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Abstract 

Robots will become ubiquitously useful only when they can use few attempts to teach 

themselves to perform different tasks, even with complex bodies and in dynamical 

environments. Vertebrates, in fact, successfully use trial-and-error to learn multiple tasks 

in spite of their intricate tendon-driven anatomies. Roboticists find such tendon-driven 

systems particularly hard to control because they are simultaneously nonlinear, under-

determined (many tendon tensions combine to produce few net joint torques), and over-

determined (few joint rotations define how many tendons need to be reeled-in/payed-out). 

We demonstrate—for the first time in simulation and in hardware—how a model-free 

approach allows few-shot autonomous learning to produce effective locomotion in a 3-

tendon/2-joint tendon-driven leg. Initially, an artificial neural network fed by sparsely 

sampled data collected using motor babbling creates an inverse map from limb kinematics 

to motor activations, which is analogous to juvenile vertebrates playing during 

development. Thereafter, iterative reward-driven exploration of candidate motor 

activations simultaneously refines the inverse map and finds a functional locomotor limit-

cycle autonomously. This biologically-inspired algorithm, which we call G2P (General to 

Particular), enables versatile adaptation of robots to changes in the target task, mechanics 

of their bodies, and environment. Moreover, this work empowers future studies of few-

shot autonomous learning in biological systems, which is the foundation of their enviable 

functional versatility. 

 

Summary 

Our General-to-Particular algorithm, as in young vertebrates, uses motor babbling to 

autonomously learn a desired task within a few attempts. 
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MAIN TEXT 

 

Today’s successful control algorithms for robots often require accurate models of the 

plant, task, and environment. Without such models, controllers must either imitate 

prescribed behavior1–4 or execute numerous iterations in the real world or in simulation 

(real-time or off-line) to converge on adequate performance5,6. In contrast, an approach 

that is both model-free and only requires limited interactions becomes necessary when 

models are not available for complex and changing systems/environments, or when 

exhaustive iterations are not feasible. Ultimately, model-free approaches that learn using 

limited interactions with the environment (the so-called “few-shot” problem 7) could 

imbue robots with the enviable resilience and versatility of animals during locomotion, 

manipulation, and flight. 

Here, we demonstrate how autonomous learning can produce effective locomotion 

patterns in a tendon-driven limb (Figure 1 and Figure S1) via a model-free few-shot 

approach. Our approach is biologically-inspired at two levels: first, by using tendons to 

generate torque on the joints and second, by using motor babbling—as in juvenile 

vertebrates8,9—to learn the general capabilities of the plant followed by refinements that 

are particular to a task (i.e., General-to-Particular, or G2P).  Moreover, we control the 

limb via tendons to (i) replicate the general problem biological nervous systems face when 

controlling limbs10, and (ii) because tendon-driven limbs can offer robots unique 

advantages in design, placement of actuators, versatility, and performance11. 

Successful control of tendon-driven limbs is a challenging test of learning and control 

strategies12. Roboticists find such anatomies particularly hard to control because they are 

simultaneously nonlinear, under-determined (many tendon tensions combine to produce  
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Figure 1. Planar robotic tendon-driven limb (a) General system overview 1. Motor-joint carriage 2. Motor 

ventilation 3. Shaft collars 4. Joints (proximal and distal) 5. Passive hinged foot. 6. Treadmill 7. Direction of 

positive reward 8. Linear bearings on carriage (locked during testing) 9. Treadmill belt 10. Treadmill drum 

encoder.  (b) Fully supported system 11. Frame 12. Absolute encoders on proximal and distal joints 13. 

Ground. (c) Tendon routing 14. Three tendons driven by motors M0, M1 and M2.  (d) System actuation. Motor 

M1 drives only the proximal joint ccw, while M0 and M2 drive both joints (M0 drives the proximal joint cw, 

and the distal joint ccw, while M2 drives both joints cw). 15. Tendon channel. 
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few net joint torques), and over-determined (few joint rotations define how many tendons 

need to be reeled-in/payed-out)10,13. 

This work fills a critical gap in robotic learning and control by demonstrating a bio-

inspired, practical, and autonomous approach that can perform and adapt to arbitrary tasks, 

plants and environments, without a priori knowledge using minimal exploration. It also 

fills a critical gap in computational neuroscience as it provides proof-of-principle of the 

control of tendon-driven limbs with a biologically and developmentally tenable approach. 

Results  

The G2P algorithm autonomously learns locomotion (i.e., propels a treadmill while 

supported by a carriage) without closed-loop error sensing, nor an explicit model of the 

dynamics of the tendon-driven limb or ground contact. We also show that execution of 

multiple attempts can itself lead to improvement in performance on account of a refined 

inverse map. Such cost-agnostic improvements serve as a proof-of-principle of a 

biologically-tenable mechanism that benefits from familiarity with the task, rather than 

teleological optimization, or even error driven correction. 

Locomotion Task 

Figure 2 shows an overview of the G2P algorithm described in detail in the Methods. At 

first, a given run begins with a 5-minute motor babbling session where a time-history of 

pseudo-random control sequences (a 3-D time-varying vector of current to each motor) is 

fed to the limb while its kinematics (joint angles, angular velocities and angular 

accelerations) are measured by encoders at each joint. An artificial neural network then 

uses these motor babbling data to create an initial inverse map from 6-dimensional 

kinematics to 3-dimensional control sequences. To produce functional locomotion 

(without imitation), first, ten free parameters define a limit-cycle feature vector in the joint  
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Figure 2. The G2P algorithm Every run of the algorithm begins with (a) time-varying babbling control 

sequences (activations A0 that run through the electric motors) that generate five minutes of random motor 
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babbling (P0). These input-output data are used to create an inverse (output-input) map ANN0 from limb 

kinematics to control sequences. (b) Reinforcement learning begins by varying the ten free parameters of the 

feature vector defining a kinematic limit cycle. These limit cycles in principle can propel the treadmill. ANN0 

maps each candidate kinematic limit cycle into activation sequences. An attempt is when a kth activation 

sequence is repeated twenty times and used to produce twenty steps worth of kinematic data. These kinematic 

data are further processed and concatenated with all prior data to refine the inverse map into ANNK. The total 

treadmill propulsion, if any, is the reward for that attempt. (c) If the new reward exceeds the best so far, the 

policy updates its memory of the best so far and continues its search in the increasingly smaller neighborhood 

of the most successful limit cycle feature vector. But note that data from all attempts (whether they improve 

on the best so far or not) are used to refine the inverse map. Figure 3 describes data processing for each run. 

 

 

angle space (which will define 6-dimensional limb kinematics: joint angles, angular 

velocities and angular accelerations for each of the two joints; see methods for details). 

Next, these ten points are interpolated and fed through the initial inverse map which 

produces a cyclical control sequence that should generate the aforementioned kinematics 

(Figure 2c). Those predicted control sequences are delivered to the robotic limb twenty 

times in a row (i.e., for twenty steps or twenty repeats of the locomotor limit cycle). The 

reward for that attempt is the distance the treadmill was propelled backward, in 

millimeters (mm), as in forward locomotion. Each run of the G2P algorithm, Figure 3, 

uses that initial inverse map to start the exploration phase: the ten free parameters of the 

limit cycle feature vector are changed at random, interpolated, and fed through the inverse 

map. The resulting control sequences are fed to the motors to produce limb movement 

until the treadmill reward crosses a threshold of performance set arbitrarily to 64 mm. 

Thereafter, the exploitation phase of the G2P algorithm, much like a Gaussian Markov 

process, makes a ten-dimensional probabilistic jump by varying each free parameter from 

its prior value. If performance improves at a given jump, the standard deviation of those 

probabilistic jumps is reduced proportionally until it hits a predefined minimum value of 

0.03. It is important to note that each time a control sequence is applied (in either the 

exploration or exploitation phase), the resulting kinematics are recorded, appended to the 

babbling data and any prior attempts, and a new refined inverse map is calculated (Figure 

3b) That is, every interaction with the physics of the plant is used to refine the inverse  
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Figure 3. Reinforcement and Refinement during a given run of G2P (a) Evolution of reward across the 

two phases of the reinforcement learning algorithm: the inverse map ANN0 (Figure 2) is used to create the 

first attempt at a limit cycle defined by the feature vector. The predicted control sequences are applied to the 

motors to produce twenty cycles of movement that yield a particular treadmill reward (orange dot). The feature 

vector is modified at random during this exploration phase. This sequence will eventually produce a reward 

above the exploration-exploitation threshold (dotted line), at which point any changes to the feature vector 

will be done much like a Markov Gaussian process. (b-c-d) Motor babbling and sequential task-specific 

refinements of the inverse map: babbling data (enlarged in Figure 6) were used to generate the initial inverse 

map (ANN0), and are augmented by adding data from each attempt to refine the inverse map after each attempt. 

(b) distribution of the data in the proximal and distal joints. (c) concatenation of the data and (d) the subsequent 

refinements of the inverse maps (ANN1, ANN2, …). We limited all runs to have a limit of 15 attempts once 

the threshold was crossed (see results in Figure 4). 
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map. This is analogous to trial-to-trial experiential adaptation during biological motor 

learning 8. 

Each point in Figure 4a shows the reward for the corresponding attempt, while a colored 

stair-step line shows the best reward achieved thus far during that run (fifteen replicates in 

total, denoted by color). First, our system was able to cross the threshold in a median of 24 

attempts in the exploration phase.  Second, the attempts in the subsequent exploitation 

phase showed median reward improvement of 45.5 mm, and with a final median best 

reward median of 188mm (best run performance was 426.9 mm). Simulation results for 

the corresponding test are shown on Figure S2. 

 

Figure 4b shows the relationship between the reward received and the energy consumed. 

Each convex hull contains the family of solutions (i.e., attempts from the exploitation 

phase which yielded higher than the threshold). Energy expenditure at the end of the 

exploration phase (triangle) is not systematically different from the energy expenditure of 

the final solution (large dot). Moreover, high rewards can be achieved with both high and 

low power consumption. This shows that energy minimization is not an emergent property 

of this bio-inspired system, and any energy optimization would need to be enforced by a 

high-level controller. 
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Figure 4. The treadmill task results (a) Treadmill reward accrued in fifteen runs, denoted by letters A-O. 

All runs crossed the exploration-exploitation threshold of 64 mm of treadmill propulsion within a median of 

fifteen attempts, and the appearance of the best reward happened at a median attempt number of 24. (b) Reward 

vs. energy consumption, where each polygon includes all attempts in the exploitation phase whose reward was 

higher than the threshold. We indicate the peak reward within the allowed fifteen exploitation attempts (large 

dot), as well as the first reward above the exploration-exploitation threshold (triangle). 
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Tracking results for free cyclical movements 

It is important to note that the utility of the incremental refinements (in increasing the 

precision of inverse map) cannot be directly interpreted from the results in Figure 4. This 

is because the reinforcement learning algorithm might, by itself, find a limit-cycle feature 

vector that yields high reward even with an imprecise inverse map. However, in many 

applications, such as tracking a desired trajectory (imitation), precision of this inverse map 

is crucial. In order to evaluate the effect of task specific exploration data in refining the 

inverse map, we performed the following trajectory tracking tasks. 

 

We used two additional cases to test the ability of the G2P algorithm in tracking desired 

trajectories (i.e., with no explicit reward). 

 

A. Free cyclical movement in air for a single trajectory 

These trials were performed while the leg was suspended ‘in the air’ to observe trajectory 

accuracy for an attempt. Treadmill rewards were not collected. As usual, the initial inverse 

map was extracted from five minutes of motor babbling data, and incrementally refined 

after each of five attempts performed by the limb (regardless of its tracking error over the 

course of the attempt). Figure 5 (a-i). shows reduction of the Mean Square Error (MSE) 

with respect to the limit cycle defined by the feature vector with every attempt. Figures 5 

(a-ii,-iii). show the time history of actual achieved vs. desired proximal and distal joint 

angles for five replicates. Note that Figure 5 (a-ii). is not the endpoint trajectory—it is the 

joint angle over time as defined by the feature vector of the limit cycle. (see Figure S3a 

and b for the simulation result of the corresponding test) 
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Figure 5. Tracking results for free cyclical movements (a) Reduction of MSE during refinements on a fixed 

trajectory (a-i) Boxplots of the reduction of the Mean Square Error (MSE) with respect to the limit cycle 

defined by the feature vector with every attempt. (a-ii to a-iv). Desired vs. actual kinematics across refinements 

on the same fixed trajectory. (b). Test of generalization for first attempt across 30 unseen trajectories a, b, c, 

…, ad. (see text) (b-i) MSE of the test trajectories using the unrefined (only babble-trained) and the refined 

(over 30 locomotor trajectories) inverse map. (b-ii) Histogram of percent difference in MSE for the results in 

(b-i) for each of the 30 unseen trajectories. 
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B. Generalizability of learned free cyclical movements in air 

While the test (A) above explored how repeated refinements can improve the performance 

of the map in tracking a single desired trajectory, it does not speak to the performance of a 

given inverse map on unseen trajectories. To evaluate the generalizability of refinement, 

we followed motor babbling by serial refinement on thirty randomly selected trajectories. 

This trained inverse map was then “fixed” and evaluated for its MSE accuracy on 30 

unseen random trajectories (test set) without further refinement. Figure 5 (b-i,-ii) show 

that this serially-refined inverse map performed better than when an inverse map trained 

only by motor babbling was fixed and tested on the same 30 unseen tests. This strongly 

suggests that refining a map with specific examples does not over-specify its utility, but 

rather makes it more general and able to produce novel tasks well. 

 

Figures 5(b-i,-ii) show that the inverse map refined on the specific dynamics for a set of 

free movements generalized to other movements. This is very important since it means the 

system can learn from every experience and use it in the next attempts which were not 

explored before. As seen on the figure, the refinement made using 30 random training 

trajectories improved the MSE in almost all the test trajectories (96.7% of them). This 

shows that this method is highly generalizable on the trajectories (a-ad) that were not 

previously explored. Across all test trajectories, the median MSE was 337.18 for the 

babble-only inverse map, while the median MSE was 83.04 for the refined inverse map; 

constituting a 75.37% reduction in MSE. (see Figure S3c for the simulation result of the 

corresponding test) 
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Discussion  

We introduce the G2P (General to Particular) algorithm by demonstrating how it 

simultaneously addressed two long-standing problems in robotic control: (i) locomotor 

function with a tendon-driven limb via (ii) a model-free and few-shot learning approach.  

The significance of each of these are discussed in detail below. Taken together, our results 

demonstrate a powerful biologically-inspired approach that can produce versatile 

adaptation in spite of changes in the particular locomotor trajectory and presence/absence 

of ground contact.  We conclude by outlining how G2P can be combined with 

computational neuroscience and neuromechanics to understand the biological mechanisms 

that imbue vertebrate animals with their enviable functional versatility. 

 

How does G2P move the field forward? 

A common approach in robotics is to use models of a system to first develop controllers in 

simulation (e.g., 14–20), and then deploy them in physical systems. Creating more accurate 

models of physical systems is, of course, desirable, but is often impractical since it either 

requires accurate prior information or extensive physical testing for model inference or 

system identification. As a result, it is critically important to match the model and 

simulation environment to the particular application, design and build robots to match 

available models and capabilities of the simulator21, or develop robust controllers (which 

is a field in and of itself)22,23. These challenges of model-driven controller design have 

justified and driven important efforts towards developing model-free or semi-model-free 

controllers that depend minimally on accurate models, prior information or extensive 

physical testing. One such approach is model predictive control (MPC). For locomotion 

and humanoid robots, MPC can provide good performance with limited interactions with 

the environment in spite of approximate models and unmodeled contact dynamics5,6. The 
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current challenges of MPC are that it is difficult to port from simulation to real systems, 

and it requires extensive computational power, careful design, and sophisticated control 

theory; furthermore, successful solutions via MPC do not necessarily generalize to other 

tasks, plants or environments.  Such engineering approaches will clearly continue to make 

headway and improve performance in physical systems18. But even as they improve, it is 

unlikely they can shed light on the biological mechanisms that produce enviable 

functional versatility in animals such as vertebrates with tendon-driven limbs. 

 

Thus, our work takes an approach to robotic control borne out of the central question in 

computational neuroscience and neuromechanics10: what are the biological mechanisms 

that have evolved to produce enviable functional versatility within the limitations and 

complexity of tendon-driven vertebrate limbs? 

 

Fundamentally, vertebrates rely on both brain-body co-evolution (nature) and individual 

experience (nurture)24. At the level of a species, brain-body co-evolution (be it natural or 

synthetic) adapts (i) the trajectory of structure-function relationships with (ii) its neural 

circuitry and sensorimotor processing capabilities25–29. At the level of a specific 

individual, initial motor development (during childhood) and experience (throughout the 

lifespan) continuously enable and refine behavioral capabilities in the context of a 

changing body or the environment, and for a variety of particular task dynamics and 

goals—which thereafter takes thousands of repetitions to perfect9,30.  This first version of 

the G2P algorithm takes a given brain-body system (i.e., a given species) and focuses on 

solving how a given individual would learn to make use of its body—even if sub-

optimally—within the constraints of limited experience. This is the central question faced 

by every individual vertebrate at birth: given the particular structure-function relationships 
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lent by morphology, how can it autonomously learn to produce and master the tasks 

needed for survival?  In this study, we challenged the tendon-driven limb to use limited 

experience to autonomously learn to propel a treadmill (like a leg) and produce a given 

cyclical movements suspended in air (like an arm or wing). 

  

Biological inspiration for G2P 

The guiding principle in our design of G2P is the fact that individual vertebrates are under 

strong evolutionary pressure to learn and improve as much as possible from every 

experience during childhood (development) and thereafter throughout the lifespan to adapt 

to changes in its body, and new tasks and environments. Vertebrates appear to use 

processes that hinge on (i) trial-and-error9,30, memory-based anticipation and 

kinematic/kinetic pattern recognition (e.g., 31), (ii) experience-based adaptation (e.g., 32), 

and when desired, (iii) using cost-driven reinforcement learning33. In a parallel way to 

how vertebrates learn to use their bodies, the G2P algorithm also uses task-agnostic 

random inputs to first create a General inverse map of its kinematics, as in (i)—similar to 

motor babbling and play in young vertebrates (Figure 2). Next, as it begins to perform a 

task, it refines the inverse map with data coming from every attempt, as in (ii), 

commanded by the higher-level controller which systematically maximizes a reward by 

using some form of reinforcement learning, as in (iii). In fact, this continual refinement of 

a map is reminiscent of synaptic plasticity that creates and reinforces circuits for 

locomotion in the mammalian spinal cord under the high-level control of the brain34–36. 

This follows the maxim of associative Hebbian learning “neurons that fire together, wire 

together”37. 
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More specifically, our results demonstrate that G2P can—in a biologically and 

developmentally plausible way—simultaneously solve long-standing challenges of 

controlling physical tendon-driven robots. Namely, G2P can control an inherently 

nonlinear double pendulum that interacts with the world via intermittent contact, or 

control interaction torques during free movements. Moreover, since it is controlled by 

tendons, the system is simultaneously under-determined (many tendon tensions combine 

to produce few net joint torques) and over-determined (few joint rotations define how 

many tendons need to be reeled-in/payed-out) as mentioned in the Introduction. We refer 

the reader to a formal mathematical treatment of the nature of the control of tendon-driven 

limbs in the context of Feasibility Theory for neuromuscular systems10,11,38. Suffice it to 

say that the control problem the nervous system confronts is to—within a limited number 

of attempts—find, explore and exploit particular sequences of control actions that inhabit 

a low-dimensional manifold embedded in high-dimensions. The G2P algorithm is able to 

confront and solve this same control problem that the nervous system faces. 

 

Geometric and topological interpretation of G2P 

For this robotic limb, the feasible control signals are time-varying 3-D vectors $[u_1(t), 

u_2(t), u_3(t)]$ of current delivered to the three DC brushless motors (analogous to neural 

drive to three muscles). Successful control sequences to produce cyclical movements are a 

one-dimensional limit cycle embedded in 3-D control-signal space that maps into (i.e., 

produces) a one-dimensional limit cycle embedded in the 6-D space of kinematic variables 

(i.e., 2 joint angles, angular velocities and angular accelerations of the limb). 

 

A successful control sequence must, by definition: (i) produce time histories of net joint 

torques (i.e., the underdetermined problem of combining tendon tensions) to satisfy the 
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dynamical equations of motion while (ii) allowing the desired limb kinematics (i.e., the 

over-determined problem of allowing each motor’s axel to reel-in or pay-out tendon 

lengths as defined by the joint angular velocities). This explains why most motor babbling 

command signals in the present study (unsurprisingly) produced no limb movement, or 

rapid movements that run up against the extremes of the range of motion (Figures 3 and 

6). The likelihood of finding a control sequence at random that simultaneously satisfies all 

of these constraints while staying within the interior of the range of motion of the joints is 

a needle-in-a-haystack problem (i.e., much like throwing a dart that lands on a narrow line 

in 3-D space10,11,38, as when infants require hundreds of attempts to learn to transition from 

sitting to standing9,30). Thus, in our robotics limb, most control sequences simply load the 

tendons against each other and do not produce movement, or abruptly overpower each 

other and go to the extremes of range of motion (Figures 3 and 6). 

 

Smooth and functional movements will arise only when the G2P algorithm ‘implicitly 

learns’ how to solve the over-determined problem of tendon excursions. Such problems 

have at most one solution—and are usually solved by finding solutions that violate the 

constraints by “reasonable” (e.g., least-squares) amounts as when calculating a Moore-

Penrose pseudoinverse. We have argued that the viscoelastic properties of muscle provide 

a physical margin of error that is a critical enabler of the neural learning and control of 

movement10. This is precisely why we used backdrivable brushless DC motors: To allow 

motors to fight such a ‘tug-of-war’ and find imperfect solutions that can produce 

movement39,40. Had we used servo motors that are stiff, the system would lock-up if 

tendons are not reeled-in or payed-out precisely. More formally38,41, the manifold of a 3-

dimensional valid control sequence need not be a line (with zero volume), but rather a 

stretchable tube embedded in 3-D that allows multiple solutions in the neighborhood of an 
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ideal 1-D limit cycle. This is exactly the manifold that G2P is capable of finding through 

its autonomous and few-shot approach. 

 

Following this reasoning, the many babbling control sequences that ‘failed’ to produce 

movement (as 84.3% of the observations in Figure 3a land within 5% of the rotational 

limit for at least one joint) may nevertheless be informative. One possibility is that such 

data-driven inverse maps are more than just regressions, and actually provide implicit 

knowledge of how tendons “fight” each other. Some suggest that data-driven input-output 

maps are internal representation of invariant properties of the physics of the limb and 

environment42,43. In computational neuroscience, this idea takes the form of an “internal 

model” used for motor planning and to predict the sensory consequences of motor actions 

via efference copy44–47—which is continually refined by experience. We are agnostic—

and make no claims about—whether G2P is learning tendon routings, strain energy39, or 

other mechanical properties of the system such as limb impedance48–50, interaction 

torques51, or other dynamical properties52. 

 

Familiarity reinforces habits 

What could produce improvements in the performance of a task in the absence of real-time 

feedback or imitation? Every attempt at the movement is used to refine the implicit map, 

and if successful defines the exploration region, thus we can interpret G2P as analogous to 

the way in which Hebbian reinforcement tends to cement motor habits. Performance 

metrics are not used to preferentially weigh data from a given attempt. Rather, familiarity 

with a task (in the form of all additional data in the neighborhood of the desired 

movement) reinforces the way it is performed. Motor babbling creates an initial general 

map, from which a control sequence for a particular movement is extracted. This initial 
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prediction serves as a “belief” about the relationship between body/environment, and an 

appropriate control strategy. This prediction is used for the first attempt that, while 

imperfect, does produce additional sensory data now in the neighborhood of the particular 

task. These data are subsequently leveraged toward refinement of the inverse map, which 

then leads to an emergent improvement in performance. 

 

Importantly, the details of a given valid solution for movement are idiosyncratic and 

determined by the first randomly-found control sequence that crossed the exploration-

exploitation threshold of performance (Figure 4). Hence all subsequent attempts that 

produce experience-based refinements are dependent on that seed (much like a Markov 

process). This solution and its subsequent refinements, in fact, are a family of related 

solutions can be called a “motor habit” that is adopted and reinforced even though it has 

no claim to uniqueness nor optimality53,54. Biologically speaking, vertebrates also exhibit 

idiosyncrasies in their motor behavior, which is why it is easy to recognize health states55, 

sexual fitness56, identify individuals by the details of their individual movement and 

speech habits, and even tell their styles and moods57,58. A subtle but important distinction 

is that these emergent motor habits are not necessarily local minima in the traditional 

sense. They are good enough solutions that were reinforced by familiarity with a particular 

way of doing a task. There is evidence that such multiplicity of sub-optimal yet feasible 

setpoints for the gains in spinal circuitry for discrete and cyclical movements36. Those 

authors argue that is evolutionary advantageous for vertebrates to inherit a body that is 

easy to learn to control by adopting idiosyncratic, yet useful, motor habits created and 

reinforced by an individual’s own limited experience, without consideration of 

optimality54. 
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To further explore the notion of familiarity as an enabler of learning, we performed 

experiments testing the ability of the leg to produce free cyclical movements in air, 

without contact with the treadmill—and hence without explicit reward. That is, we already 

knew that the motor babbling session could inform the production of a movement, even 

though 84.3% of babbling has at least one joint “stuck” at limit of its range of motion, 

Figure 3a. But we can say, as shown in Figure 5, that performance of a particular free 

cyclical movement improves simply on the basis of repeated attempts. This represents, 

essentially, the cementing of a motor habit on the basis of experience in the neighborhood 

of the particular movement.  Figure 6 further shows how 15 cycles of a particular target 

task in the interior of the joint angle space, which is the most poorly explored region 

during babbling.  Note that the absence of a reward or penalty allowed the emergent 

solution to contain a portion where the distal joint is at its limit of range of motion. This, 

however, need not be detrimental to behavior. For example, human walking can also have 

the knee locked in full extension during the latter part of the swing phase right before heel 

strike. 
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Figure 6. Joint angle distribution for motor babbling vs. one attempt of a free cyclical movement in air 

Motor babbling primarily results in observations at the extremes of the ranges of motion of each joint (23,400 

blue points), whereas the desired movement trajectories require exploitation of the relatively unexplored 

internal region of the joint angle space (1,200 orange points for 16 cycles of a given attempt-excluding the 

initial transition). The shaded region of this phase plane plot identifies the positions where at least one of the 

joints was within 5% of its joint limits (black lines). 

 

Do motor habits improve versatility? 

Improvements due to familiarity with a task, however, can be thought of as overfitting that 

is locally useful, but does not necessarily improve the versatility of the limb in general. 

We therefore performed a final cross-validation experiment to test whether the 

improvements of these free cyclical movements in air were solely beneficial to those 

movements for which the inverse map was trained. Figure 5 shows that an implicit inverse 

map refined with a set of 30 movements is better at producing different set of movements 

it has never experienced, than a general implicit inverse map created purely from random 

motor babbling data. Said differently, having experience with forming a variety of motor 

habits does not necessarily overfit the implicit map, but rather grants the system deeper 
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knowledge of its own dynamics. That is, familiarity with one’s motion capabilities for 

some tasks seems to inform the execution of other tasks. 

 

Reward vs. energetic cost 

Our results in Figure 4b are particularly interesting because they show that energy 

minimization is not an emergent property of this algorithm59. If we consider the attempt 

from each run that performed above threshold as a string of related solutions (e.g., 

attempts), we see there is drift towards higher performance (by construction), but the 

family as a whole can be narrow or wide from the perspective of energetic cost. Not 

surprisingly, there are multiple solutions with similar cost, but nowhere do we see a trend 

towards energy minimization (i.e., none of the convex hulls are shaped diagonally towards 

the top right). Conversely, because the solutions for a given run are kinematically similar 

to each other (they are all increasingly minor modifications of the first limit cycle that 

crossed the exploration-exploitation threshold), it is interesting to note the different 

families do not follow some common energetic trend. One could have expected that 

movements that caused more propulsion would be more energetically costly as they do 

more work against the treadmill, yet we also do not see such a consistent trend diagonally 

towards the top left. Thus we are led to conclude that energy consumption is likely most 

related to how muscles fight each other in the nullspace of the task, as elaborated in detail 

elsewhere10,11,60. 

 

Limitations, opportunities, and future directions 

The G2P algorithm is designed to allow reasonable performance with limited data and no 

direct feedback, which naturally leads to limitations. The absence of a gradient to follow 

leads to inconsistent performance where the next attempt may have lower performance, 
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which would be compounded by if the plant has time-varying dynamics.  More crucially, 

given the non-linear dynamics of even a time-invariant plant, the initial conditions will 

also affect each attempt. This is why we always begin trials from a same initial 

configuration. We also exclude the first quarter of each attempt data during the 

refinements to exclude the transitioning from the initial conditions to the limit-cycle 

kinematics. Moreover, we do not rely on off-line simulation to explore refinements, but 

rather always roll out the dynamics in the real physical system. This is contrary to model-

predictive control—which would likely produce better performance in certain 

applications. 

 

However, our fundamental motivation is to understand how biological systems learn to 

move in a well-enough fashion when they must also execute every attempt using their own 

bodies. These insights provide a foundation on which we can develop versatile bio-

inspired robots. Importantly, for organisms as for machines, there exists a trade-off 

between improving performance via practice, but where each attempt or exploration 

carries the risk of, inter alia, a costly injury, fatigue, and wear of tissues (e.g. blisters in the 

skin, stress fractures, inflammation of tendons, cartilage wear) or parts. In fact, identical 

repeats of a same task carry the risk of repetitive stress injuries in elite athletes and 

musicians—and mechanical failure in robots. Variability of reward and execution is 

therefore a fact of life for organisms, and something G2P uses to its advantage. But even if 

performance were the main objective of a given robot, G2P can still be very useful by 

providing a first approximation to a reasonable solution that serves as the critical starting 

point for subsequent optimization via existing methods. 

 



Authors’ preprint                                               Manuscript                                                                         Page 25 of 

39 

The use of a limit cycle is a strong assumption in this first use of G2P, which may not be 

appropriate for every application, but applies well to locomotion, reach, manipulation, 

swimming and flight. However, we were pleasantly surprised to see that G2P works well 

even for the longstanding problem of intermittent contact with the ground. The G2P 

algorithm is unaware that ground contact leads to hybrid and strongly discontinuous 

dynamics, and we measure no foot forces nor locations relative to ground. Unlike gain 

scheduling or central pattern generators61 where control strategies are switched by, or 

phase-locked to contact, G2P learned to transition across dynamic domains by adjusting 

its control signals and leveraging the properties of the plant—much as brains likely co-

evolved to produce motor actions that leverage the passive viscoelastic properties of 

musculotendons and skin pads to manage intermittent contacts with the environment and 

objects, or leverage the physics of inverted pendula for locomotion62.  We could have 

mitigated the effects of contact dynamics by tracking contact events or forces. However, 

we took on the larger challenge of letting G2P autonomously produce a control strategy to 

handle contacts with the environment using the properties of its actuators and plant. 

 

Data-driven approaches must contend with deciding how much data are enough, or even 

necessary, for a given level of performance. We did not approach this formally, but rather 

posed the question at a heuristic at human-scale: Can G2P learn a task after only five 

minutes of motor babbling, where each motor command changes at an amortized rate of 1 

Hz. While G2P succeeded within these constraints, it is natural to ask if more motor 

babbling would be better or what is the minimal amount of babbling that can yield a 

functional map. We did not explore optimal stopping rules63, or apply a Metropolis–

Hastings algorithm for a Markov process with ergodic assumptions, parameter 

distributions, or acceptance probabilities64. G2P would certainly benefit from such formal 
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analyses and improvements in the future. In this first application, we set the exploration-

exploitation threshold to begin the exploitation phase at 64 mm of treadmill reward 

(Figures 3b and 4a). The runs in our study crossed the exploration-exploitation threshold 

after a median of 14 attempts (Figure 4a), with the best reward occurring after 24 attempts 

(median across replicates). The exploration-exploitation threshold will likely be different 

for other tasks, as per their dimensionality, nonlinearity, etc.—or even for this same task 

as we add more tendons and joints. Similarly, a wide set of alteration in system parameters 

or reinforcement learning algorithm may prove to be efficient when combined with our 

G2P algorithm. However, for few-shot practical use with real world physics with minimal 

prior information on the plant, environment, or the task, the G2P algorithm is superior to 

the state of the art techniques that rely heavily in long term explorations which is only 

possible with simulations (where the model of the plant and its interactions with the 

environment is given)65,66. This first application of G2P suffices to provide a strong proof-

of-principle of its capabilities in using a few-shot approach in producing multiple families 

of functional controllers for locomotion with a tendon-driven limb. Further biologically 

realistic refinements, such time delayed sensory feedback during task execution, can only 

improve its performance. 

 

An important, even critical, takeaway from this work is that—to our knowledge—it is the 

first to shed light (via both algorithm and physical implementation) on potential biological 

mechanisms that enable vertebrates to learn to use their bodies within a practical number 

of attempts to mitigate the risks of injury and overuse—and successfully engage in 

predator-prey interactions. The ingredients and steps of G2P are all biologically-tenable 

(i.e., trial-and-error, memory-based pattern recognition, Hebbian learning, experience-

based adaptation), and allow us to move away from the reasonable, yet arguably 
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anthropocentric and teleological, concepts dominating computational neuroscience such as 

cost functions, optimality, gradients, dimensionality reduction, etc.9–11,54,67. While those 

computational concepts are good metaphors, it has been difficult to pin down how one 

would be able to actually demonstrate their presence and implementation in biological 

systems68.  In contrast, G2P can be credibly implementable in biological systems. Our 

own future direction is to demonstrate its implementation as a neuromorphic 

neuromechanical system, as we have done for other sensorimotor processes69,70. At a 

conceptual level, this proof of concept of few-shot motor learning has clinical 

applications. For example, rehabilitation science is increasingly leaning towards mass 

practice because outcomes tend to be disappointing when the doses of rehabilitation are  

limited due to cost, personnel, and time71. In this context, G2P may provide further insight 

toward the learning mechanisms that are operating in the nervous system, which can then 

enable novel clinical strategies. 

 

Conclusion 

G2P produced two important results in the context of the challenging task of controlling a 

tendon-driven system with sparse data.  First and foremost, we demonstrate this 

biologically- and developmentally-inspired system (in both mechanics and control) uses a 

few-shot approach to successfully produce free movement and locomotion in spite of data-

poor sampling and no real-time feedback, or prior information about the plant or 

environment. Second, G2P brings novel possibilities to robotics in general as it shows that 

a few-shot approach to autonomous learning can lead to effective and generalizable 

control of complex limbs for robotic locomotion and, by extension, manipulation, 

swimming and flight.  Our results demonstrate a powerful biologically-inspired approach 

that can and should be extended to produce versatile adaptation in spite of changes in the 
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particular target task, mechanics of the robot’s anatomy (e.g., damaged limbs), changes in 

payload, and interaction with the environment (e.g., contact, flow and force fields, etc.). 

The inherent adaptability of G2P allows extensions to, for example, co-evolve the details 

of the body and controller to match the requirements of multiple tasks and environments. 

Ultimately, it can also serve as a conceptual template to empower computational 

neuroscience studies. This would both advance our understanding of the mechanism that 

grants vertebrates their enviable versatility and performance, and allow their 

implementation in a new generation of biologically-inspired robots. 

 

 

Materials and Methods 

Physical plant 

We designed and built a planar robotic tendon-driven limb with two joints (proximal and 

distal) driven by three tendons, each actuated by a DC brushless motor. A passive hinged 

foot allowed natural contact with the ground. We used DC brushless motors as they have 

low mechanical resistance and are backdrivable. The motor assembly and proximal joint 

are housed in a carriage that can be lowered or raised to a set elevation for the foot to 

either reach a treadmill or hang freely in the air (Figure 1). Further considerations and part 

details can be found in Supplementary Materials. 

 

Tendons 

We used three tendons because is the minimal number required for controllability of a  

planar 2-DOF system (n+1 where n is the number of joints)10. During construction, we 

found that tendons would occasionally go slack and reposition themselves off their tendon 

channels. Thus, we added PLA conical flanges to the motor collars, redesigned the tendon 
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channels to be deeper. We always applied a baseline tension of 15% of maximal motor 

activation (similar to muscle tone; Figure 1 a and d) to prevent such problems and because 

it is necessary for control of tendon-driven systems39. 

 

Feasible Wrench Set and Design Validation 

Joint moment arms and tendon routings were simulated and ultimately built to have 

adequate endpoint torque and force sets conducive to pressing and walking (Figure 1c). As 

in10, a tendon-driven limb’s ability to create an output wrench is dependent on the 

components defining the feasible force space (i.e. the space of all possible output force 

vectors for a given position): 

$w=J^{-T}RF_{max}.a=H.a$ 

Where $w$ represents the wrench output, $J$ is the Jacobian that maps joint rotations into 

end-effector directions, $R$ is the moment arm matrix (i.e. the signed leverage each 

muscle has across each joint), $F_{max}$ is the maximal tension possible of each tendon 

and $a$ is a unit vector representing the by-tendon fraction of total activation. This 

equation can be simplified to $Ha$. By systematically evaluating all binary combinations 

for the elements in $a$, the resultant wrenches give rise to a feasible force set. It is 

important to preserve the physical capability of the tendon routing through the many 

iterations of limb design, so at each design phase we computed these sets for different 

positions throughout the limb propulsive stroke. Downward force ($-f_y$) served as our 

primary metric (which is needed to eventually support weight when this leg design is used 

on a quadruped). Linear programming and computational geometry10 corroborated that the 

limb was provisioned with motors capable of generating downforce bigger than the 

system’s weight, with ample affordance so it could propel the body forward72. 
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Mechanical considerations 

The carriage was attached to a wooden support structure, via linear-bearing and slide rails 

to adjust its vertical position. A clamp prevented sliding once the vertical position was set. 

Sandpaper was glued to the footpad and in strips across the treadmill to improve traction 

(Figure 1 a and b). 

 

Data acquisition 

The control system had to provide research-grade accuracy and consistent sampling to 

enable an effective hardware test of G2P. A Raspberry Pi (Raspberry Pi Foundation, 

Cambridge, U.K.) served as a dedicated control loop operator—issuing commands to the 

motors, sensing angles at each of the proximal and distal joints, and recording the 

treadmill band displacement (Figure 1 a and b). Furthermore, the electrical power 

consumption for each motor was measured at 500Hz using current-sensing resistors in 

parallel with the motor drivers, calculating the Watt-hours over each inter-sample-interval, 

and reporting the amortized mean watts for the entire attempt. All commands were sent, 

and data received, via wireless WiFi communication with the Raspberry Pi as csv files. 

 

Running the system 

The limb is placed in a consistent starting posture before activations are run to minimize 

variance in the initial conditions of the plant. To aid development, a live-streaming video 

feed was designed for real-time visualization on any computer on the network (See Movie 

S1). A computer sends a control sequence to the Raspberry Pi, and after it is successfully 

run, the computer receives (i) the paired input-to-output data in csv format for iterative 

analysis or training, (ii) the net distance (mm) covered over the course of the entire action, 

and (iii) the amortized power the system consumed during the trial. Once data are 
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collected, samples are interpolated using their corresponding time labels to combat the 

nonuniform inter-sample interval of 78±5Hz. Prescribed activation trajectories are also 

served at this rate. The pipeline for data acquisition was designed with Python 3.6. 

 

Simulations 

We first prototyped our methods in simulation using a double pendulum model of a 

tendon-driven limb. Similar to the physical system, our method proved to be efficient in 

the simulation and yielded comparable results (Figures S2 and S3). These simulations 

were kept isolated from the physical implementation, and its results were never used as 

seeds for the physical implementation. 

 

Learning and control algorithm 

Learning and control in this first implementation of the G2P algorithm happens at two 

levels: (i) inverse mapping and refinement (the lower-level control) and (ii) the reward-

based reinforcement learning algorithm (the higher-level control). The lower-level is 

responsible for creating an inverse map that converts kinematics into viable control 

sequences (motor commands). The higher-level control is responsible for reward-driven 

exploration (reinforcement learning) of the kinematics which are further passed to the 

lower-level control and ultimately run through the system. 

 

Inverse mapping and refinements 

The lower-level control relies on two phases. As system is provided with no prior 

information on its dynamics, topology, or structure, it will first explore it dynamics in a 

general sense by running random control sequences to the motors, which we call motor 

babbling. After 5 minutes of motor babbling, the system creates the initial inverse map 
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using data collected from particular task-specific explorations, which we refer to as task-

specific adaptation. This transition from motor babbling to adaptation to a particular task 

is the reason we refer to this algorithm as General to Particular or G2P. 

 

Motor Babbling 

During this phase, the system tries random control sequences and collects the 

resulting limb kinematics. A Multi-Layer Perceptron (MLP) Artificial Neural 

Network (ANN) is trained with this input-output set to generate an inverse map 

between the system inputs (here, motor activation levels) and desired system 

outputs (here, system kinematics: joint angles, angular velocities, and angular 

accelerations). Although sparse, data from these inputs and outputs suffice for the 

ANN to create an approximate general map based on the system’s dynamics. 

 

Random activation values for the babbling 

The motor activation values (control sequences) for motor babbling were 

generated using two pseudo-random number generators (uniformly distributed). 

The first random number generator provides a 1/fs time probability for the 

activation level to move from one command level to another. The second number 

defined the activation value of the next state with sampling from a range of 15% to 

100% activation (see Tendons subsection). The resulting command signals were 

stair-step transitions in activations to each motor. 

 

Structure of the Artificial Neural Network 

The ANN representing the inverse map from 6-dimesional limb kinematics to 3-

dimensional motor control sequences has 3 layers (input, hidden, and output 

layers) with 6, 15, and 3 nodes, respectively. The transfer functions for all nodes 
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were selected as the hyperbolic tangent sigmoid function (with a scaling for the 

output layer to keep it in the range of the outputs). ANN mapping was performed 

in MATLAB (Neural Network ToolBox; MathWorks, Inc., Natick, MA). 

 

Task based refinements 

Motor babbling yields sample observations distributed across a wide range of 

dynamics, but still represents a sparse sampling of the range of state-dependent 

dynamical responses of the double pendulum (Figure 6). As a result, this initial 

inverse map (ANN0, Figure 3) can be further refined when provided with more 

task-specific data. 

The higher-level control will initiate the exploration phase using ANN0. However, 

with each exploration, the system is exposed to new, task-specific data, which is 

thereby appended to the database and incorporated into the refined ANNK maps 

(Figure 3). This refinement is achieved by using the current weights as the initial 

weight of the refined ANN and training it on the cumulative data after each 

attempt. It is important to note that refinements can update the map’s validity only 

to a point; if major changes to the plant are experienced (changing the tendon 

routings or the structure of the system) the network would likely need to re-train 

on new babbling data. However, we found that motor babbling done strictly while 

the limb was suspended in air nevertheless worked well when it was used to 

produce intermittent contact with the treadmill to produce locomotion on the 

treadmill. 

  

The reinforcement learning algorithm  
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A two-phase reinforcement learning approach is used to systematically explore candidate 

system dynamics, using a 10-dimensional limit cycle feature vector, and converge to the 

ones with highest reward. Before explaining these phases, we detail how the candidate 

kinematics are generated by a limit cycle parametrized using 10 free parameters. 

 

Limiting the search space and creating limit-cycle feature vectors 

At each step of the reinforcement algorithm, the policy must produce a candidate 

set of kinematics. A locomotor task is a 1-DOF limit cycle embedded in the 6-

dimensional space of two joint angles, angular velocities and angular accelerations. 

Beginning with a circle centered on the origin of the angle-angle space, we defined 

ten equally-distributed spokes (Figure 2c).  We can then set the lengths of each 

spoke (i.e., the 10 free parameters) to define an arbitrary closed path that defines 

the time history of angle changes, which remains a smooth and differentiable limit 

cycle. These ten lengths of the spokes are the 10-dimensional limit cycle feature 

vector. Assuming movement between these ten points with equal inter-point 

duration then defines the associated angular velocities and accelerations, which 

fully describe a cyclical limb movement. This 6-dimensonal target limb movement 

can be mapped into the associated control sequences to produce it by the inverse 

map. Those control sequences are concatenated 20 times and fed to the motors to 

produce 20 back-to-back repetitions of the cyclical movement. These features were 

bounded in [0.15-1] for the treadmill task and [0.2-0.8] during the free cyclical 

movements experiments (to provide more focused task specific trajectories). 

  

Exploration phase 
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Exploring random attempts across the 10-dimensional feature vector space 

(uniform at random in [0.15-1]) eventually will produce solutions which yield a 

treadmill reward. Exploration continues until either the reward is higher than a 

predefined threshold or stopped when a maximal run number is surpassed (a 

failure). 

 

Exploitation phase 

Once the reward passes the threshold, the system will select a new feature vector in 

the vicinity of the feature vector from a 10-dimensional Gaussian distribution, with 

each dimension centered at the threshold-jumping solution. Much like a Markov 

process, with each successful attempt, the 10-dimensional distribution will be 

centered on the values of the feature vector which yielded the best reward thus far. 

The standard deviation of these Gaussian distributions is inversely related to the 

reward (the distribution will shrink as the system is getting more reward). The 

minimal standard deviation is bounded at 0.03. 

 

Between every attempt, the ANN’s weights are refined with the accumulated dataset (from 

motor babbling and task-specific trajectories) regardless of the reward or reinforcement 

phase. This reflects the goal for our system to learn from every experience.
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