
αti +∇

x
(c)
ti

αti H(1)−T

ti

)T
(
∇

x
(c)
ti

H(2)−T

ti
αti +∇

x
(c)
ti

αti H(2)−T

ti

)T
.

.

.(
∇

x
(c)
ti

H(l)−T

ti
αti +∇

x
(c)
ti

αti H(l)−T

ti

)T



1
2dt
αti .

We can split the matrix above into two terms and then we pull out the terms αti and

∇
x

(c)
ti

αti respectively :

=



αTti



∇
x

(c)
ti

H(1)−T

ti

∇
x

(c)
ti

H(2)−T

ti

.

.

.

∇
x

(c)
ti

H(l)−T

ti



+



H(1)−T

ti

H(2)−T

ti

.

.

.

H(l)−T

ti



∇
x

(c)
ti

αTti



1
2dt
αti

=
(
αTti ∇x

(c)
ti

H−1
ti

+ H−1
ti

(
∇

x
(c)
ti

αTti

))
1

2dt
αti .

=
1

2dt

(
αTti ∇x

(c)
ti

H−1
ti
αti + H−1

ti

(
∇

x
(c)
ti

αTti

)
αti .

)
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Since
(
∇

x
(c)
ti

αTti

)
= −Il×l −∇x

(c)
ti

f (c)
ti
dt. the final result is expressed as follows

1
2dt
∇

x
(c)
ti

βti αti =
1

2dt

[
αTti

(
∇

x
(c)
ti

H−1
ti

)
αti −H−1

ti

(
∇

x
(c)
ti

f (c)
ti

)
dtαti −H−1

ti
αti

]

After we have calculated the 3 sub-terms, the 2th term of the of the derivative of path

cost S(τ i) can be expressed in the following form:

∇
x

(c)
ti

 1
2dt

N−1∑
j=i

γtj

 =
1

2dt
αTti

(
∇

x
(c)
ti

H−1
ti

)
αti −H−1

ti

(
∇

x
(c)
ti

f (c)
ti

)
αti −

1
dt

H−1
ti
αti

(4.65)

Next we will find the derivative of the term∇
x

(c)
ti

(
λ
2

∑N−1
j=i log |Btj |

)
.

Derivative of the Fourth Term ∇
x

(c)
ti

(
λ
2

∑N−1
j=i log |Btj |

)
of the cost S(τ i).

The analysis for the 4th term is given below:

∇
x

(c)
ti

λ
2

N−1∑
j=i

log |Btj |

 =
λ

2
∇

x
(c)
ti

log |Bti |. (4.66)

After having calculated all the derivatives of S̃(τ i) the final result under (4.63),(4.65)

and (4.66) takes the form:

∇
x

(c)
ti

S̃(τ i) =
1

2dt
αTti

(
∇

x
(c)
ti

H−1
ti

)
αti−H−1

ti

(
∇

x
(c)
ti

f (c)
ti

)
αti−

1
dt

H−1
ti
αti+

λ

2
∇

x
(c)
ti

log |Bti |.
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Theorem

The optimal control solution to the stochastic optimal control problem ex-

pressed by (4.1),(4.2),(4.3) is formulated by the equation that follows:

utidt =
∫
p̃ (τ i) uL (τ i) dτ i,

where p̃ (τ i) =
exp (− 1

λ
S̃(τ i))R

exp (− 1
λ
S̃(τ i))dτ i is a path depended probability distribution and

the term u (τ i) defined as uL (τ i) = R−1G(c)
ti
T
(
G(c)
ti

R−1G(c)
ti
T
)−1

G(c)
ti
dwti, are the

local controls of each sampled trajectory starting from state xti. The term is

defined as Hti = G(c)
ti

R−1G(c)
ti

T
.

To prove the theorem we make use of the lemma L2 and we substitute ∇
x

(c)
ti

S̃(τ i) in

the main result of lemma L1. More precisely from lemma L1 we have that:

utidt = −R−1G(c)
ti
Tdt

∫
p̃ (τ i)

(
∇

x
(c)
ti

S̃(τ i)
)
dτ i.

utidt = −R−1G(c)
ti
Tdt

∫
p̃ (τ i)

(
∇

x
(c)
ti

S̃(τ i)
)
dτ i (4.67)

= R−1G(c)
ti
T

〈
∇

x
(c)
ti

S̃(τ i)dt

〉
p̃(τ i)

Now we will find the term

〈
∇

x
(c)
ti

S̃(τ i)dt

〉
p̃(τ i)

. More precisely we will have that:
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〈
∇

x
(c)
ti

S̃(τ i)dt

〉
p̃(τ i)

=

〈
1
2
αTti

(
∇

x
(c)
ti

H−1
ti

)
αti

〉
p̃(τ i)

−

〈
H−1
ti

(
∇

x
(c)
ti

f (c)
ti

)
αtidt

〉
p̃(τ i)

−

〈
H−1
ti
αti

〉
p̃(τ i)

+

〈
λ

2
∇

x
(c)
ti

log |Bti |dt

〉
p̃(τ i)

The first term of the expectation above is calculated as follows:

〈
1

2dt
αTti

(
∇

x
(c)
ti

H−1
ti

)
αti

〉
p̃(τ i)

=

〈
1
2

(
∇

x
(c)
ti

H−1
ti

)
αtiα

T
ti

〉
p̃(τ i)

=
1

2dt

〈
tr

((
∇

x
(c)
ti

H−1
ti

)
αtiα

T
ti

)〉
p̃(τ i)

=
1

2dt
tr

[(
∇

x
(c)
ti

H−1
ti

) 〈
αtiα

T
ti

〉
p̃(τ i)

]

By taking into account the fact that

〈
αtiα

T
ti

〉
p̃(τ i)

= B(c)
ti

ΣwB(c)
ti

T
dt

〈
1

2dt
αTti

(
∇

x
(c)
ti

H−1
ti

)
αti

〉
p̃(τ i)

=
1
2
tr

((
∇

x
(c)
ti

H−1
ti

)
B(c)
ti

ΣwB(c)
ti

T
)

=
dt

2
tr

((
∇

x
(c)
ti

H−1
ti

)
B(c)
ti

ΣwB(c)
ti

T
)
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By using the fact that the noise and the controls are related via Σtj = B(c)
tj

ΣwB(c)
tj

T
dt =

λG(c)
tj

R−1G(c)
tj

T
dt = λHtjdt with Htj = G(c)

tj
R−1G(c)

tj

T
we will have:

〈
1
2
αTti

(
∇

x
(c)
ti

H−1
ti

)
αti

〉
p̃(τ i)

=
1
2
tr

((
∇

x
(c)
ti

H−1
ti

)
B(c)
ti

ΣwB(c)
ti

T
)

=
λ

2
tr

((
∇

x
(c)
ti

B(xti)
−1

)
B(xti)

)
=
λ

2
∇

x
(c)
ti

log |B(xti)|−1

= −λ
2
∇

x
(c)
ti

log |B(xti)|

The second term

〈
H−1
ti

(
∇

x
(c)
ti

f (c)
ti

)
αtidt

〉
p̃(τ i)

= 0 since dtαti = dtG(c)
ti
dw → 0.

We the equation above we will have that:

〈
∇

x
(c)
ti

S̃(τ i)dt

〉
p̃(τ i)

= −

〈
H−1
ti

(
∇

x
(c)
ti

f (c)
ti

)
αtidt

〉
p̃(τ i)

−

〈
H−1
ti
αti

〉
p̃(τ i)

= −

〈
H−1
ti
αti

〉
p̃(τ i)

= −

〈
H−1
ti

G(c)
ti
dwti

〉
p̃(τ i)

Substituting back to the optimal control we will have that:

utidt =
∫
p̃ (τ i) R−1G(c)

ti
TH−1

ti
G(c)
ti
dwtidτ i, (4.68)

or in a more compact form:

utidt =
∫
p̃ (τ i) u(dt)

L (τ i) dτ i, (4.69)
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where the local controls u(dt)
L (τ i) are given as follows:

u(dt)
L (τ i) = R−1G(c)

ti
TH−1

ti
G(c)
ti
dwti

The local control above can be written in the form:

uL = R−1G(c)
ti
T
(
G(c)
ti

R−1G(c)
ti
T
)−1

Gcdwti .

Therefore the optimal control can now be expressed in the form:

u (τ i) dt = R−1G(c)
ti
T
(
G(c)
ti

R−1G(c)
ti
T
)−1

K∑
k=1

p̃(k) (τ i) G(c)
ti
dw(k)

ti
(4.70)
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Chapter 5

Policy Gradient Methods

In this chapter we are discussing the Policy Gradient (PG) methods which are classified

as part of model free reinforcement learning. Our goal is to provide a quick introduction

to PGs and review the main assumptions and mathematical tricks and their derivations.

Our discussion starts in section 5.1 with the presentation of one of the most simple

and widely used PG methods, the so called finite difference algorithm. We continue in

section 5.2 with the derivation of the Episodic Reinforce PG method. Our derivation

consist of the computation of the PG, the computation of the optimal baseline necessary

for reducing the variance of the estimate gradient. In section 5.3 the policy gradient

theorem is presented with the derivation of the corresponding gradient and the time

optimal baseline. In section 5.4 the concept of the Natural Gradient is presented and

its application to reinforcement learning problems is discussed. The resulting algorithm

Natural Actor Critic is derived. In the last section we conclude with observations and

comments regarding the performance of PG methods.
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5.1 Finite difference

In the Finite Difference(FD) method the goal is to optimize a cost function w.r.t. a

parameter vector θ ∈ <p×1. In reinforcement learning scenarios this parameter vector is

used to parametrized the policy. The optimization problem is stated as follows:

min
θ
J(θ)

As in all policy gradient algorithms, in FD methods the gradient is estimated ∇θJ

and the parameter estimates are updated according to the rule θk+1 = θk + ∇θJ . To

find the gradient, a number of perturbations of the parameters δθ are performed and the

Taylor series expansions of the cost function is computed. More precisely we will have:

Ji(θ) = J(θ) + δθi) = J(θ) +∇θJ
T δθi + O(δθ2

i,j) ∀ i = 1, 2, ...,M

By putting all these equations above for i = 1, 2, ...,M together we will have that:


∆J1(θ)

∆JM (θ)

 =


δθT1

δθTM

∇θJ

The equation can be solved with respect to ∇θJ . More precisely we will have:

∇θJ =
(

∆ΘT∆Θ
)−1

∆ΘT∆J
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where ∆ΘT = (δθ1, ..., δθM ) ∈ <N×M and ∆JT = (∆J1(θ), ...,∆J1(θ)) ∈ <1×M .

The estimation of the gradient vector ∇θJ requires that the matrix ∆ΘT∆Θ is full rank

and therefore invertible.

5.2 Episodic reinforce

(Williams 1992) introduced the episodic REINFORCE algorithm, which is derived from

taking the derivative of a cost with respect to the policy parameters. This algorithm has

rather slow convergence due to a very noisy estimate of the policy gradient. It is also

very sensitive to a reward baseline parameter bk (see below). Recent work derived the

optimal baseline for REINFORCE (cf. (Peters & Schaal 2008c)), which improved the

performance significantly.

We derive of episodic REINFORCE algorithm by mathematically expressing the cost

function under optimization as follows:

J (x,u) =
∫
p(τ )R(τ )dτ (5.1)

where p(τ ) is the probability of the trajectory τ = (x0,u0...xN−1,uN−1,xN ) of states

and controls with x ∈ <n×1 and u ∈ <p×1 and R(τ ) =
∑N

t=1 r(xt,ut) is the cost accu-

mulated over the horizon T = Ndt . Due to the Markov property and the dependence of

the policy to the state and parameter x,θ we will have the following expression for the

probability of the trajectory p(τ ):
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p(τ ) = p (x0)
N−1∏
i=1

p (xi+1|xi,ui) p (ui|xi;θ) (5.2)

The probability of the trajectory is expressed as the product of the transition prob-

abilities in p (xi+1|xi,ui) and the parametrized policy p (ui|xi;θ) where θ ∈ <q×1 is

the parameter under learning. We would like to find the gradient of J (x,u) w.r.t the

parameter θ. More precisely we will have that:

∇θJ (x,u) = ∇θ

(∫
p(τ )R(τ )dτ

)

=
∫
∇θp(τ ) R(τ )dτ

=
∫
p(τ ) ∇θ log p(τ ) R(τ )dτ

=

〈
∇θ log p(τ ) R(τ )

〉
p̃(τ i)

where the
〈〉

p(τ )

is the expectation under the probability metric p (τ ). The next

step is to calculate the term ∇θ log p(τ ).

∇θ log p(τ ) = ∇θ

(
log p(x0) +

N−1∑
i=1

log p (xi+1|xi,ui) +
N−1∑
i=1

log p (ui|xi;θ)

)

= ∇θ

(
N−1∑
i=1

log p (ui|xi;θ)

)

=
N−1∑
i=1

∇θ log p (ui|xi;θ)
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Therefore the policy gradient is expressed as:

∇θJ (x,u) =

〈
R(τ )

N−1∑
i=1

∇θ log p (ui|xi;θ)

〉
p̃(τ i)

(5.3)

The equation above provide us with an estimate of the true gradient ∇θJ (x,u). In

order to reduce the variance of this estimate we will incorporate the baseline bk such that

the following expression is minimized:

bk = argmin
〈(

(R(τ )− bk)
N−1∑
i=1

∂θk log p (ui|xi;θ)− µk
)2
〉

where µk =

〈
R(τ )

∑N−1
i=1 ∂θk log p (ui|xi;θ)

〉
. More precisely we will have that:

∂bk

(〈
(R(τ )− bk)2

(
N−1∑
i=1

∂θk log p (ui|xi;θ)

)2

+ µ2
k − 2µk (R(τ )− bk)

N−1∑
i=1

∂θk log p (ui|xi;θ)
〉)

=

∂bk

(〈
(R(τ )− bk)2

(
N−1∑
i=1

∂θk log p (ui|xi;θ)

)2

+ µ2
k − 2µkR(τ )

N−1∑
i=1

∂θk log p (ui|xi;θ)
〉)

=

∂bk

(〈
(R(τ )− bk)2

(
N−1∑
i=1

∂θk log p (ui|xi;θ)

)2〉)
= 0

where we have used the fact that:

∫
p(τ )dτ = 1⇒ ∇θ

∫
p(τ )dτ = 0⇒

〈
∇θ log p(τ )

〉
p(τ )

= 0
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The optimal baseline is defined as:

bk =

〈(
R(τ )

∑N−1
i=1 ∂θk log p (ui|xi;θ)

)2
〉
p(τ )〈∑N−1

i=1 ∂θk log p (ui|xi;θ)

〉
p(τ )

(5.4)

The final expression for the gradient is:

∇θJ (x,u) =

〈
diag (R(τ )− b)

N−1∑
i=1

∇θ log p (ui|xi;θ)

〉
p(τ )

(5.5)

where diag (R(τ )− b) is defined as:

diag (R(τ )− b) =


R(τ )− b1 ... 0

0 0

0 ... R(τ )− bn

 (5.6)

Without loss of generality, the policy could be parametrized as follows:

u(x,θ)dt = Φ(x)θdt+ B(x)dw (5.7)

Under this parameterization we will have that:

p (ui|xi;θ) =
1

(2π)m/2|B(x)B(x)T |
exp

(
− 1

2
(u−Φθ)T

(
B(x)B(x)T

)−1
(u−Φθ)

)

By taking the logarithm of the probability above we will have that:
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log p (ui|xi;θ) = − log(2π)m/2|BBT | −
(

1
2

(u−Φ(x)θ)T
(
BBT

)−1
(u−Φ(x)θ)

)
= − log(2π)m/2|B(x)B(x)T | − 1

2
θTΦT

(
BBT

)−1
Φθ + θTΦT

(
BBT

)−1
u

− 1
2
uT
(
BBT

)−1
u

Thus ∇θ log p (ui|xi;θ) = −ΦT
(
BBT

)−1 Φθ + ΦTBBTu = ΦT
(
BBT

)−1 Bεi and the

policy gradient will take the form:

∇θJ (x,u) =

〈
diag (R(τ )− b)

N−1∑
i=1

ΦT
(
BBT

)−1
Bεi

〉
p(τ )

(5.8)

The result above can take different formulations depending on the parameterization

of the policy. Therefore, if B = Φ then we will have that:

∇θJ (x,u) =

〈
diag (R(τ )− b)

N−1∑
i=1

BT
(
BBT

)−1
Bεi

〉
p(τ )

(5.9)

Before we move to the derivation of the policy gradient theorem it is important to

realize that the expectations above are taken with respect to the state space trajectories,

These trajectories can be generated by the application of the current policy (policy at

every iteration) on the real physical system. In addition one may ask in which cases the

expectations above result in zero gradient vector and therefore no further update of . The

expectations compute the correlation of the perturbations of the policy parameters with

the observed changes in the cost function. Therefore the gradient estimate will approach

zero either when no change in the cost function is observed or there is no correlation
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between the cost function and the parameter perturbations. In both cases, cost function

tuning is of critical importance.

5.3 GPOMDP and policy gradient theorem

In their GPOMDP algorithm, (Baxter & Bartlett 2001) introduced several improvements

over REINFORCE that made the gradient estimates more efficient. GPOMDP can also be

derived from the policy gradient theorem (Sutton, McAllester, Singh & Mansour 2000,

Peters & Schaal 2008c), and an optimal reward baseline can be added (cf. (Peters &

Schaal 2008c))

Under the observation that past rewards do not affect future controls, the reinforce

policy gradient can be reformulated as follows:

∇θJ (x,u) =

〈
N−1∑
i=1

(
diag (Ri(τ )− bi)

(
∇θ log p (ui|xi;θ)

))〉
p(τ )

(5.10)

where Ri(τ ) = 1
N−i

∑N
j=i r(xj ,uj). Given the parameterization of the policy the

results above takes the form:

∇θJ (x,u) =

〈
N−1∑
i=1

(
diag (Ri(τ )− bi)

(
ΦT

(
BBT

)−1
Bεi

))〉
p(τ )

(5.11)

The term bk,i is the optimal baseline that minimizes the variance of the estimated

gradient.
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diag (Ri(τ )− bi) =


R(τ )− b1,i ... 0

0 0

0 ... R(τ )− bn,i

 (5.12)

The variance of the estimated gradient is expressed as follows:

〈(
N−1∑
i=1

(
∂θk log p (ui|xi;θ) (Ri(τ )− bk,i)

)
− µk

)2〉
p(τ )

=

=

〈(N−1∑
i=1

(
∂θk log p (ui|xi;θ) (Ri(τ )− bk,i)

)2〉
p(τ )

−

〈
2µk

N−1∑
i=1

(
∂θk log p (ui|xi;θ) (Ri(τ )− bk,i)

)
+ µ2

k

〉

We take the derivative of the expectation above with respect to bk and set it to zero.

More precisely we will have that:

∂bk,m

〈(
N−1∑
i=1

(
∂θk log p (ui|xi;θ) (Ri(τ )− bk,i)

)
− µk

)2〉
p(τ )

= 0

∂bk,m

〈(N−1∑
i=1

(
∂θk log p (ui|xi;θ) (Ri(τ )− bk,i)

))2
〉
p(τ )

− ∂bk,m

〈
2µk

N−1∑
i=1

(
∂θk log p (ui|xi;θ) (Ri(τ )− bk,i)

)〉
p(τ )

= 0

Since

〈
∇θ log p(τ )

〉
p(τ )

= 0 the expression above takes the form:
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〈
bk,m ∂θk log p (um|xm;θ)

〉
p(τ )

=

〈
Rm(τ )

(
∂θk log p (um|xm;θ)

)2
〉
p(τ )

Thus, the optimal baseline is defined as:

bk,m =

〈
Rm(τ )

(
∂θk log p (um|xm;θ)

)2
〉
p(τ )〈

∂θk log p (um|xm;θ)

〉
p(τ )

(5.13)

5.4 Episodic natural actor critic

Vanilla policy gradients which follow the gradient of the expected cost function J(x,u)

very often stuck into local minimum. As, it has been demonstrated in supervised learning

(Amari 1999) natural gradients are less sensitive in getting trapped to local minima.

Methods based on natural gradients do not follow the steepest direction in the parameter

space but the steepest direction with respect to Fisher information metric.

One of the most efficient policy gradient algorithm was introduced in (Peters & Schaal

2008b), called the Episodic Natural Actor Critic. In essence, the method uses the Fisher

Information Matrix to project the REINFORCE gradient onto a more effective update

direction, which is motivated by the theory of natural gradients by (Amari 1999). The

gradient for the eNAC algorithm takes the form of:

∇̃J = F(θ)−1 ∇θJ (5.14)
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where F(θ) is the Fisher information matrix. To derive the natural actor critic we

start from the policy gradient theorem and we will have that:

∇θJ (x,u) =

〈
N−1∑
i=1

(
∇θ log p (ui|xi;θ) diag (Ri(τ )− bk,i)

)〉
p(τ )

The equation above can be also written in the form:

∇θJ (x,u) =
∫
p(x

′ |x,u)
∫
p (u|x;θ)

(
∇θ log p (u|x;θ) (R(τ )− bk)

)
dudx

At this point the term R(τ ) − bk is approximated with log p (u|x;θ)T w. Thus sub-

stitution of R(τ )− bk = log p (u|x;θ)T w results in:

∇θJ (x,u) =
∫
p(x

′ |x,u)
∫
p (u|x;θ)

(
∇θ log p (u|x;θ)∇θ log p (u|x;θ)T w

)
dudx

=
∫
p(x

′ |x,u)F(x,θ)dxw

= F(θ)w

where F(x,θ) =
∫
p (u|x;θ)

(
∇θ log p (u|x;θ)∇θ log p (u|x;θ)T

)
du. By substituting

the result above to the parameter update law we will have that:

θk+1 = θk + F(θ)−1 ∇θJ = θk + w (5.15)
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As we can see the update law is further simplified to just only updating the parameters

θ with w. Thus it is important to compute w. To do so, we consider the Bellman equation

in terms of an advantage function A(x,u) and state value function V (x). More precisely

we will have:

Q(x,u) = A(x,u) + V (x) = r(x,u) +
∫
p(x′|x,u)V (x′)dx

By evaluating the equation above on the trajectory
(
x(j)

0 ,u(j)
0 ...x(j)

N−1,u
(j)
N−1,x

(j)
N

)
we

will have that:

N−1∑
i=1

A(x(j)
i ,u(j)

i ) + V (x(j)
0 ) =

N−1∑
i=1

r(x(j)
i ,u(j)

i ) + V (x(j)
N )

N−1∑
i=1

∇θp
(
u(j)
i |x

(j)
i ;θ

)T
w + V (x(j)

0 )− V (x(j)
N ) =

N−1∑
i=1

r(x(j)
i ,u(j)

i )

N−1∑
i=1

∇θp
(
u(j)
i |x

(j)
i ;θ

)T
w + ∆V =

N−1∑
i=1

r(x(j)
i ,u(j)

i )

By combining the equations above for j = 1, 2, ...,M we will have that:


∇θp

(
u(1)
i |x

(1)
i ;θ

)T
, 1

... ...

∇θp
(
u(M)
i |x(M)

i ;θ
)T

, 1


 w

∆V

 =


∑N−1

i=1 r(x(1)
i ,u(1)

i )

...∑N−1
i=1 r(x(M)

i ,u(M)
i )



We regress the equation above and get the final result for w and obtain:
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w =
(
XTX

)−1
XTY (5.16)

where the matrix X and the vector Y are defined as follows:

X =


∇θp

(
u(1)
i |x

(1)
i ;θ

)T
, 1

... ...

∇θp
(
u(M)
i |x(M)

i ;θ
)T

, 1

 and Y =


∑N−1

i=1 r(x(1)
i ,u(1)

i )

...∑N−1
i=1 r(x(M)

i ,u(M)
i )



To find the parameter vector w ∈ <n×1, there must be M > n number of trajectories

rollouts such that the matrix XTX is full rank and therefore invertible . With the episodic

Natural Actor Critic we will conclude our presentation of PG methods. In the next section

we discuss the application and comparison of PGs on a LQR optimal control problem.

5.5 Discussion

In this chapter we have reviewed the PG methods with the derivation of estimated corre-

sponding gradients. The work on PG methods for reinforcement learning was an impor-

tant advancement since it offered an alternative approach to optimal control problems

in which either no model is available, or if there is a model, it is a bad approximation.

Besides the their advantages, PG methods are in general, not easy to tune since they

are very sensitive to exploration noise as well as the cost function design. In the next

chapter we compare the PG methods with iterative path integral optimal control in via

point tasks.
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Chapter 6

Applications to Robotic Control

In this chapter we present the application of iterative path integral stochastic optimal

control for the applications of planning and gain scheduling. We start our presentation

in section 6.1 with the discussion on Dynamic Movement Primitives (DMPs) which cor-

responds to nonlinear point or limit cycle attractors with adjustable land scape. The

DMPs play an essential role in the application of path integral control to learning robotic

tasks. We discuss this role in section 6.2 where the ways in which DMPs are used for

representing desired trajectories and for gain scheduling are presented. When the itera-

tive path integral control framework is applied to DMPs the resulting algorithm is the so

called the Policy Improvement with Path Integrals (PI2). In section 6.3 we provide all

the main equations of (PI2) and we discuss all the small adjustments required to robotic

tasks with the use of the DMPs.

In section 6.4 PI2 is applied for learning optimal state space trajectories. The eval-

uations take place on simulated planar manipulators of different DOF and the little dog

robot for the task or passing through a target and jumping over a gap respectively. In

section 6.5 PI2 is applied for optimal planning and gain scheduling. The robotic tasks
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include via point task with manipulators of various DOFs as well as the task of pushing a

door to open with the simulated CBi humanoid robot. In the last section 6.8 we discuss

the performance of PI2 in the aforementioned tasl and we conclude.

6.1 Learnable nonlinear attractor systems

6.1.1 Nonlinear point attractors with adjustable land-scape

The nonlinear point attractor consists of two sets of differential equations, the canonical

and transformation system which are coupled through a nonlinearity (Ijspeert, Nakan-

ishi, Pastor, Hoffmann & Schaal submitted),(Ijspeert, Nakanishi & Schaal 2003). The

canonical system is formulated as 1
τ ẋt = −αxt. That is a first - order linear dynamical

system for which, starting from some arbitrarily chosen initial state x0 , e.g., x0 = 1, the

state x converges monotonically to zero. x can be conceived of as a phase variable, where

x = 1 would indicate the start of the time evolution, and x close to zero means that the

goal g (see below) has essentially been achieved. The transformation system consist of

the following two differential equations:

τ ż =αzβz

((
g +

f

αzβz

)
− y
)
− αzz (6.1)

τ ẏ =z

Essentially, these 3 differential equations code a learnable point attractor for a move-

ment from yt0 to the goal g, where θ determines the shape of the attractor. yt, ẏt denote
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the position and velocity of the trajectory, while zt, xt are internal states. αz, βz, τ are

time constants. The nonlinear coupling or forcing term f is defined as:

f(x) =
∑N

i=1K (xt, ci) θixt∑N
i=1K (xt, ci)

(g − y0) = ΦP (x)Tθ (6.2)

The basis functions K (xt, ci) are defined as:

K (xt, ci) = wi = exp
(
−0.5hi(xt − ci)2

)
(6.3)

with bandwidth hi and center ci of the Gaussian kernels – for more details see (Ijspeert

et al. 2003). The full dynamics have the form of dx = F (x)dt+ G(x)udt where the state

x is specified as x = (x, y, z) while the controls are specified as u = θ = (θ1, ..., θp)
T .The

representation above is advantageous as it guarantees attractor properties towards the

goal while remaining linear in the parameters θ of the function approximator. By varying

the parameter θ the shape of the trajectory changes while the goal state g and initial

state yt0 remain fixed. These properties facilitate learning (Peters & Schaal 2008c).

6.1.2 Nonlinear limit cycle attractors with adjustable land-scape

The canonical system for the case of limit cycle attractors consist the differential equation

τ φ̇ = 1 where the term φ ∈ [0, 2π] correspond to the phase angle of the oscillator in polar

coordinates. The amplitude of the oscillation is assumed to be r. This oscillator produces

a stable limit cycle when projected into Cartesian coordinated with v1 = r cos(φ) and

v2 = r sin(φ). In fact, it corresponds to form of the (Hopf-like) oscillator equations
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τ v̇1 = −µ
√
v2

1 + v2
2 − r√

v2
1 + v2

2

v1 − v2 (6.4)

τ v̇2 = −µ
√
v2

1 + v2
2 − r√

v2
1 + v2

2

v2 + v1 (6.5)

where µ is a positive time constant. The system above evolve to the limit cycle

v1 = r cos(t/τ + c) and v2 = r sin(t/τ + c) with c a constant, given any initial conditions

except [v1, v2] = [0, 0] which is an unstable fixed point. Therefore the canonical system

provides the amplitude signal (r) and a phase signal (φ) to the forcing term:

f(φ, r) =
∑N

i=1K (φ, ci) θi∑N
i=1K (φ, ci)

r = ΦR(φ)Tθ (6.6)

where the basis function K (φ, ci) are defined as K (φ, ci) = exp (hi (cos(φ− ci)− 1)).

The forcing term is incorporated into the transformation system which is expressed by

the equations (6.1). The full dynamics of the rhythmic movement primitives have the

form of dx = F (x)dt+G(x)udt where the state x is specified as x = (φ, v1, v2, z, y) while

the controls are specified as u = θ = (θ1, ..., θp)
T . The term g for the case of limit cycle

attractors is interpreted as anchor point (or set point) for the oscillatory trajectory, which

can be changed to accommodate any desired baseline of the oscillation The complexity

of attractors is restricted only by the abilities of the function approximator used to gen-

erate the forcing term, which essentially allows for almost arbitrarily complex (smooth)

attractors with modern function approximators
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6.2 Robotic optimal control and planning with nonlinear

attractors

In this section we show how the Path integral optimal control formalism in combination

with the point and limit cycle attractors can be used for optimal planning (Theodorou,

Buchli & Schaal 2010) and control (Buchli, Theodorou, Stulp & Schaal 2010) of robotic

systems in high dimensions. As an example, consider a robotic system with rigid body

dynamics (RBD) equations (Sciavicco & Siciliano 2000) using a parameterized policy:

q̈ = M(q)−1 (−C(q, q̇)− v(q)) + M(q)−1u (6.7)

u = KP (qd − q) + KD(q̇d − q̇) (6.8)

where M is the RBD inertia matrix, C are Coriolis and centripetal forces, and v de-

notes gravity forces. The state of the robot is described by the joint angles q and

joint velocities q̇. The proportional-Derivative (PD) controller with positive definite

gain matrices KP and KD have the form KP = diag
(
K

(1)
p ,K

(2)
p , ...,K

(N)
p

)
and KD =

diag
(
K

(1)
d ,K

(2)
d , ...,K

(N)
d

)
where K(i)

p ,K
(i)
d are the proportional and derivative gains for

every DOF i. These gains converts a desired trajectory qd, q̇d into a motor command u.

The gains are parameterized as follows:

dK(i)
p = αK

(
Φ(i)
P
T
(
θ(i)dt+ dω(i)

)
−K(i)

p dt
)

(6.9)

This equation models the time course of the position gains which are are represented

by a basis function Φ(i)
P
Tθ(i) linear with respect to the learning parameter θ(i), and these
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parameter can be learned with the (PI2). We will assume that the time constant αK

is so large, that for all practical purposes we can assume that K(i)
P = Φ(i)

p
T
(
θ(i) + ε(i)

t

)
holds at all time where ε(i)

t = dω(i)

dt . In our experiments KD gains are specified as

K
(i)
d = ξ

√
K

(i)
p where ξ is user determined. Alternatively, for the case of optimal planing

we could create another form of control structure in which we add for the RBD system

(6.7) the following equation:

q̈d = G(qd, q̇d)(θ + εt) (6.10)

where G(qd, q̇d) is represented with a point or limit cycle attractor. The control or

learning parameter for this case is the parameter θ in (6.10).

6.3 Policy improvements with path integrals: The (PI2)

algorithm.

After having introduced the nonlinear stable attractors with learnable landscapes which

from now on we will call them as Dynamic Movement Primitives(DMPs), in this section

we discuss the application of iterative path integral control to DMPs. The resulting

algorithm is the so called Policy Improvement with Path Integrals PI2. As can be easily

recognized, the DMP equations are of the form of our control system (4.2), with only one

controlled equation and a one dimensional actuated state. This case has been treated in

Section 4.4. The motor commands are replaced with the parameters θ – the issue of time
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dependent vs. constant parameters will be addressed below. More precisely, the DMP

equations can be written as:


ẋt

żt

ẏt

 =


−αxt

yt

αz(βz(g − yt)− zt)

+


01×p

01×p

g(c)
t
T

 (θt + εt) (6.11)

The state of the DMP is partitioned into the controlled part x(c)
t = yt and uncontrolled

part x(m)
t = (xt zt)

T . The control transition matrix depends on the state, however, it

depends only on one of the state variables of the uncontrolled part of the state, i.e., xt.

The path cost for the stochastic dynamics of the DMPs is given by:

S̃(τ i) = φtN +
N−1∑
j=i

qtjdt+
1
2

N−1∑
j=i

wwwwwwx(c)
tj+1
− x(c)

tj

dt
− f (c)

tj

wwwwww
2

H−1
tj

dt+
λ

2

N−1∑
j=i

log |Htj |

∝ φtN +
N−1∑
j=i

qtj +
1
2

N−1∑
j=i

wwwg(c)T
tj

(θtj + εtj )
www2

H−1
tj

= φtN +
N−1∑
j=i

qtj +
1
2

N−1∑
j=i

1
2

(θtj + εtj )
Tg(c)

tj
H−1
tj

g(c)T
tj

(θtj + εtj )

= φtN +
N−1∑
j=i

qtj +
1
2

N−1∑
j=i

1
2

(θtj + εtj )
T

g(c)
tj

g(c)T
tj

g(c)T
t R−1 g(c)

t

(θtj + εtj )

= φtN +
N−1∑
j=i

qtj +
1
2

N−1∑
j=i

1
2

(θtj + εtj )
TMT

tjRMtj (θtj + εtj ) (6.12)

with Mtj =
R−1gtj gTtj
gTtj

R−1gtj
. Ht becomes a scalar given by Ht = g(c)T

t R−1 g(c)
t . Interest-

ingly, the term λ
2

∑N−1
j=i log |Htj | for the case of DMPs depends only on xt, which is a
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deterministic variable and therefore can be ignored since it is the same for all sampled

paths. We also absorbed, without loss of generality, the time step dt in cost terms. Con-

sequently, the fundamental result of the path integral stochastic optimal problem for the

case of DMPs is expressed as:

uti =
∫
P (τ i) u (τ i) dτ

(c)
i (6.13)

where the probability P (τ i) and local controls u (τ i) are defined as

P (τ i) =
e−

1
λ
S̃(τ i)∫

e−
1
λ
S̃(τ i)dτ i

, u(τ i) =
R−1g(c)

ti
g(c)T
ti

g(c)T
ti

R−1g(c)
ti

εti (6.14)

and the path cost given as

S̃(τ i) = φtN +
N−1∑
j=i

qtj +
1
2

N−1∑
j=i

εTtjM
T
tjRMtjεtj (6.15)

Note that θ = 0 in these equations, i.e., the parameters are initialized to zero. These

equations correspond to the case where the stochastic optimal control problem is solved

with one evaluation of the optimal controls (6.13) using dense sampling of the whole state

space under the “passive dynamics” (i.e., θ = 0), which requires a significant amount of

exploration noise. Such an approach was pursued in the original work by (Kappen 2007,

Broek et al. 2008), where a potentially large number of sample trajectories was needed

to achieve good results. Extending this sampling approach to high dimensional spaces,

however, is daunting, as with very high probablity, we would sample primarily rather
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useless trajectories. Thus, biasing sampling towards good initial conditions seems to be

mandatory for high dimensional applications.

Thus, we consider only local sampling and an iterative update procedure. Given a

current guess of θ, we generate sample roll-outs using stochastic parameters θ + εt at

every time step. To see how the generalized path integral formulation is modified for the

case of iterative updating, we start with the equations of the update of the parameter

vector θ, which can be written as:

θ
(new)
ti

=
∫
P (τ i)

R−1gtigti
T (θ + εti)

gtiTR−1gti
dτ i (6.16)

=
∫
P (τ i)

R−1gtigti
T εti

gtiTR−1gti
dτ i +

R−1gtigti
Tθ

gtiTR−1gti
(6.17)

= δθti +
R−1gtigti

T

tr (R−1gtigtiT )
θ (6.18)

= δθti + Mtiθ (6.19)

The correction parameter verctor δθti is defined as δθti =
∫
P (τ i)

R−1gtigti
Tεti

gti
TR−1gti

dτ i. It

is important to note that θ(new)
ti

is now time dependent, i.e., for every time step ti, a

different optimal parameter vector is computed. In order to return to one single time

independent parameter vector θ(new), the vectors θ(new)
ti

need to be averaged over time

ti.

We start with a first tentative suggestion of averaging over time, and then explain

why it is inappropriate, and what the correct way of time averaging has to look like. The

tentative and most intuitive time average is:

θ(new) =
1
N

N−1∑
i=0

θ
(new)
ti

=
1
N

N−1∑
i=0

δθti +
1
N

N−1∑
i=0

Mtiθ
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Thus, we would update θ based on two terms. The first term is the average of δθti ,

which is reasonable as it reflects the knowledge we gained from the exploration noise.

However, there would be a second update term due to the average over projected mean

parameters θ from every time step – it should be noted that Mti is a projection matrix

onto the range space of gti under the metric R−1, such that a multiplication with Mti

can only shrink the norm of θ. From the viewpoint of having optimal parameters for

every time step, this update component is reasonable as it trivially eliminates the part

of the parameter vector that lies in the null space of gti and which contributes to the

command cost of a trajectory in a useless way. From the view point of a parameter vector

that is constant and time independent and that is updated iteratively, this second update

is undesirable, as the multiplication of the parameter vector θ with Mti in (6.19) and

the averaging operation over the time horizon reduces the L2 norm of the parameters at

every iteration, potentially in an uncontrolled way1. What we rather want is to achieve

convergence when the average of δθti becomes zero, and we do not want to continue

updating due to the second term.

The problem is avoided by eliminating the projection matrix in the second term of

averaging, such that it become:

θ(new) =
1
N

N−1∑
i=0

δθti +
1
N

N−1∑
i=0

θ =
1
N

N−1∑
i=0

δθti + θ

The meaning of this reduced update is simply that we keep a component in θ that is

irrelevant and contributes to our trajectory cost in a useless way. However, this irrelevant
1To be precise, θ would be projected and continue shrinking until it lies in the intersection of all null

spaces of the gti basis function – this null space can easily be of measure zero.
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component will not prevent us from reaching the optimal effective solution, i.e., the

solution that lies in the range space of gti . Given this modified update, it is, however, also

necessary to derive a compatible cost function. As mentioned before, in the unmodified

scenario, the last term of (6.12) is:

1
2

N−1∑
j=i

(θ + εtj )
TMT

tjRMtj (θ + εtj ) (6.20)

To avoid a projection of θ, we modify this cost term to be:

1
2

N−1∑
j=i

(θ + Mtjεtj )
TR(θ + Mtjεtj ) (6.21)

With this modified cost term, the path integral formalism results in the desired θ(new)
ti

without the Mti projection of θ.

The main equations of the iterative version of the generalized path integral formula-

tion, called Policy Improvement with Path Integrals (PI2), can be summarized as:

P (τ i) =
e−

1
λ
S(τ i)∫

e−
1
λ
S(τ i)dτ i

(6.22)

S(τ i) = φtN +
N−1∑
j=i

qtjdt+
1
2

N−1∑
j=i

(θ + Mtjεtj )
TR(θ + Mtjεtj )dt (6.23)

δθti =
∫
P (τ i) Mtiεtidτ i (6.24)

[δθ]j =
∑N−1

i=0 (N − i) wj,ti [δθti ]j∑N−1
i=0 wj,ti(N − i)

(6.25)

θ(new) = θ(old) + δθ (6.26)

190



Essentially, (6.22) computes a discrete probability at time ti of each trajectory roll-out

with the help of the cost (6.23). For every time step of the trajectory, a parameter

update is computed in (6.24) based on a probability weighted average over trajectories.

The parameter updates at every time step are finally averaged in (6.25). Note that

we chose a weighted average by giving every parameter update a weight2 according to

the time steps left in the trajectory and the activation of the kernel in (6.3). This

average can be interpreted as using a function approximator with only a constant (offset)

parameter vector to approximate the time dependent parameters. Giving early points in

the trajectory a higher weight is useful since their parameters affect a large time horizon

and thus higher trajectory costs. Other function approximation (or averaging) schemes

could be used to arrive at a final parameter update – we preferred this simple approach

as it gave very good learning results. The final parameter update is θ(new) = θ(old) + δθ.

The parameter λ regulates the sensitivity of the exponentiated cost and can auto-

matically be optimized for every time step i to maximally discriminate between the

experienced trajectories. More precisely, a constant term can be subtracted from (6.23)

as long as all S(τ i) remain positive – this constant term 3 cancels in (6.22). Thus, for a

given number of roll-outs, we compute the exponential term in (6.22) as

exp
(
− 1
λ
S(τ i)

)
= exp

(
−h S(τ i)−minS(τ i)

maxS(τ i)−minS(τ i)

)
(6.27)

2The use of the kernel weights in the basis functions (6.3) for the purpose of time averaging has shown
better performance with respect to other weighting approaches, across all of our experiments. Therefore
this is the weighting that we suggest. Users may develop other weighting schemes as more suitable to
their needs.

3In fact, the term inside the exponent results by adding hminS(τ i)
maxS(τ i)−minS(τ i)

, which cancels in (6.22),

to the term − hS(τ i)
maxS(τ i)−minS(τ i)

which is equal to − 1
λ
S(τ i).
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with h set to a constant, which we chose to be h = 10 in all our evaluations. The max

and min operators are over all sample roll-outs. This procedure eliminates λ and leaves

the variance of the exploration noise ε as the only open algorithmic parameter for PI2.

It should be noted that the equations for PI2 have no numerical pitfalls: no matrix

inversions and no learning rates 4, rendering PI2 to be very easy to use in practice.

The pseudocode for the final PI2 algorithm for a one dimensional control system with

function approximation is given in Table 6.1. A tutorial Matlab example of applying PI2

can be found at http://www-clmc.usc.edu/software .

6.4 Evaluations of (PI2) for optimal planning

We evaluated PI2 in several synthetic examples in comparison with REINFORCE, GPOMDP,

eNAC, and, when possible, PoWER. Except for PoWER, all algorithms are suitable for

optimizing immediate reward functions of the kind rt = qt + utRut. As mentioned

above, PoWER requires that the immediate reward behaves like an improper probability.

This property is incompatible with rt = qt + utRut and requires some special nonlinear

transformations, which usually change the nature of the optimization problem, such that

PoWER optimizes a different cost function. Thus, only one of the examples below has a

compatible a cost function for all algorithms, including PoWER. In all examples below,

exploration noise and, when applicable, learning rates, were tuned for every individual al-

gorithms to achieve the best possible numerically stable performance. Exploration noise

was only added to the maximally activated basis function in a motor primitive, and
4R is a user design parameter and usually chosen to be diagonal and invertible.
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Table 6.1: Pseudocode of the PI2 algorithm for a 1D Parameterized Policy (Note that
the discrete time step dt was absobed as a constant multiplier in the cost terms).

• Given:

– An immediate cost function rt = qt + θTt Rθt
– A terminal cost term φtN (cf. 4.25)

– A stochastic parameterized policy at = gTt (θ + εt)

– The basis function gti from the system dynamics (cf. 4.2)

– The variance Σε of the mean-zero noise εt
– The initial parameter vector θ

• Repeat until convergence of the trajectory cost R:

– Create K roll-outs of the system from the same start state x0 using stochstic
parameters θ + εt at every time step

– For k = 1...K, compute:

∗ P (τ i,k) = e
− 1
λ
S(τ i,k)PK

k=1[e
− 1
λ
S(τ i,k)

]

∗ S(τ i,k) = φtN ,k+
∑N−1

j=i qtj ,k+ 1
2

∑N−1
j=i+1(θ+Mtj ,kεtj ,k)

TR(θ+Mtj ,kεtj ,k)

∗ Mtj ,k =
R−1gtj ,k gTtj ,k

gTtj ,k
R−1gtj ,k

– For i = 1...(N − 1), compute:

∗ δθti =
∑K

k=1 [P (τ i,k) Mti,k εti,k]

– Compute [δθ]j =
PN−1
i=0 (N−i) wj,ti [δθti ]jPN−1

i=0 wj,ti (N−i)

– Update θ ← θ + δθ

– Create one noiseless roll-out to check the trajectory cost R = φtN +
∑N−1

i=0 rti .
In case the noise cannot be turned off, i.e., a stochastic system, multiple roll-
outs need be averaged.
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the noise was kept constant for the entire time that this basis function had the highest

activation – empirically, this trick helped to improve the learning speed of all algorithms.

6.4.1 Learning Optimal Performance of a 1 DOF Reaching Task

The first evaluation considers learning optimal parameters for a 1 DOF DMP (cf. Equa-

tion 6.11). The immediate cost and terminal cost are, respectively:

rt = 0.5f2
t + 5000 θTθ φtN = 10000(ẏ2

tN
+ 10(g − ytN )2) (6.28)

with yt0 = 0 and g = 1 – we use radians as units motivated by our interest in robotics

application, but we could also avoid units entirely. The interpretation of this cost is that

we would like to reach the goal g with high accuracy while minimizing the acceleration of

the movement and while keeping the parameter vector short. Each algorithm was run for

15 trials to compute a parameter update, and a total of 1000 updates were performed.

Note that 15 trials per update were chosen as the DMP had 10 basis functions, and the

eNAC requires at least 11 trials to perform a numerically stable update due to its matrix

inversion. The motor primitives were initialized to approximate a 5-th order polynomial

as point-to-point movement (cf. Figure 6.1a,b), called a minimum-jerk trajectory in

the motor control literature; the movement duration was 0.5 seconds, which is similar

to normal human reaching movements. Gaussian noise of N(0, 0.1) was added to the

initial parameters of the movement primitives in order to have different initial conditions

for every run of the algorithms. The results are given in Figure 6.1. Figure 6.1a,b

show the initial (before learning) trajectory generated by the DMP together with the
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Figure 6.1: Comparison of reinforcement learning of an optimized movement with mo-
tor primitives. a) Position trajectories of the initial trajectory (before learning) and the
results of all algorithms after learning – the different algorithms are essentially indistu-
ighishable. b) The same as a), just using the velocity trajectories. c) Average learning
curves for the different algorithms with 1 std error bars from averaging 10 runs for each
of the algorithms. d) Learning curves for the different algorithms when only two roll-outs
are used per update (note that the eNAC cannot work in this case and is omitted).

learning results of the four different algorithms after learning – essentially, all algorithms

achieve the same result such that all trajectories lie on top of each other. In Figure 6.1c,

however, it can be seen that PI2 outperforms the gradient algorithms by an order of

magnitude. Figure 6.1d illustrates learning curves for the same task as in Figure 6.1c,

just that parameter updates are computed already after two roll-outs – the eNAC was

excluded from this evaluation as it would be too heuristic to stablize its ill-conditioned

matrix inversion that results from such few roll-outs. PI2 continues to converge much

faster than the other algorithms even in this special scenario. However, there are some
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noticable fluctuation after convergence. This noise around the convergence baseline is

caused by using only two noisy roll-outs to continue updating the parameters, which

causes continuous parameter fluctuations around the optimal parameters. Annealing the

exploration noise, or just adding the optimal trajectory from the previous parameter

update as one of the roll-outs for the next parameter update can alleviate this issue – we

do not illustrate such little “tricks” in this paper as they really only affect fine tuning of

the algorithm.

6.4.2 Learning optimal performance of a 1 DOF via-point task

The second evaluation was identical to the first evaluation, just that the cost function

now forced the movement to pass through an intermediate via-point at t = 300ms. This

evaluation is an abstract approximation of hitting a target, e.g., as in playing tennis, and

requires a significant change in how the movement is performed relative to the initial

trajectory (Figure 6.2a). The cost function was

r300ms = 100000000(G− yt300ms)2 φtN = 0 (6.29)

with G = 0.25. Only this single reward was given. For this cost function, the PoWER

algorithm can be applied, too, with cost function r̃300ms = exp(−1/λ r300ms) and r̃ti =

0 otherwise. This transformed cost function has the same optimum as r300ms. The

resulting learning curves are given in Figure 6.2 and resemble the previous evaluation:

PI2 outperforms the gradient algorithms by roughly an order of magnitude, while all

the gradient algorithms have almost identical learning curves. As was expected from the

196



0

5000000

10000000

15000000

20000000

25000000

1 10 10
0

10
00

10
00

0
15

00
0

Co
st

Number of Roll-Outs

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

Po
sit

io
n 

[ra
d]

 

Time [s]

Initial 

PI^2

REINF.

PG

NAC

PoWER

a) b)

G

Figure 6.2: Comparison of reinforcement learning of an optimized movement with motor
primitives for passing through an intermediate target G. a) Position trajectories of the
initial trajectory (before learning) and the results of all algorithms after learning. b)
Average learning curves for the different algorithms with 1 std error bars from averaging
10 runs for each of the algorithms.

similarity of the update equations, PoWER and PI2 have in this special case the same

performance and are hardly distinguisable in Figure 6.2. Figure 6.2a demonstrates that

all algorithms pass through the desired target G, but that there are remaining differences

between the algorithms in how they approach the target G – these difference have a small

numerical effect in the final cost (where PI2 and PoWER have the lowest cost), but these

difference are hardly task relevant.

6.4.3 Learning optimal performance of a multi-DOF via-point task

A third evaluation examined the scalability of our algorithms to a high-dimensional and

highly redundant learning problem. Again, the learning task was to pass through an

intermediate target G, just that a d = 2, 10, or 50 dimensional motor primitive was

employed. We assume that the multi-DOF systems model planar robot arms, where

d links of equal length l = 1/d are connected in an open chain with revolute joints.

Essentially, these robots look like a multi-segment snake in a plane, where the tail of the
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snake is fixed at the origin of the 2D coordinate system, and the head of the snake can be

moved in the 2D plane by changing the joint angles between all the links. Figure 6.3b,d,f

illustrate the movement over time of these robots: the initial position of the robots is

when all joint angles are zero and the robot arm completely coincides with the x-axis

of the coordinate frame. The goal states of the motor primitives command each DOF

to move to a joint angle, such that the entire robot configuration afterwards looks like

a semi-circle where the most distal link of the robot (the end-effector) touches the y-

axis. The higher priority task, however, is to move the end-effector through a via-point

G = (0.5, 0.5). To formalize this task as a reinforcement learning problem, we denote the

joint angles of the robots as ξi, with i = 1, 2, ..., d, such that the first line of (6.11) reads

now as ξ̈i,t = fi,t + gTi,t(θi + εi,t) – this small change of notation is to avoid a clash of

variables with the (x, y) task space of the robot. The end-effector position is computed

as:

xt =
1
d

d∑
i=1

cos(
i∑

j=1

ξj,t), yt =
1
d

d∑
i=1

sin(
i∑

j=1

ξj,t) (6.30)

The immediate reward function for this problem is defined as

rt =

∑d
i=1(d+ 1− i)

(
0.1f2

i,t + 0.5 θTi θi
)

∑d
i=1(d+ 1− i)

(6.31)

∆r300ms = 100000000
(
(0.5− xt300ms)2 + (0.5− yt300ms)2

)
(6.32)

φtN = 0 (6.33)

where ∆r300ms is added to rt at time t = 300ms, i.e., we would like to pass through the

via-point at this time. The individual DOFs of the motor primitive were initialized as in
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the 1 DOF examples above. The cost term in (6.31) penalizes each DOF for using high

accelerations and large parameter vectors, which is a critical component to achieve a good

resolution of redundancy in the arm. Equation (6.31) also has a weighting term d+ 1− i

that penalizes DOFs proximal to the orgin more than those that are distal to the origin

— intuitively, applied to human arm movements, this would mean that wrist movements

are cheaper than shoulder movements, which is motivated by the fact that the wrist has

much lower mass and inertia and is thus energetically more efficient to move.

The results of this experiment are summarized in Figure 6.3. The learning curves

in the left column demonstrate again that PI2 has an order of magnitude faster learn-

ing performance than the other algorithms, irrespective of the dimensionality. PI2 also

converges to the lowest cost in all examples:

Algorithm 2-DOFs 10-DOFs 50-DOFs

PI2 98000± 5000 15700± 1300 2800± 150

REINFORCE 125000± 2000 22000± 700 19500± 24000

PG 128000± 2000 28000± 23000 27000± 40000

NAC 113000± 10000 48000± 8000 22000± 2000

Figure 6.3 also illustrates the path taken by the end-effector before and after learning.

All algorithms manage to pass through the via-point G appropriately, although the path

particularly before reaching the via-point can be quite different across the algorithms.

Given that PI2 reached the lowest cost with low variance in all examples, it appears to

have found the best solution. We also added a “stroboscopic” sketch of the robot arm for

the PI2 solution, which proceeds from the very right to the left as a function of time. It
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Figure 6.3: Comparison of learning multi-DOF movements (2,10, and 50 DOFs) with
planar robot arms passing through a via-point G. a,c,e) illustrate the learning curves for
different RL algorithms, while b,d,f) illustrate the end-effector movement after learning
for all algorithms. Additionally, b,d,f) also show the initial end-effector movement, before
learning to pass through G, and a “stroboscopic” visualization of the arm movement for
the final result of PI2 (the movements proceed in time starting at the very right and
ending by (almost) touching the y axis).
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should be emphasized that there were absolutely no parameter tuning needed to achieve

the PI2 results, while all gradient algorithms required readjusting of learning rates for

every example to achieve best performance.

6.4.4 Application to robot learning

Figure 6.4 illustrates our application to a robot learning problem. The robot dog is to

jump across as gap. The jump should make forward progress as much as possible, as it is

a maneuver in a legged locomotion competition which scores the speed of the robot – note

that we only used a physical simulator of the robot for this experiment, as the actual robot

was not available. The robot has three DOFs per leg, and thus a total of d = 12 DOFs.

Each DOF was represented as a DMP with 50 basis functions. An initial seed behavior

(Figure 6.5-top) was taught by learning from demonstration, which allowed the robot

barely to reach the other side of the gap without falling into the gap – the demonstration

was generated from a manual adjustment of spline nodes in a spline-based trajectory plan

for each leg.

PI2 learning used primarily the forward progress as a reward, and slightly penalized

the squared acceleration of each DOF, and the length of the parameter vector. Addi-

tionally, a penalty was incurred if the yaw or the roll exceeded a threshold value – these

penalties encouraged the robot to jump straight forward and not to the side, and not to

fall over. The exact cost function is:

rt = rroll + ryaw +
d∑
i=1

(
a1f

2
i,t + 0.5a2 θ

T
i θ
)

(a1 = 1.e− 6, a2 = 1.e− 8) (6.34)
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Figure 6.4: Reinforcement learning of optimizing to jump over a gap with a robot dog.
The improvement in cost corresponds to about 15 cm improvement in jump distance,
which changed the robot’s behavior from an initial barely successful jump to jump that
completely traversed the gap with entire body. This learned behavior allowed the robot
to traverse a gap at much higher speed in a competition on learning locomotion.
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rroll =


100 ∗ (|rollt| − 0.3)2, if (|rollt| > 0.3)

0, otherwise

(6.35)

ryaw =


100 ∗ (|yawt| − 0.1)2, if (|yawt| > 0.1)

0, otherwise

(6.36)

φtN = 50000(goal − xnose)2 (6.37)

where roll, yaw are the roll and yaw angles of the robot’s body, and xnose is the position

of the front tip (the “nose”) of the robot in the forward direction, which is the direc-

tion towards the goal. The multipliers for each reward component were tuned to have

a balanced influence of all terms. Ten learning trials were performed initially for the

first parameter update. The best 5 trials were kept, and five additional new trials were

performed for the second and all subsequent updates. Essentially, this method performs

importance sampling, as the rewards for the 5 trials in memory were re-computed with

the latest parameter vectors. A total of 100 trials was performed per run, and ten runs

were collected for computing mean and standard deviations of learning curves.

(i.e., 5 updates), the performance of the robot was converged and significantly im-

proved, such that after the jump, almost the entire body was lying on the other side of

the gap. Figure 6.4 captures the temporal performance in a sequence of snapshots of the

robot. It should be noted that applying PI2 was algorithmically very simple, and manual

tuning only focused on generated a good cost function, which is a different research topic

beyond the scope of this paper.
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Figure 6.5: Sequence of images from the simulated robot dog jumping over a 14cm gap.
Top: before learning. Bottom: After learning. While the two sequences look quite similar
at the first glance, it is apparent that in the 4th frame, the robot’s body is significantly
heigher in the air, such that after landing, the body of the dog made about 15cm more
forward progress as before. In particular, the entire robot’s body comes to rest on the
other side of the gap, which allows for an easy transition to walking.

6.5 Evaluations of (PI2) on planning and gain scheduling

In the next sections we evaluate the PI2 on the problems of optimal planning and gain

scheduling. In a typical planning scenario the goal is to find or to learn trajectories which

minimize some performance criterion. As we have seen in the previous sections at every

iteration of the learning algorithm, new trajectories are generated based on which the

new planing policy is computed. The new planning policy is used at the next iteration

to generated new trajectories which are again used to compute the improved planning

policy. The process continues until the convergence criterion is meet.

In this learning process main assumption is the existence of a control policy that is

adequate to steer the system such that it follows the trajectories generated at every it-

eration of the learning procedure. In this section we go one step further and apply PI2

not only to find the optimal desired trajectories but also to learn control policies that

minimize a performance criterion. This performance criterion is a function of kinematic
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variables of the underlying dynamics and the strength of control gains that are incorpo-

rated in the control policy. Essentially, the goal for the robot is to be able to perform the

task with as lower gains as possible.

6.6 Way-point experiments

We start our evaluations with way -point experiments in two simulated robots, the 3DOF

Phantom robot and the 6DOF Kuka robot. For both robots, the immediate reward at

time step t is given as:

r(t) = wgain
∑
i

Ki
P,t + wacc||ẍ||+ wsubgoalC(t) (6.38)

Here,
∑

iK
i
P,t is the sum over the proportional gains over all joints. The reasoning

behind penalizing the gains is that low gains lead to several desirable properties of the

system such as compliant behavior (safety and/or robustness (Buchli, Kalakrishnan, Mis-

try, Pastor & Schaal 2009)), lowered energy consumption, and less wear and tear. The

term ||ẍ|| is magnitude of the accelerations of the end-effector. This quantity is penalized

to avoid high-jerk end-effector motion. This penalty is low in comparison to the gain

penalty.

The robot’s primary task is to pass through an intermediate goal, either in joint

space or end-effector space – such scenarios occur in tasks like playing tennis or table

tennis. The component of the cost function C(t) that represents this primary task will

be described individually for each robot in the next sections. Gains and accelerations are

penalized at each time step, but C(t) only leads to a cost at specific time steps along
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the trajectory. Finally for both robots, the cost weights are wint = 2000, wgain = 1/N ,

wacc = 1/N . Dividing the weights by the number of time steps N is convenient, as it

makes the weights independent of the duration of a movement.

6.6.1 Phantom robot, passing through waypoint in joint space

The Phantom Premium 1.5 Robot is a 3 DOF, two link arm. It has two rotational degrees

of freedom at the base and one in the arm. We use a physically realistic simulation of

this robot generated in SL (Schaal 2009), as depicted in Figure 6.6.

Figure 6.6: 3-DOF Phantom simulation in SL.

The task for this robot is intentionally simple and aimed at demonstrating the ability

to tune task relevant gains in joint space with straightforward and easy to interpret data.

The duration of the movement is 2.0s, which corresponds to 1000 time steps at 500Hz

servo rate. The intermediate goals for this robot are set as follows:
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C(t) = δ(t− 0.4) | qSR(t) + 0.2 |+ δ(t− 0.8) | qSFE(t)− 0.4 |+ δ(t− 1.2) | qEB(t)− 1.5 |

This penalizes joint SR for not having an angle qSR = −0.2 at time t = 0.4s. Joints

SFE and EB are also required to go through (different) intermediate angles at times 0.8s

and 1.2s respectively.

The initial parameters θi for the reference trajectory are determined by training the

DMPs with a minimum jerk trajectory (Zefran, Kumar & Croke 1998) in joint space from

qt=0.0 = [0.0 0.3 2.0]T to qt=2.0 = [−0.6 0.8 1.4]T . The function approximator for the

proportional gains of the 3 joints is initialized to return a constant gain of 6.0Nm/rad.

The initial trajectories are depicted as red, dashed plots in Figure 6.8, where the angles

and gains of the three joints are plotted against time. Since the task of PI2 is to optimize

both trajectories and gains with respect to the cost function, this leads to a 6-D RL

problem. The robot executes 100 parameter updates, with 4 noisy exploration trials per

update. After each update, we perform one noise-less test trial for evaluation purposes.

Figure 6.7 depicts the learning curve for the phantom robot (left), which is the overall

cost of the noise-less test trial after each parameter update. The joint space trajectory

and gain scheduling after 100 updates are depicted as blue, solid lines in Figure 6.8.

From these graphs, we draw the following conclusions:

• PI2 has adapted the initial minimum jerk trajectories such that they fulfill the task

and pass through the desired joint angles at the specified times. These intermediate

goals are represented by the circles on the graphs.
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Figure 6.7: Learning curves for the phantom robot.

• Because the magnitude of gains is penalized in general, they are low when the task

allows it. After t = 1.6s, all gains drop to the minimum value5, because accurate

tracking is no longer required to fulfill the goal. Once the task is completed, the

robot becomes maximally compliant, as one would wish it to be.

• When the robot is required to pass through the intermediate targets, it needs better

tracking, and therefore higher gains. Therefore, the peaks of the gains correspond

roughly to the times where the joint is required to pass through an intermediate

point.

• Due to nonlinear effects, e.g., Coriolis and centripedal forces, the gain schedule

shows more complex temporal behavior as one would initially assume from specify-

ing three different joint space targets at three different times.
5We bounded the gains between pre-specified maximum and minimum values. Too high gains would

generate oscillations and can lead to instabilities of the robot, and too low gains lead to poor tracking
such that the robot frequently runs into the joint limits.
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Figure 6.8: Initial (red, dashed) and final (blue, solid) joint trajectories and gain schedul-
ing for each of the three joints of the phantom robot. Yellow circles indicate intermediate
subgoals.

In summary, we achieved the objective of variable impedance control: the robot is

compliant when possible, but has a higher impedance when the task demands it.

6.6.2 Kuka robot, passing through a waypoint in task space

Next we show a similar task on a 6 DOF anthropomorphic arm, a Kuka Light-Weight Arm.

This example illustrates that our approach scales well to higher-dimensional systems, and

also that appropriate gains schedules are learned when intermediate targets are chosen

in end-effector space instead of joint space.

The duration of the movement is 1.0s, which corresponds to 500 time steps. This

time, the intermediate goal is for the end-effector x to pass through [ 0.7 0.3 0.1]T at time

t = 0.5s:
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Figure 6.9: Learning curves for the Kuka robot.

C(t) = δ(t− 0.5)(x− [ 0.7 0.3 0.1]T ) (6.39)

The six joint trajectories are again initialized as minimum jerk trajectories. As before,

the resulting initial trajectory is plotted as red, dashed line in Figure 6.10. The initial

gains are set to a constant [60, 60, 60, 60, 25, 6]T . Given these initial conditions, finding

the parameter vectors for DMPs and gains that minimizes the cost function leads to a

12-D RL problem. We again perform 100 parameter updates, with 4 exploration trials

per update.
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The learning curve for this problem is depicted in Figure 6.9. The trajectory of the

end-effector after 30 and 100 updates is depicted in Figure 6.10. The intermediate goal

at t = 0.5 is visualized by circles. Finally, Figure 6.11 shows the gain schedules after 30

and 100 updates for the 6 joints of the Kuka robot.

Figure 6.10: Initial (red, dotted), intermediate (green, dashed), and final (blue, solid)
end-effector trajectories of the Kuka robot.

From these graphs, we draw the following conclusions:

• PI2 has adapted joint trajectories such that the end-effector passes through the

intermediate subgoal at the right time. It learns to do so after only 30 updates

(Figure 6.7).

• After 100 updates the peaks of most gains occur just before the end-effector passes

through the intermediate goal (Figure 6.11), and in many cases decrease to the

minimum gain directly afterwards. As with the phantom robot we observe high

impedance when the task requires accuracy, and more compliance when the task is

relatively unconstrained.
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Figure 6.11: Initial (red, dotted), intermediate (green, dashed), and final (blue, solid)
joint gain schedules for each of the six joints of the Kuka robot.

• The second joint (GA2) has the most work to perform, as it must support the

weight of all the more distal links. Its gains are by far the highest, especially at the

intermediate goal, as any error in this DOF will lead to a large end-effector error.

• The learning has two phases. In the first phase (plotted as dashed, green), the

robot is learning to make the end-effector pass through the intermediate goal. At
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this point, the basic shape of the gain scheduling has been determined. In the second

phase, PI2 fine tunes the gains, and lowers them as much as the task permits.

6.7 Manipulation task

6.7.1 Task 2: Pushing open a door with the CBi humanoid

In this task, the simulated CBi humanoid robot (Cheng, Hyon, Morimoto, Ude, Hale,

Colvin, Scroggin & Jacobsen 2007) is required to open a door. This robot is accurately

simulated with the SL software (Schaal 2009). For this task, we not only learn the gain

schedules, but also improve the planned joint trajectories withPI2simultaneously.

Regarding the initial trajectory in this task, we fix the base of the robot, and consider

only the 7 degrees of freedom in the left arm. The initial trajectory before learning is

a minimum jerk trajectory in joint space. In the initial state, the upper arm is kept

parallel to the body, and the lower arm is pointing forward. The target state is depicted

in Figure 6.12. With this task, we demonstrate that our approach can not only be applied

to imitation of observed behavior, but also to manually specify trajectories, which are

fine-tuned along with the gain schedules.

The gains of the 7 joints are initialized to 1/10th of their default values. This leads

to extremely compliant behavior, whereby the robot is not able to exert enough force

to overcome the static friction of the door, and thus cannot move it. The minimum

gain for all joints was set to 5. Optimizing both joint trajectories and gains leads to a

14-dimensional learning problem.
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The terminal cost is the degree to which the door was opened, i.e. φtN = 104 ·(ψmax−

ψN ), where the maximum door opening angle ψmax is 0.3rad (it is out of reach otherwise).

The immediate cost for the gains is again qt = 1
N

∑3
i=1K

i
P . The sum of the gains of all

joints is divided by the number of time steps of the trajectory N , to be independent of

trajectory duration. The cost for the gains expresses our preference for low gain control.

The variance of the exploration noise for the gains is again 10−4γn, and for the joint

trajectories 10γn, both with decay parameter λ = 0.99 and n the number of updates. The

relatively high exploration noise for the joint trajectories does not express less exploration

per se, but is rather due to numerical differences in using the function approximator to

model the gains directly rather than as the non-linear component of a DMP. The number

of executed and reused ‘elite’ roll-outs is both 5, so the number of roll-outs on which the

update is performed is K = 10.

Figure 6.12 (right) depicts the total cost of the noise-less test trial after each update.

The costs for the gains are plotted separately. When all of the costs are due to gains, i.e.

the door is opened completely to ψmax and the task is achieved, the graphs of the total

cost and that of the gains coincide. Here, it can be clearly seen that the robot switches

to high-gain control in the first 6 updates (costs of gains go up) to achieve the task (cost

of not opening the door goes down). Then, the gains are lowered at each update, until

they are lower than the initial values. The joint trajectories and gain schedules after 0, 6

and 100 updates are depicted in Figure 6.13.

214



Figure 6.12: Left: Task scenario. Right: Learning curve for the door task. The costs
specific to the gains are plotted separately.

6.7.2 Task 3: Learning tasks on the PR2

In (Pastor, Kalakrishnan, Chitta, Theodorou & Schaal 2011) PI2 was used on PR2 robot

for learning how to perform two manipulations tasks: learning billiard and rolling a box

with chopsticks. In this section, we leave the details of the application of PI2 and we focus

on the design of the cost function for these two tasks. A more thorough and in detailed

discussion on the application of PI2 on the PR2 can be found in (Pastor et al. 2011).

For the first task of learning to play billiard the critical issue is to find the states

which are relevant. These state are illustrated in 6.14 and they consist of the cue roll,

pitch, yaw, the elbow posture and the cue tip offset. The cost function used is minimizes

large cue displacements, time to the target and distance to the target. Thus:
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Figure 6.13: Learned joint angle trajectories (center) and gain schedules (right) of the
CBi arm after 0/6/100 updates.

q(x) = w1 × (Displacement) + w2 × (Time to Target) + w3 × (Distance to Target)

For the second tasks, the goal for the robot is to learn to flip the box by using

chopsticks. The state dependent cost function for this particular task penalizes high box

accelerations measured by an IMU insight the box, high forces measured in the tactile

sensors of PR2 robot and high arm accelerations measured by an accelerometer at each

gripper. The terminal cost penalizes deviation from the desired state which is the one

with the boxed flipped. Thus the cost function is expressed as:

q(x) = w1 × (Box acceleration) + w2 × (Force) + w3 × (Gripper acceleration)
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φ(xTN ) = w4 × (Terminal state error)

In figure 6.15 the initial policy and the final policy are illustrated. As we can see the

robot learns how to succesfully flip the box

1

1

Figure 6.14: Relevant states for learning how to play billiard.

Figure 6.15: Initial and final policies for rolling the box.

6.8 Discussion

We have applied applied the PI2 algorithm, which is modified version of iterative path

integral control, to the problems of optimal planning and control for robotic tasks. The
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DMPs which correspond to nonlinear dynamical systems with adjustable land scape play

an essential role for the representation of kinematic trajectories and control gains.

The key results of the path integral control formalism, which were presented in Table

4.1 and Section 4.4, consider how to compute the optimal controls for a general class of

stochastic control systems with state-dependent control transition matrix. One impor-

tant class of these systems can be interpreted in the framework of reinforcement learning

with parameterized policies. For this class, we derived Policy Improvement with Path

Integrals (PI2) as a novel algorithm for learning a parametrized policy. PI2 inherits its

sound foundation in first order principles of stochastic optimal control from the path

integral formalizm. It is a probabilistic learning method without open algorithmic tun-

ing parameters, except for the exploration noise. In our evaluations, PI2 outperformed

gradient algorithms significantly. It is also numerically simpler and has easier cost func-

tion design than previous probabilistic RL methods that require that immediate rewards

are pseudo-probabilities. The similarity of PI2 with algorithms based on probability

matching indicates that the principle of probability matching seems to approximate a

stochastic optimal control framework. Our evaluations demonstrated that PI2 can scale

to high dimensional control systems, unlike many other reinforcement learning systems.

The mathematical structure of the PI2 algorithm makes it suitable to optimize si-

multaneously both reference trajectories and gain schedules. This is similar to classical

DDP. We evaluated our approach on two simulated robot systems, which posed up to 14

dimensional learning problems in continuous state- action spaces. The goal was to learn

compliant control while fulfilling kinematic task constraints, like passing through an inter-

mediate target. The evaluations demonstrated that the algorithm behaves as expected:
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it increases gains when needed, but tries to maintain low gain control otherwise. The

optimal reference trajectory always fulfilled the task goal. Learning speed was rather fast,

i.e., within at most a few hun- dred trials, the task objective was accomplished. From a

machine learning point of view, this performance of a reinforcement learning algorithm

is very fast. The PI2 algorithms inherits the properties of all trajectory-based learning

algorithms in that it only finds locally optimal solutions. For high dimensional robotic

system, this is unfortunately all one can hope for, as exploring the entire state- action

space in search for a globally optimal solution is impossible.

We continue our discussion in the next subsections with some issues that deserve more

detailed discussions.

6.8.1 Simplifications of PI2.

In this section we discuss simplifications of PI2. The discussions starts with research

directions that may allows us to remove the assumption between control weight matrix

and variance of the noise. Moreover, we show how PI2 could be used as model based,

semi model based of model free way. Finally, we discuss some rules for cost function

design as well as how PI2 handles hidden states in the state vector and arbitrary states

in the cost function.

6.8.2 The assumption λR−1 = Σε

In order to obtain linear 2nd order differential equations for the exponentially transformed

HJB equations, the simplification λR−1 = Σε was applied. Essentially, this assumption

couples the control cost to the stochasticity of the system dynamics, i.e., a control with
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high variance will have relatively small cost, while a control with low variance will have

relatively high cost. This assumption makes intuitively sense as it would be mostly

unreasonable to attribute a lot of cost to an unreliable control component. Algorithmi-

cally, this assumption transforms the Gaussian probability for state transitions into a

quadratic command cost, which is exactly what our immediate reward function postu-

lated. Future work may allow removing this simplification by applying nonlinear versions

of the Feynman-Kac Lemma.

6.8.3 Model-based, Hybrid, and Model-free Learning

Stochastic optimal control with path integrals makes a strong link to the dynamic system

to be optimized – indeed, originally, it was derived solely as model-based method. As

this paper demonstrated, however, this view can be relaxed. The roll-outs, needed for

computing the optimal controls, can be generated either from simulating a model, or by

gathering experience from an actual system. In the latter case, only the control transition

matrix of the model needs be known, such that we obtain a hybrid model-based/model-

free method. In this work, we even went further and interpreted the stochastic dynamic

system as a parameterized control policy, such that no knowledge of the model of the

control system was needed anymore – i.e., we entered a model-free learning domain. It

seems that there is a rich variety of ways how the path integral formalism can be used in

different applications.

Further simplifications of PI2 can be consider if one substitutes the optimal controls

to stochastic dynamics. More precisely the optimal controls are expressed as:
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u (τ i) dt = R−1G(c)
ti
T
(
G(c)
ti

R−1G(c)
ti
T
)−1

K∑
k=1

p̃(k) (τ i) G(c)
ti
dw(k)

ti
(6.40)

When the controls above are applied to the stochastic dunamics then they have to be

multiplied by the matrix G(c)
ti

. This multiplication results in:

G(c)
ti

u (τ i) dt =
K∑
k=1

p̃(k) (τ i) G(c)
ti
dw(k)

ti
(6.41)

The equation above suggests simplifications of PI2 which will be explored. As the

evaluations in this chapter show, PI2, in its current form, has amazingly robust perfor-

mance in a variety of learning robotic control tasks.

6.8.4 Rules of cost function design

The cost functions allowed in our formulations can have arbitrary state cost, but need

quadratic command cost. This is somewhat restrictive, although the user can be flexible

in what is defined as a command. For instance, the dynamic movement primitives (6.11)

used in this paper can be written in two alternative ways:

1
τ
żt = ft + gTt (θ + εt) (6.42)

or

1
τ
żt =

[
gTt ft

]
 θ

1

+ ε̃t

 (6.43)
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where the new noise vector ε̃t has one additional cofficient. The second equation treats

ft as another basis function whose parameter is constant and is thus simply not updated.

Thus, we added ft to the command cost instead of treating it as a state cost.

We also numerically experimented with violations of the clean distinction between

state and command cost. Equation (6.23) could be replaced by a cost term, which is

an arbitrary function of state and command. In the end, this cost term is just used to

differentiate the different roll-outs in a reward weighted average, similarly as in (Peters &

Schaal 2008a, Kober & Peters 2009). We noticed in several instances that PI2 continued

to work just fine with this improper cost formulation.

Again, it appears that the path integral formalism and the PI2 algorithm allow the

user to exploit creativity in designing cost functions, without absolute need to adhere

perfectly to the theoretical framework.

6.8.5 Dealing with hidden state

Finally, it is interesting to consider in how far PI2 would be affected by hidden state.

Hidden state can either be of stochastic or deterministic nature, and we consider hidden

state as adding additional equations to the system dynamics (4.2).

Section 4.2 already derived that deterministic hidden states drop out of the PI2

update equations – these components of the system dynamics were termed “uncontrolled”

equations.

More interesting are hidden state variables that have stochastic differential equations,

i.e., these equations are uncontrolled but do have a noise term and a non-zero corre-

sponding coefficient in Gt in equation (4.2), and these equations are coupled to the other
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equations through their passive dynamics. The noise term of these equations would, in

theory, contribute terms in Equation (6.23), but given that neither the noise nor the state

of these equations are observable, we will not have the knowledge to add these terms.

However, as long as the magnitude of these terms is small relative to the other terms

in Equation (6.23), PI2 will continue to work fine, just a bit sub-optimally. This issue

would affect other reinforcement learning methods for parameterized policies in the same

way, and is not specific to PI2.

6.8.6 Arbitrary states in the cost function

As a last point, we would like to consider which variables can actually enter the cost

functions for PI2. The path integral approach prescribes that the cost function needs to

be a function of the state and command variables of the system equations (4.2). It should

be emphasized that the state cost qt can be any deterministic function of the state, i.e.,

anything that is predictable from knowing the state, even if we do not know the predictive

function. There is a lot of flexibiliy in this formulation, but it is also more restrictive than

other approaches, e.g., like policy gradients or the PoWER algorithm, where arbitrary

variables can be used in the cost, no matter whether they are states or not.

We can think of any variable that we would like to use in the cost as having a corre-

sponding differentential equation in the system dynamics (4.2), i.e., we simply add these

variables as state variables, just that we do not know the analytical form of these equa-

tions. As in the previous section, it is useful to distinguish whether these states have

deterministic or stochastic differential equations.
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If the differential equation is deterministic, we can cover the case with the derivations

from Section 4.2, i.e., we consider such an equation as uncontrolled deterministic differ-

ential equation in the system dynamics, and we already know that we can use its state in

the cost without any problems as it does not contribute to the probability of a roll-out.

If the differential equation is stochastic, the same argument as in the previous section

applies, i.e., the (unknown) contribution of the noise term of this equation to the expo-

nentiated cost (6.23) needs to be small enough for PI2 to work effectively. Future work

and empirical evaluations will have to demonstrate when these issues really matter – so

far, we have not encountered problems in this regard.
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Chapter 7

Neuromuscular Control

Neuromuscular control or control of bio-mechanical models is one of the areas, in which

the optimal control theory has been applied with significant contributions. These con-

tributions are related to a better understanding of bio-mechanical and neuromuscular

structure in terms of its functionality and design. In this chapter we are discussing the

main characteristic of bio-mechanical systems and we investigate the main challenges in

modeling such systems. More precisely, in section 7.1 we present the main differences

between torque driven and tendon driven systems and we discuss the alternative use of

control theory. In section 7.2 we have a literature review on the skeletal mechanics mod-

eling approaches. In section 7.3 we discuss various modeling choices regarding the high

dimensionality and redundancy of neuromuscular systems.

We continue with the section 7.4 which reviews previous work on musculotendon

routing models. In section 7.5 the application of optimal control to psychophysical and

bio-mechanical models is discussed. In the last section 8.5 we conclude with the main

points of this chapter.
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7.1 Tendon driven versus torque driven actuation

The gap in the functionality and robustness between robotic and human hands has its

origins in our lack of understanding of design principles based on control theoretic ideas

applicable to complex biomechanical structures such as the hand. From the control

theoretic standpoint, the control of a highly dimensional and nonlinear stochastic plant

of the complexity of a robotic or biomechanical hand is not an easy task–which also makes

it difficult to understand the neuromuscular control of the hand. To appreciate the high

dimensionality, it is enough to consider that more than 35 tendons must be controlled by

the nervous system (Freivalds 2000). Some critical questions that remain open are:

• What strategies does the nervous system use for moving the finger given the geomet-

rical and mechanical characteristics of the muscular-tendon-bone structure? How

sensitive these strategies are with respect to variations in the underlying dynamics

and moment arm geometry?

There are few important differences between torque driven and tendons driven bio-

mechanical structures. In particular, in tendon driven systems, the number of control

variables is usually higher than the number of corresponding controls in torque driven

systems. For example, for the case of the index finger, there are 7 actuating tendons which

produce the required torque around the 3 joins, while in torque actuated mechanical fin-

gers systems, 3 torque based control variables are sufficient to produce planar movements.

An additional component is that, the tendon actuation is constrained since tendons can

only pull and not push while in most robotic systems that are torque driven, the control

variables can take negative and positive values to generate negative or positive torques
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around joins. The limits or control constrains for the case of torque driven control sys-

tems are due to torque saturation. Clearly the actuation mechanism is different in tendon

driven and torque driven dynamical systems. A step towards understanding the role of

each tendon for the production of a movement is to control a bio-mechanical model and

discover the underlying control strategies.

In order to apply a control theoretic approach, a model of the underlying neuromus-

cular dynamics is required. This model is usually built based on the knowledge of the

physiology and anatomy of the bio-mechanical system under investigation, and it is, with

no doubt, an approximation of the true dynamics. Given this “ acceptable “ model a

control theoretic approach is used to generated the desired behavior. The main goal in

this form of scientific reasoning is to generate with the use of control the same dynamic

behavior with the one observed experimentally. Provided that both the experimenter and

the theoretician trust the bio-mechanical model the claim is that the underlying control

strategies matches the one that was used to generated the desired behavior in simulation

and thus these control strategies is what the nervous systems may implement.

Clearly this is one way of making use of control theory which relies on the assump-

tion that the model captures the main characteristics of the bio-mechanics and it is an

acceptable approximation. Nevertheless, there are examples and cases of bio-mechanical

systems for which there is no such a good model or if there is, then it is very sensitive

with respect to parameter variations. In such cases, the use of control theory could be

twofold. On one side it can be used as a verification tool of every proposed model as a

candidate while one the other side it can be used to explore the sensitivity of the model

with respect to critical parameters.
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We will leave this discussion for the next chapter and in the next sections we are focus-

ing on previous effort of bio-mechanical modeling based on the characteristics of skeletal

mechanics and the redundancy and high dimensionality of neuromuscular systems.

7.2 Skeletal Mmechanics

In neuromuscular function studies, skeletal segments are generally modeled as rigid links

connected to one another by mechanical pin joints with orthogonal axes of rotation.

These assumptions are tenable in most cases, but their validity may depend on the pur-

pose of the model. Some joints like the thumb carpometacarpal joint, the ankle and

shoulder joints are complex and their rotational axes are not necessarily perpendicular

[46][48], or necessarily consistent across subjects (Hollister, Buford, Myers, Giurintano &

Novick 1992), (Santos & Valero-Cuevas 2006), (Cerveri, De Momi, Marchente, Lopomo,

Baud-Bovy, Barros & Ferrigno 2008). Assuming simplified models may fail to capture

the real kinematics of these systems (Valero-Cuevas, Johanson & Towles 2003). While

passive moments due to ligaments and other soft tissues of the joint are often neglected, at

times they are modeled as exponential functions of joint angles (Yoon & Mansour 1982),

(Hatze 1997) at the extremes of range of motion to passively prevent hyper-rotation. In

other cases, passive moments well within the range of motion could be particularly im-

portant in the case of systems like the fingers (Esteki & Mansour 1996), (Sancho-Bru,

Prez-Gonzlez, Vergara-Monedero & Giurintano 2001) where skin, fat and hydrostatic

pressure tend to resist flexion. Modeling of contact mechanics could be important for

joints like the knee and the ankle where there is significant loading on the articulating
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surfaces of the bones, and where muscle force predictions could be affected by contact

pressure. Joint mechanics are also of interest for the design of prostheses, where the

knee or hip could be simulated as contact surfaces rolling and sliding with respect to

each other (Rawlinson & Bartel 2002),(Rawlinson, Furman, Li, Wright & Bartel 2006).

Several studies estimate contact pressures using quasi-static models with deformable con-

tact theory (e.g., (Wismans, Veldpaus, Janssen, Huson & Struben 1980),(Blankevoort,

Kuiper, Huiskes & Grootenboer n.d.)). But these models fail to predict muscle forces

during dynamic loading. Multibody dynamic models with rigid contact fail to predict

contact pressures (Piazza & Delp 2001).

7.3 Dimensionality and redundancy

The first decision to be made when assembling a musculoskeletal model is to define

dimensionality of the musculoskeletal model (i.e., number of kinematic degrees-of- freedom

and the number of muscles acting on them). If the number of muscles exceeds the minimal

number required to control a set of kinematic DOF, the musculoskeletal model will be

redundant for some sub-maximal tasks. The validity and utility of the model to the

research question will be affected by the approach taken to address muscle redundancy.

Most musculoskeletal models have a lower dimensionality than the actual system they

are simulating because it simplifies the mathematical implementation and analysis, or

because a low-dimensional model is thought sufficient to simulate the task being analyzed.

Kinematic dimensionality is often reduced to limit motion to a plane when simulating arm

motion at the level of the shoulder(Abend, Bizzi & Morasso 1982),(Mussa-Ivaldi, Hogan
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& Bizzi 1982), when simulating fingers flexing and extending (Dennerlein, Diao, Mote

& Rempel 1998) or when simulating leg movements during gait (Olney, Griffin, Monga

& McBride 1991). Similarly, the number of independently controlled muscles is often

reduced (An, Chiao, Cooney & Linscheid 1985) for simplicity, or even made equal to the

number of kinematic degrees-of-freedom to avoid muscle redundancy (Harding, Brandt

& Hillberry 1993). While reducing the dimensionality of a model can be valid in many

occasions, one needs to be careful to ensure it is capable of replicating the function being

studied. For example, an inappropriate kinematic model can lead to erroneous predictions

(Valero-Cuevas, Towles & Hentz 2000), (Jinha, Ait-Haddou, Binding & Herzog 2006),

or reducing a set of muscles too severely may not be sufficiently realistic for clinical

purposes. A subtle but equally important risk is that of assembling a kinematic model

with a given number of degrees of freedom, but then not considering the full kinematic

output. For example, a three-joint planar linkage system to simulate a leg or a finger

has three kinematic DOF at the input, and also three kinematic degrees of freedom

at the output: the x and y location of the endpoint plus the orientation of the third

link. As a rule, the number of rotational degrees- of-freedom (i.e., joint angles) maps

into as many kinematic degrees-of-freedom at the endpoint (Murray, Li & Sastry 1994).

Thus, for example, studying muscle coordination to study endpoint location with- out

considering the orientation of the terminal link can lead to variable results. As we have

described in the literature (Valero-Cuevas, Zajac & Burgar 1998), (Valero-Cuevas 2009),

the geometric model and Jacobian of the linkage system need to account for all input and

output kinematic degrees- of-freedom to properly represent the mapping from muscle

actions to limb kinematics and kinetics.
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7.4 Musculotendon routing

Next, we need to select the routing of the musculotendon unit consisting of a muscle and

its tendon in series (Zajac 1989), (Zajac 1992). The reason we speak in general about

musculo-tendons (and not simply tendons) is that in many cases it is the belly of the

muscle that wraps around the joint (e.g., gluteus maximus over the hip, medial deltoid

over the shoulder). In other cases, however, it is only the tendon that crosses any joints as

in the case of the patellar tendon of the knee or the flexors of the wrist. In addition, the

properties of long tendons affect the overall behavior of muscle like by stretching out the

force- length curve of the muscle fibers (Zajac 1989). Most studies assume correctly that

musculotendons insert into bones at single points or multiple discrete points (if the actual

muscle attaches over a long or broad area of bone). Musculo-tendon routing defines the

direction of travel of the force exerted by a muscle when it contracts. This defines the

moment arm r of a muscle about a particular joint, and determines both the excursion δs

the musculo-tendon will undergo as the joint rotates an angle δθ defined by the equation,

δs = rδθ, as well as the joint torque at that joint due to the muscle force fm transmitted by

the tendon τ = r ·fm where r is the minimal perpendicular distance of the musculo-tendon

from the joint center for the planar (scalar) case (Zajac 1992). For the three dimensional

case the torque is calculated by the cross product of the moment arm with the vector

of muscle force τ = r × fm. In todays models, musculo-tendon paths are modeled and

visualized either by straight lines joining the points of attachment of the muscle; straight

lines connecting via points attached to specific points on the bone which are added or

removed depending on joint configuration (Garner & Pandy 2000) or as cubic splines
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with sliding and surface constraints (Blemker & Delp 2005.). Several advances also allow

representing muscles as volumetric en- tities with data extracted from imaging studies

(Blemker & Delp 2005.) ,(S. S. Blemker & Delp 2007), and defining tendon paths as

wrapping in a piecewise linear way around ellipses defining joint locations (R. Davoodi &

Loeb 2003), (Delp & Loan 2007). The path of the musculotendon in these cases is defined

based on knowledge of the anatomy. Sometimes, it may not be necessary to model the

musculotendon paths but obtaining a mathematical expression for the moment arm (r)

could suffice. The moment arm is often a function of joint angle and can be obtained by

recording incremental tendon excursions (δs) and corresponding joint angle changes (δθ)

in cadaveric specimens.

7.5 Discussion

The use of stochastic optimal control theory as conceptual tool towards understanding

neuromuscular behavior was proposed in, for example, (He, Levine & Loeb 1991), (Harris

& Wolpert 1998), (Todorov 2004). In that work, a stochastic optimal control framework

for systems with linear dynamics and control-dependent noise was used to understand

the variability profiles of reaching movements. The influential work by (Todorov 2004)

established the minimal intervention principle in the context of optimal control. The

minimal interven- tion principle was developed based on the characteristics of stochastic

optimal controllers for systems with multiplicative noise in the control signals.

The LQR and LQG optimal control methods have been mostly tested on linear dynam-

ical systems for modeling sen- sorimotor behavior; e.g, in reaching tasks, linear models
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were used to describe the kinematics of the hand trajectory (Harris & Wolpert 1998),

(Todorov & Jordan 2002). In neuromuscular modeling, however, linear models cannot

capture the nonlinear behavior of muscles and multi- body limbs. In (Li & Todorov 2004),

an Iterative Linear Quadratic Regulator (ILQR) was first introduced for the optimal con-

trol of nonlin- ear neuromuscular models. The proposed method is based on linearization

of the dynamics. An interesting component of this work that played an influential role in

the studies on optimal control methods for neuromuscular models was the fact that there

was no need for a pre-specified desired trajectory in state space.

By contrast, most approaches for neuromuscular optimization that use classical con-

trol theory (see Section VI) require target time histories of limb kinematics, kinetics

and/or muscle activity. In (Todorov 2005) the ILQR method was extended for the case

of nonlinear stochastic systems with state and control dependent noise. The proposed

algorithm is the Iterative Linear Quadratic Gaussian Regulator (iLQG). This extension

allows the use of stochastic nonlinear models for muscle force as a function of fiber length

and fiber velocity. Figure 6 illustrates the application of LQG to our arm model (Section

II). Further theoretical developments in (Li & Todorov 2006) and (Todorov 2007) allowed

the use of an Extended Kalman Filter (EKF) for the case of sensory feedback noise. The

EKF is an extension of the Kalman filter for nonlinear systems.

The has been only few examples of studies in the area of the biomechanics of the index

finger which try to identity the underlying control signals for the case of movement and

force production, either these signals corresponds to neural commands or tensions ap-

plied on the tendons. More precisely on the experimental side, the work in (Venkadesan

& Valero-Cuevas 2008b) investigated the neural control of contact transition between
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motion and force during tapping. On the theoretical side the study in (Venkadesan &

Valero-Cuevas 2008a) has found that such transitions from motion to well-directed con-

tact force are a fundamental part of dexterous manipulation, and that such tasks are

likely controlled optimally. Moreover, one of the main assumptions in (Venkadesan &

Valero-Cuevas 2008a) is that the underlying control strategy of the finger is considered

to be open loop. In addition, the model used is a torque driven model while the neu-

romuscular delays are modeled as activation contraction dynamics at the level of the

torques driving the 3 joints of the index finger. Even though with this simple model

the optimality principles of the motion to force transition for the task of tapping were

investigated, an open loop control strategy would have failed in tasks such as object ma-

nipulation where feedback control is critical requirement for successfully performing the

manipulation task. Furthermore, since only 3 sets of differential equation that model the

activation contraction dynamics are considered, the full structure and redundancy of the

index finger is not explored and the system under investigation remains in nature torque

driven.

In this chapter we have reviewed previous work on bio-mechanical modeling by touch-

ing the critical issues of skeletal mechanics, muscle redundancy and musculotendon rout-

ing as well as on application of optimal control theory to psychophysical and neuromus-

cular models. We have provided the main differences between torque driven and tendon

driven systems. We have discussed the role of the use of control theory into bio-mechanical

models not only as a tool that provides insights regarding the underlying control strategies

put also as a way to verify bio-mechanical models through a sensitivity analysis.
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Following this line of reasoning, in the next chapter we apply the optimal control

theory to two tendon driven models of the index finger.
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Chapter 8

Control of the index finger

In this chapter we apply the iterative optimal control algorithm on two bio-mechanical

models of the index finger and we compare the resulting behavior. The bio-mechanical

models share the same multi-body dynamics but they differ in the tendon geometry since

they incorporate different moment arm matrices found in (Valero-Cuevas et al. 1998) and

(An, Ueba, Chao, Cooney & Linscheid 1983). As it is illustrated, the different moment

arm matrices play important role in the actuation capabilities of each model of the index

finger which become obvious as we compare the underlying tension profiles for the case

a flexing and a tapping movement.

The remaining of this chapter is organized as follows: in section 8.1 we provide a short

introduction for the biomechanics of the index finger while in section 8.2 we discuss the

iterative linear quadratic regulator which is the optimal control algorithm used for our

simulations. In section 8.3 we provide the multi-body dynamics and in 8.4 we compare

our results on the optimal control of the index finger between the two models of the

moment arm matrices. The moment arm models and the optimal control algorithm are

tested on the tasks of flexing and tapping with the index finger.
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8.1 Index fingers biomechanics

The skeleton of the human index finger consist of 3 joints connected with 3 rigid links.

The two joints (proximal interphalangeal (PIP) and the distal interphalangeal (DIP)) are

described as hinge joints that can generate both flexion-extension. The metacarpopha-

langeal joint (MCP) is a saddle joint and it can generated flexion-extension as well as

abduction-adduction.

Fingers have at least 6 muscles, and the index finger is controlled by 7. Starting with

the flexors, the index finger has the Flexor Digitorum Profundus (FDS) and the Flexor

Digitorum Superficialis (FDP). The the Radial Interosseous (RI) acts on the MCP joint.

Lastly, the extensor mechanism acts on all three joints. It is an interconnected network of

tendons driven by two extensors Extensor Communis (EC) and the Extensor Indicis (EI),

and the Ulnar Interosseous (UI) and Lumbrical (LU). There are also 4 passive tendon

elements that complete this network. These passive tendons are the Terminal Extensor

(TE), the Radial Band (RB) the Ulnar Band (UB) and the Extensor Slip (ES).

Active tendons are connected to muscles and therefore they directly actuate the finger.

Passive tendons are connected with other tendons(active) and ligaments and their role

for the case of the index finger is to transform the applied tensions to the distal join. In

our work we will consider only the active tendons.

8.2 Iterative stochastic optimal control

We consider the nonlinear dynamical system described by the stochastic differential equa-

tion that follows:
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dx = f(x,u)dt+ F (x,u)dw

where x ∈ <n×1 is the state, u ∈ <m×1 is the control and w ∈ <p×1 Brownian

motion noise with variance σ2Ip×p. The stochastic differential equation above corre-

sponds to a rather general class of dynamical systems which are found in robotics and

biomechanics. The term h(x(T )) is the terminal cost in the cost function while the

` (τ,x(τ), π(τ,x(τ))) is the instantaneous cost rate which is a function of the state x

and control policy π(τ,x(τ)). The cost-to - go vπ(x, t) is defined as the expected cost

accumulated over the time horizon (t0, ..., T ) starting from the initial state xt to the final

state x(T ).

vπ(x, t) = E

[
h(x(T )) +

∫ T

t0

` (τ,x(τ), π(τ,x(τ))) dτ
]

The expectation above is taken over the noise ω. We next discretize the determin-

istic dynamics and therefore we will have x̄tk+1
= x̄tk + ∆tf(x̄tk , ūtk). Furthermore the

deterministic dynamics are linearized according to the equation that follows around x̄tk

δxtk+1
+ x̄tk+1

= x̄tk + δx̄tk + ∆tf(x̄tk + δx̄tk , ūtk + δūtk)
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The first order approximation of the nonlinear dynamics leads the linearized dynamics:

δxtk+1
= Akxtk +Bkδutk + Γk (δutk) ξtk

where Γk is the noise transition matrix that is control depended and it is defined as

follows:

Γk (δutk) =
[

c1,k + C1,kδutk · · · cp,k + Cp,kδutk

]

with ci,k =
√
dtF (i) and Ci,k =

√
dt∂F (i)/∂δu. The state and control transition matri-

ces are expressed as: Ak = I+dt∂f/∂x and Bk = dt∂f/∂u. The quadratic approximation

of the cost function is given as follows:

Costk = qk + δxTtkq +
1
2
δxTtkQkxtk (8.1)

+ δuTtkr +
1
2
δuTtkRkutk + δxTtkPkutk

where the terms : qk,qk ∈ <n×1, Qk ∈ <n×n, rk ∈ <m×1, Rk ∈ <m×m, Pk ∈ <n×m are

defined as:

qk = dt `; qk = dt ∂`/∂x (8.2)

Qk = dt ∂2`/∂x∂δx; Pk = dt ∂2`/∂u∂x (8.3)

rk = dt ∂`/∂δu; Rk = dt ∂2`/∂u∂u (8.4)
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The cost to go vk (δx) is quadratic of the state and therefore it has the form:

vk (δx) = sk + sTk+1δx + δxTSk+1δx (8.5)

Where the terms sk, sk+1 and Sk+1 are backward propagated from the terminal or goal

state to the initial state. More precisely starting with the terminal conditions sk+1 =

qT , sk+1 = qT and Sk+1 = QT , for k = T − 1 we find the following terms:

g = rk +BT
k sk+1 + σ2

∑
i

CTi,kSk+1ci,k

G = Pk +BT
k Sk+1Ak (8.6)

H = σ2
∑
i

CTi,kSk+1Ci,k +BT
k Sk+1Bk +Rkg

By using the terms above the we can now calculate the correction in the control

policy δutk is formulated as δutk = −H−1 (g +Gδxtk) or in a more compact form δutk =

lk + Lkδxtk where lk = −H−1g and Lk = −H−1G. As we can see the correction in the

control policy consist of an open loop gain lk and a close loop gain Lk which guarantees

local stability around the point of linearization of the nonlinear dynamics. Since the

open and close loop gains lk and Lk have been specified the next step is the backward

propagation of the terms sk, sk+1 and Sk+1. This backward propagation is expressed by

the equations that follow:
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Sk = Qk +ATk Sk+1Ak + LTkHLk + LkG+GTLk

sk = qk +ATk sk+1 + LTkHlk +GTLk + LTk g (8.7)

sk = qk + sk+1 +
1
2
σ2
∑
i

cTi,kSk+1ci,k +
1
2
lTkHlk + lTk g

The control policy at the next iteration is given by the adding the correction δu(i)
t,...,T

in the control policy of the current iteration. Therefore we will have that u(i+1)
t,...,T =

u(i)
t,...,T + γ · δu(i)

t,...,T where γ is the step size. Using the updated control policy u(i+1)
t,...,T

and by propagating the nonlinear dynamics a new trajectory is generated in state space.

The linear and quadratic approximation of the dynamics and cost are found and the

algorithms is repeated again until convergence. The control law δutk = −H−1 (g +Gδxtk)

is the optimal one for as long as the matrix H is positive definite. The cost-to -go

function vπ (δx) depends on the control law δuk = πk (δx) through the term α(δx, δu) =

δuT (g+Gδx)+ 1
2δu

THδu. Therefore minimization of the cost to go function is equivalent

to the minimization of the quadratic function α(δx, δu) which is convex iff the its Hessian

H > 0. In highly dimensional dynamical systems H might loose its positive definiteness.

In such cases we follow an approach similar to Levenberg-Marquardt : (1) compute the

eigenvalue decomposition of H, [V,D] = eig(H)(2) replace all the negative elements of

the diagonal matrix with 0 (3) add a small positive number λ to the diagonal of D (4)

set H = V DV T using the modified diagonal matrix D from the steps (2) and (3). For

our simulation we need to constrain the controls u since the control variable of our index

finger model corresponds to neural activation that is always positive. To avoid violating
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Table 8.1: Pseudocode of the iLQG algorithm

• Given:

– An immediate cost function `(x,u)

– A terminal cost term φtN .

– The stochastic dynamics dx = f(x,u)dt+ F (x,u)dω

• Repeat until convergence:

– Given a trajectory in states and controls x̄, ū find the approximations At, Bt,Γt
and `o, `x, `xx, `uu, `ux around these trajectories.

– Compute all the terms H,G and g according to equations (8.6).

– Back-propagate the quadratic approximation of the value function based on
the equations (8.7).

– Compute δutk = −H−1 (g +Gδxtk)

– Update controls u∗new = u∗old + γ · δu∗

– If u∗new < uc then reduce γ to γc so that the constraint is not violated and find
the controls u∗new = u∗old + γc · δu∗

– Get the new optimal trajectory x∗ by propagating the nonlinear dynamics
dx = f(x,u∗)dt+ F (x,u∗)dω.

– Set x̄ = x∗ and ū = u∗old = u∗new and repeat.

the control constrains the step size γ is reduced until the constrain is not violated. The

iLQG algorithm in a pseudocode form is illustrated in table (8.1).

8.3 Multi-body dynamics

The full model of the index finger is given by the equations that follow:

θ̈ = −I (θ)−1 C
(
θ, θ̇

)
+ Bθ̇ + I (θ)−1 T (8.8)

T = M(θ) F (8.9)
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Ḟ = −1
τ

(F− u) (8.10)

where I ∈ <3×3 is the inertial matrix, C(θ, θ̇) ∈ <3×1 is matrix of Coriolis and

centripetal forces and B ∈ <3×3 is the damping matrix. The matrix M ∈ <3×7 is the

moment-arm matrix, T ∈ <3×1 is the torque vector, F ∈ <7×1 is the force-tension on

the tendons and u is the control vector. Equation (8.10) is used to model delays in

the generation of tensions on the tendons. For our simulations we have excluded the

abduction-adduction movement at MCP joint and we examine planar movements and we

investigate the necessary length and velocity profiles of the tendons for producing such

movements. Therefore, the state space formulation of our model has dimensionality of 13,

corresponding to 6 states related to joint space kinematics (angles and velocities) and 7

states for the tensions applied on the 7 active tendons. The quantities θ and θ̇ are vectors

of dimensionality θ ∈ <3×1,θ̇ ∈ <3×1 defined as θ = (θ1, θ2, θ3) and θ̇ =
(
θ̇1, θ̇2, θ̇3

)
. The

inertia I(θ)terms of the forward dynamics are given as follows:

I11 = I31 + µ1 + µ2 + 2µ4 cos θ2

I21 = I22 + µ4 cos θ2 + µ6 cos (θ2 + θ2)

I22 = I33 + µ2 + 2µ5 cos θ3

I31 = I32 + µ6 cos (θ3 + θ3)

I33 = µ3
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while the term of coriolis and centripetal forces C(θ, θ̇) is formulated as follows:

C1 = µ4 sin θ2

[
−θ̇2

(
2θ̇1 + θ̇2

)]
+ µ5 sin θ3

[
−θ̇3

(
2θ̇1 + 2θ̇2 + θ̇3

)]
− µ6 sin (θ2 + θ3)

(
θ̇2 + θ̇3

)(
2θ̇1 + θ̇2 + θ̇3

)
C2 = µ5 sin θ2θ̇

2
1 − µ5 sin θ3

[
θ̇3

(
2θ̇1 + θ̇2 + θ̇3

)]
+ µ6 sin (θ2 + θ3) θ̇1

2

C3 = µ5 sin θ3

(
θ̇1 + θ̇2

)
+ µ6 sin

(
θ̇2 + θ̇3

)
θ̇2

1

The terms µ1, µ2, µ3 are functions of the masses (m1,m2,m3) = (0.05, 0.04, 0.03)Kgr

and the lengths (l1, l2, l3) = (0.0508, 0.0254, 0.01905)m of the 3 bones of the index finger.

They are specified as mu1 = (m1 +m2 +m3) , µ1 = (m1 +m2 +m3) l21, µ3 = m3l
2
3, µ4 =

(m2 +m3) l1l2, µ5 = m3l2l3 and µ6 = m3l1l3.

8.4 Effect of the moment arm matrices in the control of the

index finger

In this section we apply optimal control framework to a bio-mechanical model of the index

and we are testing the effect of different moment arm matrices in the control of the index

finger. In our analysis we used the moment arm matrix suggested in (An et al. 1983)

and(Valero-Cuevas et al. 1998) . We apply iLQG optimal control to generate the two

movements and we compare the behaviors of the two models.
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8.4.1 Flexing movement

The first movement is a flexion movement around the PIP and DIP joins while the MCP

join remains almost constant. The initial posture is at θ0 = (0, 0, π/10, ) and the terminal

posture is at θN = (0, π/2, π/12, ) while the time horizon of the movement is TN = 400ms

The cost function is tuned such that it penalizes only terminal errors with respect to the

target posture and control cost. Therefore, we do not pre-specify any desire trajectory

that would have imposed extra state depended terms in the cost function.

The flexion and tapping movement correspond to control problems where the goal is

to bring the dynamics form an initial state to a target state. The iterative optimal control

algorithms provide us with the optimal control sequence u, a set of locally optimal closed

loop gains L and an the locally optimal state space trajectory. This trajectory in treated

as a desired trajectory that is followed by the dynamics with the use of the open loop

control u and the feedback policies L. Essentially, we leave the optimization procedure

to come-up with each one desired trajectory.

An alternative to this approach would be to record join kinematic trajectories and

then use these trajectories in the cost function. In particular, in this scenario we would

have to impose extra terms in the cost function which penalize errors with respect to

any deviation from the desired trajectory. In both cases scenarios, the iterative optimal

controller is a tracking controller, the deference between the two cases in whether or not

the desired trajectory is pre-specified or it is the outcome of the optimization procedure.

In the figures that follows the postures, the kinetics of the tendons and the underlying

tension profiles are illustrated.
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Figure 8.1: Flexing Movement: Sequence of postures generated when the first model of
moment arm matrix is used and the iLQG is applied
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Figure 8.2: Flexing Movement: Tendon excursions for the right index finger during the

flexing movement when the first model of moment arm matrix.
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Figure 8.3: Flexing Movement: Tension profiles applied to the right index finger when

the first model of moment arm matrix by is used.
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Figure 8.4: Flexing Movement: Extensor tension profiles applied to the right index finger

when the first model of moment arm matrix is used.
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Figure 8.5: Flexing Movement: Generated torques at MCP, PIP and DIP joins of the

right index finger when the first model of moment arm matrix is used.
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Figure 8.6: Flexing Movement: Sequence of postures generated when the second model

of moment arm matrix is used and the iLQG is applied.
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Figure 8.7: Flexing Movement: Tendon excursions for the right index finger during the

flexing movement when the second model of moment arm matrix..
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Figure 8.8: Flexing Movement: Tension profiles applied to the right index finger when

the second model of moment arm matrix by is used.
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Figure 8.9: Flexing Movement: Extensor tension profiles applied to the right index finger

when the second model of moment arm matrix is used.
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Figure 8.10: Flexing Movement: Flexors tension profiles applied to the right index finger

when the second model of moment arm matrix is used.
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Figure 8.11: Flexing Movement: Generated torques at MCP, PIP and DIP joins of the

right index finger when the second model of moment arm matrix is used.

There are few important observations regarding the kinematic behaviors and the un-

derlying tension profiles when the two different moment arm matrices are used. More

precisely:

• Figures 8.1 and 8.6 illustrate the sequence of postures for the two moment arms. In

both cases the iLQG succeeds in bringing the finger to the desired posture. When

the moment arm by (Valero-Cuevas et al. 1998) is used then there is a small rotation

at the MCP joint which is not observed for the case when the moment arm matrix

by (An et al. 1983) is used.

• In figures 8.2 and 8.7 the tendon excursions are illustrated. More precisely in both

cases we see that the tendon flexors FDP and FDS move inwards and therefore the
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corresponding tendons are flexing as expected. Correspondingly the tendon excur-

sions EC and EI for are moving outwards and thus operate as expected. Moreover

the tendons LUM, RI and UI move outwards as it is illustrated in the two figures.

• In figures 8.3,8.4 and 8.8,8.9 the tensions applied on the 7 tendons to generate

the flexing movement are shown. Clearly for the case of the first moment arm

there is a synchronized burst of activity since all the tensions are reaching their

maximum tensions during the time window between 0ms and 0.2 ms. For the case

of the second moment arm, the results in 8.8, do not illustrated a burst of activity

but they rather suggest a different mechanism which is characterized by a higher

tensions in the FDP tendon with respect to the rest tendons, and a delay in the

activation of the FDS and EI, EC tendons as it is shown in figure 8.9.

• The torque profiles are illustrated in figures 8.5 and 8.11. As it is illustrated the

torque profiles are very similar since in both cases the highest torque is generated

around the MCP join and the smallest around the DIP join. The torques applied

at the MCP and DIP join for the first moment arm reach a smaller pick than the

corresponding pick reached by MCP and DIP torques for the second moment arm

matrix. Furthermore the torques for the first moment arm 8.5 are changing over

time in smoother fashion than the torques in 8.11.

In the next subsection we will continue our sensitivity analysis for the case of the

tapping movement and we are testing again the two moment arm matrices.
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8.4.2 Tapping Movement

The second movement corresponds to tapping with the index finger. The initial posture

is at θ0 = (5π/6, π/2, π/10, ) and the terminal posture is at θ0 = (7π/6, π/4, π/12, ) while

the time horizon of the movement is 300ms. The cost function is tuned such that it

penalizes only terminal errors with respect to the target posture and control cost. In the

figures that follows the postures, the kinetics of the tendons and the underlying tension

profiles are illustrated.
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Figure 8.12: Tapping Movement: Sequence of postures generated when the first model of

moment arm matrix is used and the iLQG is applied.
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Figure 8.13: Tapping Movement: Tendon excursions for the right index finger during the

flexing movement when the first model of moment arm matrix.
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Figure 8.14: Tapping Movement: Tension profiles applied to the right index finger when

the first model of moment arm matrix by is used.
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Figure 8.15: Tapping Movement: Generated torques at MCP, PIP and DIP joins of the

right index finger when the first model of moment arm matrix is used.
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Figure 8.16: Tapping Movement: Sequence of postures generated when the second model

of moment arm matrix is used and the iLQG is applied.
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Figure 8.17: Tapping Movement: Tendon excursions for the right index finger during the

flexing movement when the second model of moment arm matrix.
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Figure 8.18: Tapping Movement: Tension profiles applied to the right index finger when

the second model of moment arm matrix by is used.
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Figure 8.19: Tapping Movement: Generated torques at MCP, PIP and DIP joins of the

right index finger when the second model of moment arm matrix is used.

There are few important observations regarding the kinematic behaviors and the un-

derlying tension profiles when the two different moment arm matrices are used. More

precisely:

• In figures 8.12 and 8.16 the sequence of the postures for the tapping movement

for the cases of the two moment arm matrices is illustrated. In both cases the

finger reaches the desired posture with some small error. It is important to mention

that there is not any desired trajectory encoded in the cost function and therefore

there is only a penalty at the terminal state which is the desired terminal posture.

In addition, the dynamical systems are tendon driven and therefore the tensions

and activation variable should be positive. Even though these hard constrains in
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controls challenge the feasibility of the optimization problem, iLQG succeeds to

bring the system close to the desired state.

• The tendon excursions are shown in 8.13 and 8.17. Clearly the flexor tendon FDP

and FDS flex since they move inwards and the extensor tendons EC and EI extend

because they move outwards. The LU, RI and UI are moving inwards and therefore

they are acting as flexors for this specific tapping movement.

• In figures 8.14 and the tension profiles are shown. The difference in the use of

the moment arm matrices is more apparent in the comparison of the underlying

tensions. In both cases there is a synchronization of the time during which tensions

are reaching their maximum value. However for the case of the first moment arm

there tension at the FDS is very small. In addition for the case of the second moment

arm in there is a pick of activation at 30ms before the end of the movement.

• The torque profiles are shown in 8.19 and 8.15. In both cases the highest positive

torque is applied at the MCP join and the smallest negative torque at the DIP and

PIP joins. Furthermore for the case of the second moment arm there is a pick of

the MCP torque just 30ms before the end of the movement.

8.5 Discussion

The results above suggest that the application of the optimal control to the index finger

provides different results for the cases of the two moment arm matrices. This is not a

surprising result since as we have mentioned, optimal control is a constrained optimiza-

tion problem with the characteristic that its constrains correspond to dynamical systems.
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When different moment arm matrices are used, the underlying dynamics differ and thus

the constrains of the constrained optimization problem change. This changes result in dif-

ferent local optimal solutions. An interesting component is that the observed differences

between the two cases are more highlighted in the underlying tension profiles.

The underlying optimization in the iterative optimal control method used in this

chapter, was formulated without the existence of a desired trajectory. Only a terminal

desired state was used as the goal state in both movements. The outcome of the applica-

tion of the optimal control is a desired optimal state trajectory x∗1, ...,x
∗
T , a feedforward

optimal command u∗1, ...,u
∗
T−1 and locally optimal gains L1, ...,LT−1 . Thus even though

no desired trajectory was initially used for the design of the cost function, the resulting

policy is a feedback policy which has as a desired trajectory the one that is provided by

the optimization and it is the optimal x∗1, ...,x
∗
T . Consequently, for the case of nonlinear

systems even though no initial trajectory is used as a desired one, the resulting controller

is a tracking controller.

In this chapter, with the application of the optimal control framework on the two bio-

mechanical models of the index finger, we have observed the sensitivity of the predictions

with respect to model changes. These sensitivity suggest the need for verification and

model checking of the bio-mechanical models under consideration.
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Chapter 9

Conclusions and future work

In this thesis a new method for learning control in high dimensional state spaces has been

proposed based on the framework of path integral control. On the bio-mechanical side,

models of the index finger were tested for two tasks and the results where compared. In

the next section we give the outline of this thesis based on the aforementioned projects

and we discuss future research and extensions of current work.

9.1 Path integral control and applications to learning and

control in robotics

One of the main contributions of this thesis is the derivation of path integral control for the

class of nonlinear dynamical system affine in control and noise. Furthermore, this thesis

suggests the iterative version of the path integral stochastic optimal control framework.

The outcome of this version is a new formalizm the so called Policy Improvement with

Path Integrals (PI2) capable of scaling in high dimensional learning control problems.

The advantages and characteristics of PI2 could summarized as follows:
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• With respect to other gradient based methods, in PI2 and in path integral control

the gradient is calculated based on the weighted averaged of the local controls or

local changes in the policy. These weights are given by the exponentiation of the

variable −S(x) where S(x) is proportional of the cost of the each path. Thus, paths

with high cost will have very low probability and therefore low weight while paths

with low cost will have high probability. Consequently, the gradient or optimal

change in policy is given by the convex combination of the local control or local

changes in the policy. This calculation has obvious robustness against exploration

noise.

• Since the gradient is calculated based on the convex combination of local policies,

the optimality is with respect to these sampled local policies. Therefore, the ques-

tion is how PI2 explores the state space. Exploration comes as an outcome of the

iterative version of path integral stochastic optimal control. Essentially with the

iterative version and the update of the parameterized policy, the local policies at

the every iteration yield trajectories with lower cost than the local policies at the

previous iteration.

• An essential characteristic of path integral control is that the solution of the back-

ward Chapman Kolmogorov equation is found with forward sampling of the corre-

sponding SDE. This characteristic comes from the direct application of the Feynman

Kac lemma. Moreover, it allows us to perform sampling by executing trials on the

real physical system with forward propagation of its dynamics and accumulation of

the observed cost.
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• Finally, in the path integral control framework, the optimal control is transformed

from a minimization to a maximization problem. The exponentiation of the value

function results in a new value function Ψ(x) which has a probabilistic meaning.

This probabilistic nature appears again in the final form of the optimal control as

the expectation over the local controller evaluated under the probability metric of

p = e−S(x)R
e−S(x)dx

.

9.2 Future work on path integral optimal control

The extensions of path integral control are related to different noise distributions as

well as to more general classes of stochastic systems. Examples are the cases where the

stochastic dynamics are not affine in controls but they are affine only in the noise term.

In addition stochastic dynamics with Wiener and Poisson noise terms are also of interest.

In the next three subsections we discuss these extensions of path integral control.

9.2.1 Path integral control for systems with control multiplicative noise

So far path integral stochastic optimal control has been applied to stochastic dynamical

systems with state multiplicative noise. If one considers control multiplicative noise then

the underlying HJB equation can also be derived. In this case however the resulting HJB

equation can not be transformed to a linear PDE and therefore the application of the

Feynman Kac lemma may not be possible. To avoid this obstacle one could formulate

the stochastic optimal control problem as follows:
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min
u
J(u,x) = min

u
E

[
exp

(
−
∫ tN

t0

L(x,u)
)]

dt

subject to the stochastic dynamics with state and control multiplicative noise:

dx = F(x,u)dt+ B(x,u)dω

The transition probability for the derivation of the path integral is now given as:

〈
δ[xi − φ(ti; xi−1, ti−1]

〉
=
∫

dω

(2π)n
exp

(
jωTA

)
exp

(
− 1

2
ωTBωdt

)

where A = x(ti) − x(ti−1) − F(x,u)dt and B = B(x,u)B(x,u)T . With respect to path

integral control, there is no need for the derivation of the HJB equation. Thus, one could

derive the path integral for the stochastic dynamics and then find the gradient of the cost

function.

9.2.2 Path integral control for markov jump diffusions processes.

Markov jump diffusion processes are important in applications of stochastic optimal con-

trol in financial engineering, economics as well in systems biology. Many phenomena in

these fields could be modeled as jump diffusion processes due to sudden changes or jumps

observed, in markets and the dynamic behavior of micro-organisms such as cells. In ad-

dition, in robotics, Markov jump diffusions could model contact phenomena of walking

robots with the ground. Thus, extending the path integral control framework to Markov
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jump diffusion processes is of our interest. A Markov jump diffusion is expressed by the

equation:

dx = F(x,u)dt+ B(x,u)dω + h(x, t)dP(t)

where F(x,u) ∈ <n×1 is the drift term, B(x,u) ∈ <n×m is the diffusion term and

h(x, t) ∈ <n×l is the poisson process coefficient. The HJB equation for the case of markov

diffusions processes is a PDE equation with an additional integral term that corresponds

to the poisson distributed stochastic term dP. It is an open question weather or not the

path integral control framework could be derived for the cases of Markov jump diffusion

processes and certainly it is a topic of current and future research.

9.2.3 Path integral control for generalized cost functions

In this work, the cost functions under optimization have no cross terms between control

and state dependent terms. However, one may consider a more general case of cost

function in which besides the state dependent and control dependent term, there is an

additional term that is the projection of controls on the space of the state. These cost

functions have the form:

Lt = L(xt,ut, t) = q0 (x, t) + q1(x, t)Tu +
1
2
uTt Rut

For these cost functions one can show that the optimal controls are expressed as

follows:
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u(x, t) = −R−1

(
q1(x, t) + G(x)T∇xV (x, t)

)

The linear HJB for this case is expressed as:

−∂tΨt = − 1
λ
q̃0Ψt + f̃Tt (∇xΨt) +

1
2
tr ((∇xxΨt)Σt)

where the terms q̃0 and f̃ are given as follows:

q̃0 (x, t) = q0 (x, t)− 1
2
q1(x, t)TR−1q1(x, t), f̃ (x, t) = f (x, t)−G (x, t) R−1q1(x, t)

Under the logarithmic transformation the optimal controls are defined by the equation:

u(x, t) = −R−1

(
q1(x, t)− λG(x)T

∇xΨ(x, t)
Ψ(x, t)

)

It is a topic of future research to investigate the differences in the resulting optimal

policies when this type of cost functions is used.

9.3 Future work on stochastic dynamic programming

Another contribution of this thesis is the derivation of the stochastic version of Differential

Dynamic Programming (SDDP) for the cases of stochastic dynamical systems with state

and control multiplicative noise. There are many possible extensions and research topics

for SDDP which are summarized as follows:
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• Further applications of SDDP to stochastic dynamical systems and extension for

the case of constraints in state and controls.

• So far we have derived the SDDP by using the Itô calculus. It is of our interest

to investigate how different discretization schemes based on Stratonovich or other

stochastic calculus could affect the convergence of SDDP. This is important for

systems where the noise is control and state multiplicative.

• Extensions of SDDP to the cases of partial observability and the addition of a

extended second order truncated Kalman filter. The resulting algorithm can be

thought as a version of nonlinear LQG design in which state space dynamics are

expended up to the second order for both estimation and control.

9.4 Future work on neuromuscular control

The application of optimal control methods to identify the underlying tension profiles for

the index finger reveals that the results depend on the model. We have used two different

moment arm models that distribute the forces applied on the index finger in a different

way. The question of, which moment arm model is the most appropriate one, is open and

difficult to answer since it requires a experiments in which access to tendon tensions is

possible.

A topic for future research is to develop methods which could be used to verify bio-

mechanical models before optimal control is applied. A possible way to verify models

of the index finger biomechanics would be to record trajectories of finger movements in
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humans, and then test weather or not the candidate models satisfy the local controlla-

bility condition when they are linearized on the recorded trajectories. But even if the

controllability condition is satisfied that does not mean that the tested model is a good

candidate due to the fact that controls are constrained. More precisely if neural activity

is treated as the control variable then it is bounded between 0 and 1 while in cases where

the forces produced by the muscles is treated as controls then these control variables

have to be positive. Thus, the controllability condition is a necessary but not a sufficient

condition for the case of constrained controls.

Future research will investigate the application of alternative methods of optimal

control such as the Pseudospectral methods. In Pseudospectral methods, the optimal

trajectory and control are represented as polynomial functions of time. These methods

can handle hard constrains in control and state however they provide open loop optimal

policies and not feedback policies. Moreover, they are mostly applicable to deterministic

and not stochastic systems. It is really an open question how Pseudospectral methods

compare to iterative methods and how they could be applied to bio-mechanical models.
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