
Using Load-Cells to Unveil

Limitations to the Human

Movement System

Although Apparently Versatile and Robust, the Control of Finger

Musculature Operates on the Verge of Failure

Master thesis as a requirement to obtain the title MSc in
Biomedical Engineering from ETH Zurich

Submitted by:

Richard Lukas Bumann

Supervisors:

Prof. Francisco J. Valero-Cuevas (USC, Los Angeles)
Prof. Robert Riener (ETH Zürich)



Introduction

The human body is an astonishing movement system in its performance and
complexity. Every fourth year, athletes from all over the world demonstrate the
boundaries of the human performance at the Olympic games. Track and field
athletes accomplish incredible force and speed performances when running the
100 m in well below 10 s or shot putting a 16 lb heavy shot farther than 20 m.
Moreover, shooters and springboard divers or gymnasts document an amazing
level of accuracy and coordination, while fencers impress with extremely fast
reactions. Yet, even everyday actions are surprisingly difficult and require a
complex interplay of nervous system and muscles. Considerably simple actions
such as knitting or even turning over a page in a book consist of a extensive set
of atomic movements and complex neural control strategies.
It is still a big challenge to analyze these control mechanisms. There are several
non-invasive (surface EMG) and minimal-invasive (fine wire EMG) to measure
muscle activity. However, it is very difficult to measure the collectivity and the
cooperation of the different muscles. For example, it is well possible to monitor
the activity of the seven intrinsic muscles in a single finger. However, the hand
is a complex grasping organ and actuating one finger always causes co-actuation
of the other fingers. It is even more difficult to measure nervous signals. The
neuronal activity in the brain can be assessed e.g. through fMRI or EEG. But
these methods capture only a large pool of neurons and leave a lot of space for
interpretations. On the other hand, measuring the activity of single neurons
neglects the complex circuitry and the interaction of neurons.
For these reasons, we chose the most indirect way to study the neural controller
for movements. We simply measured the force as an end product of the move-
ment system and connected these recordings with previous knowledge about the
nervous system. In our study presented in the chapters 1 and 2, we assessed
the most basic tasks that can be performed with the index finger. We trained
subjects until they reached their best possible performance to conclude on the
limitations set by the nervous system and the structure of the controller.
In order to be able to draw relevant conclusions, we had to rely on precisely
working force measuring devices. Code of practice in the Brain-body dynam-
ics lab has always been the use of six-axis load-cells for this purpose. They
can accurately measure forces and torques in all spatial directions. Neverthe-
less, active usage changes the mechanical properties of the complex system and
changes the calibration parameters of the sensor. Even if the manufacturer of-
fers recalibration services, the process is costly and time-consuming. In chapter
3, we describe how we developed an approach to calibrate complex load-cells
in-lab with a precision that comes close to industry standards.
These two projects alone would not completely justify the title of this thesis,
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even if we used a load-cell to unveil limitations of index finger dexterity. How-
ever, numerous studies in the BBDL relied on similar principles, measuring only
the output of the human body as a movement system. For example I was pro-
foundly involved in a study, which investigates fatigue mitigating mechanisms
during knee extension. Subjects had to maintain low-level knee-extension forces
over a long period of time, which was ensured using a visual feedback that was
based on load-cell measurements. Measuring the EMG signals of the different
knee extension synergists revealed that they are mutually active and inactive
for forces below 15% MVC but become all necassary due to biomechanic con-
straints for higher forces. In addition to that, I was loosely involved in the
data collection of a study, which used load-cells and accelerometers to study the
balancing mechanisms during slacklining. Both studies are beyond the scope of
this thesis. However, they legitimate the holistic title of my thesis, describing
the different involvements during my master’s internship.
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Writing, to me,
is simply thinking through my fingers.

Isaac Asimov
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Chapter 1

Although Apparently

Versatile and Robust, the

Control of Finger

Musculature Operates on

the Verge of Failure

Human dexterous manipulation has been praised since the dawn of
civilization. Traditionally this is attributed to evolutionary adapta-
tions, and the remarkable ability of the nervous system to control
the numerous muscles driving the complex mechanism of the hand.
While there are well-accepted anatomical and neural limitations for
the control of manipulation, these are considered only minor imped-
iments to what is otherwise versatile and robust everyday function.
Here we provide evidence contrary to this widespread notion. We
demonstrate that the evolutionary adaptations for individuated neu-
ral control of finger muscles (and thus fingers) necessary for dexter-
ous manipulation are far from robust or complete. We compare the
dynamical performance of two simple and equally necessary index
finger tasks for dexterous manipulation-the scaling of the magnitude
of a fingertip force vector in a given direction vs. the re-direction of
a fingertip force vector of a given magnitude. Our multi-day testing
regime shows that the former can be done well enough to exhibit
a robust speed-accuracy tradeoff (a trademark of evolutionary ma-
ture neuromechanical function). In contrast, the latter can barely
be done at all, let alone optimized. Placing these results in the con-
text of other recent work and clinical experience, there is mounting
evidence that everyday manipulation actually takes place at the lim-
its of performance and therefore on the verge of failure. Thus our
apparently versatile manipulation owes as much to adequate-but in-
complete and non-robust-neuromechanical evolutionary adaptations,
as to socio-biological co-evolutionary design of objects and tools to
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make them forgiving when manipulated.
What gives us the ability to perform dexterous manipulation tasks so neces-
sary for everyday life? Current thinking points to indisputable evidence from
the fossil record, comparative anatomy/neuroanatomy, and neuroscience show-
ing clear and specific adaptations for dexterous manipulation in hominids and
modern humans [1–3]. These adaptations show a clear trend towards the ability
to produce individuated finger motions and forces [4, 5]. After all, being able to
dynamically regulate the magnitude and direction of individual fingertip force
vectors is critical to any mechanical definition of dexterous manipulation that
includes the ability to grasp, lift, hold, reorient and use objects and tools in the
presence of perturbations1.
Direct evidence for the evolutionary trend towards individuated finger control
comes from many anatomical and neuroanatomical features of the human hand
(e.g., individuated muscle slips of flexors and extensor muscles, dedicated inde-
pendent muscles of thumb and index finger). The ability of the central nervous
system (CNS) to have an imperfect, but nevertheless remarkable, control over
the numerous muscles driving the complex mechanism of the hand is indirect evi-
dence for evolutionary adaptations at the neural level favoring individual control
of muscles. Therefore, even though there are multiple well-accepted anatomical
(e.g., multiple tendinous, intra- and inter-muscle connections) and neural (e.g.,
short-term synchronization across motor unit pools [4, 5], enslaving and force
deficits [6]) limitations for the control of manipulation, these are considered only
minor impediments to what is otherwise obviously versatile everyday function
[5]. So much so that thinkers since the ancient Greeks [7] have debated whether
the human hand is the cause or consequence of superior intelligence2. However,
if the human hand is so neuromechanically redundant and versatile, why is dex-
terous manipulation so susceptible to even mild neurological conditions, seldom
recovers full functionality after stroke [8] or cerebral palsy [9], takes years to
develop in childhood [10], or degrades with healthy aging [11]? Our work is
motivated by this apparent paradox.
We focused on a detailed quantification of the dynamic control of the magnitude
and direction of fingertip force vectors because it is a fundamental building block
for dexterous manipulation [12, 13]. In particular we tested whether healthy,
young participants can maintain the finger posture and (i) rapidly scale up the
magnitude of the fingertip force vector while maintaining the direction constant;
or conversely (ii) rapidly change the direction of the fingertip force vector while
maintaining the magnitude constant. These two seemingly simple capabilities
are fundamental aspects of multifinger manipulation and come into play when,
for example, we respectively increase the grasp force on a tool when preparing
for its use, or reorient an object with respect to the gravity vector. In these
dynamic manipulation situations the magnitude or direction of the static finger-
tip force vectors must change quickly (else the object can be dropped), but the
posture of the fingers remains constant and static equilibrium is maintained.

1Individuated finger motions are necessary in dexterous manipulation to place the fingertips
on objects for grasp acquisition, and reconfigure the grasp as needed during manipulation. But
the magnitude and direction of individual fingertips are critical to hold the object and produce
the grasp task.

2Aristotle writes that ”Now it is the opinion of Anaxagoras that the possession of these
hands is the cause of man being of all animals the most intelligent. But it is more rational
to suppose that his endowment with hands is the consequence rather than the cause of his
superior intelligence.”
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Our experimental design was driven by the fact that individuation of fingertip
forces hinges on the ability of the CNS to control individual motoneuron pools
(the populations of α-motoneurons in the spinal cord that activate individual
muscles). Decades of research have sought to answer the questions of whether
and how well the human CNS has adapted to activate specific motoneuron pools
of the hand. Seminal and recent work ([14, 15, 4, 16]; for a review, [17]) has
mapped out and identified preferential projections from the brain to the mo-
toneuron pools of hand muscles, which is the neuroanatomical basis of finger
individuation. But questions remain about the extent to which these projec-
tions are functionally sufficient for individuated control of finger muscles for
everyday tasks. For example, recently we have shown that that an involuntary
stereotypical grasp tendency pervades voluntary dynamic multifinger manipula-
tion [18]. This functionally detrimental competition in the individuated control
of specific motoneuron pools pollutes even simple grasp. It likely stems from
competition between the evolutionarily younger targeted corticospinal projec-
tions necessary for muscle individuation unique to primates and humans [17]
vs. phylogenetically older divergent reticulospinal projections [19] so critical to
brachiation or early tool use [14, 17] that would prevent muscle individuation.
Therefore, testing whether a person can quickly ramp up a fingertip force vector
in a same direction is a direct test of how well the CNS can individually control
the intensity of the activation of a specific set of motoneuron pools [20]3; and
testing whether a person can quickly re-direct a fingertip force vector of a same
magnitude is a test of whether the CNS can change the proportions of activa-
tions across motoneuron pools [12]4.
Seven young and healthy participants performed each task for at least 450 repe-
titions, over 5 days, emphasizing both speed and accuracy (see Methods). As in
prior work [20–22], the participants exerted fingertip force against a rigid sur-
face while we recorded the three-dimensional fingertip force as shown in figure
1.1, a computer monitor displayed the magnitude and direction of the fingertip
force vector in real-time, and the target force magnitude and direction for each
task. Participants were instructed to go the start target and hold, and then
go to the end target as quickly as possible and hold. Figure 1.2 (left) shows
that for the force scaling task, the ramp-up speed is defined as the time need
to go from 1 N to 2 N, where less time indicates a higher speed. It is cus-
tomary and acceptable in the context of speed-accuracy tradeoffs to use time
as a measure of speed because the endpoints are fixed, and a shorter time is a
linear measure of improvement5. The accuracy of force scaling was measured
by the peak overshoot of the force magnitude (participants never undershot as
they were maximizing their speed). Figure 1.2 (right) shows that for the force
re-direction task, the speed is defined as the time need to rotate the force vector
by 23◦ (from +0.2 to -0.2 radians with respect to the vertical), where less time
indicates a higher speed. The accuracy was the RMSE of the force magnitude
(i.e., the deviation from a constant, figure 1.2 (right)) during that same period.
Participants performed each task during five days within a week, in 30 bouts

3I.e., how well the same muscles can be used at different level of activation, but keeping
the proportions of activation similar.

4Changing the direction of the fingertip force vector requires changing at least the relative
proportions of activation among them, and may even require changing the muscles being used.

5In addition, when using 1/time in N/s the reciprocal function 1/x introduces strong
nonlinearities that unnecessarily complicate the statistical analysis.
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Figure 1.1: We used two different manipulation tasks, scaling and re-directing of the
fingertip force, to analyze the fundamental building blocks of dexterous finger control.
Left: The subject was instructed to exert an initial force of 0.75 N with its index
fingertip against a rigid surface. Voluntarily it should ramp-up the force magnitude to
2 N as fast and as accurate as possible. The representative subject tried to follow the
target profile (red, dashed line). Eventually it reached the target force but overshot
the level at around 0.8 N. The spatial force trace pictures the same behavior. Right:

The initial instruction was to start at a fingertip force of 2 N, where the direction was
tilted at 20◦ towards the subject. Voluntarily the subject had to redirect the force
in a way that the vector pointed 20◦ away from the subject, whereas the magnitude
had to be maintained constant. The subject could very accurately follow the desired
angular profile but failed miserably in maintaining the magnitude. The spatial trace
of the force visualizes this behavior.
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Figure 1.2: For both manipulation tasks, we measured a parameter for speed and
accuracy each. Left: The rise-time, to change the force magnitude from 1 N to 2
N served as a speed indicator for the force scaling. We used the overshoot at the
peak magnitude over the targeted 2 N as accuracy parameter. Right: The speed for
the force re-directing was indicated by the rock-time to change the angular deflection
from −11.5◦ to 11.5◦ (11.5◦ to −11.5◦ in the opposite direction). The RMSE of the
magnitude relative to 2 N during this time period served as accuracy parameter.

of three trials each day. The computer screen displayed the trace of their force
vector in real time to show them their accuracy. From the second day onward
we also gave them a letter grade (A best to D worst) immediately after the trial
to encourage speed. Assigning a letter grade to their speed was critical to avoid
emphasizing accuracy, but instead perform a fast ballistic motor task without
on-line visuomotor control. Moreover, as shown in figure 1.3 (top left), we made
the speed grading more stringent on the last two days of testing to further push
the participants to their limits of ballistic performance. Over-training the bal-
listic (i.e., feedforward) performance of these tasks allowed us to quantify the
ability of corticospinal motor drive to issue a ”motor memory” to control the
motoneuron pools of finger muscles. As described in the Methods, 450 trials in
bouts of 3 trials distributed over several days is known to be sufficient to reach
steady-states overtrained performance of motoneuron pools, especially for finger
tasks [23–27]. As such, the repeated and consistent performance of our tasks is
analogous to the execution well-trained everyday manipulation tasks that are
naturally driven by predictive, feedforward strategies mediated by propriocep-
tive and tactile afferent signals, and not by visual, cognitive or auditory input
(for a review, see [28]). Our multi-day testing regime shows that the force scal-
ing task can be done well enough to exhibit a robust speed-accuracy tradeoff,
but the force re-direction task can barely be done at all, let alone optimized
(figure 1.3). Participants were able to scale the force magnitude without dis-
rupting its direction, figures 1.2 (left) and 1.3 (top left), but did not improve
their overall combined performance (defined as the slope of the sum of nor-
malized speed and normalized accuracy, figure 1.3 (middle left), p=0.7929). In
addition, they displayed a robust speed-accuracy tradeoff as per Fitts’ law (fig-
ure 1.3 (bottom left), R2=0.68, [29]). This demonstrates that rapid scaling of
fingertip force vector magnitude with the index finger in the direction of grasp
is a well-established motor skill in adulthood. A robust speed-accuracy tradeoff
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Figure 1.3: Typical experimental results of a representative subject for the force
scaling task (right column) and force re-directing task (left column). Top left: The
plot combines speed and accuracy in on graph. The black lines indicate the limits
for the different grades. The subject could decrease the rise-time when the grading
became more stringent between Sessions 3&4 (trial 203). Even though it was not able
to further increase the speed. The gain in speed was immediately connected with a
decrease in accuracy. Middle left: The graph shows a parameter, which combines the
performance in speed and accuracy. The regression line visualizes that, even though
there are fluctuations, the subject could not improve its performance. Bottom left:

The tradeoff between speed and accuracy is color-coded corresponding to the trial
number. With advancing training, the rise-time decreased, where as the overshoot
increased. The data can be fitted very well to a Fitts’ law like semi-log distribution
with an R2 = 0.63. The inset shows that the speed actually doesn’t saturate during
the training but maintains the distribution. Top right: As for the force scaling, the
subject eventually reached a minimum rock-time for re-directing its fingertip force. In
contrary to the latter case, the accuracy was not connected to the speed. Middle

right: The decreasing regression line visualizes that the overall performance for this
task increased statistically significant (p=0.0129). Bottom right: The scatter plot
shows the speed-accuracy relationship for the force re-directing. Apparently the rise-
time was not connected to the RMSE at all. Additionally the trial number didn’t
influence the position of a data point.
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is the hallmark of motor performance with enough neural degrees of freedom to
seek to optimize the feedforward drive to multiple motoneuron pools [29–31].
In contrast, the force-redirection task showed quite the opposite. Participants
were not able to rotate the fingertip force vector without also disrupting its
magnitude, figures 1.2 (right) and 1.3 (top right), and as testing progressed
their performance showed improvement (p=0.0129), figure 1.3 (middle right).
In addition, they displayed no tendency towards displaying, or even developing,
a speed-accuracy tradeoff, figure 1.3 (bottom right). The application of the
nonparametric Spearman’s rank correlation coefficient, which detects trends in
datasets with minimal assumptions, to the speed-accuracy tradeoff clearly con-
trasts the differences across tasks. The mean value of -0.78 for the scaling task
indicates a clear negative trend of the speed-accuracy tradeoff, whereas the mean
value of 0.005 strikingly points out that there is no relation at all between speed
and accuracy for the re-directing task, figure 1.4. This leads us to conclude that

Figure 1.4: Spearman’s rank correlation coefficient reveals trends in datasets. A
value close to zero indicates no existing trend, where as values close to ±1 indicate
increasing or decreasing behavior. The box plot proves that the tradeoff between speed
and accuracy for the force scaling is strongly negative (ρ = 0.78±0.05), where as there
is no connection between the parameters for the re-directing ((ρ = 0.05±0.17). These
results are highly significant (p=7.5E-8).

the that rapid re-direction of a fingertip force vector is not a well-established
motor skill in adulthood, and in fact lacks sufficient neural control degrees of
freedom to properly plan and execute-let alone optimize-the changes in neural
drive across individual motoneuron pools.
Our results for the re-direction of fingertip force demonstrate that the evolution-
ary adaptations for individuated control of finger muscles for this fundamental
task are far from robust or complete, and result in concrete and substantial
functional limitations. Our experimental design mitigated potential confounds
and allows us to attribute these functional limitations to the phylogenetic im-
maturity of the individuated control of hand muscles-most likely at the level
of the spinal cord. Firstly, by studying isometric finger tasks in the middle of
the range of motion we ensured that (i) the anatomical interconnections among
tendons and muscles do not pollute the production of fingertip forces, and (ii)
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do not invite nonlinearities in force production due to force-length and force-
velocity properties of muscle. Secondly, we defined the target force levels of both
tasks to be very low (between 1.9 N to 2.1 N, respectively around 9% of maxi-
mal force [12, 20, 32] specifically to be compatible with low force levels typical
of light everyday manipulation tasks [33], and heavily favor rate coding as the
mechanism of force modulation (i.e., little if any recruitment of additional mo-
toneurons [34]). This is critical as it rules out activation-contraction dynamics
[35] and signal dependent noise [36] as leading causes of the disruption of finger-
tip force vectors. In fact, the relatively better performance of the scaling task
shows that the poorer performance for the re-directing task cannot be explained
by rate-coding, activation-contraction dynamics or signal dependent noise as in
both cases similarly low levels of force are used. In addition, our mathematical
models, fine-wire recordings, and anatomical studies show that the muscle coor-
dination patters needed to re-direct the fingertip force vector of low magnitude
in that range from +20◦ to −20◦ that we tested do not require the turning on
or off of multiple muscles [37, 12, 20, 38]. That is, there exist biomechanically
feasible coordination patterns that can re-direct the force vector without turn-
ing any muscles on or off, especially after multiple days of testing, that the CNS
could use if it had individuated control over motoneuron pools. In addition,
fixed synergistic interactions among muscles are also not likely the potential ex-
planation: we have recently reported the absence synergistic muscle activations
when recording fine-wire EMG during similar tasks [39]; and others have shown
the index finger to have detectable, but not functionally significant, correlation
across motoneuron activity during isometric forces of low magnitudes [4]. Thus
our results strongly suggest that it is the inability of the CNS to dynamically
modulate the relative activation across already active motoneuron pools (i.e.,
muscle individuation) that is the likely cause of the inability to re-direct finger-
tip forces accurately.
Having ruled out muscle-physiological confounds, one may appeal to cognitive
load or perceptual differences between our two tasks as the impediment to the
independent control of fingertip force magnitude and direction. However, Prinz
and colleagues [40], have shown that such perceptual limitations to motor func-
tion apply when the task is primarily a bi-manual visual or auditory one, as
during asynchronous drumming or cyclic motion. In addition, as mentioned
above, the index finger together with thumb enjoys the greatest neuromechan-
ical independence, its motoneuron pools are least susceptible to enslaving and
contextual weakening [6], and thus fixed motor primitives in the traditional
sense [40] do not apply. Moreover, we chose our uni-manual tasks specifically
because the need to re-direct fingertip forces is a ubiquitous, everyday task that
is almost exclusively executed under proprioceptive feedback [10, 28] with clear
functional consequences (i.e., objects should not be dropped during manipula-
tion), and our multi-day testing paradigm was designed specifically to retain
that independence from visual feedback and the establishment of a predictable
feedforward motor command.
A simpler explanation exists, which is strongly supported by other work and clin-
ical experience. It is that there is no a-priori reason to believe that the evolution
of individuated muscle control should be complete or robust in modern humans.
As a consequence we see that, contrary to our everyday assumption, the human
hand might have barely enough neuromechanical (as opposed to strictly me-
chanical) degrees of freedom to be able to individually regulate the activity
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across motoneuron pools of the fingers. Scaling the fingertip force vector only
requires regulating the common drive to all muscles in a specific combination
[20]. Redirecting the force tasks, however, reveals functionally relevant limita-
tions in the speed and accuracy with which the CNS can change the proportions
of activations across muscles (i.e., their individuation)-which likely comes from
competition within and among cortico-spinal projections and interneuronal in-
teractions in the spinal cord [18]. Such interpretation is supported by the de-
tection of the inability of the CNS to execute apparently simple finger tasks in
other highly functional contexts. These include the ability to individually move
the fingers during static grasp [18], measurable errors in the transition from the
control of motion and force-or the combination of motion and force-[22, 21]. In
addition, our results clearly show that the CNS has does not have the ability
to individually control of changes in activations across motoneuron pools even
for the simple ecological tasks of fingertip force production. These independent
lines of evidence strongly suggests that the human hand operates on the verge
of failure because it has barely enough neuromechanical degrees of freedom to
meet the multiple simultaneous mechanical demands of even simple ecological
tasks.
This conclusion raises the paradox of why these limitations in manipulation
do not seem apparent in everyday life. In reality, however, examples of this
lack of individuation and robustness in the control of hand musculature are all
around us. Primary among them is the clinical reality that fine control of hand
musculature operates on the verge of failure because manipulation is so suscep-
tible to even mild neurological conditions, and seldom recovers full functionality
after stroke, cerebral palsy, spinal cord injury or many other neuropathies as
cited above. In fact, clinicians know that much functional recovery is due to
redundancy and adaptations at the task level [41], This is likely due to the fact
that muscle redundancy does not imply robustness to muscle dysfunction [38].
That is, patients adapt to their diminished neural control of hand musculature
by using task-adaptive strategies that change the kinematics, use other grasps,
tools or success criteria. From the developmental perspective, fully mature and
dynamic dexterous manipulation is one of the motor functions that continue to
mature into late childhood and adolescence [42, 43], likely because the neural
structures necessary for manipulation at the level of the brain [44, 45] -and thus
also likely at the level of the spinal cord-take years to develop [46]. So much so
that true prestidigitation and manual skill for musical performance or surgical
technique are uncommon and admired skills that depend on constant practice.
From a more ecological perspective, we propose that the design of objects and
tools is in fact an example of socio-biological coevolution where cultures pro-
mote the development of tools in general [3], but inevitably favor those designs
that are more robustly or easily handled given the inherent limitations of the
human hand. This is the realm of ergonomic design, such as the recent evolu-
tion of the computer mouse or touch screen, but older examples abound such as
the knurling of precision surgical tools, frets for string instruments, the zipper
to replace buttons, or the lever door handle to replace the round one. This
socio-biological co-evolution even targets subsets of the population to accom-
modate for development or aging such as connected chop-sticks or Velcro shoe
closures for children and older adults-let alone assistive technology for individ-
uals with disabilities. Thus our apparent versatility during manipulation is as
much a function of adequate-but incomplete and non-robust-neuromechanical
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evolutionary adaptations, as of socio-biological co-evolutionary design of objects
and tools to make them forgiving when manipulated.

1.1 Materials and Methods

1.1.1 Experimental Setup

Subjects wrapped the thumb and unused fingers of their dominant hand around
a fixed horizontal dowel to produce force against the flat surface of a quadratic
pedestal, mounted on a six-axis load cell (model 20E12A-I25; JR3, Woodland,
CA). The subject’s forearm was supported by a vertically adjustable armrest.
Armrest and load-cell were attached to a magnetic optical plate and vertical
and horizontal positions were adjusted such that the index finger was in ad-
abduction posture. Subjects wore a custom-molded thimble (thermoplastic)
with a spherical Teflon ball embedded in its tip. The custom-molded cover (i)
helped removing the discontinuity at the fingernail and (i) defined a unique
contact point and friction cone for force direction. The force plate was coated
with 300 grit sandpaper to avoid slipping. The force signal was sampled at
1000 Hz and recorded with a data acquisition card (PCI-6225, National Instru-
ments Corporation, Austin, Texas). A Matlab-GUI stored the acquired data
and provided the subjects real-time visual feedback on speed and accuracy.

1.1.2 Experimental Procedure

Each subject was trained in two different tasks during 5 sessions on 5 different
days. For the force scaling the subjects were instructed to start from a preloaded
condition (0.75 N magnitude) and ramp up their force to 2 N as fast and as
precise as possible, where they should maintain the magnitude for 5 s. One trial
consisted of three repetitions. For the second experiment the subjects had to
start from a preloaded condition (2 N force magnitude, +20◦ force deflection
from the vertical axis in distal direction) and tilt the force vector twice to
+20◦ in proximal direction and back, while maintaining a constant magnitude.
The subjects were instructed to maintain the force magnitude and direction
inside the target areas for a short time to clearly separate re-direction phases.
The physical and mental state of the subject was monitored daily by means
of a questionnaire, which reported concentration, stress, recovery as well as
motivation before and during the experiment.

Experiment 1: Force Scaling

Two distinct processes drive motor learning. A process with weak response to
error retains information well and is largely diminished after 400 trials, whereas
the other process responds strongly to error but has poor retention (vanishes
after 30 trials). 30 trials were sufficient to train people in reaching a target with
their fingertip. A similar study used 252 trials, whereas subjects satisfactorily
learned arm reaching movements within 144 to 192 repetitions We used 30 trials
per session (3x30x5=450 repetitions) in order to minimize both learning pro-
cesses and reach steady-state overtrained performance. Session 1 was performed
without grading on speed to get used to the task, while we used different grad-
ing schemes for sessions 2 and 3 and sessions 4 and 5, respectively. Grading
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schemes for sessions 2&3 (transition time from 1 N to 2 N; school grades; t <
80 ms → A, 80 ms < t < 150 ms → B, 150 ms < t < 250 ms → C, t > 250 ms
→ D) to mitigate the possibility of supraspinal modulation of the descending
motor command or visuomotor delays and (t < 30 ms → A, 30 ms < t < 50 ms
→ B, 50 ms < t < 80 ms → C, t > 80 ms → D) for sessions 4&5 to reach the
neurophysiologic limit. Every fifth trial for sessions 2-5 was performed without
visual feedback, which served as control trials to ensure strictly ballistic action.

Experiment 2: Force Re-Directing

Likewise to the force scaling, session 1 was performed only with feedback on
accuracy, while sessions 2-5 were also graded on speed with two different schemes
for sessions 2&3 (transition time from -20 radians to 20 radians or vice versa;
school grades; t < 100 ms → A, 100 ms < t < 150 ms → B, 150 ms < t < 250
ms → C, t > 250 ms → D) and sessions 4&5 (t < 50 ms → A, 50 ms < t <
100 ms → B, 100 ms < t < 150 ms → C, t > 150 ms → D). Every fifth trial for
sessions 2-5 without visual feedback.

1.1.3 Data Analysis

Data was processed off-line and manually for each trial using custom written
programs in Matlab (version R2011b, The Mathworks). A low pass filter with
a cut-off frequency of 30 Hz was applied to all three force axes. While we pro-
cessed all sessions, regression- and statistical analysis was only performed on the
speed-graded sessions 2-5. We calculated a parameter for speed and accuracy
for both experiments. Trials were excluded from the analysis when they grossly
missed the target profile, e.g. due to slipping, distraction, etc. (98.6 % inclusion
for scaling and 94 % for tilting). We used the sum of the normalized parame-
ters z = T

T̄
+ E

Ē
as a combined performance indicator, where T represents the

respective speed and E the accuracy parameter and the overlined parameters
denote the mean across all trials. The normalization scales both paramaters
to comparables magnitudes. Since we wanted to minimize speed as well as ac-
curacy, a low value of the parameter z indicates a good performance. High
values for T or E increase z and report bad performance. To apply appropriate
speed-accuracy tradeoff models to the data we used Matlab’s function nlinfit

and reported Spearman’s rank correlation coefficient ρ =
∑

i
(Ei−Ē)(Ti−T̄ )

∑
i
(Ei−T̄ )2

∑
i
(Ti−T̄ )2

to measure the statistical dependence between the parameters. For all the pa-
rameters indicating speed, accuracy and performance of the two experiments
we used repeated measures ANOVA to test for differences across means of each
session (4 levels). We verified that the residuals were normally and identically
distributed, used Mauchly’s test to rule out violations of the sphericity assump-
tion and the means of successive sessions were contrasted to perform a trend
analysis. We processed the blind trials in exactly the same way as the sighted
trials. For both experiments we selected the best three repetitions in the first
fifteen and the last fifteen repetitions for the parameters speed, accuracy and
performance. We calculated the means across all subjects for the first and the
last repetitions and compared them to make sure that the results are compara-
ble to the sighted trials, even without immediate visual feedback. Additionally
we looked at the evolution of rise time and rock time during the practice to
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verify that the subjects are conditioned to perform the tasks in a time scale
compromising closed-loop control and ensuring ballistic action.
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Chapter 2

Additional Materials

The manuscript of the paper presented in the last section is addressed to the
Journal of Neuroscience and presumes that the reader has specific previous
knowledge. This chapter presents additional material to the manuscript and
its sections have distinct purposes. The theory-block in section 2.1 gives an
extended overview about the neuroscientific knowledge neccesary to understand
the presented study. Section 2.2 describes the detailed experimental setup of the
study. The section should facilitate the reader with the possibility not only to
reproduce the experiment, but to use and adapt the hardware and the software
written for the study. In a last section, we will present additional experimental
results, which we weren’t using in our publication.

2.1 Theory

Sherrington called the α-motoneuron the final common path [47]. All the signals
converging from several descending tracts as well as afferent sensory information
are somehow integrated in the motoneuron, which conducts the appropriate
signal to the muscle. This chapter gives an introduction to the most important
paths to control fingers and to spinal circuitry, which modulates descending
signals or produces rhythmic outputs. Finally, different control strategies will be
discussed. If not specifically indicated, the information in this section originates
from [48, 49] and [15].

2.1.1 Descending Motor Paths

The motor system is organized hierarchically. Even on the lowest level of the
motor hierarchy, spinal reflexes demonstrate sophisticated neural processing.
However, these reflexes can be modulated by higher levels in the hierarchy and
most motor commands originate from the cerebral motor cortex, the cerebellum
or various brain stem nuclei. The brain stem modulates the action of spinal mo-
tor circuits, while the motor cortex acts on both, brain stem and directly on the
spinal cord (see figure 2.1). The motor system is not a simple chain from higher
to lower level areas. Many pathways allow the different levels to communicate
with each other. Consequently, damage to one part does not cause paralysis,
since there are always multiple paths between the parts of the system. Damage
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to higher levels results in deficiencies in motor planning, initiation or coordina-
tion, but movement is still possible.

Figure 2.1: The motor systems have three levels of control: the spinal cord, the brain
step and the cortex. They are organized both serially and in parallel. Figure adapted
from [48]

Descending motor paths are defined as those, which originate in the brain
and initiate or modify motion. They end in the spinal cord and innervate α-
motoneurons, γ-motoneurons or interneurons. The motoneurons innervating the
limb muscles are located in the anterior horn of the spinal cord and arranged ac-
cording to two rules (see figure 2.2). Motoneurons that innervate flexor muscles
are located posteriorly to the ones innervating extensor muscles and motoneu-
rons that innervate distal muscles (e.g hand and finger) are located lateral to
the neurons innervating proximal muscles.

Several paths bundle fibers originating in the brain and guide them to the
spinal cord. The most important ones for arm and hand movement are the
rubrospinal and corticospinal or pyramidal tracts. The corticospinal tract orig-
inates in the motor cortex and is the most important mediator for voluntary
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Figure 2.2: Flexor-extensor rule and proximal-distal rule the position of the mo-
toneurons in anterior horn.

movements in humans. Approximately 90% of the axons in the tract cross over
to the contralateral side at the pyramidal decussation, forming the lateral corti-
cospinal tract. These axons run through the lateral funiculus of the spinal cord,
before they synapse either directly with α-motoneurons or with interneurons in
the anterior horn. The remaining 10% of the axons that do not cross at the
decussation constitute the anterior corticospinal tract, which finally crosses over
to the contralateral anterior horn in the spinal segment at which they termi-
nate. While the latter is responsible for the control of the proximal muscles, the
lateral corticospinal tract innervates the distal musculature with the important
function of the fine control of hand and fingers. The corticospinal tract is the
only descending pathway in which some axons make synaptic contacts directly
onto α-motoneurons.
The rubrospinal tract originates in the red nucleus of the mid brain and inner-
vates spinal neurons at all levels of the spinal cord. The rubrospinal tract is an
alternative, by which voluntary motor commands can be sent to the spinal cord.
The rubrospinal tract plays a minor role in humans than in other mammals but
is amongst other things responsible for fine motor control of the upper limb.
The red nuclei receive most of their input from the cerebellum and are therefore
important for trained movements. They also receive some input from the motor
cortex and can function as an alternative for a damaged pyramidal tract, which
gives them higher significance for humans.
As mentioned before, corticospinal neurons make direct connections with α-
motoneurons in the spinal cord. This connection is one of the mechanisms that
permit individual movements of the fingers. Although there are redundant paths
to actuate the fingers, the monosynaptic connection is salient for precise control
of the finger muscles. Monkeys with sectioned pyramidal tracts are still able to
climb, jump and execute normal movements. Though, they loose the ability to
individually control muscles [14].
Another important descending path is the reticulospinal tract. Two tracts de-
scend from the reticular formation to supply the trunk and proximal limb mus-
cles. The reticular formation coordinates automatic movements from locomo-
tion and posture. In addiation, it faciliates or inhibits voluntary movements and
influences muscle tone. The reticular tract is phylogenetically older than the
corticospinal tract. Compared to the direct and simple projections of the latter,
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the neurons descending from the reticular formation form much more divergent
projections, which compete with the corticospinal projections in individuated
control uf upper limb muscles.
Like redundant descending paths, the corticospinal neurons also form indirect
connections through several interneurons with motoneurons in the spinal cord.
These connections regulate a larger number of muscles and may contribute to
multi jointed movements such as reaching or scratching. These spinal circuits
will be discussed in the next section 2.1.2.
The individual movement of fingers is controlled by patterns of activity in a pop-
ulation of cortical neurons. Though monosynaptic projections from the motor
cortex allow precise control of the fingers, it is difficult to identify the contri-
bution of single neurons. On the one hand, a single corticospinal neuron can
control multiple muscles and on the other hand a single muscle is actuated by a
crowd of neurons. Not single neurons, but the relative contribution of a popula-
tion of neurons codes for the direction of a movement [50]. Even more surprising,
Lemon and Muir have shown that different cells innervating the same muscle
can cause different activation [51]. While specific cells excite high forces, there
are other neurons that precisely control the force.
Conclusively, the descending path from the motor cortex through the corti-
cospinal tract, over α-motoneurons to the finger musculature is surprisingly
direct and enables immediate control. However, the contribution of cortical
neurons to force magnitude and direction is inscrutably complex. And since the
corticospinal neurons also synapse on spinal interneurons, circuitry in the spinal
cord makes the control of finger musculature even more intricate.

2.1.2 Central Pattern Generators

Though the path described in the previous section 2.1.1 is astonishingly simple,
voluntary movements are governed by complex motor programs. Supposedly a
movement is represented in the brain in some abstract form rather than as a
series of joint motions or muscle contractions. Our handwriting e.g., appears
similar, regardless of the size of letters or the body part used to produce the
letters [52].
It is still very little known about the highly integrated neural circuits in the brain
that coordinate movements. Yet new experiences seem to show that highly co-
ordinated and very complex systems of interneurons regulate the precise timing
and sequencing of muscle activity on the level of the spinal cord. The central
theory is that these interneurons form pattern generators within the central
nervous system which produce the basic motor program. There are neuronal
circuits within these pattern generators which coordinate muscular synergies
and generate timing signals. Command neurons activate these pattern genera-
tors when a particular coordinated movement is required. The pattern genera-
tors mainly initiate rhythmic and cyclic behavior such as chewing, swallowing,
scratching and of course locomotion. There is strong evidence that such spinal
circuits also exist for finger control. Pattern generators in turtles that are shared
by three different kinds of scratching as well as by locomotion have been identi-
fied [53]. Even more significant for our research is the use of biomimetic pattern
generators to model rhythmic motions such as finger tapping in humans [54].
The model proved to be applicable for the evaluation of abnormal movements
in humans with motor function impairments such as Parkinson’s disease.
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2.1.3 Feedback and Anticipatory Control

Voluntary movements are influenced by environmental obstacles and perturba-
tions. They improve with practice, as one learns to anticipate and correct the
movement for them. The nervous system monitors sensory inputs and uses this
information to react with a moment-to-moment control. The so-called feedback
control compares the sensory inputs with a reference signal and immediately
corrects the output signal in order to follow the reference signal (figure 2.3 (A)).
Obviously, such a mechanism further complicates the neural circuits and causes
delays in reaction. The inclusion of visual feedback into a control-loop produces
delays of more than 180 ms [55].

Figure 2.3: (A) In a feedback control system, the sensory input is constantly com-
pared with a desired output state and the system instantly corrects for errors. Feed-
forward control e.g. is used when catching a ball as soon as the ball approaches
the catching hand. Visual feedback and information about muscle stretch is used to
maintain and hold the hand in a given angle. This method of control is very precise
but causes substantial sensory delays. (B) In contrast, feed-forward control integrates
sensory information before the execution of certain movements. Since the control is
anticipatory and relies on experience, the actual execution can be very fast. Feed-
forward control is applied when catching a ball to estimate the time and location,
where the ball hits the hand. Figure adapted from [48].

Unlike feedback systems, feed-forward control acts in advance of certain
perturbations (figure 2.3 B). Experience helps us to adjust to environmental
obstacles before we execute a movement. It is widely used by the motor system
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to control posture and movement. Two key principles of feed-forward control
are that it is essential for rapid action and depends on the ability of the nervous
system to predict the consequences of certain events. The latency for monosy-
naptic feed-forward-control can be less than 40 ms.
Very fast feed-forward controlled movements with high acceleration and decel-
eration phases are referred to as ballistic movements. EMG recordings of such
movements demonstrate that the triphasic (agonist/antagonist/agonist) muscle
activation begins with a brief agonist motor unit activation signal with firing
rates of 60 to 120 Hz that may last for 100ms and occurs 50 to 100ms be-
fore the movement begins [56, 21]. The function of the succeeding antagonist
muscle contraction is believed to control the amplitude and timing of ballistic
movements. The second agonist muscle activation is suggested to terminate the
negative acceleration of the antagonist muscle contraction and thus the ballistic
movement. In humans, ballistic movements involve spontaneous propulsion of
the limbs, observed e.g. in martial arts [57] but also fast finger movements,
required to type a text or play the piano.

Inspite the thorough introduction to our hypotheses in the paper, we would
like to justify our research here again under a different point of view. We were
using and exercising our fingers since our childhood, be it playing with a mo-
bile, learning to knot our shoes, practicing a first instrument such as the piano
or the guitar or even the handling of a computer with mouse and keyboard.
Each of these activities is a complex interaction of scaling and redirecting the
fingertip forces. As explained in the last sections, the possibilities to control our
fingers range from simple monosynaptic connections to specifically change the
activation of a few muscles to complex spinal circuitry to control and coordinate
multi-jointed movements. Despite the fact that we were extensively exercising
our fingers over the years, we represent the opinion that our ability of manipu-
lation is far away from optimal. We would like to know what kind of circuitry
is involved when sending motor commands to the fingers, if the task difficulty
is reduced to a minimum and the computational load due to sensory feedback
is minimized. Hence, we wanted to test the following two hypotheses.

• Scaling the force magnitude only requires little change in muscle activa-
tion. Therefore, humans should be able to perform this task very accu-
rately and fast. Overtrained subjects would eventually reach an optimal
tradeoff between speed and accuracy.

• In contrary, redirecting the force vector requires a more complex change
in muscle activation. Even extensive training can’t enable precise and fast
reorientation of the force and will always be connected with erroneous
force magnitude.

To pick up Isaac Asimov’s quotation ”Writing, to me, is simply thinking

through my fingers”, writing requires not only a lot of thinking to compose a
stimulating text. Additionally, the simple action of writing letters is thinking
for the fingers.
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2.2 Experimental Setup

2.2.1 Detailed Hardware Setup

In the paper, we described the hardware setup only very schematically. Here,
we show and explain construction drawings of the different parts. In addition,
we present a short manual to mold the custom thimbles.
The arm of the subjects was supported by the armrest shown on the CAD-
drawing in figure 2.4 (A). The supports were attached to the optical plate with
four magnetic bases. The height of the actual supporting plate was adjustable.
The horizontal dowel was attached between the two supports in front. A foam
pad on top of the supporting plate made the construction more comfortable.
The force plate is shown in figure 2.4 (B) and manufactured by 3D FDM print-
ing. The large area simplified the positioning of the setup and as we will show
in section 2.2.3 the recording was consistent all over the plate. The lower part
of the plate was screwed to the JR3 load-cell, which was screwed on its part to
another magnetic base. The sensor was connected to the computer as described
in the paper and operated in single-end mode.

Figure 2.4: CAD drawings for the setup used in the tapping study. The armrest (A)
served to position and fix the subject’s forearm. The force plate (B) was mounted on
top of a load-cell and was used as force transmitting component.

We used thermoplastic sheets to form the custom thimbles. Cruciform pieces
were cut out of the sheets and were boiled in water to heat them to their glass
temperature, where they become easily deformable. The center part of the cross
was placed on the subject’s fingertip and they were asked to wrap the four wings
around the index finger. During the cool down process, they pressed the thimble
against a small Teflon ball to prepare a dip. After the thimble had completely

24



cooled down, we used super glue to attach the ball to the thimble. Picture 2.5
shows the assembled parts and a subject waearing its thimble.

Figure 2.5: Experimental setup for the finger tapping study.

2.2.2 Software Implementation

Using Google-Spreadsheets as a Portable Database

Code of practice in the Brain-body dynamics lab is to use a 32-bit version of
Matlab and the corresponding legacy-interface of its data acquisition toolbox.
However, 64-bit computers are industry standard for several years and it’s fa-
vorable to make use of their computational power. For this study and for the
calibration project in chapter 3 we used the 64-bit version of Matlab and the
newer session-based interface to acquire data. The big drawback of the newer
interface is that it is only available for National Instruments DAQ-devices. In
return, the usability improved a lot and the interface offers a variety of new
features such as counter functions or accelerometer and temperature sensing.
Based on the interface, we were implementing a generic Matlab-class that allows
to conveniently address arbitrary load-cells, whose data is digitalized with a NI-
DAQ. The functionality of the class offers time-limited data acquisition, which
blocks the code execution, and continuous background acquisition that allows
Matlab to do intermediate execution of different commands. The class also ac-
cepts user-written handling routines, which either plot the data in real-time or
process the data already while the measurement is running. Appendix A.1 lists
the code for the whole class, while the following listing shows an example of
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how to use it.

1 measurement = loadCell( '2563' ,true, 'Dev1' ,[1:6]); %create object
2 measurement.startBackgroundScan(0.1,@plot); % start a background ...

scan
3 pause(5); %system delay does not interrupt data acquisition
4 [data,time] = measurement.stopBackgroundScan; %stop acquisition ...

and get data
5 fancyDataAnalysis(time,data);

The constructor accepts four arguments: One specifying the load-cell, then a
boolean variable deciding whether the output should be raw voltages or force
data, third the data acquisition device to use and the fourth parameter specifies
the input channels (six in this case). The second line starts a background
acquirement, which uses the basic plot command to display the data every 100
ms. A system delay does not affect the measurement and after the break the
acquirement is stopped and the data is returned.
For the rest of this section, I’d like to turn the reader’s attention to the first
parameter of line one. In this little example we used a JR3 load-cell with
the serial number 2563. Google offers a variety of practical online services,
amongst others an office suite and in particular a spreadsheet editor. We are
maintaining a database with all load-cells available in the lab, which contains
links to datasheets and the current application. More importantly, the database
contains a separate sheet for every load-cell, showing only its calibration matrix
(see section 3.1.4 for details). The load-cell class automatically downloads the
calibration data from the database. It serves as a central storage and makes a
local copy of the data superfluous.
We used the same principle to maintain the database of subjects. A Google-
spreadsheed contained the subject number as well as all relevant parameters like
age, handedness or experimental progress and allowed us to flexibly access and
edit the data on different workstations. The necessary subject data could easily
be read out and updated by Matlab while performing the actual experiment.
The only drawback of the method is that the communication framework between
Matlab and Google-Docs is considerably slow. Nevertheless, since the download
usually only happens during the start-up, there is no need for realtime access
and the use of online spreadsheets is a good approach to store data.

Providing Visual Feedback

As described in the previous section, the used framework to acquire data from a
load-cell offers a simple way to visualize the data during the measurement. The
visual feedbacks for the two experiments have already been briefly described in
the paper in chapter 1. This section describes the implementory and mathe-
matical details.

Figure 2.6 shows a snapshot of the continuous visual feedback for the force
scaling (A) and the re-directing (B). The displayed vector for both experiments
represents the same data. While the length of the arrow maps the force magni-
tude, the angle to the vertical axis reflects the angle between z-axis of the load-
cell and the deflection of the vector in the proximo-distal axis of the subject. At
the beginning of the figure update, the mean of all individual components of the
force vector is calculated. The length of the vector is determined by calculating
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Figure 2.6: Visual feedback used for the two experiments in our study. (A) Feedback
for force scaling, the shaded regions are green as long as the force magnitude is held
inside the outer shaded region. (B) Feedback for force re-directing, the shaded areas
are green as long as the force vector is held inside one of the three boxes, orange
whenever the force magnitude is constant and red otherwise.

the euclidean length of the force components (equation 2.1) and the angle θ is
calculated with simple trigonometry. These two parameters are mapped to the
figure according to equations 2.3 and 2.4.

F =
√

F 2
x + F 2

y + F 2
z (2.1)

θ = arcsin(
Fx

Fz

) (2.2)

Lx = sin(θ) · abs(F ) (2.3)

Ly = cos(θ) · abs(F ) (2.4)

After calculating the components of the average status vector, the software
determines whether the subject maintains the force inside the desired area or
not. The confidence interval for the force magnitude is ±0.1N and ±3◦ for the
angular deflection. The deflection is also displayed for the ramping, but not
reflected in the color coding. All target areas were green as long as the force
vector was hold inside one of the areas and red otherwise, additionally the areas
became orange for the re-directing as long as the magnitude is 2N ± 0.1N but
outside the desired angles.
The update interval was empirically chosen and set to 150 ms. The computation
of the visual feedback was quite time consuming and didn’t allow for a higher
frame rate in order to avoid lags. However, since we looked at feed-forward
control, there was no need for a totally smooth feedback. The update rate of
about 7 frames per second is enough to provide sufficient feedback between the
trials and to maintain a constant force vector.
The subjects were graded on their performance in real-time during the exper-
iment. The grades ranged from A to D and reflected the time to either ramp
up the force from 1.1 N to 1.9 N or re-direct the force vector from −12◦ to 12◦.
The most obvious approach to trigger the time measurement would have been
derivative based, since it hadn’t included only a part of the movement but de-
termined the time from the beginning until the end of the movement. However
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the time derivative of force magnitude and deflection turned out to be too rough
and noisy to make reliable measurements.

Performing Experiments Using the GUI

This paragraph serves as a short manual for future investigators to use the
software written for this study, though it is expected that the reader has already
familiarized with the code. Another prerequisite for the software to work is to
have the load-cell database and the subject database available in the personal
Google-docs folder.

Figure 2.7: A screenshot of the Matlab GUI to control the scaling and re-directing
experiments. The order of commands is from top to down and the different shaded
regions indicate control groups.

Enter Tapping in Matlab’s console to start the GUI. Before the actual GUI
will open, you will be asked to enter your Google-credentials. After that it will
take around 30 seconds to download all relevant information about the available
load-cells. The operation of the software is very straightforward and an example
is shown in figure 2.7. The experiment is set up from top to down. First off all
you will have to choose the subject and the load-cell (we used the JR3 2563 for
our study). Both, calibration and subject data are downloaded from the Google
repository. The session counter in the middle of the purple section displays how
many sessions of each experiment the subject has already performed. The radio
buttons let you choose between the experiments. The next action will be to start
a training session with the corresponding button. It is up to the user how often
the load-cell baseline is measured (in our study, we did it after every 10th trial),
but the action should be done at least whenever starting a new session. There is
also an option to perform a trial without visual feedback. A click on the button
Start triggers the measurement and opens the visual feedback for the subject
on a secondary monitor. The trial counter will be incremented and a trial has
to be terminated manually by a click on the corresponding button. There is
possibility to add an additional plot for the experimenter. Yet we didn’t make
use of this feature in our study since the subject’s visual feedback was sufficient
to control the experiment. The experimental data is automatically saved after
finishing a trial, but a session should always be terminated by a mouse click on
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the button Stop session in order to update the subject’s database.
We used the form in appendix B.1 to assess the subject’s physical and men-
tal state on every day of the experiment. It can help to survey the subject’s
motivation concentration and could help to explain the reason for abnormal
trials.

2.2.3 Analysis of Noise and Measurement Consistency

Since the JR3 load-cell used for the experimental setup can measure a force up
to 125 N and has a digital resolution of 0.013 N, the forces and their fluctuations
that we measured during this experiment were considerably small compared to
the nominal values. This chapter proves that the accuracy was by far good
enough for our purposes and explains how the effect of noise was minimized.
Figure 2.8 shows the Fourier analysis of a recorded constant force. There were
prominent noise frequency components originating from the power supply at
60 Hz and 180 Hz as well as unknown components between 20 Hz and 40 Hz.
Matlab offers an assisting function to design appropriate low-pass filters. A
butterworth filter of order 13 with a cut-off frequency of 30 Hz significantly
reduces most noise components (figure 2.8).
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Figure 2.8: The force plate was loaded with a calibrated dead-weight of 2 N. The
plots show the Fourier transform of the recorded force magnitude once unfiltered and
once with applied butterworth filter. Notice that the filter successfully suppressed the
noise frequencies above 60 Hz and strongly attenuated the frequencies between 30 Hz
and 60 Hz.

The plot 2.9 shows the effect of the same filter, applied to an experimental
trial. Again, the filter suppressed the noise frequencies, whereas the frequencies
of physiological hand tremor around 8 Hz [58] were not affected. The standard
deviation of the force magnitude due to noise of an unfiltered, constant signal
is 0.018 N and in the range of the sensor resolution (compare figure 2.10). The
butterworth filter significantly reduced the fluctuations of the measurement and
increases the SNR from 101:1 to 404:1. The SD of 0.0049 N is well below the
sensor resolution, which meas that the measurement accuracy is limited by the
digitalization rather than by noise.

A noiseless signal was utterly important for a meaningful interpretation of
the data. But it was also important for the subjects to get smooth visual feed-
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Figure 2.9: The plot shows the Fourier analysis of a real experimental trial. Notice
that the filter successfully suppressed the noise components, while it left the tremor
frequencies below 15 Hz unaffected.
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Figure 2.10: Force magnitude for a constant force with and without applied low-pass
filter. Notice that the filter considerably increases the SNR and that the SD of the
filtered signal is well below the sensor resolution of 0.016 N.

30



back that unaffectedly represented their performance. Since the visual feedback
was updated less often than every 100 ms and the signal was sampled at 1000
Hz, roughly 100 data points were averaged to build up a single frame. The
moving average operation already served as a low-pass filter and the effect of
an additional filter would be negligible (figure 2.11). For the visual feedback as
well, the SD of the signal is significantly lower than the sensor resolution. The
SNR of the unfiltered frame sequence was even higher than for the real signal
with applied filter, because the moving average operation filters out frequencies
which belong to the natural tremor. In any case were these frequencies are only
important for the actual data analysis and aren’t needed for the visual feedback.
The subjects were free to apply the force on the plate wherever they wanted.
To make sure that the contact point didn’t affect the measurements, we applied
dead weights to nine uniformly distributed positions on the plate. The position
of the calibration weight did not affect the measurement (figure 2.12).

200 250 300 350 400 450 500
1.975

1.98

1.985

1.99

1.995

2

2.005

Frame

F
or

ce
 [N

]

SNR assessment visual feedback

 

 

Force magnitude without filter (SNR = 525:1, SD = 0.0038 N) 
Force magnitude with butterworth filter (SNR = 573:1, SD = 0.0035 N) 

Figure 2.11: Effect of the butterworth-filter on the visual feedback. The filter hardly
affected the signal, since the averaged force magnitude used by the visual feedback
represented an already filtered signal.

The most salient limiting factor regarding system performance was the sensor
resolution. Since we did not assess the amplitude of the actual tremor and our
measurements for accuracy have values well above the resolution, the sensor was
satisfactory for this experiment. However, if we plan to use the experimental
protocol with PD patients to investigate a neurodegenerative disease (compare
3.4, an assessment of tremor frequency and magnitude might become neccesary.

2.2.4 Processing and Analyzing the Data

Processing

The software described in section 2.2.2 stores each trial consisting of three rep-
etitions in a separate file. At the beginning we tried to automatically extract
parameters for speed and accuracy with computer vision based methods. The
most promising algorithm calculated the moving variance for a specific time
window. The calculation of the variance mapped the rise phase or the rock
phase to a bell-shaped peak, where the two bases represented onset and offset

31



0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

Time [s]

F
or

ce
 [N

]

Constant load at different locations

 

 

Force magnitude

Figure 2.12: A calibrated weight of 2 N was applied to 9 different positions on the
force plate. Visual inspection of the plot shows that the weight position didn’t affect
the measurement.

of the transition. The method worked very well for most trials, but didn’t work
for abnormal trials. Since it would have been very difficult to sort out these tri-
als post-hoc, we decided to perform the data processing by manual inspection.
Matlab offers functions to display data and to use a crosshair to select specific
data points. For the analysis of the scaling, we were plotting the force mag-
nitude against the time and for the re-directing the angular deflection against
the time. In a first step, we splitted up one trial into the three repetitions and
processed each separately. The plots to process the data are shown in figure
2.13. For each trial, the user selected the beginning and the end of the rise phase
or rock phase respectively, as well as the end of the hold phase. The vertical
black line splitted the screen in half and a fourth click inside the dedicated areas
decided whether a trial was kept or dismissed due to abnormalities.

Based on the vertices set above, we extracted different parameters repre-
senting speed and accuracy. We looked at the time from the beginning of the
transition phase until its end, but also stored the time between two the thresh-
olds that were used for the real-time grading of the trials. For the scaling, we
extracted the overshoot of the first peak, the standard deviation of the hold
phase and the ratio of the standard deviation during the first and the last third
of the hold phase as accuracy parameters. Similarly, the RMSE for the force
during the rock phase and the angular overshoot over the target deflection were
in consideration as accuracy parameters for the re-directing.

As described in chapter 1, we used Spearman’s coefficient to express the
correlation between speed and accuracy and we fitted the tradeoff between the
parameters to a Fitts’s law like distribution, which accounts for learning effects.
Matlabs function nlinfit is a powerful tool for non-linear regression. While
most combinations between the proposed speed and accuracy parameters fol-
lowed the behavior presented in the paper, the choice depicted in figure 2.14
produced the most articulated results. Outcomes with other parameters will be
presented in section 2.3.2. As already mentioned in the paper, the normalized
sum of speed and accuracy served as an indicator for overall performance.
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Figure 2.13: The figure shows a representative trial for force scaling (A) and re-
directing (B). The first two red lines indicate the onset and offset of the transition
phase and the third line denotes the end of the hold phase. A Matlab function allows
to manually set these points and accordingly extract parameters of interest.
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Figure 2.14: Definition of the parameters for speed and accuracy for the force scaling
(left) and re-directing (right).
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Statistical Analysis with SPSS

We used repeated measures analysis of variance (RM-ANOVA) to test for sig-
nificant changes of the parameter values between the training sessions. Since
the parameters fluctuate a lot during a single session, we calculated the means
of each parameter for each session and each subject before performing the sta-
tistical analysis. Matlab offers a variety of statistical tests, however no meth-
ods for RM-ANOVA. Instead, we used the statistics package SPSS (IBM SPSS
Statistics, Version 20). The most convenient way in SPSS to perform the test
is defining a RM-General Linear Model (RM-GLR). The analysis through the
RM-GLR includes Mauchly’s test to prove sphericity assumptions and the ac-
tual ANOVA. Since we were only interested in significant differences between
successive session, SPSS only checked for significant means between successive
levels instead of using the Tukey-Kramer test for multiple comparisons. Finally
the software performs a regression and reports linear, quadratic and cubic trends
across the time series.
The RM-ANOVA was performed for accuracy and speed for both experiments.
We conducted the same procedure to test for significant differences between the
overall performance. The difference in Spearman’s coefficient between scaling
and re-directing was investigated using common ANOVA.

2.3 Additional Results

2.3.1 Detailed Statistical Results

In the paper (chapter 1), the statistical methods were explained very roughly
and results of the analysis were given by reporting only the p-value. Here, we
will present a more detailed analysis and further justify the significance of the
presented results.
Recall that for the force scaling both, the changes in rise time and overshoot
across the sessions were significant but there was no significant change in perfor-
mance. The corresponding significance values of Mauchly’s test were p = 0.221,
p = 0.162 and p = 0.082. While the first two parameters didn’t violate the
sphericity assumption, it didn’t matter in the performance, since there was no
significant change at all. The pairwise comparison of successive sessions un-
veiled, that the only significant change is between session 2 and 3 (p = 0.018
for speed and p = 0.007 for accuracy. This could have been expected, since the
overal performance didn’t change but the experimental conditions were changed
between these sessions. None of the pairwise comparisons between sessions re-
garding performance were significant.

The estimated marginal means allow to perform a regression analysis across
all subjects. The trends are shown in figure 2.15. The rise time had a clear
downward trend and the overshoot was increasing, especially between sessions
2 and 3. However, the indicator for overall performance only fluctuated very
slightly. According to these observations, the regression analysis proved signifi-
cant linear trends for speed (p = 0.0224) and accuracy (p = 0.044) but neither
a linear nor a quadratic or cubic trend for performance.
The regression analysis for the re-directing produced very oppositional results
(figure 2.16). Even if there is a visible downward trend in rock time, the lin-
ear regression was not significant (p = 0.211). The same holds true for the
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Figure 2.15: Estimated marginal means for the different measurements extracted for
the force scaling. While speed and accuracy show an increasing and decreasing trend,
respectively, there is no trend for the performance.

RMSE (p = 0.911), while there is a significant negative linear trend for the
combined means (increasing performance) with a p-value of 0.041. The only
statistically significant change across the four sessions was for the performance
(p = 0.013), where Mauchly’s test was not significant (p = 0.913) and the
sphericity assumption was not violated. The successive changes in means be-
tween the session were all non-significant. In addition, the main improvement
and only significant change for the performance happened between session 3 and
4 (p = 0.021).

Figure 2.16: Estimated marginal means for the different measurements extracted
for the force re-directing. While speed and accuracy didn’t have significant trends,
there is a negative trend for the normalized sum of seed and accuracy, which indicates
improving performance.

2.3.2 Speed-Accuracy Tradeoffs

As mentioned in section 2.2.4, we extracted more parameters from the data
than we were finally using in the paper. This section shows the same facts using
different parameters for speed and accuracy. Here, we used the total rise time
(rock time for re-directing) instead of the threshold-based measurements as a
speed indicator. The SD ratio between the first third and the third part of
the hold phase replaced the accuracy parameter for the scaling and the angular
overshoot was used for the re-directing.

We could still observe the semilogarithmic tradeoff between speed and ac-
curacy for the force scaling (2.17). The higher SD ratio between the different
parts of the hold phase indicated less precision with increasing speed. Though,
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Figure 2.17: Speed-accuracy tradeoff for scaling the index fingertip force vector.
The colored asterisks mark measurement data and the red curve is a fit to a semi-log
function. It is obvious that the data follows the regression curve. The color codes for
increasing trial number. The color gradient runs from left to right, indicating that the
rock time decreased and the overshoot increased with increasing trial number.

the shape is less explicit and the R2 = 0.4344 considerably lower. For the
re-directing in contrast, there was still no correlation between rock time and
angular overshoot. The datapoints were randomly distributed and also the
training didn’t lead to either higher speed or lower overshoot.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

RMS during rock phase [N]

R
oc

k 
tim

e 
[s

]

Speed−accuracy tradeoff force re−directing

 

 

50

100

150

200

250

300Experimental data

Figure 2.18: Speed-accuracy tradeoff for re-directing the index fingertip force vector
and maintaining a constant force magnitude. The colored asterisks mark measurement
data and the color codes for the trial number. Apparently there is no correlation
between rock time and angular overshoot. Also there is no connection between trial
number and speed or accuracy.

The plot of speed and accuracy against the trial number (figure 2.20) shows
similar characteristics. There is no effect of the training on the angular over-
shoot but a slight decrease in rock time is noticeable. However, the curves are
uncorrelated and the decreasing rock time didn’t cause an increase in overshoot.
On the other hand, there are clear trends for speed and accuracy when inspect-
ing the same plot for the force scaling (figure 2.19). Both parameters clearly
change between session 2 and 3 around trial 142. But also smaller changes in
rise time cause antithetic fluctuations in the SD ratio.
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Figure 2.19: Rise time and SD ratio between first third and last part of hold phase
plotted against trial number for scaling the force magnitude. The two curves fluctuate
antithetically and noticeably change their values between session 2 and 3.

0 50 100 150 200 250 300 350
0.1

0.15

0.2

0.25

0.3

R
oc

k 
tim

e 
[s

]

Trial number

Speed and accuracy force re−directing

 

 

0
0.1
0.2
0.3
0.4

A
ng

ul
ar

 o
ve

rs
ho

ot
 [R

ad
]

Rock time
Angular overshoot

Figure 2.20: Rock time and angular overshoot plotted against trial number for re-
directing a constant force vector. There is a slight negative trend in the rock time but
no noticeable effect on the overshoot. Additionally, the two traces are not related.
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The statistical evaluation could confirm the observations. The decrease in
rise time was statistically significant (p = 0.001) and caused a significant increase
of the SD ratio (p = 0.002). There was a significant linear regression for both
parameters. In this case, also the change in performance was significant with a
p-value of 0.036. However a pairwise comparison between the sessions revealed
that there is no change between session 1 and 4, which means that the overall
performance couldn’t be improved.
As mentioned above, there was a slight negative trend in the rock time for the
force re-directing. Since the data violated the sphericity assumption (p = 0.05
in Mauchly’s test), we had to apply a Greenhouse-Geisser correction and the
change across the sessions was non-significant (p = 0.099). Also the borderline-
significant linear regression (p = 0.091) indicates a decrease in rock time, even
if it’s not significant under a 95% confidence interval. In any case, there was
no significant variation in accuracy (p = 0.396). As presented in the paper
however, the overall performance increased during the training (p = 0.009) and
we could find a positive linear trend (p = 0.016).

2.3.3 Blind Trials

In addition to the regular trials with visual feedback, we suppressed the feed-
back screen for every 5th trials. Since the analysis of the blind trials didn’t
reveal interpretable results, we didn’t include this part into the paper. These
findings will be presented in this section together with a proposition about how
to change the protocol for future experiments.
We analyzed the blind trials in exactly the same way as we analyzed the regular
trials. Most subjects improved a lot in speed (figure 2.21 shows the plot of a
representative subject). However, many trials could not be properly analyzed
and had to be skipped or produced erroneous values. None of the three param-
eter’s means (rise time, overshoot and normalized sum) changed significantly
throughout the sessions.
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Figure 2.21: Threshold-based rise time measurement for trials without visual feed-
back. The rise time fell very quickly below a value that would enable the use of visual
feedback during the trials, and a lot of trials were abnormal and couldn’t be properly
processed (e.g. trials 55 to 65).

We found similar results for the re-directing task. All three parameters
didn’t change significantly during the training. The performance actually had
a positive trend identical to the trials with visual feedback, but the regression
wasn’t significant.
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The blind trials showed the very important fact, that the subjects performed
the tasks gradually faster (compare figure 2.22), even without visual feedback.
This is evidence for the assumption that we had only feed-forward control in our
experiment. However, there were too many abnormal trials to get statistically
significant results. A main problem with the blind trials was that the subjects
drifted away from the starting position during a trial. After the first repetition,
the subjects couldn’t adjust to the reference force or position anymore without
visual feedback. To overcome this issue, blind trials should only consist of
one repetition. The subjects also dismissed the blind trials. Supposedly, if
we introduced the grading also for the blind trials, subjects would be more
motivated to perform well and improve.

Figure 2.22: Estimated marginal means when performing an RM-ANOVA on the
rock time for force re-directing without visual feedback. There is a visible negative
trend, but the change is not significant (p = 0.404)
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Everything is vague to a degree you do not realize
till you have tried to make it precise.

Bertrand Russell
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Chapter 3

Using an Industrial Robot

to Calibrate Load-cells

3.1 Theory

There are innumerable manufacturers of force and torque transducers, which of-
fer a countless variety of sensors for applications ranging from biomedical devices
through the automotive industry to aerospace design. These sensors measure
very small loadings up to heavy-duty loads in one axis, multiple axis or include
even movement and acceleration measurements [59]. While every company has
their own designs for the sensors, the very basic principle of using a strain gauge
to measure the deflection of a metallic component is preserved. The following
section gives an overview over common designs, highlights measurement uncer-
tainties and lists common calibration procedures and devices.

3.1.1 The Strain Gauge

Force and moment exerted on an object can be measured through the deflection,
respectively the strain ǫ caused by the load. From several possibilities to measure
strain, the foil-bonded metallic strain gauge is the most commonly used to
produce load-cells. A major part of the information and figures presented in
this section originate from an application note by National Instruments [60].
A thin metallic wire experiencing a strain will be deformed and reacts with a
linear change in electrical resistance.

Figure 3.1 shows the basic design of the deflection-transducing element. The
parallel thin wires are aligned with the direction of the applied strain. The zig-
zag structure of the wires causes a multiplicative larger strain effect than if using
just one wire. The wiring of the strain gauge sits on a foil, which is bonded
to the surface of a specimen experiencing strain. The most salient parameter
of the strain gauge is its sensitivity to strain, namely the gauge factor GF in
equation 3.1.

GF =
∆R
R
∆L
L

=
∆R
R

ǫ
(3.1)

41



Figure 3.1: Bonded metallic strain gauge.

The gauge factor is defined as the ratio of relative change in electrical resis-
tance and strain. Unfortunately both, gauge material and specimen material,
respond to changes in temperature. Manufacturers try to minimize sensitivity
to temperature changing by processing the material to compensate for the ther-
mal expansion that the specimen material is experiencing. Compensated gauges
reduce the sensitivity to temperature, but do not completely remove it.

V0 = (
R3

R3 +R4
−

R2

R1 +R2
)VEx (3.2)

A Wheatstone bridge is an electrical circuit used to measure an unknown
electrical resistance by balancing two legs of a bridge circuit (Figure 3.2 A).
The output voltage V0 of the bridge follows equation 3.2 and thus for R1

R2

= R3

R4

the output voltage is zero. Changing the value of one of the resistances results
in a non zero output voltage. Therefore, if one resistance is replaced by an
active strain gauge, the output voltage can be used to calculate the change in
resistance. However, the function relating the output voltage with the strain for
this so-called quarter-bridge is non linear. To overcome this issue, two active
gauges attached in opposite directions can be included into the circuit (compare
figure 3.2 B). The voltage output of this half-bridge is linear and approximately
doubles the output of the quarter-bridge configuration. To further increase the
sensitivity of the circuit, all four arms of the bridge can be made active strain
gauges (figure 3.2 C). For the full-bridge circuit two gauges are mounted in
compression and two in tension. The output voltage follows the very simple
relation 3.3.

V0

VEx
= −GF · ǫ (3.3)

3.1.2 Uniaxial Load-Cells

A single-axis load-cell can be built surprisingly easy using a bending beam
(compare figure 3.3 (B)). The right side shows a schematic drawing of the ready-
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Figure 3.2: Wheatstone bridges and their use to measure strain gauges. (A) General
Wheatstone bridge with four different, constant resistances. (B) Half-bridge solution
with two strain gauges attached to the circuit, which results in linear strain response.
(C) Full-bridge layout with four gauges to enable maximal sensitivity.

to-the-market sensor on the left. The large hole bored through the beam forms
thin walls on top and bottom of the beam. This concentrates the compressive
forces to a small area and causes high strains in these points. Usually two strain
gauges are used for these sensors, one on top and one at the bottom of the hole.

An ”S”-shaped bending beam as shown in figure 3.3 (A) is a slight improve-
ment of the sensor described above. The load is applied straight through and
the transducer is mainly designed for tension. However, also compressive loads
can be measured since the principle with two strain gauges and the big through
hole is kept.

3.1.3 Multi-Axis Load-Cells

While uniaxial load-cells account for 99.9% of the sensors on the market, multi-
axis load-cells are the more interesting and technically more demanding versions
of force transducers. Six-axis sensors measure force and torque components in
all three spatial dimensions, while recent advances in sensor technologies even
include angular and linear accelerations. The basic building block of these load-
cells is usually a metal piece with an annular cross section, known as strain
rings. While it is possible to build a six-axis sensor out of a single ring and
cleverly place six strain gauges, most manufacturers use 3 to 4 rings for their
sensors. Yet it is not uncommon that custom sensors with up to 16 rings are
developed.
Besides a good layout for the strain rings, a second important factor to de-
sign a sensor is to reasonably choose the number of gauges and to place them
intelligently.
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Figure 3.3: Two designs of single-axis load-cells with their schematic technical draw-
ing. (A) S-beam, which enables to measure tension and compression on both ends
of the beam. The loading axis corresponds to the vertical axis of the drawing. (B)
Bending beam, which enables compression measurements in direction of the beam
alignment. Figure adapted from [61].

Figure 3.4: Placement of 24 strain gauges in a five-axis load-cell with two strain rings.
Six gauges each are placed on four equidistant positions around the ring to measure
the force in z-direction, shear in x- and y-direction and torque in x- and y-direction.
Figure adapted from [62].
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Figure 3.4 shows a design with 24 gauges to measure the axial force as well
as shear in x- and y-direction and torque in x- and y-direction. The left side of
the figure depicts the spatial orientation of the gauges. While the parts 1 (active
element) and 6 (passive element to compensate for temperature, compare [60])
are used to measure the axial force, the gauges placed in 45◦ off axis measure
shear and gauges 4 and 5 report the torques. 5 bridges, each combining 4 gauges
at one of the positions indicated on the right side of the figure forward the output
voltage for the 5 components. For detailed circuitry and more information
compare [62].
Clever placement of the gauges will result in one distinct output voltage per axis
[63]. However, usually its not possible to design the sensors that carefully and
a strain in a specific direction also affects the gauges corresponding to different
axes. Consequently all output voltages and their cross-talk need to be known
in order to report the measurement of a single axis. This requires thorough
calibration of the load-cell, which will be discussed in the next section.

3.1.4 Calibration Standards and Calibration Devices

Each manufacturer has own calibration protocols but also own, often custom-
made calibration devices. An engineer from JR3 gave away unhesitatingly the
information about the calibration procedure (G. Sakona, personal communica-
tion, August 10, 2012).
The principle for all their rigs is the same. They bolt the sensors in calibra-
tion to two thick and solid adapter plates, which are, on their part, bolted to
the calibration rig. These plates idealize the boundary conditions in a sense
that they stiffen the sensor’s mounting surface and that they create a consistent
path for loadings from the rig to the sensor’s internal elements. The rigs allow
to accurately apply single-axis loads to the sensor. They use calibrated dead
weights on trays, which are suspended by small diameter cables and in some
cases passed over pulleys, to allow all 6 axes of forces and moments to be loaded
in both the positive and negative directions.
To collect the calibration data, they apply loads to each axis independently.
One loading typically consists of 21 points, where they start at 0, increase the
loading by 20% for each step until they reach full scale. Then they decrease
the loading to the negative full scale in the same steps and finally increase the
loading back to 0.
The total of six axis loadings, with 21 loadings each and the reading for all six
axes per loading, results in 756 data values. To generate the 6x6 calibration
matrix A (see equation 3.4 for its structure), they fit the data set to the linear
best fit for every axis. Also, they are experimenting with new protocols that
use combined loads in order to speed up the process.
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Even though every company has its own calibration standards, the ASTM
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norm E74-6 [64] regulates the calibration methods for force-measuring devices:

• Each axis of multi axis devices must be loaded independently

• At least 30 loadings per axis are required

• There should be at least 10 different loadings, while each loading should
be applied twice

• They suggest an arbitrary polynomial regression, but recommend to use
a second-order fit

η = 2.4

√

d21 + d22 + · · ·+ d2n
n−m− 1

(3.5)

Also, they suggest the uncertainty (see equation 3.5) of a calibration as a
measure of quality. di denotes the difference between actual loading and loading
predicted by the calibration for the ith loading, n is the number of calibration
points and m the degree of the polynomial fit. The uncertainty is calculated for
each axis seperatley.

Given this information, we can define the goals of this project: Since the cali-
bration process of a load-cell is a costly and time-consuming process, we would
like to build a calibration system to calibrate the sensors in the lab. In this
project, we want to calibrate a cell of the type ATI Nano17 (see 3.2.2 for techni-
cal details) since it has the most complex calibration matrix. For this load-cell,
we want two different calibrations: Calibrate compressive z-forces and x- and
y-forces in a way, that the uncertainty is lower than the digital resolution of
the sensor. Since the generation of torques is more difficult, we want a second
calibration to include all axes in an as-accurate-as-possible manner.

3.2 Implementation

An Adept six-300 industrial robot with six independent axes has been used in
the Brain-body dynamics lab for different purposes, such as positioning experi-
mental setups or generating disturbing movements to investigate stable stance of
chicks. The following section describes a novel application of the robot as a cali-
bration device for six-axis load-cells. After a brief introduction to the robot, the
hardware-side and the software-part of the calibration system will be described.
The section closes with the exact calibration protocol and an explanation of the
statistical methods used to calculate calibration matrices according to section
3.1.3.

3.2.1 Adept six-300 Industrial Robot and Its Control

The robot was released to the market in 2003, targeting assembly applications
that require extremely accurate and fast movements. Figure 3.5 (A) shows the
six different degrees of freedom. The robot tool tip has a horizontal reach of
677 mm, a vertical reach of 1019 mm and each axis can rotate with a speed
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of at least 170◦/s [65]. More importantly for the calibration of sensitive load-
cells, the tool tip can be slowed down many times over and the precision of the
movements is ±0.02mm.

Figure 3.5: Adept six-300 industrial assembly robot. (A) Technical drawing of the
robot with its six independently movable joints indicated. (B) Wiring plan of all system
components. The robot has an external power supply, a manual control panel and a
specialized smartController, which stores software and controls the robot in real time.
Even though, programs and user commands are sent from a separate workstation.

The robot requires an external power supply (compare figure 3.5). A smart-
Controller provided by Adept stores software and implements the real-time con-
troller of the robot. The robot can be moved around the axis described before,
but the tool tip can also move along and rotate around the spatial x-, y- and
z-axes. Moreover, the robot can accomplish the movements either on a straight
line or joint-interpolated to minimize the length of a planned trajectory. The
controller provides all this functionality.
Albeit the device can be controlled through a manual panel, a user-supplied
workstation usually serves to control the robot. Programs are written in an
assembler-like, proprietary language V+, which enables huge flexibility in con-
trolling the robot. The editing of software is done and commands to start and
stop routines are sent from the workstation, however, software is executed on
the controller.

3.2.2 Hardware Implementation of Calibration System

To recall the system requirements defined in section 3.1.4, the goal of the system
is to calibrate an ATI Nano17 load-cell in a way that the calibration uncertainty
for compressive z-forces as well as for positive and negative x- and y-forces is
below the sensor resolution. A different calibration protocol shall implement
the ASTM E 74 and calibrate forces as well as torques as accurate as possible.
Table 3.1 shows the most salient design parameters of the Nano17. We needed
to be particularly cautious not to exceed the torque ranges. On one hand they
are considerably low (e.g. maximal axial load applied 10 mm away from the
central axis) and on the other hand this is the most effective way to damage the
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sensor.
A first approach tried to exploit forces caused by gravitation only and the cali-
bration loads were theoretically calculated through mechanical and geometrical
properties. As shown in figure 3.6 (A), weight balls of different size are placed
inside spherical holes in the calibration cap (transparent part). The robot tip
would have been attached to the dark blue plate and used to tilt the whole
structure and exert forces against the sensor (between the orange and light blue
plates) in all spatial directions. However, it turned out quickly that it wouldn’t
be possible to generate tension in z-direction (axial loading). More important,
the height of the calibration cap causes a long moment arm and the allowed
torques would be exceeded very quickly.

Fx,Fy Fz Tx,Ty Tz Fx,Fy Fz Tx,Ty Tz

Sensing Ranges Resolution
25 N 35 N 250 Nmm 250 Nmm 1/80 N 1/80 N 1/16 Nmm 1/16 Nmm

Table 3.1: Measurement range and sensor resolution of ATI Nano17 SI-25-0.25 force
transducer

Figure 3.6: Two different approaches to calibrate a Nano17 load-cell using an indus-
trial robot. (A) Precision weight balls of different size are placed in the spherical holes
to generate different calibration forces. The whole device is tilted to generate forces
in different directions. Weight gauges are used to generate torques. (B) An adapter
with bars in different directions is attached to the load-cell in calibration. The bars
are pressed against an appropriately chosen spring to generate forces. A trustworthy
reference load-cell is used to measure the calibration loads.

Figure 3.6 (B) shows the redesign of the calibration device. Instead of just
relying on theoretical values, the calibration loads are measured with a trust-
worthy and robust load-cell (model 20E12A-I25; JR3, Woodland, CA), attached
between the small round and the transparent plates. The Nano17 is placed on
the opposite side of the round plate. Different calibration caps can be attached
to the sensor in calibration. A plate fixed to ground with a hollow tube holds
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a compression spring. The robot is now used to compress the spring with the
different bars and to generate specific forces and torques. An appropriate spring
(LCM060B 13 M, Lee Springs) with a compression rate of 0.97 N/mm and a
maximal load of 24 N was chosen, so that a single spring covers the whole mea-
surement range of the sensor. Figure 3.7 shows the three different calibration
caps that were used. Part A produces forces in uniaxial direction. The bars in
part B to exert forces in x- and y-direction are pivoted around 45◦ to exert forces
with both, x- and y-components, while the axial bar still exerts a compressive
force in z-direction. The shorter, angled bars of part C are meant to specifically
create uniaxial torques in all three dimensions. All parts were manufactured
using an FDM 3-D printer by the company printo3D, Tunkhannock.

Figure 3.7: Calibration caps for the Nano17 calibration system. (A) Cap, which
generates axial forces. (B) Cap generating forces, which are 45◦ off axis. (C) Angled
bars to produce torques in axial direction.

Both sensors, the reference load-cell and the one in calibration, provide 6
output voltages. These are acquired using a built-in data acquisition card (PCI-
6225, National Instruments Corporation, Austin, Texas) and transferred to a
computer.

3.2.3 Calibration Protocol

We have used two different but very similar loading protocols to generate cali-
bration data, whose implementation will be described in this section. The first
protocol sticks very accurately to the ASTM norm [64] and implements uniaxial
loading in all directions for force and torque. The second protocol passes on the
torque calibration and includes off-axis force loading instead.
For every axis, the positive and negative directions are loaded seperately. The
procedure for each partial axis is always the same: In order to condition the
load-cell in a specific direction, the maximum load is applied twice before ac-
quiring the actual data. Thereafter, ten different loadings are applied and the
corresponding data is measured. The applied force or torque respectively, is se-
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quentially increased by one tenth of the maximum loading and randomly mod-
ulated with an error of maximal 5%. Then the sensor is unloaded and another
10 data points are aquired in the same manner. The following two lists describe
the sequence of loading the different axes.

Protocol 1

1. Negative z-force

2. Positive y-force

3. Negative y-force

4. Positive x-force

5. Negative x-force

6. Positive x-torque

7. Negative x-torque

8. Positive y-torque

9. Negative y-torque

10. Positive z-torque

11. Negative z-torque

Protocol 2

1. Negative z-force

2. Positive y-force

3. Negative y-force

4. Positive x-force

5. Negative x-force

6. Positive x-force and positive
y-force

7. Negative x-force and negative
y-force

8. Positive x-force and negative
y-force

9. Negative x-force and positive
y-force

3.2.4 Software Structure

As depicted in section 3.2.1, software for the robot is written in a proprietary
language and the commands are sent through a special program. On the other
hand the best way to read out and process data from a data acquisition card is
Matlab with its toolboxes. Therefore we had to find a solution to communicate
between the two programs. Figure 3.8 explains the whole calibration procedure
and the collaboration of sensors, Matlab and robot controller.

The communication between the robot’s smartController and the user work-
station happens via Ethernet. Luckily not only the proprietary software, but
also any other program can send TCP-packets through the Ethernet connection
to the robot controller. Therefore we permanently run a tcp-server on the robot
controller during the whole calibration process. The TCP-server accepts num-
ber codes, which represent specific movement sequences. Whenever the server
recognizes a code, it executes the corresponding sequence, which can be either
preloading an axis, performing a single loading step, unloading an axis or repo-
sitioning the whole calibration hardware to load a different axis.
However, the core of the software is implemented in Matlab. A frugal graphical
user interface simplifies the use of the system. Once the calibration process is
started, Matlab sequentially loops through the loading protocol described in the
previous section 3.2.3. A TCP-connection is established with the server on the
controller and either a command to load the sensor or to switch to a new axis
is sent. Each loading step is followed by measuring the raw-voltage data from
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Figure 3.8: The diagram explains the workflow and the interaction of the different
software components for the calibration system. The adept controller runs a TCP-
server and accepts different commands to reposition the tool tip. A GUI in Matlab
controls the whole calibration process, acquires data from the sensors and sends posi-
tioning commands to the TCP-server.
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the Nano17 and storing the wrench vector from the reference cell. Once the
protocol has terminated, the TCP-connection is closed and the acquired data
will be statistically analyzed.
An important factor for the proper operation of the system is the correct tim-
ing. Since Matlab and the robot are independent components, they need to be
thoroughly synchronized. The Matlab program execution has to be suspended
until the robot has terminated a movement. We achieved this by implement-
ing a custom acknowledgment protocol. Whenever Matlab sends a movement
command to the robot, the software enters a waiting loop. After the successful
termination of a movement, the robot sends an acknowledgment signal to the
Matlab software, which enables to exit the waiting loop.
The statistical analysis of the calibration data provides different plots to eval-
uate the quality of the calibration. The user can decide whether he wants to
accept the calibration matrix and store online, in order to be accessible for other
users.

3.2.5 Methods for Calibration and Evaluation

The output of the loading process are six voltages each from the reference cell
and the sensor in calibration for all loading steps. Since the properties of the
bolting between the components change whenever the robot repositions the
system, a record of the baseline voltages for all axis positions is taken without
the attached calibration cap before the actual loading process is started. This
makes sure that the forces measured by the JR3 load-cell equals exactly what
the Nano17 is supposed to measure. Because the lever is different for the load-
cells when measuring torques, the calculated torques measured by the JR3 have
to be transformed to the torques exerted on the Nano17.
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(3.6)

Equation 3.6 explains how the output voltages of the reference sensor are
transformed to the forces and torques being exerted on the Nano17. Here, Vi

are the reference voltages, VOi
are the offset voltages measured for a specific axis

and lx, ly are the lever ratios between JR3 and Nano17. The offset is subtracted
from the output voltages and the result is multiplied with the calibration ma-
trix of the JR3. This wrench vector measured by the JR3 is finally multiplied
with the lever transform matrix to conclude on the Nano17’s wrench vector.
For convenient cable routing, the x-axis of the JR3 is aligned with the y-axis
of the Nano17. The matrix also compensates for that and exchanges the vector
components.
We were using and comparing three different methods to calculate the calibra-
tion matrix out of the measured data. According to section 3.1.4 we were using
Matlab’s built-in functions for linear and quadratic regression to regress the
output voltages from the Nano17 to the measured force data for every axis sep-
arately. Additionally, we were using Partial Least Squares regression to perform
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a simultaneous linear regression of all six axis. For the latter case we were using
all collected force data instead of only the data for a specific axis (e.g. loading
the sensor with a force in x-direction also produces a torque in y-direction).
PLS regression searches for a set of components that performs a simultaneous
decomposition of force data and voltages with the constraint that these com-
ponents explain as much as possible of the covariance between the two. It is
followed by a regression step, where the decomposition of the voltages is used
to predict force and torques [66].
To assess the quality of a calibration, we report the R2 values, RMSE of the
regression and the uncertainty. Moreover the software provides several plots
that support the assessment. Plotting the residuals against the applied load
reveals information about the applicability of a model. Plotting the time series
of the residuals gives information about hysteresis effects. Both plots shouldn’t
have a structure for an appropriate mode and the residuals should be randomly
distributed. Accordingly a histogram of the residuals should be bell-shaped.
Another method to test independence of succeeding measurements is to plot
the residuals against the residuals of the preceding measurement. Again, ran-
domly distributed data points indicate a good fit.

3.3 Results

The calibration process could be successfully finished for both protocols and we
obtained reasonable and useful results. However, the calibration needed some
additional assistance apart from attaching and changing the calibration caps.
The rapid prototyping material of the caps was not stiff enough and the forces
caused them to bend. This had no influence on the calibration but thorough
observation of the axis repositioning was necessary to ensure a smooth process.
Both, force and torque axes, were loaded close to their full range. Figure 3.9
shows a plot of the six axes loadings as well as all measured gauge voltages
(bottom plot). Only the z-torque did not reach its full range (compare the sixth
plot). The bottom plot shows the gauge voltages of the sensor in calibration.
While the reference load-cell has six gauges, that almost uniquely respond to
one axis, the Nano17 obviously has a much more complex design. There are at
least two gauges contributing to the output for any arbitrary loading situation.

Image 3.10 shows the evaluating plots for calibrating the x-axis. Obviously,
there is no recognizable pattern when plotting the residuals against the loading
step or the predicted load, which means that the error was random and not
correlated with either the sequence of loading or the magnitude of the applied
force. The bell-shaped histogram and the near-liner normal probability plot are
evidence for a random residual distribution. The chaotic lag plot proves that
successive measurements were not dependent on each other. Finally, plotting
the actual force measurements against the predicted values does not deviate
from a straight line. The community of these plots indicates a successful cali-
bration of the x-force axis.
The residual plots for the two other force coordinates look similar and satis-
factory as well. Also the calibration of the x-component and the y-component
of the torque was successful. The residuals were random and uncorrelated and
bounded to roughly 0.3 Nmm. It is noteworthy that we didn’t calibrate the
sensor for forces in positive z-direction. However, the calibration of the nega-
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Figure 3.9: The figure shows the loading of the different axes during the calibration
process. The displayed data are the loads measured by the reference load-cell, trans-
formed to the point of view of the sensor in calibration. Notice that the three force
and torque axes are loaded considerably independently, but that a force is always con-
nected to a torque and vice versa. The bottom plot shows the recorded gauge voltages
from the cell in calibration. Noteworthy is the complex design of the sensor, since
always at least two gauges have non zero values.

tive direction is very well extrapolateable. We were verifying the calibration by
applying three loadings of 100 g, 500 g and 1 kg to that axis. The average differ-
ence between reference value and calculated weight was 0.67%. The analytical
plots for the z-torque are given in figure 3.11.

The errors were still randomly distributed, meaning that there was no con-
nection between loading point (timewise and according to value) and error.
However, the residuals were about ten times larger than for the other torque
axis and the deviation from the straight line in plot six indicates that either
a linear calibration is not appropriate or that the axis couldn’t be calibrated
properly.
The most salient plots for the x-force data look very similar when comparing a
linear regression with the proposed quadratic regression (see figure 3.12). The
more complex method approximately halves the error. Table 3.2 compares the
different uncertainties and sets them in contrast with the sensor resolution. The
linear regression performs well, the uncertainty is somewhat larger than the res-
olution of the reference cell for forces and even below it for x- and y-torques. As
already stated before, the calibration of the torque’s z-component was not sat-
isfactory. The quadratic regression as proposed in the norm could decrease the
uncertainty to a value below the sensor resolution and matches the design crite-
ria. Row four in the table shows the uncertainty for using partial least squares
regression with all measured data points for all axes. While the values for the
force still lie in a reasonable range, the algorithm is completely inappropriate
to calibrate torques.

Interestingly, the uncertainty increased and the quality of the calibration
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Figure 3.10: Graphical residual analysis when calibrating the x-force axis of a Nano17
load-cell. The community of these plots is an example for a satisfactory calibration.

Method Fx [N] Fy [N] Fz [N] Tx [Nmm] Ty [Nmm] Tz [Nmm]
Linear 0.0276 0.0378 0.0470 0.334 0.317 4.015
Quadratic 0.0122 0.0084 0 0.138 0.151 0.868
PLS 0.0779 0.0862 0.135 24.94 31.46 2.26
Force only 0.0597 0.0866 0.0468
Resolution JR3 0.013 0.013 0.025 1 1 1

Table 3.2: Calculated uncertainties for different calibration methods in comparison
with the sensor resolution.
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Graphical residual analysis
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Figure 3.11: Graphical residual analysis when calibrating the z-torque axis of a
Nano17 load-cell. Notice the big residuals and the significant deviation from the
straight line in plot six.

Comparison linear and 2nd order regression x−force
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Figure 3.12: Comparing the linear and quadratic regression of the measured force
data in x-direction. The shape of the plots does not change at all, however, the
second-dorder fit can decrease the calibration error.
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decreased when we were using combined loads for the force calibration. The
results are still acceptable, but did not match the design criteria. A glimpse
at the residual plots 3.13 reveals the same. While the plot loadings against
predicted loadings forms a straight line, there is structure inside the time series
plots. There are different linear and quadratic dependencies visible.

Graphical residual analysis x−forc with multiaxial loading
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Figure 3.13: Graphical residual analysis for calibrating the force x-axis with mul-
tiaxial loadings. The protocol introduces a time dependence of the error (top left
subplot).

3.3.1 Discussion and Conclusion

The best performing calibration method was using all axes to calibrate the sen-
sor and applying a second-order regression to the data. In this way we fulfilled
the design criteria for all axes except the axial torque. Obviously the resolution
of the JR3 limited the performance. While the force resolutions of the two cells
are comparable, the Nano17 has a much higher resolution for torques. A draw-
back of the quadratic regression is the complex calibration matrix. Though the
linear regression is not as effective and did not completely match the criteria,
we got very satisfactory results. The uncertainty is in the or of magnitude of
the sensor resolution and is by far low enough for our measurements with the
load-cell. Also, verification measurements with dead weights have proven prac-
ticability of the calibration.
Interestingly, the calibration quality decreased when we included combined loads
in the protocol. Different factors such as temperature or hysteresis effects con-
tribute to the non linearity of a load-cell. Creep is introduced as another very
prominent factor when the sensor is loaded over a longer time span. While
according to the all-axes protocol continuously different axes were loaded, the
loads on the x- and y-axes were maintained during 15 minutes for the force-only
protocol. Creep effects start playing a role for sustained forces after 5 minutes
and cause an error of about ±0.02% after 15 minutes [67]. The calibration is
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slightly worse with combined loads than for single-axis loading, but the proce-
dure introduces new effects and non linearities into the data. Hence, arguably,
this is the better calibration method in a sense that the result is more robust
against errors.
The terribly bad calibration of torques, when using PLS regression, is clue on a
big uncertainty of the system. The transformation of torques from the reference
load-cell to the Nano17 is solely based on the theoretical dimensions of the sys-
tem. However, bolting and imprecise manufacturing of the rapid prototyping
parts caused deviations from the calculated values. Since the PLS-regression
includes the data from all measurements and since all the force loadings also
produce small torques as a side effect, the mentioned imprecision could have
caused the high uncertainty values for torques.
Another drawback of the rapid prototyping material is the low stiffness of the
calibration cap. When applying forces or especially torques, the bars started to
bend and twist. This did not cause a loss in accuracy for calibrating most axes,
since only the cap was deformable and the rest of the system rested consider-
ably stiff. However, when applying an axial torque, not only the cap twisted
but also the Nano17 did due to its mechanical construction. Accordingly the
torque was not transmitted completely to the reference load-cell, which caused
the unsatisfactory calibration of the z-torque.
Conclusively, the calibration system fulfilled the requirements and is applicable
to calibrate the Nano17 for our needs. Especially since we only measure forces,
the setup produced very good results. For future work, the reliability of the
reference load-cell will have to be proven. Experience showed that the JR3 is a
very precise load-cell, however the experiments should be repeated with another
load-cell of the same type to show reproducibility. Also, to overcome the issue
with the low torque resolution, we might use another Nano17 as reference for
future setups. In any case, we should rethink the production process of the
system parts. We chose 3-D printing because the manufacturing is cheap and
quick. But for the next version we should consider stiffer materials and more
precise production methods.

3.4 Manual

This manual serves as a short step-by-step introduction how to use the robot
to calibrate load-cells. However, to explain the operation of the robot would be
beyond the scope of this report. It is expected that the reader knows how to
control the Adept six-300.

1. Attach the JR3 to the robot tool flange. Firstly bolt the load-cell in
calibration to the attachment plate and then bolt this plate from the
other side to the JR3. Make sure that the cables are routed in the same
direction.

2. Start the robot and the corresponding software as well as Matlab and
navigate to the folder which contains the calibration software.

3. Type cd Richard in the robot console to switch to the correct directory,
type load calib to load the necessary methods and finally type execute
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tcpserver to start the communication between Matlab and robot. The
method tcpserver moves the robot to its initial position, hence make sure
that it can move unobstructedly.

4. Type LUCA in Matlab to start the control GUI (see figure 3.14). The
first three dropdown menus let you choose the load-cell in calibration, the
reference load-cell and the data acquisition device. Even if the options
are quite flexible, the reference load-cell should be the JR3 with serial
number 2563 and the DAQ device is usually Dev1. You can choose between
uniaxial calibration for all six axes and combined load calibration only for
the force axes. The next field specifies the input channels for the data
acquisition. The first six channels represent the sensor in calibration, the
second six channels the reference load-cell.

Figure 3.14: Matlab GUI to control the robot calibration process.

5. A click on the button Start will initiate the calibration process. At the
beginning the software will take a baseline scan in different robot positions.
Make sure that the robot can move unobstructedly.

6. After completion of the baseline scans, you will be asked to attach the
calibration cap. Screw the force calibration cap (see figure 3.7 and picture
3.15) to the Nano17. Attach the ground plate with inserted spring to a
tripod (e.g. using double-sided tape) and position the tripod in a way,
that the vertical bar of the cap slightly touches the spring. As soon as
everything is properly set up, press Return in Matlab’s command line to
start the actual calibration.

7. Even though the calibration and the reposition of the axes is automated,
the process can dislocate the tripod. It is recommendable to monitor the
correct axes repositioning. Wait until the loading of the uniaxial force
axes has finished.
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8. You will be asked to detach the force calibration cap and press return.
The software will perform a different set of baseline scans, where the robot
should be able to move freely.

9. Attach either the torque calibration cap or the combined force calibration
cap and reposition the tripod. Press Return to initiate the second part of
the calibration process.

10. After completing the second set of loadings, the robot will stop its move-
ments and Matlab displays a set of calibration results and plots (compare
section 3.2.5). The obtained calibration matrix is automatically stored in
the repository as described in section 2.2.2.

Figure 3.15: Calibration system during calibration of a force axis. The bar of the
orange calibration cap interlocks with the tube of the ground plate. The cables of
both load-cells, Nano17 between the calibration cap and the black adapter plate and
the blue JR3 are routed in parallel.
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Epilogue

This thesis is a requirement to obtain the title of MSc in Biomedical Engineering
from ETH Zürich. The term clearly points out the broad range of areas and
skills covered by this title at the multiple intersections of biology, medicine and
engineering.
In our study, which was presented in chapter 1, we could successfully point out
the complex neural circuitry involved in performing simple manipulation tasks
with the fingers. We showed that humans generally are very skilled in scal-
ing a fingertip force. The clear tradeoff between speed and accuracy and the
inability to improve the performance is evidence for the maturity of the sys-
tem. When the subjects tried to re-direct the fingertip force, complex circuitry,
supposedly in the spinal cord, corrupted the controller and blurred the tradeoff
between speed and accuracy. In return, the subjects could train the correspond-
ing circuits and their performance increased with practice. This study proved
that the control of finger musculature, although apparently versatile, operates
on the verge of failure. Thus our manipulation owes as much to adequate,
but incomplete and non-robust-neuromechanical evolutionary adaptations, as
to socio-biological co-evolutionary design of objects and tools to make them for-
giving when manipulated.
The study has not only biological impact. The analysis of neurodegenerative
diseases, such as Huntington’s disease, Alzheimer’s disease and, most impor-
tant, Parkinson’s disease (PD), has a very high significance in todays medical
research. There is still a lack of preindicators for PD. Since all subjects per-
formed similarly well when scaling forces, abnormal results could indicate an
early stadium of PD.
We developed with very simple and rudimentary components a calibration sys-
tem for load-cells, which nearly meets industry standards and is accurate enough
for the requirements in our lab. We used approaches that combine basic princi-
ples of software engineering (communication and control of the robot), electrical
engineering (acquisition of the sensor measurements) and mechanical engineer-
ing (design of calibration hardware) to meet these requirements.
A major skill of an engineer is the ability to analyze a problem and to disentan-
gle its different aspects. During my master’s project, I could work on different
sub-projects in different fields of biomedical engineering independently. How-
ever, the significance of these subjects is highly entangled and my work in a
holistic view covered a broad range of my specialization.
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Appendix A

Code Snippets

A.1 Load-Cell Interface

1 classdef loadCell < handle
2 % This class provides access to the data of different load cel ls
3 % (either raw voltage or claibrated force and torque) over a
4 % session −based 64 −bit interface to NI data acquirement classes
5 properties
6 cellName = '5761' ; %laod cell type
7 samplingRate = 400; %sampling rate in Hz
8 samplingTime = 1; %sampling time for foreground measurements
9 calibrate = true; %set true if force/torque, otherwise ...

raw voltage data
10 calibrationMatrix = eye(6);
11 daqObject;
12 baselineScan = zeros(1,6);
13 backgroundData;
14 backgroundTime;
15 lh;
16 end
17

18 methods
19 %constructor
20 function c = loadCell(name,calibrate)
21 c.cellName = name; %set name of load cell
22 c.daqObject = daq.createSession( 'ni' ); %create daq ...

session
23 c.calibrate = calibrate;
24 %add six input channels (force/torque)
25 for i=0:5
26 c.daqObject.addAnalogInputChannel( 'Dev1' , i, ...

'Voltage' );
27 end
28 %if a calibration matrix is provided load it and take
29 %baseline reference data
30 if calibrate == true
31 mat = load(strcat(c.cellName, '.mat' ));
32 c.calibrationMatrix = ...

eval(strcat( 'mat.' , 'calibrationMatrix' ,name));
33 [baselineData,time] = c.daqObject.startForeground;
34 c.baselineScan = mean(baselineData);
35 end
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36 end
37 %set the sampling rate
38 function setSamplingRate(obj, rate)
39 obj.samplingRate = rate;
40 end
41 %set the sampling time
42 function setSamplingTime(obj, time)
43 obj.samplingTime = time;
44 end
45 %get a single scan on all channels
46 function data = getSingleScan(obj)
47 data = obj.calibrationMatrix *
48 ...(obj.daqObject.inputSingleScan() −obj.baselineScan)';
49 end
50 %get a foreground scan with specified length and smaple rate
51 %provide optional plot or data −handling functions
52 function [data, time] = getForegroundScan(obj,varargin)
53 %get raw data
54 [data raw,time raw] = obj.daqObject.startForeground();
55 %calculate effective measurement values
56 data = obj.calibrationMatrix *
57 ...(data raw' −repmat(obj.baselineScan',1,size(data raw,1)));
58 time = time raw';
59 if (length(varargin) == 1)
60 plotfunction = varargin {1};
61 plotfunction(time,data);
62 end
63 if (length(varargin) == 2)
64 %if a data handling function is provided
65 datahandler = varargin(2);
66 datahandler(time,data);
67 end
68 end
69 function startBackgroundScan(obj, updateInterval, varargin)
70 obj.daqObject.NotifyWhenDataAvailableExceeds = ...

obj.samplingRate * updateInterval;
71 obj.daqObject.IsContinuous = true;
72 if (length(varargin) == 1)
73 obj.lh = ...

obj.daqObject.addlistener( 'DataAvailable' , ...
@(src, ...
event)standardBackgroundDataHandler(obj, ...
src, event,varargin {1}));

74 elseif (length(varargin) == 2)
75 obj.lh = ...

obj.daqObject.addlistener( 'DataAvailable' , ...
@(src, ...
event)standardBackgroundDataHandler(obj, ...
src, event,varargin {1},varargin {2}));

76 else
77 obj.lh = ...

obj.daqObject.addlistener( 'DataAvailable' , ...
@(src, ...
event)standardBackgroundDataHandler(obj, ...
src, event));

78 end
79 obj.backgroundData = [];
80 obj.backgroundTime = [];
81 obj.daqObject.startBackground();
82 end
83 function [data, time] = getBackgroundData(obj)
84 data = obj.backgroundData;
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85 time = obj.backgroundTime;
86 end
87 function [data,time] = stopBackgroundScan(obj)
88 [data,time] = getBackgroundData(obj);
89 obj.daqObject.stop();
90 delete(obj.lh);
91 obj.daqObject.IsContinuous = false;
92 end
93 function standardBackgroundDataHandler(obj, src, event, ...

varargin)
94 %get raw data
95 data raw = event.Data;
96 time raw = event.TimeStamps;
97 %calculate effective measurement values
98 obj.backgroundData = ...

[obj.backgroundData,obj.calibrationMatrix *
99 ...(data raw' −repmat(obj.baselineScan',1,size(data raw,1)))];

100 obj.backgroundTime = [obj.backgroundTime,time raw'];
101 if (length(varargin) == 1)
102 plotfunction = varargin {1};
103 plotfunction(obj.backgroundTime,
104 ...obj.backgroundData);
105 end
106 if (length(varargin) == 2)
107 %if a data handling function is provided
108 datahandler = varargin(2);
109 datahandler(obj.backgroundTime,
110 ...obj.backgroundData);
111 end
112 end
113 %release the data acquisition channels. sould always be ...

called when
114 %the measurements are finished
115 function releaseChannels(obj)
116 obj.daqObject.release();
117 end
118 %automatic cleanup function
119 function delete(obj)
120 obj.releaseChannels();
121 end
122 end
123 end
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Appendix B

Documents

B.1 Forms
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