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Abstract—We present the Markov Chain Monte Carlo 
(MCMC) approach in the context of a musculoskeletal model 
of the thumb. With special consideration for the complexities of 
biomechanical modeling, we present this approach as an 
alternative to standard parameter estimation techniques that 
produce a single, in some way optimal, set of parameter values. 
In contrast, MCMC methods are derived from a Bayesian 
philosophy, in which each “true” model parameter is actually a 
random variable with its own probability distribution. With 
MCMC we can (1) address challenges of model parameter 
estimation that are difficult for gradient-based methods to 
meet, (2) estimate the inherent biomechanical capabilities of a 
specific “model topology” for large, variable parameter spaces 
(e.g. 50-dimensional for the assumed thumb model), and (3) 
determine the functional consequences of the unavoidable 
anatomical variability across subjects in a population. Using 
the MCMC approach with a Metropolis-Hastings sampling 
algorithm we explored a 50-D musculoskeletal parameter space 
and successfully achieved convergence. We found the relatively 
small subspace of the expansive 50-D space that, for a hinged 
serial linkage model of the thumb, predicts functional outcomes 
that best-fit the experimental data. 
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I.  INTRODUCTION 

The objective of this work is to present the Markov 
Chain Monte Carlo (MCMC) approach as a statistics-based 
model parameter estimation methodology for biomechanical 
modeling. Modeling begins typically by selecting a model 
topology by hand (i.e., assumed biomechanical structure) 
and then the model parameters (i.e., specifics of the 
structure) are adjusted in an effort to explain and/or 
reproduce experimental data. If the unavoidable 
discrepancies between model predictions and experimental 
data are too large, one must ask whether this is due to 
inadequate model topology and/or because the search for 
satisfactory model parameter values has been unsuccessful. 
The challenge is to determine if additional or alternative 
explorations of the parameter space would improve results 
sufficiently, or if using an alternative model topology would 
be more fruitful. Improving current models necessitates that 
we explicitly investigate how the assumed model topology 
fundamentally determines and limits model behavior [1]. 

Parameter estimation literature has typically focused on 
objective functions and methods (e.g., gradient descent or 
simulated annealing) that produce a single, in some way 
optimal, set of parameters (e.g. maximum likelihood 

estimation). Methods such as least-squares estimation and 
maximum likelihood estimation, however, were derived 
under a Frequentist (or non-Bayesian) philosophy, which 
views “true” model parameters as being unknown and fixed 
(i.e. non-random). In contrast, the Bayesian philosophy 
views “true” model parameters as random variables 
themselves rather than fixed values [2]. This Bayesian 
viewpoint is perhaps more germane to biomechanics, where 
anatomical variability is the rule, because it  acknowledges 
that each model parameter has its own probability 
distribution and is an instance of a random variable from 
this distribution. 

In our modeling work on the human thumb, we have 
used a Monte Carlo approach to emphasize the need to 
understand the inherent biomechanical capabilities of a 
particular model topology by treating parameters as random 
variables to acknowledge the unavoidable variability and 
uncertainty of parameter values, and by considering 
numerous realistic model parameter combinations [3]. The 
MCMC approach is a powerful extension that can address 
challenges of complex biomechanical modeling that are 
difficult for gradient-based methods to meet. For example, 
MCMC can guarantee an exhaustive exploration of a 
complex high-dimensional parameter space of random 
variables (e.g., 50-dimensional for the assumed thumb 
model), can accommodate nonlinear and discontinuous 
system behavior, and yields parameter distributions (guided 
by experimental measurements) and their associated 
biomechanical output [4]. These resulting distributions can 
be easily compared with statistical distributions of 
experimental measurements. Furthermore, the MCMC 
approach allows us to explicitly determine the sensitivity of 
the model topology to parameter variability and uncertainty, 
resulting from anatomical variability across a population and 
sparseness of data, respectively. 

II.  METHODOLOGY 

We extend the use of stochastic methods in 
biomechanical modeling [3,5] by implementing Markov 
Chain Monte Carlo simulations using a Metropolis-Hastings 
sampling algorithm to investigate the effects of 
musculoskeletal variability on the capabilities of a thumb 
model to realistically predict static thumbtip force 
production in 3D. MCMC analysis is quite well-known in 
the fields of biology, chemistry, and physics, where it was 
first introduced [6]. To our knowledge, the MCMC 
technique has not yet been employed to investigate 
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musculoskeletal parameters and their variability in the 
context of biomechanical modeling. 

A.  Markov Chain Monte Carlo (MCMC) simulations 

Markov Chain Monte Carlo methods can be used to 
estimate the parameters of complex multivariate systems 
that are difficult or impossible to solve in closed form by 
using relatively simple sampling techniques. A Markov 
chain is a discrete random process in which the next state of 
a system (e.g. parameter values) is dependent only upon the 
system’s current state [4]. That is, the starting point and 
history of the system up to the current state are irrelevant. 
Once a sampling algorithm has been properly constructed, 
we can run Markov chains for a sufficiently large number of 
iterations and the Law of Large Numbers [2] will ensure that 
we converge upon the target distribution of interest π(θ), 
also known as the stationary distribution or the posterior 
distribution p(θ|x), the probability of the model parameter 
vector θ, given observed data x. Due to the memoryless 
nature of the Markov chain, independent chains started at 
overdispersed initial conditions should eventually converge 
to the target distribution, if it exists. 

We performed Markov Chain Monte Carlo simulations 
in MATLAB™, utilizing a Metropolis-Hastings sampling 
algorithm [4]. At each iteration, a candidate model 
parameter vector θcand is drawn from a proposal distribution 
q(θcand|θn). According to the algorithm, this candidate 
parameter set is accepted with an acceptance probability α 
of 
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where θn is the current parameter set. At each iteration, α is 
calculated and a random uniform variable U(0,1) is drawn. 
If the random uniform variable lies in the [0,α] range, θcand 
is accepted and we set θn+1=θcand. Otherwise, we set 
θn+1=θn. 

The formulation of the proposal distribution q(θcand|θn) 
is such that the candidate parameter set depends only on the 
current parameter set. This is the very nature of the Markov 
chain. When the proposal distribution is symmetric, the 
Hastings ratio q(θn|θcand)/q(θcand|θn) equals one and (1) 
simplifies to the special Metropolis case [4]. 

α θ n,θ cand( )=min
π(θ cand )
π(θn )

,1
 
 
 

 
 
 

 (2) 

To generate our candidate parameter sets, we perturbed 
elements of the most recent parameter set θn by a constant 
drawn from a uniform proposal distribution U(0,1) and 
scaled by a constant vector c. The value of each c element 
was specific to each model parameter and was first 
arbitrarily set at 20% of the allowable range of each 

parameter (i.e., the bounds of the prior distribution p(θ), our 
assumed distribution of model parameters informed by prior 
knowledge). We then adjusted the individual elements of c, 
as necessary, to achieve an acceptance rate of approximately 
25% [7]. 

θcand = θn ± c*Uniform(0,1) (3) 

Due to our symmetric uniform proposal distribution, our 
acceptance probability equation reduced to the special 
Metropolis case (2). 

According to Baye’s Rule, the target (or posterior) 
distribution π(θ) is proportional to the product of the 
likelihood p(x|θ) (also written L(θ)) and the prior 
distribution p(θ) [2]. The likelihood characterizes the 
probability of observing data x, given the model parameter 
vector θ. 

π(θ) = p(θ|x) ∝  p(x|θ)*p(θ) (4) 

Combining (2) and (4), we get 

α θ n ,θ cand( )=min
p(x |θ cand ) ∗ p(θ cand )

p(x |θ n ) ∗ p(θn )
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In practice, the prior distribution p(θ)is chosen to reflect 
the amount of prior knowledge of the parameters. For 
example, if it is known that a particular anatomical 
parameter (e.g. bone length) has a limited range, the 
minimum and maximum values can be reflected in the 
boundaries of the prior distribution. Furthermore, the 
certainty or uncertainty in the prior knowledge can be 
represented in the prior. For instance, one can use a normal 
distribution with a small variance (high degree of certainty) 
or a large variance (low degree of certainty). The prior 
distribution can also be justifiably vague or diffuse, as in the 
case of a uniform distribution where no a priori knowledge 
about a variable’s distribution can be assumed, other than its 
anatomical bounds. 

We assumed a model topology, consisting of a hinged 
serial mechanism [8] based on anatomical data [9], and 
focused on evaluating the biomechanical capabilities (see 
methods in [3]) of this topology when varying its 50 
parameters as per assumed prior distributions. We 
conservatively assumed a uniform distribution for each 
model parameter because experimental measurements are 
sparse (i.e., of unknown distribution) and we were interested 
in a thorough exploration of the parameter space without 
biasing the selection of parameters. We bounded each 
parameter’s uniform prior based on published or measured 
data (mean  ± std) [10]. When assuming a uniform 
distribution as the prior distribution for all model 
parameters, the p(θcand) and p(θn) terms cancel in (5). As a 
result, the acceptance probability α becomes a function of a 
ratio of likelihood distributions. 
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Assuming that the experimental data vector x (n x 1) is 
composed of independent, identically-distributed 
observations, each likelihood distribution can be expanded 
in the following manner. 

p(x |θ)= p(xi |θ)
i=1

n

∏  (7) 

Our experimental data vector consisted of independent, 
maximal voluntary thumbtip force measurements [3]. We 
assumed each observation xi to be identically-distributed 
from a normal distribution xi ~ N(f(θcand/n),Λ) where each 
mean was a function of either θcand or θn. As a result, our 
acceptance probability had the following form 
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Note the least-squares structure of the numerator and 
denominator in (8). If the thumbtip force and muscle 
coordination pattern predictions of a candidate parameter set 
θcand do not match as well with the experimental data vector 
x as the current parameter set θn in a least-squares sense, the 
argument of the exponential becomes increasingly negative, 
resulting in a smaller numerator. The acceptance probability 
α becomes smaller and the Markov chain is less likely to 
accept the candidate parameter set. 

We ran MCMC simulations, using experimental data 
from four subjects [3] to compose x and the variance-
covariance matrix Λ. We started each Markov chain with a 
randomly chosen thumb model that could produce well-
directed maximal static thumbtip forces in each of the five 
orthogonal directions for two pinch postures [3]. A total of 
50 parameters were randomly selected from their respective 
prior distributions: 12 bone lengths/widths, 8 physiological 
cross-sectional areas, 4 extensor mechanism angles, 16 axis 
of rotation location/orientation parameters, and 10 posture 
joint angles (5 each for key and opposition pinch).  

B.  Convergence criteria 

We ran ten independent Markov chains for each of four 
subjects in order to obtain overdispersed starting points and, 
thus, a fair and thorough exploration of the 50-dimensional 
parameter space [4]. We visually checked the starting points 
of each chain (first randomly drawn parameter sets) to make 
sure that they spanned the uniform prior distribution space 
in an unbiased manner. However, since the Markov process 
is memoryless, the dispersion of the starting points was not 
as important as verifying that each parameter was 
sufficiently explored across its allowable range. We 

confirmed for each subject that the ten chains, collectively, 
explored the allowable range for each parameter. 

Convergence among chains was based on the widely-
used Gelman-Rubin statistic ( R̂ ), which compares the 
variance between independent chains to the variance within 
each chain [4]. This ratio approaches 1 as the model 
parameters approach their target distributions. In practice, 
once the R̂  value falls below a threshold of 1.2 for all 
parameters for the remainder of the simulations, the chains 
are said to be “mixing well” and successful convergence to 
the target distributions is assumed. Once convergence is 
achieved, it is believed that model parameters are being 
randomly drawn in proportion to their true, yet unknown, 
distributions. The iterations preceding the crossing of the 
critical R̂  threshold are part of the “burn-in” period. As is 
typically done, we discarded iterations from the burn-in 
period and pooled iterations after the burn-in period for 
drawing inferences (conclusions). 

If chains were not mixing well, elements of the scaling 
vector c in (3) were adjusted to increase the chain 
acceptance rates, thereby allowing chains to “escape” their 
current unacceptable locations and eventually mix well with 
one another, analogous to raising the temperature in 
simulated annealing. 

Upon convergence of the ten chains, we extended 
chains as needed in order to adequately sample the 
parameter space of the converged model. We extended 
chains until we had obtained approximately twice as many 
converged iterations as it took for the ten chains to converge 
(e.g. extended simulations to 3,000 iterations/chain if 
convergence took 1,000 iterations). 

III.  RESULTS 

Importantly, despite the complexities of the 50-D 
parameter space, the MCMC simulations converged (Fig. 1) 
and posterior distributions for all 50 parameters were 
obtained. We obtained approximately 23,000 pooled, 
converged data-driven iterations. 
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Fig. 1.  The Gelman-Rubin statistic for a representative model parameter 
dropped below the 1.2 threshold value at the "burn-in" iteration indicated 

by the asterisk. Only data after the burn-in iteration were used for inference. 
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IV.  DISCUSSION 

The Bayesian MCMC methodology has often been 
criticized for its subjective selection of the prior distribution. 
However, proponents of the Bayesian philosophy counter 
that (1) prior information should be used if available and (2) 
if the MCMC simulations are run for a sufficiently long time 
(i.e. to convergence), the selection of the prior distribution 
becomes less important and the data, in a sense, speaks for 
itself. The MCMC approach essentially uses observed data 
to “update” the prior model parameter information. 

One major advantage of the MCMC approach is that the 
output of the simulations consists of a posterior distribution 
for each parameter. These distributions can, in turn, be used 
as prior distributions for future simulations, instead of the 
diffuse priors used in this initial study. Furthermore, should 
one desire a single set of parameter values (for a single 
generic model, for example), these values can be readily 
obtained from the distributions (e.g., modes, means, 
confidence interval boundaries). 

The Bayesian concept that “true” parameters are 
themselves random variables from statistical distributions is 
particularly well-suited to study biomechanical function in 
musculoskeletal systems that naturally vary across the 
population. An identical modification of two sufficiently 
distinct biomechanical systems can result in different 
functional outcomes. Thus, it is not surprising that clinicians 
report that subject-to-subject anatomical variability 
contributes to the success or failure of a clinical method, 
such as functional electrical stimulation, tendon transfers, 
arthroplasties, etc. This Bayesian approach allows us to pose 
questions such as: Given that anatomical variability exists 
from one human to the next, can the selected model 
topology lead to meaningful clinical predictions once we 
consider anatomical variability? Can one use a general 
model for the entire population, or are subject-specific 
models necessary? If so, which model features/parameters 
should be adjusted? We continue to address these issues in 
our efforts to produce clinically useful models for studying 
the functional consequences of orthopedic and neurological 
diseases, and their treatment outcomes. 

V.  CONCLUSION 

Using a Bayesian approach that considers model 
parameters as realizations of random variables instead of 
unknown constants, we found the distribution and range of 
all possible functional capabilities for a specific model 
topology resulting from measured anatomical variability of 
the thumb. We used a Markov Chain Monte Carlo approach 
with a Metropolis-Hastings sampling algorithm to explore a 
50-D parameter space and successfully achieved 
convergence. Given 50 model parameters, each with their 
own variability and uncertainty, we found the relatively 
small subspace of the expansive 50-D space that, for the 

hinged serial linkage model topology, predicts functional 
outcomes that best-fit the experimental data. That is, there is 
no other subspace that would fit the experimental data 
better. Further details regarding the thumb model, the 
capabilities of the model topology, and the biomechanical 
consequences of the anatomical variability will be the 
subject of a separate publication. 
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