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Abstract— Personalized training by taking into account 

individual anatomy to improve performance is a research 

frontier. In this paper, we first introduce an analytical method 

to study the pattern of changes in muscle forces as a function of 

posture. Our method is also able to analyze variation of 

maximal muscle force and muscle activation values (in various 

postures) as a result of posture-dependent changes in moment 

arms. This method also helps us evaluate the utility of person 

specific training. It also provides us with model based 

approximations for activation and muscle force patterns during 

different motions without a need for subject recordings, which 

enables athletes to have a better understanding of how each 

muscle contributes during each posture, in a fast and efficient 

way. Second, we analyze the results of this method for a simple 

squat move. Our results show that both maximal muscle force 

and muscle activation values have variable sensitivity to the 

moment arm values for different postures and muscles. It 

suggests that individually modified training plans could likely 

improve performance for some sets of movements. 

I. INTRODUCTION 

Athletes often perform a variety of exercises to assist in 
enhancing their performance and optimizing their skill set for 
their sports. In addition, athletes can use some of the same 
exercises to enhance the rehabilitation process [1]. However, 
incorrect form can initiate severe damage to muscle tissues 
that cause impairment to motion and long-term injuries [2]. 
One of the most fundamental exercises performed by athletes 
is the squat [3]–[5]. The squat is a movement that can reveal 
the robustness and condition of the lower-limbs, such as leg 
alignment [6], efficiency of performance output [7], and 
functional deficits [8]. The squat is also used to evaluate the 
muscle activation in rehabilitative stroke patients [9]. We are 
also interested in the squat motion since it does not 
necessarily require complex physical models to analyze it. 

Studying muscle activity patterns is essential in 
improving athletes’ performances and prompting faster 
rehabilitation  [10]. EMG analysis is the most commonly 
used technique to address this need [5], [10]. However, the 
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process of gathering EMG records often presents 
disadvantages with being time-consuming, demanding 
expensive hardware usage, requiring expert participation that 
may not be readily available, and is not practical in some 
situations; e.g., studies involving children [11]. Moreover, the 
practical EMG systems are mostly limited to the surface 
muscles. Therefore, model based approaches are more 
attractive in cases with any of the above-mentioned 
limitations. 

In addition, there is an increasing interest in taking 
individual variability into account to mitigate muscle damage 
as well as devising the best training strategy for each person 
[12], [13]. Scientists have turned to personalized (precision) 
medicine and health [14], [15] to understand the intricacies 
that play a role in muscle development per person. 
Personalized health for athletic training often investigates the 
connection between genetics and exercise response [16]–
[18]. However, there is also value in exploring the dynamics 
between neuromechanics [19], [20] and exercise response 
[5]. It is also not clear if personalized training is actually 
necessary for a particular move and, even if it is, which 
muscles are more effected by the variations in biomechanical 
properties in individuals. In this paper, we investigate the 
necessity of exercise routines and training regimens that are 
tailored to the unique constraints and musculoskeletal 
structure of individual subjects rather than the population 
average. 

The aforementioned issues of providing a feasible 
alternative to EMG analysis and attempting to apply 
personalized medicine to physical training in a practical way 
were addressed by devising a model-based approach and 
sensitivity analysis for the model parameters, respectively. In 
this study, we have introduced a method to analyze muscle 
forces and activation levels in different postures and 
investigate their behavior in response to variation in moment 
arm values. Here, we have analyzed the muscle activities in 
the squat motion (in a quasi-static case) during the rising up 
phase of the squat cycle; however, it needs to be noted that 
this method can be applied to any other motions. In our 
simulations, the primary objective was to maximize the 
endpoint force in the vertical direction (upward) and examine 
the contribution of each muscle as a function of posture. We 
have used linear optimization to find the muscle activation 
patterns for which the vertical force is maximal and 
performed Monte Carlo analysis to study the sensitivity of 
maximal muscle forces and muscle activation patterns in each 
posture to the moment arm values. 
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Fig. 1. Thirteen different postures used in the simulations (a). List of the 
muscles in the model (b). 

II. METHODS 

A. Biomechanical model 

In this study, we use a simplified three joint (ankle, knee, 
and hip) planar model of the human leg with 20 muscles. The 
complete list of these muscles is shown in Fig. 1. More 
information on each muscle (i.e., optimal lengths, peak 
forces, etc. are available at [21]). The tendon routing of the 
model we are using is illustrated in Fig. 1. In this model, we 
have assumed stiff tendon properties and fixed moment arm 
values as a function of joint angles. 

Here, we are only considering the quasi-static case during 
each posture (and by so, we can avoid unnecessary 
complications that movement kinematics will cause). We 
have also disregarded weights of different leg parts since they 
are very small compared to the torso plus weights that the 
athlete will move during the squat move. In addition, our 
model is limited to the sagittal plane. 

B. Monte Carlo analysis 

To incorporate the differences between different subjects 
in terms of the moment arm values as well as finding the 
sensitivity of the results to these values, we performed a 
Monte Carlo analysis. We have randomly (uniform 
distribution) changed the moment arm values within ±25% of 
their original values. 

C. Positions 

Joint angles for 13 different postures were manually 
extracted from a video of a professional trainer performing 
the squat movement. These inputs were later fed to the 
MATLAB code. Only the movement from a full squat to an 
upright position was considered. The transition between these 
postures is illustrated in Fig. 1. 

D. Kinetics equations and the linear optimization 

The forward kinematic model (also known as the 
Geometric Model [19], G) of the three DOF model used in 
this study is defined on Eq. 1 [19]. 

 𝐺(𝜽) = (

𝑥
𝑦
𝜑

) 

where 𝜽 is the vector of joint angles and 𝑥, 𝑦, and 𝜑 are the 
horizontal position, vertical position, and rotation of the 
endpoint, respectively. The equation for the corresponding 
wrench space (𝑤) of this forward model is defined in Eq. 2: 

 𝑤(𝜽) = (

𝑓𝑥

𝑓𝑦

𝜏𝜑

) = 𝐻(𝜽)𝜶 = 𝐽(𝜽)−𝑇𝑅(𝜽)𝐹0(𝜽)𝜶 

 where J is the Jacobian matrix, 𝑅 is the moment arm matrix, 
𝐹0 is the diagonal maximal muscle force matrix and 𝜶 is the 
muscle activation vector. The effects of the length of muscles 
on their forces [19] were also applied during calculations of 
the maximal muscle force for each muscle in each posture. 
The goal of the linear optimization [19] exploited in this 
study is to find the muscle activation patterns for each 
posture that maximize the vertical force at the endpoint in the 
upward direction (positive in y axis) while limiting the 
horizontal forces (less than 10N) at the endpoint as well as 
keeping activation values between 0 and 1. The equations 
governing the linear optimization performed in this study are 
described in Eq. 3: 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝒄𝑇𝛼 𝑠. 𝑡. 𝐴𝜶 ≤ 𝒃 

where 𝒄 is the cost function vector, here the second row of 𝐻 
matrix defined on Eq. 2, and 𝐴 and 𝒃 define the linear 
inequality constrains discussed earlier. In addition, muscle 
excursion is defined as the change in the length of a muscle 
(more accurately, musculotendon length) from its reference 
state. The vector of muscle excursions, 𝛿𝒔, was calculated 
using Eq. 4: 

 𝛿𝒔 = −𝑅𝑇𝛿𝒒 

where 𝛿𝒒 is the joint angle displacement vector. 

E. Force-length properties of muscles 

The maximal muscle force that each muscle can produce 

is a function of muscle length and muscle velocity.  We have 

applied peak force values for each muscle to their force-

length curves to calculate the maximal muscle force during 

each posture. Moreover, since we are doing a quasi-static 

analysis, we did not apply force-velocity equations. 

III. RESULTS 

One hundred Monte Carlo runs (with ± 20% change in 
the moment arm values) were performed for each posture. 
Linear optimization results showed us that optimal activation 
values were distributed very sparsely. I.e., 95% of activation 
values were either zero (not activated at all) or one (fully 
activated). These activation values were further multiplied to 
the maximal muscle force for each posture to produce the 
exerted muscle forces. Exerted muscle force values as a 
function of posture are illustrated on Fig. 2. In this figure, 
force values of each muscle in each posture were calculated 



  

 

Fig. 3. Four selected muscles to represent the most important types of muscle force and muscle activity patterns we observed during the simulations. 

 

Fig. 2. Exerted muscle force values as a function of posture (averaged 
across all the Monte Carlo runs). See Fig. 1 for the list of the muscles. 

by averaging over all Monte Carlo run results for that muscle 
and posture combination. We can see that there is a pattern in 
which muscles tend to exert higher forces centered around 
Posture 6. We also observe that for this specific task 
(maximizing the upward force), the force value for different 
stages of the movement has high variation for some muscles, 
while it is relatively more consistent (or even all zeros) for 
some other muscles. 

Fig. 3 shows maximal muscle force values (for all the 
Monte Carlo runs) as a function of posture for six selected 
muscles (red) as well as the exerted muscle force values 
(blue), which are, as mentioned earlier, maximal muscle 
forces multiplied in their corresponding activation values. 
The parts in which red and blue lines overlap are blue 
depicted in purple. These plots illustrate the sensitivity of the 
results to the moment arm values in each posture. 

IV. DISCUSSION 

In this paper, we have introduced an analytical method to 
study muscle activations and their sensitivity to moment arm 
values during different tasks. Using this method, we have 
provided the results on how muscle forces change in different 
postures during a sample task (maximizing upward force 
during a squat move). We have also studied the sensitivity of 
the output force for each muscle in different postures to the 
moment arm values. 

Since our simplified biomechanical model does not use a 
feedback controller and excludes balance and weight factors, 
it does not reproduce some co-contractions seen in biological 

systems and muscles here are activated mainly to fulfill the 
optimization goal (maximizing the upward force). This 
explains the sparsity of the activations for muscles and the 
lack of activation for the muscles which do not contribute 
toward the goal. 

Fig. 2 shows us that patterns in force value (as a function 
of posture) can be considerably different across muscles. 
Using this figure, we can find out how much force each 
muscle (on average across different moment arm values) will 
exert in every single posture. This will help athletes to find 
posture in which they can focus more on a specific muscle as 
well as helping individuals suffering from injuries to avoid or 
get support during the postures in which their injured muscles 
will be highly activated. Fig. 2 also shows that although there 
are variations in the force patterns across different muscles, 
most of the muscles have higher values around Posture 4 to 6. 
These findings are generally, even with the aforementioned 
simplifications of the model, in agreement with the subject 
based studies made by EMG recordings [5]. The reason for 
these peaks in the muscle force curves is that, in our model, 
most of the muscles are on their optimal length around 
halfway through the squat move and therefore their force-
length curve values are maximal in that position. 

In Fig. 3, we have selected four different muscles as a 
subset to represent the most important types of muscle force 
and muscle activation patterns we observed during the 
simulation. Plots in this figure show that maximal muscle 
force (red) in some muscles (e.g., vastus lateralis, 
semimembranosus, biceps femoris short head) is highly 
sensitive to the moment arm values while it is not in some 
others (e.g., gluteus maximus). It also shows that even in the 
muscles with high sensitivity to the moment arm values, this 
sensitivity can change in different postures. These two 
findings are important since they affirm that our simulation 
results can help athletes, coaches, and individuals in planning 
their exercises while being able to evaluate the need to make 
individualized adjustments. I.e. these simulation results 
enable physically active individuals to evaluate whether they 
would be safe from injuries with a general exercise plan (if 
the sensitivity in muscle/posture was low) or they need 
individualized adjustments (if the sensitivity was high). 
These adjustments can be in terms of the postures they should 
put more focus on (trying to increase the amount of the 
exerted force or the time duration spent during that posture) 
or the postures they need to avoid (or get help with) during 
their practices. 

Fig. 3 also shows us that even in cases where the maximal 
force value is not sensitive to moment arm values, the actual 



  

exerted force (maximal force × activation value) can be (e.g., 
vastus lateralis, biceps femoris short head). This means that 
even if the maximal force is not sensitive to the moment arm 
values, personalized planning might be needed in performing 
some tasks due to the sensitivity in the activation values. 
Moreover, Fig. 3 shows that, just like the sensitivity of the 
maximal force value, the sensitivity of the activation values 
does not follow a simple pattern and can change based on the 
muscle and posture. Therefore, for each training, a 
biomechanical analysis similar to what is provided here is 
needed to evaluate the need of personal training in each 
posture. 

Finally, although the general pattern of our results is 
consistent with experimental studies, there are some 
differences (e.g., sparsity of the activation values and some 
muscles being completely inactive). We believe that factors 
such as imposed constraints of the task, simplicity of the 
model, quasi-static assumption for the task, and lack of a 
feedback controller to perform the task are main contributors 
to these mismatches. We believe that, although our model 
performed well even with the simplifications made here, 
adding more physical and kinematical details can increase the 
precision of its results even further. 

In terms of the potential future work, we believe that one 
interesting avenue to pursue is to add more details to the 
model, especially physics of the movement (E.g., inertias, 
accelerations, etc.), to have it more in line with the real-world 
kinematics. In addition, comparing these findings with more 
comprehensive clinical studies, especially intramuscular 
recordings from non-surface muscles, would be particularly 
helpful in assessing the accuracy of the proposed 
methodology. 
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