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Abstract

Feasibility Theory is a conceptual and computational approach to understand the dimensionality of how

tendon-driven limbs are controlled. How do the brains of animals control their bodies? This remains one

of the deepest mysteries in biology, a concept with an enormous consequence upon how we understand,

diagnose, and treat diseases or injuries that rob animals of manipulation and locomotion. Engineers and

scientists have tackled this problem from rigorous mathematical and scientific perspectives and much

progress has been made—primarily descriptive approaches that attempt to predict how the nervous system

solves a motor task (e.g. modeling observed behavior based on recordings of muscle activity). However,

this rigor has a downside: the efficient ways we know how to solve problems mathematically (via formal

optimization) can surreptitiously bias the scientific community into hypothesizing that the brain also solves

problems this way. These methods describe how the muscles function, but they do not describe why certain

patterns of control are evolved (over millennia), learned (over a lifetime), or chosen (within just one motor

task). The work presented herein delves into the problem from a full-dimensional perspective of motor

control—requiring a truly Big Data exploration into, first, a view of the feasible options for control, and

second, a set of constraints which faithfully describe the ways in which tendon-driven limbs truly must be

controlled. I present new mathematically formal ways to show that many muscles are indeed needed even

for simple tasks, and indicate how even the most ‘optimal’ solutions are highly prone to disruption, even

with minor disability of just one muscle. I propose new computational methods for reconciling alternative

approaches to motor control, including techniques in dimensionality reduction, Bayesian representation,

and optimization. Ultimately, this work now enables a new perspective towards exploring how motor

control affects health and quality of life.
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1.1 Abstract

Subject-specific and generic musculoskeletal models are the computational instantiation of hypotheses,

and stochastic techniques help explore their validity. We present two such examples to explore the hy-

pothesis of muscle redundancy. The first addresses the effect of anatomical variability on static force

capabilities for three individual cat hindlimbs, each with seven kinematic degrees of freedom (DoFs) and

31 muscles. We present novel methods to characterize the structure of the 31-dimensional set of feasi-

ble muscle activations for static force production in every 3-D direction. We find that task requirements

strongly define the set of feasible muscle activations and limb forces, with few differences comparing

individual vs. species-average results. Moreover, muscle activity is not smoothly distributed across 3-D
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directions. The second example explores parameter uncertainty during a flying disc throwing motion, by

using a generic human arm with five DoFs and 17 muscles to predict muscle fiber velocities. We show that

the measured joint kinematics fully constrain the eccentric and concentric fiber velocities of all muscles via

their moment arms. Thus muscle activation for limb movements is likely not redundant: there is little, if

any, latitude in synchronizing alpha-gamma motoneuron excitation-inhibition for muscles to adhere to the

time-critical fiber velocities dictated by joint kinematics. Importantly, several muscles inevitably exhibit

fiber velocities higher than thought tenable, even for conservative throwing speeds. These techniques and

results, respectively, enable and compel us to continue to revise the classical notion of muscle redundancy

for increasingly more realistic models and tasks.

1.1.0.1 Author Contribution

My primary contribution to this work was the extension of [113], invention of the methods for generating

FAS and FFS species averages, and the invention of vector mapping for tendon-driven feasible activation

sets. Further, I contributed to the analysis and visualization of frisbee-throwing by EL.

1.2 Introduction

This invited paper has the dual purpose of being didactic about computational methods to test neurome-

chanical hypotheses in the context of high-dimensional subject-specific and generic models; and applying

these methods to explore the classical notion of muscle redundancy, a central tenet in our field. This is

made possible by computational geometry and stochastic techniques we have been developing to under-

stand the interactions among (i) model topology (the number and type of and connectivity among the

elements of the model); (ii) parameters values (the individual and specific numerical values assigned to

each model parameter); and (iii) the requirements of real-world tasks for tendon-driven biomechanical

systems with numerous kinematic degrees of freedom and muscles.
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The notion of computational models as instantiations of specific hypotheses, the stochastic explo-

ration of model capabilities to test these hypotheses, and the relationship between generic vs. subject-

specific models has been addressed elsewhere [151, 150, 98, 65, 155]. However, increasing the physi-

ological realism and utility of these techniques requires extending them to ever higher dimensions (i.e.,

larger numbers of muscles and kinematic degrees-of-freedom, DoFs), and to real-world tasks involving

the production of static forces and fast motions—while limiting computational cost. But working with

ever-greater numbers of muscles and DoFs inevitably challenges our ability to visualize the complex and

high-dimensional structure of the set of feasible muscle activation patterns. It also significantly challenges

our ability to find unique solutions (if they even exist) to these computational problems, or defend their

optimality/uniqueness.

We have found these stochastic modeling techniques particularly useful to test the classical notion of

muscle redundancy, which has often been called the central problem of motor control [16]. The classical

notion of muscle redundancy is thought to arise by virtue of having (many) more muscles than DoFs. With

many muscles acting upon the same number or fewer joints, some argue that the central nervous system

(CNS) must solve an optimization problem to select and implement specific muscle activation patterns

from a theoretically infinite set of possibilities [93, 105]; while others argue for near- or sub-optimal

solutions being good enough [80, 105]. If fewer muscles actuated a limb, the arguments go, feasible forces

and motions could be produced without significant need for such optimizations.

Several of us have argued that this classical interpretation of the number of muscles in vertebrate

limbs is paradoxical with respect to evolutionary biology, and the clinical reality of motor dysfunction:

extant vertebrates tend to have many more muscles than DoFs, even though it is energetically expensive

to develop and maintain muscle mass—and injury to even a few muscles can cause dysfunction. Using

the same argument of energetic efficiency invoked for optimization in motor control—but at the scale of

evolutionary time—we, and others, have argued that we likely have barely enough muscles for versatile

real-world behavior [64, 79, 147, 72, 74]. This view is closely aligned with the computational neuroethol-

ogy approach [11, 7, 28] that argues that perhaps we need all our muscles because of the sheer variety
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of tasks—each distinguished by the type and number of constraints they must meet—over the course of a

day/week/lifespan. Put differently, if we have too many muscles in our limbs, which ones would you like

to donate or paralyze? Therefore, it is important that our research into muscle redundancy work toward

reconciling these different views.

Still, for most tasks in healthy individuals, some redundancy is bound to remain; regions of feasible

activation solutions that are not a single point will consist of a neighborhood or subspace that naturally

contains an infinite number of solutions (i.e., points). The nervous system is still confronted with the

need to choose a specific solution to implement at any point in time; however, that collection of feasible

solutions remains highly structured due to both the mechanics of the limb and the constraints of the task

[113, 72, 74, 156, 133, 17]. The purpose of this work, therefore, is to begin to address the need posed

by us [72, 74, 156], and others [113, 79, 133], to improve computational methods for understanding and

visualizing the dimensionality and structure of feasible solutions sets for limbs with large numbers of

muscles performing tasks with realistic constraints. Here we do so for 3-D musculoskeletal models of

a cat hindlimb and a human arm with 31 and 17 muscles, respectively, using MATLAB (v2013b, The

Mathworks, Natick MA).

1.3 Cat hindlimb model: Methods

The purpose of this cat hindlimb model is to present a novel way to visualize the structure of the set

of all feasible muscle activations to produce maximal and submaximal static paw forces in every 3-D

direction. In addition, we compare solutions among three subject-specific models to explore the effect

of between-subject anatomical variability on muscle activation. The models consist of three feline (Felis

catus) hindlimbs, each with 31 muscles actuating 7 kinematic DoFs from the hip to the ankle. We used

the bone lengths and moment arms for the cat hindlimbs originally presented by McKay and Ting in 2008

[87], and modified by Sohn et al. 2013 [113], that were graciously shared with us by the authors. The

species average model for the cat hindlimb is shown in Figure 1.3.
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As described in detail elsewhere (e.g., [156, 86, 148]), a feasible force set (FFS) describes the set of all

static forces that can be produced at the endpoint of a limb. Briefly, the feasible mechanical output of

the endpoint of a limb is 6-dimensional: 3 forces (the FFS) and 3 torques (the feasible output torque

set)—which arises from the fact that a rigid body (i.e., the endpoint of a limb) has six degrees of freedom,

three displacements and three rotations. Together they form a 6-dimensional feasible output wrench [89].

In the robotics literature [88], feasible force and torque outputs are plotted separately as they have different

units. Thus the FFS can be at most 3-D, and is a subset of the feasible wrench set. For the task of producing

pure output force as in this model, we enforce the constraint that the endpoint produce no output torques

[156]. Thus the FFS is the complete representation of the maximal mechanical output of the limb. For

limb models constrained to move on a plane, the FFS is a convex 2-D polygon (Figure 1.4.2, Left). For

models that can move in 3-D space, the FFS is a convex 3-D polyhedron (Figure 2, Center) with its origin

at the endpoint of the limb [156, 148].

Importantly, as described elsewhere [156, 86, 148, 71], the FFS is produced by the feasible activation

set (FAS)—the set of all muscle activations that meet the constraints of the task. For linear constraints as

in this case, the FAS is a convex polytope in n-dimensional space, where n is the number of independently

controlled muscles acting on the limb. The FAS is at the center of studies of muscle redundancy because

it contains an infinite number of points. Sometimes this subspace is called the nullspace of the task as any

point in it can, by construction, meet its constraints [24]. But it is nevertheless a highly structured subset of

n-dimensional space. A critical result of our work is that we present a means to visualize and characterize

the FFS by examining one muscle at a time.

1.3.1 Vector mapping of the feasible force set

It is challenging to understand and visualize a 3-D FFS, as it is an irregularly shaped convex polyhedron

(Figure 2, Center). Likewise, those difficulties are exacerbated for the FAS as it is also an irregularly shaped

polytope, but in high dimensions. As mentioned in the Introduction, it is critical to understand the structure

of the FFS and FAS as they lie at the heart of many debates about muscle redundancy, muscle synergies,
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disability, rehabilitation, motor learning, etc. One approach to connect the structure of the FFS and the

FAS is by computing their bounding boxes (i.e., the extreme points in every dimension [113, 72, 59]).

However, this overestimates both their size and volume, and ignores the complexity of their structure.

Another possibility is to find the largest sphere the polytope can encase [59], but this underestimates their

size and volume, and assumes a uniform structure. We now propose an alternate method that helps us

visualize the structure of the FFS, in a ‘vectormap’. After identifying the maximum feasible force in a

given direction (Figure 2, Left), we assign that value of force to a 3-D point, where color denotes the force

intensity. A spherical heatmap is formed with all of the computed directions and respective maximum

forces; Figure 2 (Right) shows the vectormap representation of the FFS.

Traditionally, polyhedra like the FFS cannot be combined or compared quantitatively because the ver-

tices do not align across different individual musculoskeletal models. As vectormaps are composed of

consistent unit vectors for force output (or muscle activation, see next section), they can be averaged and

compared. For example, they can be compared across individuals of a species to identify regions that have

higher variability within a population. The color on the surface of the sphere can then be used to represent

the mean or standard deviation of maximal output force or muscle activation (Figure 3).

1.3.2 Vector mapping of the feasible activation set

We present a way to visualize the structure of the FAS, a convex polytope in n-dimensional space, on a

muscle-by-muscle basis. For each muscle we can generate activation vectormaps where color represents

its unique activation level for every point on the surface of the FFS (Figure 4). This is possible because any

point on the surface of the FFS (i.e., the maximal force in every direction) is generated by a unique muscle

activation pattern [156]. This unique activation pattern assigns the color to that point on the vectormap of

each muscle. In the case of the cat hindlimb there are 31 muscles, and therefore, 31 vectormaps of unique

muscle activations.

Importantly, submaximal forces in each 3-D direction (i.e., points within the FFS) can be produced

by an infinite number of solutions [21, 30]. The structure of those solutions can be approximated by the
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bounding box approach in [113, 72]. We extend that prior work by creating vectormaps of the lower and

upper bounds of activation for each muscle, for all directions in 3-D (Figure 4).

1.4 Cat hindlimb model: Results

1.4.1 Intra-species differences in the feasible force set

With one FFS per cat, we find that force capability distributions for the three cats can differ in specific

3-D directions. Figure 3 shows between-cat comparisons: a species average (top), and standard deviation

(bottom) plots across the three FFSs. We see that species average and individual FFSs are of the same

general shape (c.f. Figure 2, Right and Figure 3, Top) with maximal force magnitudes remaining in the

same general direction (towards the posterior direction) and of similar magnitude (c. 60 N) as for the

individual cat in Figure 2. However, the standard deviation among the FFSs of the three cats can show

important differences in the range of 20 N in those same directions as the maximal magnitude. But in most

other 3-D directions the differences remain below 5 N.

1.4.2 Structure of feasible activation sets

Figure 4 shows what to our knowledge is the first portrayal of the structure of the FAS for force production

in every 3-D direction. For the sake of brevity, we only show the results for three muscles. The plots for

all 31 muscles are available at https://valerolab.org. The vectormaps on the far right show the unique level

of activation for maximal feasible forces in all directions. While in several 3-D directions that activity

of a muscle can remain unchanged, we also see discontinuities where muscle activity is not smoothly

distributed across 3-D directions as, for example, the ‘fingers’ of higher activations penetrating into areas

of lower activations for vastus lateralis.

To extend prior work [113, 72], we also found the lower and upper bound vectormaps for all muscles

for submaximal forces in all 3-D directions. This is the bounding box approach in [113, 72], but extended

to every direction in 3-D. These plots provide a detailed view of the structure of the 31-dimensional FAS
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for different force magnitudes, viewing one muscle at a time. The smaller vectormaps to the left in Figure

4 show the lower and upper bounds as one increases force magnitude in all directions in 10% steps, starting

at 50% of maximal force. The lower and upper bounds naturally converge for maximal output, but they

converge at different rates across muscles and directions of force output—sometimes towards the upper

bound, and sometimes towards the lower bound. These vectormaps of the FAS enable us to understand

the rate at which redundancy is ‘lost,’ or not for every direction of force production. They also enable

future studies where, say, the loss of the soleus muscles, or its hypertonia, are simulated by driving its

activation to the lower or upper bound, respectively, to visualize the feasible range of compensations by

other muscles.

1.5 Human arm model: Methods

The purpose of this human arm model is to understand the constraints imposed on time varying muscle

activation during the kinematics of a high-speed athletic movement. Specifically, our model predicts mus-

cle fiber lengths and velocities during a specific athletic activity—in this case throwing a flying disc with

a backhand motion, like throwing a Frisbee R�. A five-DoF, 17-muscle arm model of the right arm was

modeled after [1], and consisted of three joints (shoulder, elbow, and wrist) articulating three limb seg-

ments (upper arm, lower arm, and hand) with lengths of 0.35m, 0.27m, and 0.11m, respectively (Figure

5). The three DoFs at the shoulder included internal/external rotation, abduction/adduction, and horizon-

tal abduction/adduction, and the DoF at both the elbow and wrist is flexion/extension. We note that our

simplified model does not consider all DoFs at the elbow and wrist. This limitation affects the calculation

of joint angles and fiber velocities, but likely does not challenge our results as in some cases fiber velocity

would be somewhat lower, but also somewhat higher. We added 17 muscles/muscle groups with resting

fiber length and moment arm data from various sources [48, 51, 56, 90]. The moment arm data are shown

in Figure 5.
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1.5.1 Kinematics of throwing a flying disc and resulting muscle fiber velocities

The time-history of joint angles of the throwing motion were also obtained from [58]. We considered

the initiation of forward motion, release, and follow-through portions of the throw to last, conservatively,

450ms; and approximated it as 45 unique postures at 10ms time steps, as illustrated in Figure 6. We

combined measured limb kinematics with moment arm values to predict the instantaneous normalized

muscle fiber velocity throughout the throw (Fig. 5).

Consider a tendon-driven limb with n muscles (17 in this case) and m joints (or DoFs, five in this case),

and a limb posture defined by joint angles ✓ = [q1...qm]T . The moment arm matrix R(✓)mxn can be defined

for this tendon-driven system, having entries consisting of the moment arms r(✓)i, j : i = 1, ...,m, j = 1, ...,n

, at the ith joint and jth muscle [5] forming the posture-dependent moment arm matrix 1.1

R(✓) =

0

BBBBBBBBBB@

r(✓)1,1 r(✓)1,2 r(✓)1,3 . . . r(✓)1,n

r(✓)2,1 r(✓)2,2 r(✓)2,3 . . . r(✓)2,n

...
...

...
...

...

r(✓)m,1 r(✓)m,2 r(✓)m,3 · · · r(✓)m,n

1

CCCCCCCCCCA

(1.1)

As per the right-hand-rule, r(q)i, j is positive when pulling jth tendon induces a counterclockwise ro-

tation at the ith joint, and negative otherwise. A postural change is a rotation of joints from a reference

limb posture ✓0 = [q1...qm]T to a new limb posture ✓0 = [q1...qm]T and is denoted bmDq = ✓� ✓0 =

[Dq1...Dqm]T . fully determines the excursions Ds of all n muscles [36], where negative and positive excur-

sion values correspond to eccentric and concentric contractions, respectively:

In this case we obtain the over-determined system where the changes of angles of a few variables (the

joint angles) specify the excursions of all the many muscles.
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Ds=�RT (✓)D✓ =�

0

BBBBBBBBBBBBBB@

r(✓)1,1 r(✓)2,1 · · · r(✓)5,1

r(✓)1,2 r(✓)2,2 · · · r(✓)5,2

r(✓)1,3 r(✓)2,3 · · · r(✓)5,3

...
...

...
...

r(✓)1,17 r(✓)2,17 · · · r(✓)5,17

1

CCCCCCCCCCCCCCA

�✓ (1.2)

To be clear, this is the very opposite of redundancy.

When the interval between postures is allotted a given amount of time, the instantaneous velocity of

the muscle fibers is

⌫ =
Ds
Dt

(1.3)

Please note that the velocity of the muscle fibers is not necessarily the velocity of the musculotendon.

Muscle fiber pennation angle and tendon elasticity can both contribute to this [160]. For the sake of

simplicity, and without loss of generality, we assume muscle fibers span the length of the whole muscle and

have a small pennation angle so that we can consider them to be equivalent. A recent modeling study [42]

also suggests that ‘paradoxical’ contractions—where the extreme case of muscle fibers shortening while

the musculotendon as a whole is lengthening due to tendon stretch—are brief events limited mostly to large

eccentric contractions to reverse movement direction. Due to these reasons, we assumed the velocities of

the muscle fibers and tendons were mostly equivalent during the midsection of the uni-directional throwing

motion we consider in our analysis. As is customary, we calculated the normalized muscle fiber length

velocities by dividing fiber velocities by the resting muscle fiber length (lO) of each muscle [160].

n̄ =
n
lo

(1.4)
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1.6 Human arm model: Results

1.6.1 Muscle fiber velocities for flying disc throw

Figure 7 shows the normalized muscle fiber velocities for all muscles during a 450ms flying disc-throwing

motion. Notice that multiple muscles have normalized muscle fiber velocities exceeding ±5 fiber lengths/s

(deep blue and deep red in Figure 7 Top, respectively). Because these high velocities are considered

to be unrealistically fast [160, 55], we used Monte Carlo simulations to explore the robustness of our

findings (Figure 7, Bottom). As is often done in musculoskeletal modeling [151], we explored the effect

of modeling uncertainty by iteratively running our model while sampling parameter values from uniform

distributions spanning ±25% of the nominal moment arm values. Given that the joint kinematics and

segment lengths come from direct measurements, our stochastic approach focused in the uncertainty of

moment arm values obtained from the literature as they may or may not be appropriate for the arm of the

subject who performed the flying disc throw. Note we fixed the duration of the motion to 450ms because,

although slow in comparison to competitive athletes, it provides a conservative estimate of muscle fiber

velocities and thus a more reasonable and defensible set of results. We guaranteed convergence of the

Monte Carlo simulation by testing the variability of the running mean of normalized fiber velocity of the

infraspinatus [151].

This muscle experienced the largest lengthening velocities, and as such, was at the greatest risk for

injury. Only twelve iterations sufficed for the running mean of the maximal infraspinatus normalized

fiber velocity to vary less than 2%. Running the Monte Carlo simulation for more iterations unnecessarily

increases processing time without refining the results of maximal fiber velocities for this task. The results

of our Monte Carlo simulation (Figure 7, Bottom) provide confidence in the assertion that the task of

throwing a flying disc using a stroke that lasts 450ms will induce multiple muscles to exhibit normalized

fiber velocities exceeding ±5 fiber lengths per second.
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1.7 Discussion

In this invited methods-driven paper, we present two examples of computational methods to test neurome-

chanical hypotheses in the context of subject-specific and generic models, and apply these methods to

explore different aspects of the classical notion of muscle redundancy. In the first example, three indi-

vidual models of a cat hindlimb with 31 muscles allowed us to investigate the intra-species variation in

maximal force production. This was made possible by novel computational and visualization techniques

to complement a computational geometry approach to the control of tendon-driven limbs. The results

presented in this manuscript, and supplemental results online at https://valerolab.org, allows us to, for the

first time, describe detailed features of intra-species differences in maximal force production, and of the

structure of the 31-dimensional feasible set of muscle activation patterns for submaximal and maximal

forces in all 3-D directions. In the second example, we used stochastic Monte Carlo methods to demon-

strate that the kinematics of the everyday recreational and sports task of throwing a flying disc inevitably

leads to unexpectedly fast eccentric and concentric muscle fiber velocities. These two examples challenge

different aspects of the classical notion of muscle redundancy, and lead to specific new testable hypotheses

to move our field forward. It is useful to first mention that the analytical support for the perspective that

musculature is not as redundant as we have come to believe comes from examining the set of feasible

muscle activations that gives rise to the set of feasible limb outputs [156, 71]. This is the counterpart to

using an optimization approach to find a single unique and optimal solution to that task [147, 156]. Rather,

it seeks to find the set of all feasible muscle activation strategies that, naturally and by construction, are a

well-defined region in the high-dimensional space formed by the intersection of all operating mechanical

constraints of the task, given the anatomy of the limb. Therefore, the number of constraints that define the

task is as important as the number of muscles in the limb—where more muscles allow meeting a greater

variety and number of functional constraints [64, 79, 158].

Thus an argument against the classical notion of muscle redundancy is that the number of muscles in

vertebrate limbs has evolved under functional constraints of versatile real-world behavior [64, 79, 147, 72,
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74, 156]. We can perform ‘complex’ tasks (complexity defined as satisfying many constraints simultane-

ously or sequentially [79]) because we have many muscles—and muscle redundancy is most prominently

seen in laboratory tasks that are too simple, and not equivalent to tasks in the natural environment [28]. This

view is compatible with the above reasoning that a task is defined by the type and number of constraints

that must be met. The geometric approach to define feasible outputs and their associated feasible neural

inputs (FFS and FAS, respectively) provides a rigorous computational approach to the concept of muscle

redundancy. Thus muscle redundancy is really more a feature of the task than of the limb [64, 79, 158].

1.7.1 Structure of the feasible activation and feasible force sets of the cat hindlimb

We present the vectormap as an innovative way to visualize and analyze the structure of the irregular FFS

polyhedra and FAS polytopes that result from the interaction of the biomechanics of the limb and the

constraints of the task. This allows us not only to interpret individual feasible sets, but also provide a

coordinate system (i.e., the surface of the sphere) to combine or compare feasible sets. This differs from

prior approaches that have compared their relative volume, shape, or bounding box, as described above.

Figure 3 identifies the specific 3-D directions and regions of feasible force generation that exhibit the high-

est variability across three individuals of a species. This has applications to, for example, understanding

how phenotypical (i.e., anatomical) changes lead to behavioral changes in feasible force and activation on

which evolutionary selection may act.

It is of critical interest to the field of neural control to understand why extant vertebrates have ‘so many’

muscles—yet we previously lacked means to visualize the structure of the set of feasible muscle activations

for a given task. The main difficulty is that selecting a given muscle activation pattern necessitates selecting

a point from within the set of all feasible activations determined by the mechanics of the limb and the

constraints of the task [74, 156, 133]. As described above, prior work approximated the structure of

feasible activations for force production in a given direction by their bounding box [113, 72, 74]. In

Figure 4 we present how it is now possible to visualize the lower and upper bounds of feasible levels of

activation for each and every muscle when producing submaximal force in every 3-D direction. It can be
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quite striking that even for very near maximal activation (i.e., at 90%), the range in between these upper

and lower bounds can be exceptionally wide, as in Figure 4. This had been reported in a single direction

of force production by [113], but here we can show the rate of convergence to the unique solution for

maximal force for every direction of force production.

The wide (or narrow) latitudes in allowable coordination patterns for submaximal force seem to very

clearly demonstrate that trying to find and justify a ‘unique’ solution to these types of problems is highly

dependent on the task and the cost function chosen. Note that in other muscles and/or directions this rate of

loss of redundancy can proceed at different rates, directly affecting the latitude the nervous system has to

select a given coordination strategy—and the necessary correlations in activations among muscles [72, 74].

The structure of the solution space, the latitude it affords, and the necessary correlations in muscle ac-

tivations are all at the root of the study of muscle redundancy, muscle synergies, learning and adaptation,

uncontrolled manifolds, etc. Importantly, these vectormaps of feasible activation ranges for submaximal

forces motivate EMG studies to understand whether and how vertebrates actually make use of them (e.g.

during learning and adaptation). This ties into the spatiotemporal exploration-exploitation of the null-space

of a task. As discussed in detail elsewhere ([41] and references therein), traversing the solution manifold

is likely an active spatio-temporal process where the neural controller can choose to inhabit a particular

region or subset of the solution space to meet the requirements of the task. Thus, the nature of motor

control may be more related to exploring and learning the feasible set of activations, and using memory

and improvements via fast and slow gradients, than the current thinking emphasizing optimization to find

unique solutions. A subtle point is that muscle synergies will naturally be detected from such explorations-

exploitations of a well-structured feasible activation space. Our hope is that these techniques may help the

evolution of this [74, 133, 17, 132] and other debates in motor control.

While questions remain about which muscles are necessary or optional to produce submaximal force output

for a given set of constraints and why [2], they can only be answered as we begin to add all spatio-temporal

constraints [99, 38] for natural behavior in the real world [64, 79]—as opposed to tasks in the laboratory

setting. But for now, we at least demonstrate that we have the tools to visualize and compare changes in
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the structure of the FAS. In fact, for the case of maximal force output for which the activation levels are

unique, we can already glean important lessons that motivate testable hypotheses (Figure 4, far Right).

An example that comes to mind looking at the three muscles shown (and more available online), is that the

interaction between limb mechanics and task constraints leads to irregular and complex levels of activation

across 3-D directions of force production. This counters the widespread view that muscles are engaged

in a manner consistent with spatially smooth cosine tuning functions [44]. Therefore, these tools begin to

address the need for computational tools pointed out in [113, 74, 17] to characterize and explore the extent

to which mechanical considerations determine the neural control of numerous muscles.

1.8 Muscle activation for fast everyday recreational and sports tasks

The velocities of individual muscle fibers, and how they are determined by the kinematics of a task, are a

particular example of task constraints that have often been overlooked. We find the common recreational

task of throwing a flying disc (and reasonably other similar tasks such as throwing a ball, etc.) invariably

leads to muscle fiber velocities greater than c. 5 muscle fiber lengths per second (Figure 7). Such high

concentric and eccentric muscle fiber velocities are thought to incapacitate active force production or lead

to tearing injuries, respectively [160, 55]. We employed a process of elimination to systematically inves-

tigate our model and its parameters to give us confidence in our interpretation of the results. Intuitively,

we can assume that the bone (segment lengths) and joint kinematics were obtained experimentally and are

physiologically reasonable. The muscle fiber lengths and moment arms we considered in our study were

obtained from published data [48, 51, 56, 90]. Due to the between subject variability, we applied a Monte

Carlo analysis to consider a range of moment arm values for each muscle and still find high fiber velocities

(Figure 7, bottom). While we do not show them, we find similar results in a Monte Carlo analysis of the

muscle fiber lengths. Moreover, even though our model is limited in that it did not include the acceler-

ation and deceleration phases of the movement, adding them could only increase muscle fiber velocities
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we report. Likewise, assuming a less conservative total time for the movement would only exacerbate the

high velocities we find. Despite this systematic Monte Carlo analysis, we still find muscle fiber velocities

greater than 5 fiber lengths per second. Thus we are compelled to challenge the traditional understanding

of the force-velocity properties of muscles and motivate future research in muscle mechanics: somehow,

such high fiber velocities are likely present in everyday tasks do not lead a complete loss of force pro-

duction capabilities in the concentric phase, or injury in the eccentric phase. This is not the first time we

question the functional role of the force-velocity properties of muscles for everyday tasks [64].

Another fundamental result from these simulations is that they emphasize the need to study the temporal

structure of muscle activation in the context of muscle redundancy [99, 38]. Consider Eq. 2 defining the

over-determined physical relationship between changes in joint angles and tendon excursions that drive

changes in muscle fiber lengths. This relationship defines the obligatory correlations among tendon excur-

sions where a sequence of (a few) joint angles uniquely and completely determines the excursions of all

(numerous) musculotendons. This is the opposite of muscle redundancy as there is a single and unique set

of tendon excursions that can satisfy the kinematics of a given movement. This begs the question of how

the nervous system coordinates eccentric and concentric contractions to produce such fast movements. If,

for any reason, any muscle fails to lengthen (i.e., contract eccentrically) to satisfy the rotations of the joints

it crosses, the desired motion will, at best, be disrupted, or at worst, the limb will freeze.

What inhibits stretch reflexes to allow such coordinated eccentric contractions? Alpha-gamma co-activation,

reciprocal-inhibition, and gating of spindle afferent information are some of neural interactions thought to

be necessary to modulate/inhibit stretch reflexes [45]. Thus the nervous system must issue neural com-

mands, coordinated throughout the entire duration of the movement, to (i) alpha-motoneurons to produce

the necessary joint torques as per the standard force-sharing motor control problem (e.g., [93, 24]); (ii) co-

ordinate reciprocal-inhibition of alpha-motoneuron pools across shortening and lengthening muscles (e.g.,

[57]); (iii) inhibit the stretch reflex in muscles needing to undergo eccentric contractions (e.g., [161]); while

(iv) satisfying the time constants of muscle excitation-contraction dynamics [160] to ensure the continuity

of these neural commands as the motion progresses. This compounding of multiple spatial and temporal
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constraints naturally leads to a shrinking of the set of feasible motor commands for natural movements

(see above discussion and [64]).

In fact, clinicians have long been aware of how disorders of reflexes or the neural circuits of ‘afferented

muscles’ lead to disruptions or failures of movements (for an overview see [101, 102]. We now propose

that these so-called dystonias may in fact be a natural consequence of the nervous system failing to meet

the stringent temporal demands on alpha-gamma neural drive for the eccentric and concentric contrac-

tions essential to smooth limb movement. This again supports the view that extant vertebrates have barely

enough neural degrees of freedom for versatile real-world behavior [64, 79, 147, 72, 74] as the muscle

activations to produce smooth movements is likely not redundant, or at the very least not as redundant as

currently thought.

One last comment is on the over-determined nature of producing the necessary muscle excursions for a

limb movement. As mentioned above, over-determined systems either have one unique solution (if it ex-

ists), or no solution at all. When no solution exists, a practical alternative is found by violating some or

all constraints as in the method of least squares for a set of equations in which there are more equations

than unknowns. This may actually begin to explain why muscles and tendons have non-trivial amounts of

passive elasticity—to provide tolerance to errors in the neural control of their excursions when eccentric

and concentric contractions are not controlled accurately enough by the CNS. From the engineering per-

spective, such elasticity complicates control as it adds delays and internal actuator dynamics, and reduces

actuator bandwidth. But in the case of biological tendon-driven limbs, this built-in tolerance to excursion

errors may be a critical compliment to, and enabler of, the neural control of smooth movements.
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Figure 1.1: Bone lengths, joint axes of rotation, and moment arm matrix for the species average cat
hindlimb model, in cm. Positive values are shown in red and negative values in blue, as per the right-
hand-rule.
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Figure 1.2: Left: The polygon of the 2-D feasible force set in the sagittal plane. The color-coded vec-
tormapping of radial lines indicate the magnitude of the maximal feasible force along that direction, then
vectormapped onto the perimeter of the circle surrounding the FFS. The very thin lines emanating from the
origin are the lines of action of each of the 31 muscles. Center: the polyhedron of the 3-D FFS, again with
the vectormapping of force magnitude values onto a circle in the sagittal plane. Right: The color-coded
vectormapping onto the surface of a sphere indicating the maximal feasible force in every direction in 3-D.
Note the FFS is rather flat on the sagittal plane, but elongated towards the posterior direction. All data are
for the cat called Birdy in [113].
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Figure 1.3: Top: Vectormap of the average of maximal feasible force across all sampled output vectors
in three feline hindlimbs. Bottom: A vectormap displaying regions of the feasible force space that have
higher standard deviation across three cat hindlimbs. Force in Newtons represented by color scale.
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Figure 1.4: Structure of the feasible activation set for three muscles. The large vectormaps on the far Right
show their unique activation level for maximal force output in every 3-D direction. Because multiple
activation levels can produce submaximal forces, the small vectormaps to the Left show the lower and
upper bounds of those feasible activation levels for force magnitudes (a) gradually increasing from 50% of
maximal in every 3-D direction.
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Figure 1.5: Moment arm values for human arm model. The moment arms from the 17 muscles considered
in this model and their associations with the five DoFs are illustrated, in cm. The moment arms are grouped
by DoF and are shown below the associated joint. Positive values are shown in red and negative values in
blue.
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Figure 1.6: Top view of the 3-D human arm model. This figure illustrates the initiation of forward motion
through follow-through of the flying disc throw. The reference posture is shown in black and the release
point in the throw is shown in red. The interpolated joint angles for the 45 postures describing this motion,
obtained from [58], are shown in the bottom panel.
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Figure 1.7: Normalized instantaneous fiber velocities during the throw for the nominal model. Top: The
muscles are listed on the y-axis and the 45 postures making up the throw are shown on the x-axis. Excessive
muscle velocities are shown in red (shortening) and blue (lengthening). Bottom: The same data are
illustrated with individual traces for each muscle that show the fiber velocity. Muscles controlling the
shoulder, elbow, and wrist are illustrated in blue, red, and green, respectively. Instantaneous fiber velocity
is given on the y-axis and the postures during the throw are on the x-axis. Regions of the traces outside
of the horizontal dashed lines indicate excessive muscle velocities. In both figures, the release point of the
throw is indicated with a vertical dashed line.
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Chapter 2

Structure of the set of feasible neural commands for complex motor

tasks

Valero-Cuevas FJ1, Cohn BA3, Szedlák M4, Fukuda K4 and Gärtner B4
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2.1 Abstract

The brain must select its control strategies among an infinite set of possibilities; researchers believe that

it must be solving an optimization problem. While this set of feasible solutions is infinite and lies in

high dimensions, it is bounded by kinematic, neuromuscular, and anatomical constraints, within which the

brain must select optimal solutions. That is, the set of feasible activations is well structured. However, to

date there is no method to describe and quantify the structure of these high-dimensional solution spaces.

Bounding boxes or dimensionality reduction algorithms do not capture their detailed structure. We present

a novel approach based on the well-known Hit-and-Run algorithm in computational geometry to extract

the structure of the feasible activations capable of producing 50% of maximal fingertip force in a specific
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direction. We use a realistic model of a human index finger with 7 muscles, and 4 DOFs. For a given static

force vector at the endpoint, the feasible activation space is a 3D convex polytope, embedded in the 7D unit

cube. It is known that explicitly computing the volume of this polytope can become too computationally

complex in many instances. However, our algorithm was able to sample 1,000,000 uniform at random

points from the feasible activation space. The computed distribution of activation across muscles sheds

light onto the structure of these solution spaces—rather than simply exploring their maximal and minimal

values. Although this paper presents a 7 dimensional case of the index finger, our methods extend to sys-

tems with at least 40 muscles. This will allow our motor control community to understand the distributions

of feasible muscle activations, providing important contextual information into learning, optimization and

adaptation of motor patterns in future research.

2.1.0.1 Author Contribution

In a collaboration with ETH, this work represented the seminal work that led to the introduction of Feasi-

bility Theory, and I contributed all code, analyses, while MS and BG, and FV contributed to the theoretical

implementations and the neuromuscular implications, respectively.

2.2 Introduction

Muscle redundancy is the term used to describe the underdetermined nature of neural control of muscula-

ture. The classical notion of muscle redundancy proposes that, faced with an infinite number of possible

muscle activation patterns for a given task, the nervous system uses optimization to select a specific so-

lution. Here, each of the N muscles represents a dimension of control, and a muscle activation pattern

is a point in [0,1]N [144]. Thus researchers often seek to infer the optimization approach and the cost

functions the nervous system likely uses to find points in activation space to produce natural behavior

[23, 92, 106, 129, 32, 54].
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Implicit in these optimization procedures is the notion that there exists a well structured set of feasi-

ble solutions. Thus several of us have focused on describing and understanding those high-dimensional

subspaces embedded in [0,1]N [73, 75, 110, 144, 62].

For the case of muscle redundancy for submaximal and static force production with a limb, the problem

is phrased as one of computational geometry: find the convex polytope of all feasible muscle activations

given the mechanics of the limb and the constrains of the task [9, 144, 139, 62]. This convex polytope is

called the feasible activation set. To date, the structure of this high-dimensional polytope is inferred by its

bounding box [73, 110, 62]. But the bounding box of a convex polytope will always exclude the details

of its shape. Empirical dimensionality-reduction methods have also been used to calculate basis vectors

for such subspaces [27, 33, 69]. But those basis vectors only provide a description of the dimension,

orientation, and aspect ratio of the polytope, but not of its boundaries or internal structure.

Here we present a novel application of the well-known Hit-and-Run algorithm [109] to describe the

internal structure of these high-dimensional feasible activation sets. We apply our technique to a schematic

example with three muscles to describe the method, and then use a realistic model of an index finger with

seven muscles and four joints [144].

2.3 Methods

2.3.1 Hit-and-Run algorithm

The boundaries of the convex polytope defining the feasible activation set are defined by the mechanics

of the limb and the constraints of the task, as is described in Subsection 3.3.1. The goal of the Hit-and-

Run algorithm is to uniformly sample a convex body [109]. In the case of a schematic tendon-driven

limb with three muscles, the feasible activation space is the unit cube (as muscles can only be activated

positively from 0 to a maximal normalized value of 1). As explained in [139], when task constraints are

introduced to the system, the feasible activation set is further reduced; in this context, a task is a static force

vector produced at the endpoint of the limb, which is represented as a set of inequality constraints. Thus
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if this simple limb meets all constraints, the feasible activation set of the polygon P contains all feasible

activations a 2 Rn that satisfy

f = Aa,a 2 [0,1]n,

where f 2 Rm is a fixed force vector, and A = J�T RFo 2 Rm⇥n—where J, R, and Fo are the matrices of

the Jacobian of the limb, the moment arms of the tendons, and the strengths of the muscles, respectively

[144, 139]. P is bounded by the unit n-cube since all variables ai, i2 [n] are bounded by 0 and 1 from below,

above respectively. Consider the following 1⇥3 fabricated example, where the task is a 1N unidimensional

force.

1 =
10
3

a1 �
53
15

a2 +2a3

a1,a2,a3 2 [0,1],

the set of feasible activations is given by the shaded set in Figure 1TODO.

The Hit-and-Run walk on P is defined as follows (it works analogously for any convex body).

1. Inner Point: Find a given starting point p of P (Figure 2.2a) .

2. Direction: Generate a random direction from p (uniformly at random over all directions) (Figure

2.2a).

3. Endpoints: Find the intersection points of the random direction with the edges of the polytope

(Figure 2.2b).

4. New Point: Pick a point uniform at random along the line segment defined by the endpoints (Figure

2.2c).

5. Repeat from (a) the above steps with the new point as the starting point .

To find a starting point in

f = Aa,a 2 [0,1]n,
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Figure 2.1: The feasible activation set for a three-muscle system meeting one functional constraint is a
polygon in R3. Note that muscle activations are assumed to be bounded between 0 and 1.
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Figure 2.2: Graphical description of the Hit-and-Run algorithm.
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we only need to find a feasible activation vector. For the Hit-and-Run algorithm to mix faster, we want the

starting point to be centrally located within the polytope. We use the following standard trick with slack

variables ei.

maximize Ân
i=1 ei

subject to f = Aa

ai 2 [ei,1� ei], 8i 2 {1, . . . ,n}

ei � 0, 8i 2 {1, . . . ,n}.

(2.1)

The recursive nature of the algorithm means that consecutive points are autocorrelated; it’s important

that each point sampled from the polytope is uniform at random, so we subset points separated by a num-

ber of iterations. For convex polygons in higher dimensions (over 40 dimensional), experimental results

suggest that O(n) steps of the Hit-and-Run algorithm are sufficient. In particular Emiris and Fisikopoulos

paper suggest that (10+ 10
n )n steps are enough to converge upon the uniform distribution [43]. In the index

finger model we executed the Hit-and-Run algorithm 1,000,000 times, selecting only every 100th point.

2.3.2 Realistic index finger model

We used our published model in [144] to find matrix A2R4⇥7, where a2R7. The seven muscles are flexor

digitorum profundus (FDP), flexor digitorum superficialis (FDS), extensor indicis proprius (EIP), extensor

digitorum communis (EDC), lumbrical (LUM), dorsal interosseous (DI), and palmar interosseous (PI).

The four degrees of freedom were ad-abduction, flexion-extension at the metacarpophalangeal joint, and

flexion-extension at the proximal and distal interphalangeal joints. The force direction we simulated is in

the palmar direction in the posture shown in Figure 2.3.
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Palmar

Figure 2.3: The index finger model simulated 50% of maximal force production in the palmar direction.
Adapted from [144].

2.4 Results

Figure 2.4 shows the distributions of activations resulting from the solutions computed with Hit-and-Run

sampling. This is the first time (to our knowledge) that the internal structure of the feasible activation set

has been visualized for a sub-maximal force.

Notice that the lower and upper bounds of the activations (i.e., the dashed lines indicating their bound-

ing box), are unhelpful in determining the actual density distribution of feasible activations. The activation

needed for the maximal force output (thick gray line) is very often not the mode of the activations at

50% of output. It’s important to note that these histograms are unidimensional- they do not illustrate the

between-muscle associations.

2.5 Discussion

Our results and methodology raise the following ideas:

• The Hit-and-Run algorithm can explore the feasible activation space for a realistic 7-muscle finger

in a way that is computationally tractable.
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Figure 2.4: We show one histogram for each muscle of the index finger to illustrate how the muscle is used
across all feasible solutions. For this set of distributions, the task was 50% of maximal force output in the
palmar direction. Muscles are FDP, FDS, EIP, EDC, LUM, DI, and PI are shown in that order from top
to bottom. The orange dotted lines are the lower and upper bounds of activation.
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• For some muscles, we find that the bounding box exceptionally misconstrues the internal structure

of the feasible activation set.

• The Hit-and-Run algorithm is cost-agnostic in the sense that no cost function is needed to predict the

distribution of muscle activation patterns. Therefore, we can provide spatial context to where ‘opti-

mal’ solutions lie within the solution space; this approach can be used to explore the consequences

of different cost functions.

• The distribution of muscle activations may be intricately related to strong modes which critically

affect the learning of motor tasks.

With the spatial context of the feasible activation space, we can explore the statistical tendencies of a

musculoskeletal system, and better define the landscape upon which optimization occurs. This application

of Hit-and-Run provides a tool to generate testable hypotheses of how coordination habits may come about,

how they are learned, and how difficult or easy it is to break out of them.
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Chapter 3

Feasibility Theory reconciles and informs alternative approaches to

neuromuscular control

Brian A. Cohn 1, May Szedlák 2, Bernd Gärtner2 and Francisco J. Valero-Cuevas 3,4
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Department of Theoretical Computer Science, Zurich, Switzerland.

3University of Southern California, Department of Biomedical Engineering, Los Angeles, CA.

4University of Southern California, Division of Biokinesiology and Physical Therapy, Los Angeles, CA.

3.1 Abstract

We present Feasibility Theory, a conceptual and computational framework to unify today’s theories of

neuromuscular control. We begin by describing how the musculoskeletal anatomy of the limb, the need to

control individual tendons, and the physics of a motor task uniquely specify the family of all valid muscle

activations that accomplish it (its ‘feasible activation space’). For our example of producing static force

with a finger driven by seven muscles, computational geometry characterizes—in a complete way—the

structure of feasible activation spaces as 3-dimensional polytopes embedded in 7-D. The feasible activation
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space for a given task is the landscape where all neuromuscular learning, control, and performance must

occur. This approach unifies current theories of neuromuscular control because the structure of feasible

activation spaces can be separately approximated as either low-dimensional basis functions (synergies),

high-dimensional joint probability distributions (Bayesian priors), or fitness landscapes (to optimize cost

functions).

3.1.0.1 Author Contribution

In a collaboration with ETH, this work expands upon the techniques from Chapter 2. I contributed all

code, analyses, and simulations, MS and BG contributed to the theoretical equation implementations and

the neuromuscular implications, and FV supported the deep analysis of neuromuscular implications of the

results.

3.2 Introduction

How the nervous system selects specific levels of muscle activations (i.e. a muscle activation pattern)

for a given motor task continues to be hotly debated. Some suggest the nervous system either combines

low-dimensional synergies[75, 118, 18, 39, 96, 119, 3], learns probabilistic representations of valid muscle

activation patterns[66, 67, 15, 100], or optimizes physiologically-tenable cost functions[23, 92, 106, 129,

32, 54]. At the core of this problem lies the nature of ‘feasible activation spaces’, and the computational

challenge of describing and understanding their high-dimensional structure (for an overview, see[149]).

A feasible activation space is the family of valid solutions (i.e. muscle activation patterns) that meet the

mechanical constraints 1 of a given motor task. Fig. 3.1 illustrates these neuromechanical interactions that

define the feasible activation space for a particular task.

The most the nervous system can do, therefore, is select and apply a specific muscle activation pattern

from within the feasible activation space. This is because muscle activation patterns outside of this space

are, by definition, inappropriate for the task. In fact, the feasible activation space defines the landscape
1Mechanical constraints is a formal way to call the physical demands, requirements, or characteristics of a given physical task.
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Figure 3.1: Emergence and interpretation of feasible activation spaces for a particular motor task.
The descending motor command for a given task is issued by the motor cortex (a), which projects onto
inter-neurons and al pha-motor neuron pools in the spinal cord (b). The combined drive to all al pha-motor
neurons of a muscle can be considered its total muscle activation level (a value between 0 and 1). If we
consider that muscles can, to a large extent, be controlled independently and in different ways, then the
overall motor command can be conceptualized as a multi-dimensional muscle activation pattern (i.e. a
point) in a high-dimensional muscle activation space[23, 116, 70, 144, 129] (c). For that muscle activation
pattern to be valid, it has to elicit muscle forces (d) capable of satisfying the mechanical constraints of
the task—in this case defining a well-directed sub-maximal fingertip force (e). Given the large number
of muscles in vertebrates, there can be muscle redundancy: where a given task can be accomplished with
a large number of valid muscle activation patterns. We propose that our novel ability to characterize the
high-dimensional structure of feasible activation spaces (i) allows to us to compare, contrast, and reconcile
today’s three dominant approaches to muscle redundancy in sensorimotor control (f, g, h).
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upon which all neuromuscular learning and performance must occur for that task. Studying neuromuscular

control is, therefore, equivalent to studying how the nervous system finds, explores, inhabits, and exploits

the contents and structure of feasible activation spaces[75, 118, 18, 47, 39, 96, 119].

But the ‘curse of dimensionality’[12, 13, 9] makes it computationally challenging to calculate, de-

scribe, and understand the nature and structure of high-dimensional feasible activation spaces[142, 23,

116, 70, 125, 104, 39]—even for an isolated human finger or cat leg generating everyday static forces[75,

62, 149, 110]. This is due to the computational complexity of algorithms to map the geometric details of

objects embedded in high dimensions [46, 109, 83].

Current theories of neuromuscular control2 are alternative responses to overcome the curse of dimen-

sionality in this context. These alternative approaches, however, are seldom combined and often the in-

sights from one realm are not readily applicable to the others. Here we emphasize how the mechanics of

the body and the physics of the task constitute the common ground for all theories.

We now propose ‘Feasibility Theory’, which is a conceptual framework to characterize feasible activa-

tion spaces in detail. While prior work has described how to find such feasible activation spaces for static

force production[144, 75, 157, 145, 85], we now explain why the structure of a feasible activation space

can be approximated with low-dimensional synergies and probability distribution functions, and can be

associated with multiple fitness landscapes over which to optimize.

3.3 Methods

In the case of the seven muscles of the human index finger producing static fingertip force, we show that

the family of feasible commands, the feasible activation space, is a 3-dimensional polytope embedded in

7-dimensional muscle activation space [144]. A ‘polytope’ is the formal name for bounded polyhedra in

dimensions higher than three. With 4 task constraints applied to 7 muscles, the result is a 3-dimensional

polytope embedded in the 7-dimensional muscle activation space. By construction of anatomy, producing

2Neuromuscular control is variously referred to as neural, motor, sensorimotor, etc. control.
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static force with a fixed posture naturally leads to a relationship between muscle forces and endpoint

torques. The linear constraint equations that define this relationship (and in parallel the polytope that

arises from the constraints) accurately represent the set of feasible motor commands [144, 149, 110]. Our

computational approach hinges on the efficient sampling and complete representation of the geometric

structure of high-dimensional polytopes, which fully characterizes the family of all valid muscle activation

patterns—each of which solves the same task. By definition, this polytope is the null space of the task.

The methods to obtain feasible activation spaces for ‘tendon-driven’ limbs are described in detail in

the textbook Fundamentals of Neuromechanics and references therein[149]. This tendon-driven approach

explicitly and distinctly avoids the conceptual approach to calculate net torques at each joint. Rather,

it emphasizes studying the individual actions of all muscles at all levels of analysis, from their neural

activation to their contributions to fingertip force. We describe them briefly here.

Consider a tendon-driven limb, such as a finger, with n independently controllable muscles, where we

define the neural command to each muscle as a positive value of activation between 0 (no activation) and

1 (maximal activation), where a value of 1 would produce the maximum possible tendon force for that

muscle. We do not differentiate between concentric or eccentric contraction—we define muscle activation

as the net static tendon tension, normalized by the maximum tendon tension possible by that muscle. We

can then visualize the set of all feasible neural commands (i.e. all possible muscle activation patterns) as

the points contained in a positive n-dimensional cube with sides of length equal to 1. A specific muscle

activation pattern is a point (i.e. an n-dimensional vector a) in this n-dimensional cube[23, 116, 70, 144].

Now consider a specific task, such as producing a vector of static force with the fingertip, as when holding

an object. Clearly, not all muscle activation patterns inside the n-dimensional cube can produce that desired

static fingertip force vector: bone lengths, kinematic degrees of freedon, anatomical routing, posture, and

muscle strength inequities define the subset of points in the n-cube which produce a fingertip force vector of

a specific magnitude and direction. As described in[23, 116, 70, 149] the musculoskeletal anatomy of the

limb, the need to control individual tendons, and the physics of a motor task uniquely specify a polytope

embedded in Rn (i.e. the feasible activation space). This polytope contains the family of (potentially

40



infinite) valid muscle activation patterns that can produce this static force production task. However, these

valid muscle coordination patterns are not arbitrarily different because, by construction, the geometric

structure of the polytope that contains them defines strict spatial correlations among them[75].

System of linear equations to simulate static force production by a tendon-driven system

Consider producing a vector of static force with the endpoint of the limb in a given posture. The con-

straints that define that task (i.e. the direction and magnitude of the force vector at the endpoint) are linear

equations[149] that come from the mapping between neural activation of individual muscles to static end-

point forces and torques the limb can produce. This mapping is linearly modeled by the equation
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where H is the matrix of linear constraints defined by the musculoskeletal anatomy of the limb[62], a is

the input vector of n muscle activations, and f 2 Rm is the m-dimensional limb output ‘wrench’ (i.e. the

forces and torques the finger can produce at the endpoint).

The output wrench, w, is at most 6-dimensional (i.e. 3 forces and 3 torques) depending on the number

of kinematic degrees of freedom of the limb, and usually m < n because limbs have more muscles than

kinematic degrees of freedom[149]. Muscles can only pull, so elements of a cannot be negative, and are

capped at 1 (i.e. 100% of maximal muscle activation).

What are the muscle coordination patterns that produce a given task? As explained in[149], the task

of producing a static fingertip force vector is defined by specifying the desired values for the elements

of the endpoint forces and torques of w. Each value yields a constraint equation, which in turn defines a
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hyperplane of dimension n�1, and their combination defines the task completely. The feasible activation

space of the task, if it is well posed[25], is defined by the points a that lie within the n-cube and at the

intersection of all constraint hyperplanes.

Geometrically speaking, the feasible activation space is a (n � m)-dimensional convex polytope P

embedded in Rn that contains all n-dimensional muscle coordination patterns (i.e. points a) that satisfy

all constraints, and therefore can produce the task. Increasing task specificity by adding more constraints

naturally decreases the dimensionality and changes the size and shape of the feasible activation space[70,

110, 61].

The Hit-and-Run algorithm uniformly samples from feasible activation spaces

Calculating the geometric properties of convex polytopes in high dimensions is computationally challeng-

ing. Taking the generalized concept of an n-dimensional volume as an example of a geometric property

of interest, the exact volume computations for n-dimensional polytopes is known to be tractable only in

a polynomial amount of time (i.e. #P-hard)[41]. Currently available volume algorithms can only handle

polytopes embedded in small dimensions like 10 or slightly more[21]. Studying vertebrate limbs in gen-

eral, however, can require including several dozen muscles, such as our studies of a 17-muscle human arm

and a 31-muscle cat hindlimb model[62]; and other models have over 40 muscles of the human lower limb

[8, 75, 52, 36].

Similar difficulties arise when computing other geometric properties such as the shape and aspect ratio

of P in high dimensions. We and others have described polytopes P by their bounding box (i.e. the

range of values in every dimension)[110, 73], but that singularly overestimates the shape and volume of

the feasible activation space as discussed in[62]. Consider a 3-muscle system with only one constraint,

producing a 2-dimensional polygon as the feasible solution space. The bounding box of the polygon has

a volume—even though a plane has zero volume—, and can be almost as large as the positive unit cube

itself. Similar problems arise in the interpretation of the inscribed and circumscribed ball[60].
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We applied the Hit-and-Run method to sample points from the feasible activation space. We have

presented a detailed explanation of the Theory (In Chapter 9 of [149]), and have justified the utility of this

method on tendon-driven models of the index finger [145]. This complete probabilistic method describes

the structure of feasible activation spaces P with a set of uniformly-at-random muscle activation patterns

that produce the same wrench. This enables us to derive descriptive statistics, histograms, and point

densities of the set of valid muscle activation patterns a uniformly sampled from the polytope. To do so,

we use the Hit-and-Run method.

This approach can scale up to ⇠40 dimensions (i.e. limbs with ⇠40 independent muscles). This

suffices to study extant vertebrate limbs, and thus compare, contrast, combine—and reconcile—today’s

three dominant approaches to neuromuscular control.

3.3.1 Example of a tendon-driven system

Realistic 3-D model of a 7-muscle human index finger We applied this methodology to our pub-

lished model of an index finger for static fingertip force production. The model is described in detail

elsewhere[146]. Briefly, the input to the model is a 7-D muscle activation pattern a, and the output is a 4-D

wrench w (i.e. static forces and torques) at the fingertip:

w = Ha (3.2)

H = J�T RFo,H 2 R4⇥7 (3.3)

where
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a =

0

BBBBBBBBBBBBBBBBBBBBBB@

aFDP

aFDS

aEIP

aEDC

aLUM

aDI

aPI

1

CCCCCCCCCCCCCCCCCCCCCCA

(3.4)

In Cartesian coordinates, the 4-D output wrench corresponds to the anatomical directions shown in

Fig. 3.1e.

w =

0

BBBBBBBBBB@

fx

fy

fz

tx

1

CCCCCCCCCCA

=

0

BBBBBBBBBB@

fradial

fdistal

fpalmar

tradial

1

CCCCCCCCCCA

(3.5)

The biomechanical model H includes three serial links articulated by four kinematic degrees of free-

dom (ad-abduction, flexion-extension at the metacarpophalangeal joint, and flexion-extension at the prox-

imal and distal interphalangeal joints). The action of each of the seven muscles (FDP: flexor digitorum

profundus, FDS: flexor digitorum superficialis, EIP: extensor indicis proprius, EDC: extensor digitorum

communis, LUM: lumbrical, DI: dorsal interosseous, and PI: palmar interosseous) on each joint to produce

torque is given by the moment arm matrix R2R4⇥7. Lastly, J 2R4⇥4 and F0 2R7⇥7 are the Jacobian of the

fingertip with 4 kinematic degrees of freedom, and the diagonal matrix containing the maximal strengths

of the seven muscles, respectively[149, 138]. The finger posture was defined to be 0� ad-abduction and

45� flexion at the metacarpophalangeal joint, and 45� and 10� flexion, respectively, at the proximal and

distal interphalangeal joints.
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Feasible activation space for a static fingertip force task Our goal is to find the family of all feasible

muscle activation patterns that can produce a given task. In particular, the task we explored is produc-

ing various magnitudes of a submaximal static force in the distal direction fdistal — in the absence of

any tradial , shown in Fig. 3.1e. Therefore the feasible activation space is a polytope P in 7-dimensional

activation space that meets the following four linear constraints in a[144, 149, 138]

fradial = 0 (3.6)

fdistal = desired magnitude as % of maximal (3.7)

fpalmar = 0 (3.8)

tpalmar = 0 (3.9)

These four constraints on the static output of the finger yield a 3-dimensional (i.e. 7�4 = 3) polytope

P embedded in 7-dimensional activation space. For details on how to create such models, apply task

constraints and find such polytopes via vertex enumeration methods, see[149].

For the index finger model used in this paper, the published maximal feasible force in the distal direc-

tion is 28.81 Newtons. We defined the normalized desired distal task intensity as a value ranging between

0 and 1, i.e. each submaximal force can be produced by any of the points contained in its corresponding

feasible activation space. For the production of a maximal force, the feasible activation space shrinks to a

single point[116, 23, 25, 138].

3.3.2 Analysis of feasible activation spaces

Parallel coordinate visualization For us to understand the structure of the feasible activation space, we

aim to visualize the data. If we had a simple model with only three muscles (and one task force dimension),

we could plot the feasible activation space as a plane within a 3D cube, as illustrated in Fig. 3.2a. However,

in our model, we have seven muscles. In our 3D reality, we cannot create a 7D scatter plot to highlight

45



how muscle activation patterns are spatially located across the muscle dimensions, so we must project the

data in a different way.

Parallel coordinates are a common graphical approach to visualize interactions among high-dimensional

data [10, 68]. To build familiarity with this visualization method, consider the results of a simple 3-

dimensional (3-muscle) toy example shown in Fig. 3.2a. This is the dimensionality of a finger with only 3

muscles, aiming to create a unidimensional pressing force. We begin by drawing n parallel vertical lines

for each of the dimensions n (i.e. 3 muscles). With the axis limits of each line set between 0 and 1 (at

the bottom and top of the plot, respectively), each muscle activation pattern (Fig. 3.2a) is then represented

by a zig-zag line that connects to the coordinates between 0 and 1 on each axis, as shown in Fig. 3.2b.

The blue zig-zag line that is connected at the top of m1 in Fig. 3.2b represents the muscle activation point

equal to (m1 = 0.8,m2 = 0.9,m3 = 0.4). You can see its corresponding location in the 3D cube, mapped

to the parallel coordinate zig-zag line (the gray dotted line connects the two representations of the muscle

activation pattern).

Neural and metabolic cost functions As mentioned in the Introduction, the field of neuromuscular

control has a long historical tradition of using optimization to find muscle activation patterns that minimize

effort, which requires the (often contentious) definition of cost functions[116, 23, 92, 32]. Therefore, we

used four representative cost functions to calculate the relative fitness of each of the muscle activation

patterns sampled—in effect also calculating the fitness landscape across all possible solutions. The cost

functions are defined at the level of neural effort (L1, and L2 norms, representing the normalized sum of

descending neural a-drive to the motor neuron pools); and at the level of metabolic cost, thought to be

approximated by neural drive weighted by the strength of each muscle (Lw
1 and Lw

2 norms)[92, 32].

To visualize the costs associated with each valid muscle coordination pattern, we simply added three

vertical lines at the far right of the parallel coordinates plot, one for each of the three cost functions,

Fig. 3.2c. The variables ai and F0i represent the activation of the ith muscle in a given muscle activation

pattern, and the maximal strength of each muscle[92, 32]. Maximal muscle strengths are approximated
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by the multiplying each muscle’s physiological cross-sectional area, in cm2, by the maximal active muscle

stress of mammalian muscle, 35 N/cm2[159]. These four cost functions are but four examples from the

literature; an investigator is free to use this visualization of the feasible activation space with any cost

function deemed relevant to their study.

Histograms of the activation level of each muscle across all valid solutions Muscle-by-muscle his-

tograms are another straightforward way to visualize the many points sampled from the convex polytope.

Histograms are particularly helpful because they illustrate the structure of the space of all feasible activa-

tions, allowing us to see which muscle activation patterns are on the edge of the space, which solutions

exist in the middle of the space, and how the bounds of the space and the distribution change across dif-

ferent tasks (in this case, as the task force increases). They visualize the relative number of solutions (i.e.

density of solutions) that required a particular level of activation from a particular muscle within its range

of [0,1]. In addition, the upper and lower bounds of the histograms show, in fact, the size of the side of the

bounding box of the polytope in every dimension (i.e. for each independently controlled muscle).

Dimensionality reduction Investigators have repeatedly reported that electromyographical signals (i.e,

experimental estimates of muscle activation patterns) tend to exhibit strong correlations with one another.

In these experimental descriptions of dimensionality reduction of neuromuscular control, only few inde-

pendent functions—sometimes called synergies—suffice to explain the majority of the variability in the

observed muscle activation patterns[75, 118, 18, 39, 119, 3, 69]. Principal components analysis (PCA) is a

widely used technique to extract these few independent basis functions (correlation vectors called princi-

pal components, PCs) from high-dimensional data[27]. In this case, PCs are often called the experimental

representations of synergies of neural origin[75].

Therefore, we applied PCA to points (i.e. muscle coordination patterns) sampled from the feasible

activation space at each force level. This provides the PCs that describe the correlations among valid

muscle activation patterns for a given task. For example, the feasible activation space P in a 3-muscle

system with one constraint is a 2-dimensional polygon embedded in 3-dimensional activation space. Thus,
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applying PCA to points sampled from the polygon will extract 2 synergies (i.e. 3-dimensional correlation

vectors PC1 and PC2) that wholly explain the feasible activation space. By extension, in the case of

fingertip force production in Fig. 3.1, the feasible activation space is a 3-dimensional polytope embedded

in the 7-dimensional activation space. And PCA should extract, by construction, as many synergies as

there are dimensions in the feasible activation space. For static force production with the index fingertip

(i.e. 7 muscles and 4 constraints), we know that 3 principal components will describe 100% of the variance

in points sampled from the feasible activation space (i.e. 7-dimensional correlation vectors PC1, PC2, and

PC3).

Applying PCA to our data allows us to test whether and how its results change when applied to feasible

activation spaces for different magnitudes of fingertip force. We applied PCA to feasible activation spaces

for fingertip task intensities ranging from 0 to 90% of maximal. Specifically, we applied the prcomp

function in R, and specified that the calculation operates on the covariance matrix of the raw data. We

compare both the variance explained by each PC and their loadings (e.g. correlations among muscles) as

the force level increases [152]. Lastly, we tested whether the dispersion (i.e., the two central quartiles) and

median of our PCA estimates are sensitive to the number of points sampled from each feasible activation

space. This is important in practice because experimental studies tend to record and analyze a practical

number (e.g., 10) of repetitions of the same motor task from a given subject, and aggregate data from

different subjects [153]. Although we have reported that subjects tend to exhibit similar muscle activations

for a given task [138], performing dimensionality reduction on such few trials and across multiple non-

identical subjects (i.e., samples in Figure 3.5) may lead to imprecise (i.e., uncertain) estimates of the

synergies when sampling from high-dimensional spaces.
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3.4 Results

We used our realistic index finger model to calculate the feasible activation space for the task of producing

static fingertip force in the distal direction (see Fig. 3.1). By showing how this same space can be inter-

preted from three dominant perspectives, we propose a conceptual paradigm to unify today’s theories of

neuromuscular control. The model contains the contribution of each of the seven muscles of the finger

to the resultant static fingertip force vector [149]. As described briefly in the Methods, all valid muscle

activation patterns to produce a given fingertip force vector (i.e. all ways in which one can combine the

actions of the seven muscles to produce a given fingertip force vector) are contained in a low-dimensional

polytope embedded in 7-dimensional space. Hit-and-Run is a method for uniform polytope sampling that

collects thousands of muscle activation patterns, which become a valid geometric approximation to the

structure of the feasible activation space[145]. We examined how these feasible activation spaces (and

their alternative representations) change with increasing task intensity (i.e. fingertip force magnitude,

Fig. 3.1e). In particular, we studied task intensities between 0% (i.e. pure co-contraction without output

force) and 100% of maximal static force (i.e. a unique solution [144]).

3.4.1 Parallel coordinate visualization naturally reveals

the structure of the feasible activation space

Parallel coordinate visualization effectively reveals correlations that exist among the 1,000 valid muscle

activation patterns for each intensity of desired fingertip force, and activation pattern cost, Fig. 3.2 and

Fig. 3.3.

Parallel coordinate visualization provides deep insight into the interactions among muscles that can

produce a given task. Because it allows interactive exploration of the feasible activation space, one can

restrict the activation level of any one or multiple muscles to see the associated activation levels of the

remaining muscles (i.e. see a subsample of the feasible activation set). Figure 3.4 shows how, for 80% of

task intensity, only 46% (i.e. 461
1,000 ) of all possible solutions survive when we only keep solutions where
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EIP and EDC are below 80% of maximal excitation. We chose to limit the extensors, as they are both

innervated by the radial nerve and are susceptible to limitation from, for example, neuropathy or stroke.

This robustness-related system behavior is visible in other muscle pairs via the interactive parallel coor-

dinates plot. We find that even a minor neural or muscle dysfunction can disproportionally compromise

the solution space—even for sub-maximal forces. These results further challenge the definition of muscle

redundancy as discussed in detail in[73, 149, 85], in that our description of redundancy may need to in-

corporate the structure of the feasible activation space to best describe how motor control can occur with

perturbation to one or more muscles.

While we know from experience that a limitation on one muscle yields compensation from the others,

Fig. 3.4 explains why, and how much to expect. All data used for Fig. 3.4 are for a task intensity of 80%.

Given this task, limiting PI to 20% of maximal activation eliminates 30.1% of the valid solutions, while

limiting DI to 20% eliminates 42.8% of them. The level of resilience to muscle limitation is intricately

linked to muscle redundancy. When we select only the lowest 5% of L2 weighted costs (3.4, middle

figure) there exist many ‘near-optimal’ solutions that are dramatically different (note the broad ranges

and criss-cross patterns in the second panel of in Fig. 3.4). This wide space exists in spite of this strong

criterion. Consider the range of activation for DI and PI in Fig. 3.4 which lies between 0 and 0.52 and 0.39,

respectively. Limiting DI to 20% pulls PI’s maximum down by nearly 0.20, and the converse has nearly

the same effect. However, in both cases, the median activation among surviving solutions changes no more

than 0.06. This emphasizes that understanding feasible activation spaces requires an understanding of its

internal density and not just its bounds.

Evaluating the slope of the lines connecting muscles enables an intuitive understanding of inter-muscle

correlations. The Pearson product-moment correlation coefficients were 0.99, -0.50, and -0.06 in the adja-

cent muscle pairs FDP—FDS, LUM—DI, and EIP—EDC, respectively. The interactive parallel coordinate

visualization also allows for any pairwise comparison by simply dragging and reordering the vertical axes.

This is an effective ad-hoc method to viewing the inter-muscle correlations for exploratory data analysis.
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3.4.2 Low-dimensional approximations to the feasible activation space

We applied Principal Component Analysis (PCA) to sampled muscle activation patterns for 10 levels of

task intensity. However, to replicate the fact that experimental studies can only collect a finite amount of

data from each subject, we did this in an iterative fashion as follows. We collected 10,000 points sampled

uniformly at random from each feasible activation space via Hit-and-Run [145]. From these 10,000 points,

we sampled 10, 100, and 1,000 points at random (to simulate ‘experimental’ sample sizes), and applied

PCA to each set of sampled points. For each of the sample sizes, we replicated the sampling 100 times,

producing a distribution of principal component results, and thus, a distribution of variance-explained

metrics for PC1 (and the same for the other components). This bootstrap analysis serves to inform how

many samples one must collect from a subject to get an effective set of principal components. The H

matrix was fixed across all replicates and samples.

Figure 3.5 shows the box plots describing the variances explained by the three principal components

(PC1, PC2, and PC3) across task intensities. The third PC, PC3, explains the remainder of the variance

(13—15%) for the resulting 3-dimensional polytope. Recall that the 4 task constraints ( fradial , fdistal , fpalmar,tpalmar)

applied to 7 muscles yield a 3-dimensional polytope embedded in the 7-dimensional muscle activation

space [144]); as such, the sum of all three PCs is exactly 100%. The supplemental website (linked in the

Data Availability Statement below) contains alternate versions of Figure 3.6 with varying input transfor-

mations.

The box plots in Fig. 3.5 quantify how different amounts of data change the estimates of variance

explained by a PC with task intensity (c.f. labels a vs. b vs. c). We see this dispersion is small in the center

and right columns. Note that the ratio of variance explained between PC1 and PC2 between 50 to 80% of

task intensity reveals changes in the aspect ratio of the feasible activation space with task intensity.

Importantly, we observe how using experimentally realistic samples sizes of 10 same-task repetitions

per subject (the leftmost column in Fig. 3.5) not only does not capture this change, but its standard deviation

is large enough to blur the notable differences that are known to appear with larger (but experimentally
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unrealistic) sample sizes. The impact of impoverishing the number of independent samples fed to PCA

reminds us that inadequate amounts of data obfuscate the underlying changes in the structure of the data

analyzed (Fig. 3.5).

There were also changes in the loadings of the PCs, especially above 60% task intensity. While the

ratio of variance explained between PC1 and PC2 gives a sense of the aspect ratio of the feasible activation

space, the loadings of PC1 and PC2 speak to its orientation [149, 152]. Figure 3.6 shows how the loadings

of the PC1 and PC2 vectors change across labels a, b, and c, Fig. 3.5. These loadings indicate that the

orientation of the feasible activation space in 7-dimensional space change mildly at forces less than 65%

of the maximal task force, and change more dramatically with higher forces.

These changes we see in (i) the lower and upper bounds of activations, and in (ii) the relative variance

explained and (iii) loadings for all three PCs, demonstrate that the size, shape, and orientation of the

feasible activation space changes with task intensity. The muscle activation distribution ‘between the

bounds’ has profound implications for prior work which chiefly examines the ultimate upper- and lower-

bounds of activation for tasks in different directions [107, 62]. Moreover, detecting changes in these high-

dimensional structures is done in the best-case scenario, as it exists in the absence of experimental noise,

within- and across-subject variability, and measurement error. As will be elaborated in the Discussion, this

implies that PCs (i.e. synergies) are laborious to obtain experimentally, and even then do not necessarily

generalize across intensity levels.

3.4.3 Changes in the probabilistic structure of the feasible activation space with

increasing task intensity, or how muscle redundancy is lost.

The maximal static fingertip force vector in a given direction is produced by a single and unique combi-

nation of muscle activations. In contrast, any sub-maximal magnitude of that same vector is produced by

an infinite number of solutions[116, 23, 149, 138]. Our analysis of feasible activation spaces at different
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task intensities also allows us to characterize how this redundancy changes, and is eventually lost. The his-

togram heatmaps in Fig. 3.7 illustrate the changes and shrinking of within-muscle histograms (the space

upon which probability density functions must operate) of valid activation levels across task intensities,

converging to a single solution at maximal force output. These surface plots show how the normalized

histograms (of 1,000 valid activation levels for each muscle at each intensity level) change at each of 100

equally-spaced levels of task intensity between 0 and 1. Following a muscle’s column from bottom to

top shows the activation histograms converge, naturally, to a spike at the unique value for maximal force

production.

The low flat areas on the sides of each surface plot (e.g., clearly visible for DI) represent muscle

activation levels that are not valid for that task intensity. That is, there exist no valid muscle activation

patterns that contain that muscle at that level, and thus no points are found there.

These plots show within-muscle probability functions and their and rate of convergence to the unique

solution for maximal force output across muscles. This is in contrast with the parallel coordinate plots in

Fig. 3.3 that shows the correlation across muscles. Importantly, the histograms of activation levels for each

muscle need not be symmetric, nor have the same shape (skewness and kurtosis) as the magnitude of the

output force increases. For some muscles, the convergence accelerates after 60% or 80% of task intensity

(as in LUM and EIP), while others converge monotonically along the entire progression (e.g., DI and PI).

The peaks (i.e. modes or most common values) of each histogram at each task intensity represents the slice

of the polytope that has the largest relative volume along that muscle’s dimension (i.e. greatest frequency

of that level of muscle activation across all valid solutions). Importantly, for most muscles (FDP, FDS,

EIP, EDC, and LUM), the mode is not necessarily located at the same relative level of activation needed

for maximal force output—even when scaling it linearly with task intensity. That is, the histogram at high

levels of force is not simply a shifted version of the histogram at low levels of force. The histograms for

DI are the exception, whose modes seem to scale linearly with task intensity.

These histograms and the parallel coordinate visualizations demonstrate that the probabilistic and cor-

relation structure, respectively, of feasible activation spaces, do not necessarily generalize across task

53



intensities. Nor can they be inferred from their bounding boxes alone (i.e. upper and lower activation

bounds for each muscle). An immediate example is how, for most task intensities, both EIP and LUM

have similar lower and upper bounds near 0 and 1, respectively—yet their distributions are thoroughly

distinct.

3.5 Discussion

3.5.1 Summary

Feasibility Theory, as a conceptual and computational approach, is a means to pierce the curse of dimen-

sionality to establish a physics-based ground truth for neuromuscular control. This practical approach can

now characterize—in an arguably complete way—the space of all valid ways to activate multiple muscles

to produce a given task. This initial presentation is limited to the case of static force production. Additional

work is needed to extend to sequences of tasks, as has been done for optimization during gait analysis—

where the dynamical constraints during movement are applied in the context of static optimization [6, 107].

But we can already say that feasible activation spaces are, in fact, the high-dimensional landscapes upon

which all neuromuscular learning, control, and performance must occur. These landscapes are predicated

upon the strong experimental evidence for linearity in tension-to-force transduction in cadaveric [73], live

[63], and modeled [122] studies. Therefore, they provide an integrative and unifying perspective that

demonstrates how today’s dominant theories of neuromuscular control are alternative approximations to

feasible activation spaces from optimization, synergistic, and probabilistic perspectives. Feasibility Theory

unifies these alternative approaches to motor control in the sense that feasible activation spaces represent

an objective conceptual and computational common ground for these theories.

Note that these changes in the structure of the feasible activation space do not imply a given control

strategy. They merely establish the bounds within which a species evolve a control policy for a given body
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morphology. It is possible that the nervous system operates within a very small subset of this space—

which could be described by different principal components and even probability distribution functions.

Feasibility Theory, however, allows us to formally phrase and test such hypotheses.

3.5.2 The value of a cost function

Optimization is the oldest computational approach to finding valid muscle activation patterns that produce

limb function (e.g.,[23]). While optimization is, of course, a reasonable hypothesis to explore neuromus-

cular control[129], some criticize it as a mathematical abstraction that anthropomorphizes neurons with the

ability to choose, evaluate and follow cost functions in high-dimensions[35, 80]. There is, nevertheless, an

intimate relationship between optimization and feasible activation spaces[25]. Optimization is analogous

to finding the best solution in the dark—guided by repeated small steps based on evaluations of cost- and

constraint-function. Computing the feasible activation space is then a means to ‘turn on the lights’ to see

all possible valid solutions independently of cost[149]. Our complete sampling of high-dimensional fea-

sible activation spaces [109, 83] allows us to compare and contrast families of solutions as per alternative

cost functions instead of individual optimal solutions for a particular cost function. Fig. 3.3 demonstrates

a complete description of families of valid coordination patterns and their relationship to alternative cost

functions. Importantly, similar valid muscle activation patterns can have dissimilar costs and vice versa.

Thus, Feasibility Theory allows us to compare, in detail, alternative ‘cost landscapes’ across the en-

tire set of feasible motor commands. By not having to insist on (or settle for) individual optimal—or

near-optimal—solutions, we now have the same ability the nervous system has to explore, compare and

contrast multiple valid (be they optimal or suboptimal) ways to coordinate muscles. Importantly, the rela-

tionships among valid muscle activation patterns emerge naturally from the physical properties of the limb

and definition of the task. This cost-agnostic approach allows us to re-evaluate our assumptions about

what the nervous system cares—and does not care—about. Lastly, this cost-agnostic approach also pro-

vides a powerful tool for inverse optimization, i.e. uncovering latent cost functions from data[137]. Our

comparison across cost functions using parallel coordinates is already a form of inverse optimization.
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3.5.3 Freedom under constraints

We have so far only used ‘hard’ task constraints which must be met exactly. However, Feasibility Theory

also holds for soft constraints. For example, if a tendon-driven system is required to produce a 3D force

vector in general distal direction and of a general magnitude (defined, say, as a sphere of 1.0 N radius

centered on the nominal force), then we can apply these tolerances to the constraints defining the task.

In effect, Feasibility Theory allows us to study both soft and hard constraints, where the latitude of the

accuracy of the task naturally defines the precision with which muscle activation patterns must be selected.

One can define the task intensity to be, say, anywhere between 50 and 60%, and study the concomitant

increase in options available to produce forces within that range. Thus, one can characterize the changes

in the feasible activation space as the task constraints are relaxed or tightened. Similarly, adding task

constraints, such as the need to produce a particular stiffness at the endpoint [61], naturally reduces the

dimensionality of the feasible activation space.

3.5.4 How to apply Feasibility Theory in an experiment

The most important input to this analysis is the relationship between muscles and the endpoint wrench.

With this relationship composed as the H matrix as in 3.1, and a desired wrench w, Hit-and-Run can be

used to produce parallel coordinate plots and density histograms for static force production with vertebrate

limbs. For example, using a measure of muscle activation (such as fine-wire EMG), an experimentalist can

compare the muscle activation pattern chosen by a research participant in comparison to the full feasible

activation space that could achieve the same force, and see how those patterns change across fatigue,

disability of a muscle, or manipulation of the feedback. After a tendon-transfer surgery, for example, the

subject may initially inhabit only a specific part of the feasible activation space to produce a task, but must

use feedback from the parallel coordinate plot to find solutions which take less effort. In effect, visualizing

the entire feasible activation space could help us understand how rehabilitation can be guided towards more

advantageous local minima[131].
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In parallel, a scientist with a cost function to test on a model can quickly identify how different cost

function parameters can affect the space of feasible activations, and see how specific the global optima is,

with respect to other muscle activation patterns. Importantly, anthropometric differences affect the shape

of the feasible activation space, so those subject-specific differences must be either incorporated or may

be addressed through sensitivity analysis (such as Monte-Carlo manipulation of moment arm values, as in

[62]).

3.5.5 Extension to dynamical force production or movement

Limbs are valuable for more than just their ability to produce isometric forces. First, there is the extension

to ‘non-static isometric’ force production (e.g., rotating a grasped object with respect to gravity), which

must contend with time-varying muscle activation-contraction dynamics and target grasp wrench (i.e. such

that the object is always securely held against a time-varying gravity vector [95]). With changes in joint

angles, the end-effector Jacobian, moment arm matrix, and vector of maximal feasible contraction levels

per muscle will vary nonlinearly—and with kinematic redundancy as a possibility for a given endpoint

location, we can introduce multiple feasible activation spaces that are capable of producing a given task

force. Even a simple task in the workspace likely exhibits redundancy at different levels of abstraction,

where redundancy is sourced from feasible activation spaces and joint null spaces simultaneously.

As muscles exhibit state dependence, the ability of an animal to produce precise dynamic forces is

affected by the tendon tensions from moment to moment. The inter-muscle dynamics across a human

index finger, for example, would necessarily require a feasible activation trajectory—which may or may

not be representable by a convex hull. Applying Feasibility Theory to non-static isometric force production

may require detailed investigation into the dynamics of musculoskeletal force transduction. In parallel to

the dynamics, non-convexities may emerge from neural constraints or even nonlinearities and hysteresis

of muscle function.

Secondly, Feasibility Theory can be extended to address dynamical behavior by applying it to a se-

quence of slices in time. That is, a dynamical task can be equivalently analyzed as a sequence of ‘slices’
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[6, 135, 26, 107]—where one can define a feasible activation space at each slice to determine how the

nervous system must change activation patterns such that it is always implementing a valid solution [107].

When strung together, these individual spaces give rise to a ‘spatiotemporal tunnel’—the time-varying

extension of the feasible activation space (Fig. 3.8).

3.5.6 Structure, correlation, and synergies

The physical properties of the limb and the definition of the task together give rise to a low-dimensional

structure of the feasible activation space [149]. Therefore, experimental recordings of muscle activations

during limb function will exhibit a dimensionality that is smaller than the number of muscles[75, 3, 133].

Thus, applying PCA to the points sampled from the feasible activation space will inevitably find that few

PCs can explain the variance in the data [20].

Our application of PCA at increasing task intensities (i.e. as muscle redundancy is lost) allows us to

demonstrate—for the first time to our knowledge—several important features and limitations of dimen-

sionality reduction. For example, we see that the aspect ratio (Fig. 3.5) and orientation (Fig. 3.6) of the

feasible activation spaces change as their size shrinks (Fig. 3.7). Thus, such descriptive synergies [20]

extracted from limited experimental observations likely do not generalize well across task intensities. Pro-

ducing further insights into the feasibility-synergy relationship necessitates more objective metrics of the

feasible activation space’s structure.

The intensity-dependent structure of feasible activation spaces also has important consequences for

motor control and learning. Producing force vectors at the endpoint of a finger or limb with accurate

magnitude and direction are critical for versatile manipulation and locomotion[31, 144, 40]. If a given

synergy can produce such accurate force vectors only for a given task intensity (and thus inaccurate vectors

at other intensities), then the attractiveness of task-specific synergies to simplify the neuromuscular control

of the limb is reduced. Although we do not present an analysis of task-irrelevant synergies, data from this

paper can be concatenated prior to PCA analysis to explore how principal components vary across the

entire distal task.
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To compensate, the nervous system would need to learn, recall, and implement intensity-specific syn-

ergies. Prior experimental work has shown that the nervous system produces accurate fingertip forces of

different magnitudes by, instead, likely scaling a remembered muscle activation pattern to produce forces

of different magnitudes[138], together with full-dimensional error correction [143]. The observation of

higher forces yielding more variable PC loadings indicates that lower dimensional substructures could

approximate low- and medium-level forces for a given direction, motivating further analyses of PCA ef-

fectiveness across task-intensity (and with NMF, for example).

Our results also show how experiments with realistically moderate numbers of participants and test

trials likely do not contain sufficient information to produce robust estimates of descriptive synergies across

task intensities. As per the curse of dimensionality, sampling uniformly at random from high-dimensional

spaces is exponentially difficult. Thus, even for this anatomically complete 7-muscle finger model, PCA

depends strongly on the number of independent observations, such as uncorrelated trials from one subject

or different subjects. Figure 3.5 shows that 100 to 1,000 such ideal data points from a simulated ‘test

subject’ are needed to produce accurate estimates of changes in the PCs with task intensity (c.f. labels a

vs. b vs. c). Future studies should explore how many experimental data points are sufficient from a given

subject when recording from only a subset of the many (20+) muscles of human limbs in the presence

of experimental noise, inherent stochasticity of EMG, and within- and between-subject variability. Some

studies have begun to ask subjects to explore different ways to perform a given task [14, 76] (i.e. estimate

the structure of the feasible activation space), but in practice, such studies cannot likely collect sufficient

data uniformly at random to obtain accurate estimates of the descriptive synergies[75].

PCA is one of several methods to extract lower-dimensional representations of motor patterns [34, 127,

27]. Alternative techniques do not impose orthonormality constraints or over-estimate the real dimension-

ality of nonlinear underlying manifolds [27]. Similarly, Non-Negative Matrix Factorization (NMF) would

not be subject to the flips in sign observed in Figure 3.5 [134]. We noted that for a given task intensity, a

muscle’s activation across the sampled solutions can have different variance than the other muscles, and
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these variances change as task intensity increases (and the feasible activation space shrinks) (See the sup-

plemental website for the task-variance figure). While PCA helps us uncover how these shapes change

in this study, PCA can be leveraged to uncover different intramuscular relationships (e.g., analyzing the

eigenvalue decomposition of the correlation matrix, as opposed to using PCA on the covariance matrix).

Bootstrapping or data shuffling technique for sensitivity analysis are also applicable to dimensionality

reduction techniques [152].

Feasibility Theory allows us to put dimensionality reduction in perspective. First, as a natural conse-

quence of the definition of a task (i.e. the need to meet specific mechanical constraints). And second,

as an approximation to the structure of the latent feasible activation space embedded in high-dimensions.

While our results suggest caution when interpreting synergies obtained experimentally, we underscore that

dimensionality reduction is, nevertheless, a useful approach to capture the general geometric properties of

feasible activation spaces.

3.5.7 Toward probabilistic neuromuscular control

Our results are particularly empowering for the emerging field of probabilistic neuromuscular control[66,

67, 100]. Suppose that the nervous system uses some form of probabilistic or Bayesian learning and

control strategy. Such approach requires two enabling—and biologically plausible—elements: trial-and-

error iterative exploration to build prior distributions, and memory-based exploitation of the probability

density functions used to approximate the feasible activation spaces[66]. The parallel coordinate plots and

histograms in Fig. 3.2 and 3.7 provide, to our knowledge, the first complete[109, 83] characterization of

such multi-dimensional conditional motor control spaces for a realistic tendon-driven system performing

a well-defined task (i.e. activation of one muscle is contingent upon the activations of the other muscles).

With a better understanding of the physical task, future studies into optimal motor control can leverage

the feasible activation space to contextualize motor control policies, whether they are experimentally-

observed or theoretically predicted [15]. As mentioned above, the muscle activation patterns that the

nervous systems actually use will necessarily be a subset of these feasible activation spaces.
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Feasibility Theory critically empowers the study of fundamental aspects of probabilistic control. For

example, an organism can only execute so many trial-and-error iterations during learning, likely too few to

completely and exhaustively sample the high-dimensional feasible space of interest. This makes it much

more likely that, by virtue of being more easily found, an organism will find and preferentially exploit the

strong modes (i.e. narrow and high peaks in Figs. 3.3, 3.4, and 3.7) of the multi-dimensional probability

density functions than any other region of feasible activation spaces. Thus, first, the maximal ranges of

feasible activations described by the bounding box [110, 62] may have little practical bearing on how those

tasks are learned and executed. And second, those same strong modes would represent strong attractors to

create and reinforce motor habits. Habitual control has been proposed based on experimental and empirical

data as an alternative to a strict optimization approach to neuromuscular control[35, 44]. Our work now

provides the computational means to link habitual to probabilistic control in isometric force production.

This allows us to generate testable hypotheses of how these motor habits are defined by the structure of

the feasible activation space, how easily they are learned by the organism, and how difficult or easy it is to

break out of them [97].

Motor function likely emerges from trial-and-error [1] or imitation [91, 22] to identify, remember and

adopt easily-found, good enough solutions in the feasible activation space—independently of their cost.

It is then possible to use some heuristic approach to improve performance to transition to less likely—but

potentially ‘better’ solutions as per some metric relevant to the individual—subregions of the solutions

space. But this likely requires numerous iterations in practice, which explains why only a few of us are

experts at a given motor task, or why rehabilitation is so difficult[1, 81, 50].

3.5.8 Feasibility Theory as a theory of motor control

Feasibility Theory goes beyond Bayesian control by underscoring how the physics of the body, and the

properties of the task are the arbiter that guides the biological process of finding, exploring, inhabiting,

and exploiting low-dimensional solution spaces embedded in high-dimensions. Feasibility Theory es-

pouses heuristic local searches—driven by the memory of likelihoods of different individual solutions—to
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create what ultimately are useful, yet likely sub-optimal, motor habits. These processes hinge on trial-

and-error, memory, pattern recognition, and reinforcement that come naturally to neural systems. Even

though Feasibility Theory is presented in the context of neural control of the human hand, it applies to

tendon-driven organisms in general.

Importantly, organisms perform strict optimization or synergy control at their peril. A feasible acti-

vation set is low-dimensional because it loses one dimension with each functional constraint that is being

met [61, 144]. Thus, moving along such low-dimensional spaces to find a new valid solution is equivalent

to moving along a line (which has zero volume) in 3-dimensional space. Taking a step from any one valid

point to another valid point on the feasible space runs the risk of ‘falling off’ and failing at the task—a risk

that is exponentially exacerbated in higher-dimensions. Thus, searching for improvements in the neigh-

borhood of a known solution necessarily risk task failure and potential injury. These are all arguments in

support of the evolutionary and developmentally useful strategy to use good-enough control based on habit

or sensorimotor memory rather than optimization or synergy control[35, 45].

This line of thinking has consequences to neurorehabilitation. Neurological conditions disrupt feasible

activation spaces, be it by affecting anatomy of the limb, muscle strength, and independence with which

muscles are controlled. Functional recovery following the disruption, if not destruction, of the landscape of

valid muscle activation patterns, requires re-learning existent or building new probability density functions.

Older adults suffering from reduced perceptuo-motor learning rates are presented an even more constrained

feasibility space [29].

A probabilistic landscape for neuromuscular function begins to explain why neurorehabilitation in ag-

ing adults is so difficult (e.g., [53, 81]) and why motor learning in children takes thousands of repetitions[1].

But it empowers us to leverage knowledge of the families of feasible solutions to create new rehabilitation

strategies and testable hypotheses around them.
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Table 3.1: Applicability and compatibility of Feasibility Theory with dominant theories of neuromuscular
control

Dimensionality Reduction PCA, NMF, etc. describe the general shape and structure of the feasi-
ble activation space. The resulting basis functions serve as an approx-
imation of the input-output relationship of the system (i.e., descriptive
synergies).

Motor Primitives / Synergies
/ Modular Organization If the basis functions mentioned above are of neural origin, they would

be the means by which the nervous system inhabits the feasible activa-
tion space and executes valid solutions (i.e., prescriptive synergies).

Uncontrolled Manifold (UCM)
Theory The UCM Theory emphasizes that the temporal evolution of muscle

activation patterns in the interior of the feasible activation space need
not be as tightly controlled as those at its boundaries. This is because
moving between interior points has no impact on the output as they
constitute the null-space of the task (i.e., they are ‘goal-equivalent’ as in
[104]). In contrast, Feasibility Theory describes details of the structure
of the feasible activation space.

Exploration-Exploitation Heuristic and trial-and-error approaches can be used to find points
within the Feasible Activation Space because it is a needle-in-a-
haystack problem. By definition, there is a small likelihood of finding a
point on a low-dimensional manifold embedded in a high-dimensional
space (e.g., the volume of a line is zero). Thus, the families of valid
solutions found are preferentially adopted (e.g., as motor habits[35]).
Such a heavily iterative approach is compatible with reinforcement
learning[142], motor babbling[130], the hundreds of thousands of steps
children take when learning to walk[1], or the mass practice a patient
needs for effective rehabilitation[78].

Probabilistic Neuromuscular
Control If muscle activation patterns within the feasible activation space can be

found (by any means), they can be combined to build probability density
functions (i.e., Bayesian priors). A likely valid action for a particular
situation can then be selected via Bayes’ Theorem (e.g.,[66]).

Optimization / Minimal
Intervention Principle
/ Optimal Control Every point in the feasible activation space is, by definition, valid. How-

ever, if a cost function is used to evaluate each point in it, the feasible
activation space is transformed into a fitness landscape. Optimization
methods can then navigate this fitness landscape to find local and global
minima (e.g.,[32, 6, 129]).

3.6 Data Availability Statement

The datasets generated and analyzed for this study can be found freely available at https://github.com/bc/space,

and at the supplemental website http://valerolab.org. We designed a web-based parallel coordinate visu-

alization that lets users interactively limit muscles, select solutions, and calculate effects on the feasible

activation space from each post-hoc constraint (Fig. 3.4). Our companion site includes ample documenta-

tion, code implementation in Scala (with a comprehensive test suite), and all data visualization code in R,

including an overhead view of Figure 3.7.
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Figure 3.2: Parallel coordinates characterize the high-dimensional structure of a feasible activation
spaces. Consider four points (i.e. muscle activation patterns) from the polygon that is a feasible activation
space (a). The activation level for each muscle (i.e. the coordinates of each point) are sewn across three
vertical parallel axes (b). As is common when evaluating muscle coordination patterns, each point can also
be assigned a cost as per an assumed cost function. The associated cost for each muscle activation pattern
can also be shown as an additional dimension. We show three representative cost functions (c). Activation
levels are bound between 0 and 1, and costs are normalized to their respective observed ranges.
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Figure 3.3: Activation patterns of the seven muscles of the index finger across six intensities (mag-
nitudes) of a fingertip force vector in the distal direction. The connectivity across parallel coordinates
visualizes the correlations among muscle activation patterns at different task intensities. At the extremes
of 0% and 100% we have, respectively, the coordination patterns that produce pure co-contraction and no
fingertip force, and the one unique solution for maximal fingertip force [144]. In between, we see how the
structure of the feasible activation spaces changes, and that much redundancy is lost rather late (at intensi-
ties greater than 80%, in agreement with [110]). In blue are the activation values, and in red are normalized
costs for four common cost functions in the literature. For each task intensity, we produced 1,000 points
that are uniformly distributed in the polytope via the Hit-and-Run method. The muscles are FDP: flexor
digitorum profundus, FDS: flexor digitorum superficialis, EIP: extensor indicis proprius, EDC: extensor
digitorum communis, LUM: lumbrical, DI: dorsal interosseous, PI: palmar interosseous. Color is used
solely to differentiate muscle activations (blue) from cost values (red).
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EIP < 80%, EDC < 80%

cost functions

FDP FDS EIP EDC DI PILUM L1 L2 L1W L2W
muscles

Bottom 10% of the range 
of each cost

50 points with lowest L2W Cost

points

points

points

Figure 3.4: Exploration of the feasible activation space for task intensity of 80%. Here we show
three informative examples of constraints applied to the points sampled from the feasible activation space
(n=1,000; axes match those of Fig. 3.3). With this interactive visualization, we can easily see how the
size (i.e. number of solutions) and characteristics of the family of valid muscle activation patterns change.
For example, in the event of (Top) weakness of a group of muscles (54% reduction), (Middle) selection of
the lowest 5% of a given cost function (95% reduction), and (Bottom) enforcing the lowest 10% of cost
range across multiple cost functions (99.6% reduction). In all cases, the family of valid muscle activation
patterns retains a wide range of activation levels for some muscles. While it is challenging to understand
the structure of the feasible activation space with a static plot of the parallel coordinates, interactively
manipulating the muscle ranges on one or multiple axes makes it very easy to view and describe how
muscle activations change in the face of different constraints.

67



Variance 
explained 
by PC1

Variance 
explained 
by PC3

Variance 
explained 
by PC2

0 3.2 19.2 25.6 28.8
Max

0 3.2 19.2 25.6 28.8
Max

Distal force produced at the fingertip (N)

0 3.2 19.2 25.6 28.8
Max

0.5

0.6

0.7

0.8

0.2

0.3

0.4

0.05

0.10

0.15

0.20

n = 10 n = 100 activation points (samples) passed to PCA

PCA generated 
with fewer samples

PCA generated 
with many samples

n = 1000

Figure 3.5: Approximating the structure of feasible activation spaces via principal components anal-
ysis (PCA) is sensitive to both the task intensity and the amount of input data used. Rows show
the variance explained by the first (top) through third (bottom) principal components with increasing data
points for a given replicate (left to right). Hit-and-Run sampling provides the ground truth for the high-
dimensional structure of the feasible activation set at each task intensity. Each box plot, across all subplots,
is formed from 100 metrics (replicates), where each metric is the PC variance explained for a replicate ‘sub-
ject’ which performed the task n times (where n is one of 10, 100, or 1000 task repetitions). We find that
PCA approximations to this structure do not generalize across tasks intensities (i.e. the polytope changes
shape as redundancy is lost), and numbers of points. That is, > 100 muscle activation patterns should be
collected from a given subject to confidently estimate the real changes in variance explained as a func-
tion of task intensity. Compare points labeled a, b, c, corresponding to 11, 66, and 88% of task intensity,
respectively.
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Figure 3.6: PCA loadings change with task intensity For each of 1,000 task intensities, we collected
1,000 muscle activation patterns from the feasible activation space and performed PCA. The facet rows
show the changes in PC loadings, which determine the direction of all PCs in 7-dimensional space. Note
that the signs of the loadings depend on the numerics of the PCA algorithm, and are subject to arbitrary
flips in sign [27]—thus for clarity we plot them such that FDP’s loadings in PC1 are positive at all task
intensities. Dotted vertical lines connect loadings of PC2 and PC3 in spite of flips in sign. A discontinuity
here is not indicative of a major change to the feasible activation space. It instead, is a result of how PCA
selects loadings. The shape of the activation space has tilted at these points, thereby flipping the sign.
Note that the values are the same before and after the jump, less the sign. These loadings (i.e. synergies)
change systematically, as noted for representative task intensities a, b, c in Fig. 3.5, and more so after b.
This reflects changes in the geometric structure of the feasible activation space as redundancy is lost.
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Figure 3.7: The within-muscle probabilistic structure of feasible muscle activation across 1,000 levels
of fingertip force intensity. The cross-section of each density plot is the 50-bin histogram of activation
for each muscle, at that task intensity. The changes in the breadth and height for each muscle’s histogram
reveal muscle-specific changes in their probability distributions with task intensity. Height represents the
percentage of solutions for that task. The axis going into the page indicates increasing fingertip force
intensity up to 100% of maximal. Color is used to provide perspective. It is interesting to note that, for
example, both extensor and flexor muscles are used to produce this ‘precision pinch’ force. This is to be
expected as the activity in the extensors is necessary to properly direct the fingertip force vector [141].
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Figure 3.8: Spatiotemporal Tunneling. A dynamical movement can be decomposed into a sequence of
slices in time, where each slice has a corresponding feasible activation space. Strung together, the sequence
of feasible activation spaces form the ‘spatiotemporal tunnel’ through which the neuromuscular system
must operate. In this 3-dimensional schematic example, the black line represents one valid time-varying
sequence of activations for three muscles. Because this sequence exists within each feasible activation
space, it necessarily meets the constraints of the dynamical task at each instant.

71



Chapter 4

Spatiotemporal tunnels constrain neuromuscular control

Brian A. Cohn 1 and Francisco J. Valero-Cuevas 2,3

1University of Southern California, Department of Computer Science, Los Angeles, CA

2University of Southern California, Department of Biomedical Engineering, Los Angeles, CA

3University of Southern California, Division of Biokinesiology and Physical Therapy, Los Angeles, CA

4.1 Abstract

Animals must control their limb endpoint forces for tool use and manipulation. And while decades of

research has elucidated much about how intentions lead to physical forces and movements, and what

correlations exist between muscles, these methods do not address core questions about why these rela-

tionships occur, and what neuromuscular and physical requirements most constrain their possibilities. Our

prior work has more faithfully enumerated the full dimensional neuromuscular control landscapes upon

which learning must occur, but we did not address the constraints of how muscles can perform within these

spaces. In this study, we address this gap by stochastically exploring the addition of a simple time param-

eter, and rather than optimize or reduce the dimensionality of our null space, we fully enumerate the space

as a product polytope in 49 dimensions—7 muscles over a 7-step task, with the constraint matrix being

solved in one step. As a result, we can select only those trajectories which meet the activation-contraction
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constraint across the entire trajectory, and sample from the space in a new manner that is traditionally

intractable for analyzing muscular systems of this size. By defining the physical realities that govern how

evolution must derive neuromuscular structures, we discovered how powerful even simple time constraints

are, and how they warp the ways muscles interact, correlate, and optimize. This theoretical and compu-

tational work offers new tools to generate hypotheses across the interplay of high-dimensional neurology

and full-dimensional task physics, highlighting how the time-varying nature of activations define and limit

how neuromuscular systems can evolve and learn motor patterns.

4.1.0.1 Author Contribution

BC designed analyses and code, FV supported the deep analysis of neuromuscular implications of the

results.

4.2 Introduction

For the case of a human tendon-driven fingertip generating endpoint forces, having more muscles than

output constraints raises a long-explored question: how do animals find and select a muscle activation

pattern that work, given a high dimensional space to choose from [4]? For much of the past 40 years of

neuromuscular control, there have been deep analyses of the cortical circuits, evaluations of the muscle

activity, and knock-out studies of different points along the pathways providing motor drive. Prior work

with Feasibility Theory [30] has effectively sampled from the Feasible Activation Space, a representation

of the way muscles can combine their activations to effect an output wrench[149]. Many effective proce-

dures exist for analyzing and interpreting the high dimensional nature of under-constrained motor control,

including extraction of a series of lower-dimensional vectors [3, 133, 2], approximation of their distribu-

tion as Bayesian priors [66], or by application of a heuristic cost-function to find optimal subtrajectories

[129, 125]. Feasibility Theory posits that the full dimensionality of tendon-driven systems must be pre-

served to yield a fair and common ground in contextualizing theories of neuromuscular control, chiefly
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the aforementioned synergistic, Bayesian, and optimization-based methods. However, forces change over

time, and it’s still difficult to this day to fully describe why an animal chooses a particular motor pattern

in redirecting or scaling force. Those internal ‘functions’ are often approached from the musculoskeletal

side, by measuring directly from the muscles activity, via measurement of tensions over time, and through

spinal and cortical imaging. Much incredible progress has been made to incorporate the time-varying dy-

namics into these activation-to-wrench approximations, in the case where dimensionality is reduced by

optimization[108], or at a series of points in a transect from the most optimal trajectory to the least [111].

Muscles cannot act immediately—they are a single element of a dynamical system with many moving

parts. With motoneurons being discharged stochastically, and with limited chemical energy at any given

moment, there are neurological, chemical, physiological, and physical constraints to creating changes

in musculotendon tension, which acts as a series elastic element. Muscle-length and muscle velocity

significantly impact the force applied at the tendon’s point of insertion, and different parts of the muscle

have different response speeds (i.e. slower and faster twitch models of motor control). Furthermore,

integumental structures (including skin) and passive musculoskeletal structures (including ligaments) serve

as a dynamical system which have their own time-varying dynamics and state. For the context of this study,

we do not fully model these delays and limitation–rather, we make a upper-bound observation of the fastest

change in muscle activation over time as described in the Methods.

If we could adequately reduce the size of the feasible activation space—all ways to achieve the task—

we would be able to close the boundaries for hypotheses on motor control, reducing the space of viable

hypotheses, and allowing for immediate feedback for scientists looking to build models which explain

for the behavior of vertebrate tendon-driven control. This paper provides a novel computational tool for

stochastically, and fairly sampling the feasible activation space, even in light of the incorporation of time

as a new variable. We provide strong evidence that even a rather low-dimensional to low-dimensional

tendon driven limb (a human index finger) has an incredibly broad distribution of activation trajectories

for the simple task of redirecting a 10N force 30�, and that redundancy remains even after adding novel

constraints of muscle activation-contraction dynamics to the full-dimensional feasible activation space.
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Figure 4.1: Overview of the primary objective of this work. Our objective is to computationally sur-
vey the Feasible Trajectory Space in the context of activation-contraction constraint, to better inform our
perspectives of descending neuromuscular control paradigms.
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We refer to this behavior as a spatiotemporal tunnel—the well-structured representation of feasible muscle

activations that must be traversed by both evolutionary and learning timeframes. To achieve a series of

isometric forces, the limb must meet the constraint of time (Figure 4.1).

4.3 Methods

As in [30, 113, 145] we define the linear transduction of tendon tensions into output endpoint wrench as

H ⇤ x̄ = w̄. (4.1)

Where H (a [4,7] matrix in this paper for 4 output dimensions and 7 input tendon activations) represents

the linear activation-to-wrench relationship, such that H ⇤ x = w̄out put .

Wrenches are four dimensional as the index finger can produce a torque (i.e. scratching) w̄=( fx, fy, fz, ty)[156].

As the data for H were collected in the same posture, and as there is strong evidence supporting the linearity

of tendon-driven isometric force transduction in fixed postures, we do not need to model the intermediary

Jacobian or the Moment-arm matrix [123, 144, 140, 113]. We define x 2 [0,1]7 where 1 represents 100%

activation.

Note that the term ‘muscle activation’ can take on different meanings depending on the level of the

analysis being used. In our case, we use it as shorthand for the total signal needed to produce a given level

of neural drive to produce force at each muscle. The reason we do this is that it encompasses the metabolic

cost, intensity, and feasible rates of change of both the neural drive and muscle force. As such, it includes:

• Presynaptic input to a population of a�motoneurones

• The neural command sent by the a�motoneuron to the population of muscle fibers in its motorunits

[115]

• The biochemical processes required for the release and uptake of acetylcholine at the motor end-

plate of each muscle fiber [136]
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• Ca+ release and uptake by the sarcoplasmic reticulum [136]

• The cross-bridge cycle at the sarcomere to produce, hold and change the level of muscle force

We make the simplification, without loss of generality, to not distinguish between muscle types and con-

sider equal time constants for the increase and decrease of neural drive and muscle force.

And while many approaches minimize c̄T x̄ where c̄ represents a vector of linear weights to combine

with x̄ to form a metric of cost, e.g. if c̄= (1,1,1,1,1,1,1), c̄T x̄ would compute the ’sum cost of activation’,

or c̄= (0,0,0,0,0,0,1) would compute the ‘sum of just palmar interosseus’. Nonlinear objective functions

have also been used to better understand weighted L2 and L3 metabolic cost functions[30]. For this paper,

rather than minimization or optimization on an arbitrarily defined cost function (a model choice in itself)

our approach instead samples from the nullspace of x̄ uniformly-at-random (u.a.r). We leverage the same

computational geometry technique ’Hit-And-Run’ as in [30, 145], which is originally described in [83, 82].

Synaptic drive applied to motor units create forces, which ultimately generate muscle forces, and

accumulate to tendon force. The tendon is compliant and together, the musculotendon is a big dynamic

system with many physiological and physical constraints. It’s a series elastic element.

4.3.0.1 Hit and Run sampling of the feasible activation space

Visualization and analytics of these high dimensional structures requires unique approaches to highlight

different aspects of feasible activation spaces, and there has been some success in using 2D and 3D vi-

sualization to decompose neural control of force [145, 30]. As the dimensionality of the space increases,

the ratio of out-of-polytope to in-polytope volumes within the unit cube expands exponentially, thereby

making 2D and 3D approaches computationally intractable with systems with more than 2 muscles. Like

in prior work, we sample the space with the Hit-and-Run algorithm—a Markov chain propagating within

the polyhedron that yields a uniform-at-random distribution within the volume of a given convex polytope.

This method is agnostic to measures of metabolic or neurologic cost, and allows for contextualization of

the solutions optimization may select.
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4.3.0.2 Defining the temporal constraints

One core limitation of our prior work [30] is the single-moment analysis, that does not take into account the

amount of change the CNS must perform to move from solution to solution, from task to task. Muscles do

not act with infinitely fast response times; to respect this, we incorporate an element of temporal constraint

in our model by limiting a muscle’s change in activation between ±d% over a 50ms interval. Given the

observation that deactivation in vertebrate muscle is often slower than activation[115], we set this limit to

the faster of the two, forming a conservative bound. We refer to this metric as the activation-contraction

constraint, and as we take the absolute value of the deltas, this metric is always set between [0,1]. A

constraint value of 0.25 means that in 50ms, activations can change their output by no more than 25% of

their maximal tension.

4.3.1 Specimen

Our activation-to-wrench model H was sourced from an experiment using cadaver fingers[154], with orig-

inal data (n=11) from [116]. To reveal the effects of activation-contraction constraints on a time-dependent

feasible activation space, we leveraged a stochastic Monte Carlo technique to fairly extract activation

trajectories—Hit-and-Run[83]. In addition to being normalized between an activation of 0 and 1 (muscles

can’t go negative as they can only pull), muscles were constrained in their ability to change their output

activation from moment to moment. For each moment in time, the endpoint vector had to meet the re-

quirements of its desired output wrench within a series of seven tasks. Formally, we add new constraints

in the way the activations can change, which are ultimately classifiable as Lipschitz constraints [114, 19].

Formally, we sample u.a.r. from the null space on x, given A and b where x 2 [0,1]n. Our Lipschitz Con-

straints (referred to hereafter as ’activation-contraction constraints’ as they serve to link different motor

patterns over time to different output wrenches.

|xi+1 � xi| dx 2 [0,1]7 (4.2)
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We set the task to a series of 7 individual wrenches performed over the course of 300ms, which starts

at a pure fx force (towards palmar), with a 30 degree rotation towards proximally (rotated about the axis

defined by the ulnar direction), and a symmetrical return. The progress is shaped as a single cosine period,

with the peak being the 4th index. Wrenches (0,6),(1,5),(2,4) are identical—providing a symmetric set of

tasks to stay constant while the activation-contraction constraint demands may change.

We sampled 100,000 activation trajectories per activation-contraction constraint condition, where the

constraints were set from 1 to 0.05 (Figure 4.3).

4.3.1.1 Analyzing unseeded vs seeded activation trajectory distributions

To address this difficulty in analyzing the distributions of muscle activations, we present the following

‘’unseeded vs seeded’ trajectory analysis in Figure 4.2, with methods described in Figure 4.3.

We compute the possible trajectories when the first moment is fixed to a seed-point, and compare those

‘’seeded’ trajectories to the ‘’unseeded’ trajectories that were not fixed. It’s important to note that unseeded

trajectories are still sampled under the same activation-contraction constraint as their seeded counterpart,

that all unseeded trajectories meet those activation-contraction constraint, and that all seeds must have a

starting point that exists in the unseeded polytope. We describe our sampling procedure in Figure 4.3c and

d. From out 100,000 unseeded trajectories we computed under a activation-contraction constraint of 0.12.

From those, we selected 10 at random and called those our ‘seeds’. For each seed, we trimmed off the t=50

to t=300 activation values, and appended a new constraint to the original constraint matrix, so all sampled
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Figure 4.2: Consequences of selecting a specific initial muscle activation pattern for a max activation-
contraction speed of 0.25 Here we show the distributions of three trajectory seeds selected across a uni-
form sample of the unseeded H (Eq. 4.3). As in 4.10, lines are drawn by connecting the midpoints of
100 histogram bins. We observe strong hysteresis in the positioning of muscle activation when the seed
trajectory locks the activation high or low on a given muscle, and that selecting a seed point implies that
you cannot easily return to another seed point.
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Figure 4.3: Method for generating unseeded and seeded trajectories Unseeded trajectories can orig-
inate in any valid solution at t = 0 show their evolution across the subsequent polytopes (i.e., solution
spaces) subject to the temporal constraints of activation-contraction dynamics of muscle. A seeded tra-
jectory, on the other hand, is pulled from the same constraint matrix, but with an additional constraint:
all of the points selected from a seed start at a same seed point (i.e., valid solution at t = 0). A seed
point can be extracted from the unseeded trajectories. Seeded points can only evolve in time into sub-
regions of the subsequent solution spaces that are reachable given the starting point and the temporal
constraints of activation-contraction dynamics of muscle. Importantly, unseeded trajectories all meet
activation-contraction constraints as well
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trajectories were forced to match the seed in t=0 4.3. We computed 10,000 trajectories per seed. We show

all 10 in an interactive video described in Figure 4.10, and show three examples in Figure 4.2. Each show

the [7,7] by-muscle, by-moment distributions of the unseeded (in black) and seeded (a different color for

each seed).

Figure 4.4: Quantifying the evolution over time of the distribution of solutions for unseeded and
seeded trajectories Here we detail our method for analyzing and visualizing the effect of selecting a
solution seeded in t = 0. We began by extracting one hundred thousand activation trajectories from H as
in Eq. 4.3. With 10 of those trajectories, we extracted only the first value, then ran a further sampling
paradigm on a modified constraint equation where the first activation pattern (of 7 muscle activations) had
to match the seed’s activations at t=0. As we want to visualize the effect of selecting a seed point, but
cannot easily plot a 4D structure embedded in 7D, we applied principal component analysis to each of the
7 moments of time across the unseeded distribution. We then projected both the unseeded, and seeded
activation trajectories across the first two PCs, highlighting where in the lower-dimensional space those
solutions were most probable.

4.4 Results

The time history of feasible activations for a given action is highly restricted under activation-contraction

constraints imposed by muscle physiology 4.5.

First, Figure 4.5 demonstrate that, as the activation-contraction speed limit is reduced, the trajectories

become more spatially constrained in the regions of the feasible activation sets they can inhabit/exploit.
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Figure 4.5: Ten example trajectories with three levels of activation-contraction constraints For each
level, we show a) ten example trajectories, where each color is a different trajectory. b) Those trajectories,
differentiated to show how quickly the activations were changing with the upper and lower activation-
contraction constraints shown as dotted lines, and c) a distribution of the trajectory ‘activation-contraction
speeds’, grouped by muscle. Note that colors on part c) do not relate to a) and b). Outliers are not shown on
c. Note that unlike Figure 4.6 which shows the max(|ȧi|), this figure shows the raw differentiated muscle
activations as ȧ and thus is signed from ±1.
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This allows us to describe the effects of the activation-contraction constraint under which muscle coordi-

nation happens to be able to produce a force and change its direction. Figure (4.5a,b shows 10 example

trajectories (from the 10,000 calculated) as they traverse the 49-dimensional space (i.e., 7 muscles over

7 timepoints or tasks). For completeness, Figure 4.5c also provide boxplots of the per-muscle activation

levels across all 10,000 trajectories sampled. Note that the limit on activation-contraction speed natu-

rally affects muscles with larger feasible activation ranges (shown as the top row of Figure 4.8). But also

note that as the maximal activation-contraction speed is reduced, those same muscles will visit/exploit

increasingly smaller subspaces of their feasible activation sets. This spatiotemporal interaction is best

seen in EIP, which has a naturally large range of feasible activation, which are suitably exploited when

the activation-contraction constraint is less-constraining. But then shrinks as the constraint becomes more

strict. However, changes also spill over to muscles with naturally smaller ranges of feasible activations

such as FDP. This muscle has few trajectories with an activation-contraction rate greater than 0.25 to

begin with, but becomes limited in range as the activation-contraction speed is reduced 4.5c.

A closer look further confirms that muscles that have a narrow range of feasible activations will be

least sensitive to changes in activation-contraction constraints. Figure 4.6 shows the distribution of the

maximal change in activation for all muscles, and we see that only the muscles that have greater ranges of

activation have non-overlapping central quartiles between 0.75 and 0.5 activation-contraction speed. It is

hard to drag race in a driveway. We observe how, for example, FDP, FDS, and PI are more affected by

the reduction of maximal activation-contraction speed.

Producing a fingertip force and changing its direction requires selecting a specific solution and im-

plementing a specific sequence of activation patterns. Our ‘seeded analysis’ reflects the consequences of

choosing an initial activation pattern (a ‘seed’) to subsequent feasible activation patterns (Figure 4.2). We

show this for three choices of initial seeds selected at random (top row), where the subsequent feasible

activations for each muscle are limited in where they can go given the activation-contraction speed of

0.25. As we do observe many changes in the profiles of trajectories when time is considered, and do not

observe changes in some of the by-muscle distributions (as seen in Supplementary Figure 4.8, traditional
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Figure 4.6: The effect of differing activation-contraction constraints on the distribution of max(|ȧi|),
compared across muscles When we sample trajectories, we get a bunch of n-dimensional trajectories,
where n=7 muscles. From each of those trajectories, we differentiate them (e.g. ȧi = aLUM

i+1 � aLUM
i ),

and we show here the distributions of e.g. ȧLUM . These speeds are grouped by the applied activation-
contraction constraint. The case with no activation-contraction constraints is a 1.0; a 0.1 means a muscle
is spatiotemporally constrained so that it cannot change by more than 10% within 50ms.
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techniques for visualizing these spaces, including density distributions and parallel coordinates as used in

[30] could be misleading on the raw activations, when incorporating the concept of time.

PC1

PC2

PCs computed from unseeded 
trajectories sampled from t=0

t=250mst=300ms t=200ms

t=50mst=0ms t=100ms t=150ms

R Index Finger
10N palmar force 30°

Figure 4.7: Spatiotemporal tunnels for each of 10 seed points The ‘seed’ activation you choose in the
first moment highly constrains where your muscle activations can go across the following six tasks. Shown
for a activation-contraction constraint of 0.12 (in that no muscle can change more than 12% in tension
from slice to slice). Each slice of the tunnel is a task, where the points have been projected onto the un-
seeded PCs (PC1 and PC2), which were computed separated for each slice, providing polytope-relevant
changes in the distributions of seeded distributions with respect to the unseeded trajectory distribution.

Finally, the hypothesis illustrated conceptually in Figure 4.1 is highly supported by data in Figure

4.7. We show how, for ten randomly selected seed points, the activation-contraction constraints shown

in Figure 4.2 limit the evolution of muscle activations over time to produce a force and cyclically change
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its direction. To create an adequate visualization, we had to find a method to fairly represent, project,

and render the 49-dimensional space of trajectories onto a page as a 2D representation. We achieved this

objective through a series of relative PCA mappings: we take many trajectories, split them into individual

moments, compute the first two principal components, then project those points onto PC1 and PC2. The

result is a view of the feasible activation space as a distribution landscape. From there, we make use of

this visualization by projecting seeded trajectories onto those same PC’s (See Figure 4.4), all culminating

in a visible window into the effect of adding activation-contraction constraints, Figure 4.7. These ‘tunnels’

represent a representation of time-constrained activations over time, given a starting point in t=0. A single

seed point defines where the activation must move, highly limiting the space of feasible activation patterns

that can be used to achieve the rest of the task; a spatiotemporal tunnel exists.

4.5 Discussion

Activation-contraction constraints highly affect the neuromuscular control landscape upon which all learn-

ing, motor control, and evolution must operate. This work has strong implications to many elements of

control systems where a null space exists for a relatively static task. One such example is the positioning

of the tongue in production of varying vowel sounds, where the 10 muscles can yield multiple motor

patterns which ”result in similar tongue position, shape, and/or contacts with the palate”[49]. In extension

to changing vowels over a short timespan, a perspective borne from spatiotemporal feasibility implies that

speaking a single word requires finding, selecting, and repeating feasible activation trajectories so as to

be intelligible. Even a few millimeters of variance in tongue and jaw position can yield distinguishably-

different vowels[162]. With production of sound being highly dependent on anatomy at the species and

within-population level [128], neuromuscular strategies for manipulating the characteristics of sound de-

fine the ”universal inventory of phonemic contrasts available for use in language”[120]. This example

serves as just one new perspective generated by our research.
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Variability across all valid solutions does not necessarily decrease in light of activation-contraction

constraints becoming more strict. The utility of a muscle has been described many times as a description

of the bounds within which that muscle can be used [113, 30, 145, 62]. Our work highlights how those

bounds are too optimistic a bound for time-varying evaluations of spatiotemporal feasibility, even in a very

simplistic force redirection task.

Many experimental studies suggest that a pair of muscles can be highly correlated with one another,

and these techniques have been leveraged to build lower dimensional representations of motor patterns,

including with our work [30]. Looking at this simple force-redirection action, and the strong spatiotem-

poral effects, it’s clear that any synergies or motor primitives would also be subject to similar constraints

at a higher level. Control of these spaces with lower dimensional approximations, if learned or evolved,

could be able to leverage the consistency of activations across small tasks, suggesting that planning the

activation for the last set of the movement in a feed-forward manner represents a selection from a greatly

reduced feasible activation space, as per Figure 4.7. As these muscles don’t have to change very much, this

alludes to there being solutions that could be less tiresome to implement and repeat—solutions that could

be preferentially turned into motor habits. We see the effects upon the control strategies that are possible,

and as these constraints twist and change over the course of ontogeny, we enlighten some elements of how

motor control is intertwined between the physics and anatomy we inherit, and the muscles and control

strategies we build and learn.

The nature of activation-contraction constraints have implications on our interpretations of sensori-

motor manifolds and the latent representation that animals have for neuromuscular control spaces[77].

Random sampling of the raw 7-dimensional activation space is statistically untenable, and when poised

with a real task of force redirection, sampling a point on the feasible trajectory space is impossible. If an

individual has variability due to hierarchical sensorimotor control, it is possible to apply spatiotemporal

feasibility modelling to understand how those tremorous activations affect the set of solutions for achieving

a given redirection or scaling task. Furthermore, examining motor noise in this context creates a smaller
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subset of possible actions that the CNS can perform, so we can address some of the mechanisms on the

physical endpoint. This work is highly compatible with sensory representations as well[121, 126].

Ultimately, these neuromuscular landscapes have existed throughout history; this work is conducive to

comparing posture-specific spatiotemporal structures, as well as cross-species comparisons of spatiotem-

poral tunneling in the context of evolutionary biology, for example, in comparing the index finger manip-

ulability between humans and bonobos[124]. With the wealth of cadaveric, computational, and in-vivo

studies, there is a wide variety of future comparisons to support ongoing research into muscle redundancy

[122, 94].

4.6 Supplementary Information

These methods were (computationally) performant within 49 dimensional trajectory space (taking c. 40

minutes per 100,000 sampled points), but we are hesitant to make claims for this method supporting higher

dimensionality. Evaluation of these claims in a model with many more muscles e.g. n=31 muscles in a cat

hindlimb model [113, 140] is a viable next step. Primarily the longest operation is the removal of redundant

constraints, and the selection of the first hit-and-run point, and although we have made multiple steps

toward parallelizing and memoising some of these operations across multiple runs, some complexities of

spatiotemporal sampling may be intractable at their core, requiring invention of new methods.

We describe how activation distributions (undifferentiated) change with respect to their variance in

Figure 4.9, highlighting how the variance in the by-muscle, by-moment distributions are affected by time,

and how that effect is permuted by activation-contraction constraint. Intensifying activation-contraction

constraint from 1 to 0.5 for EIP meant both a reduction in the general variance, but over time the line dips

deeper under activation-contraction constraint up to 0.25, but then becomes more shallow and consistent

as constraints move toward 0.05. The same trend is observed with EDC and LUM. The variance of the

muscle activation space for FDP, FDS, DI and PI are much more consistent across differing activation-

contraction constraint. This suggest that when we observe the structure of the feasible activation space
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under activation-contraction constraint, those constraints may not change the distribution or span of a

given by-muscle utility distribution.

We will make code for computing spatiotemporal feasibility sampling available under an MIT License

at https://github.com/bc/feasibilitytheory.
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Figure 4.8: Activation distributions under differing activation-contraction constraints Taking all of
the points collected, we group them by muscle, task, and by the spatiotemporal constraint under which they
were collected. You can see each color represents a different spatiotemporal constraint, and the boxplots
represent the way each muscle was used, at that task index. All trajectories sampled are unseeded.

91



FDP FDS EIP EDC LUM DI PI

0.00

t=0
Time (ms)

Muscle

300

0.02

0.04

0.06

0.08

Va
ria

nc
e 

of
 th

e 
FA

S

Spatiotemporal
Constraint

(no const.)

(strict const.)

1

0.75

0.5

0.25

0.1

0.05

Figure 4.9: Supplemental Figure: Variance of a across trajectories (within a given muscle) does
not necessarily go down as the feasible activation space is under more strict activation-contraction
constraint Given the velocity constraints, we extract a long series of activations for each muscle, at
each task index. Per muscle, we computed the variance of each series, creating a visualization of the
feasible activation space as the task is performed, and across differing activation-contraction constraint
(and the degenerate case). dimensions are barely affected by either the change in the task, nor by the
activation-contraction constraint. variance, and also had a bigger effect in their variance shrinking un-
der more activation-contraction constraint. Temporal constraint led to reduction in variance across those
muscles, indicating that the distribution across the muscle may become more uniformly distributed
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sampled from the polytope
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Figure 4.10: Interactive seed trajectory explorer In comparing unseeded distributions with seeded dis-
tributions, we designed an interactive data exploration supplement to highlight how different the seeded
trajectories could be, and how they were often highly constrained by their activation in t=0. Bottom: we
provided a slider so the user could change the seeds, and see how the distributions compared with the
unseeded distribution (which remained constant across all seeds, for this given redirection task). Lines are
drawn by connecting the midpoints of 100 histogram bins.

Figure 4.11: Spread of different seed points under varying activation contraction constraints
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4.7 Conclusion and ongoing work

For vertebrate limbs with many more muscles than degrees of freedom, with billions of neural connections,

and with many ways to solve a given force, movement, or manipulation task, the question remains: how

does the nervous system solve these highly under-constrained problems, and why do they solve it that

way? It’s remained a challenge to understand the root of the variance—even the best models are not

always right. With this work’s alternative approach to motor control, rather than observing how muscles

work across a task, we define why muscles must work a certain way. The work presented herein serves

as a strong foundation to build new neuromuscular control studies. Work from Cohn et. al. 2018 has a

place in contextualizing studies of motor control, [117, 111, 103, 37, 112] and this work led to a good

application of feasibility theory at the intersection of tendon-driven control and task-based optimization

[84]. The whole of this work is focused on a simple isometric task, as it is a stable system, and building

a strong framework requires strong assumptions as a foundation—this focus on isometric of course raises

questions about posture-dependent control strategies, and the implications for movement. Work from [6]

suggests that a series of static tasks have a similar analytical solution with respect to dynamical solutions–

and although these methods could be applied directly as a series of static tasks (with a changing H matrix

going down the diagonal of the constraint matrix), there lie many opportunities in expanding dynamical

system representation into a linear subspace that can be sampled fairly. By working our way from the

task, through the bones and joints of the hand, and finally into the requirements on the tendon tensions,

we clearly render a new view of the solution set the nervous system (brain and spinal cord) has to pick

from. In doing so, we provide deep context into the choice of neuromuscular control. Ultimately, this work

highlights the way animals control their muscles for simple tasks, across both timescales of evolutionary-

derivation and lifelong-learning.
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[104] John P Scholz and Gregor Schöner. The uncontrolled manifold concept: identifying control vari-
ables for a functional task. Exp Brain Res, 126:289–306, 1999.

[105] Stephen H Scott. Optimal feedback control and the neural basis of volitional motor control. Nature
Reviews Neuroscience, 5(7):532–545, 2004. Publisher: Nature Publishing Group.

[106] Stephen H Scott. Optimal feedback control and the neural basis of volitional motor control. Nature
Reviews Neuroscience, 5(7):532–546, 2004.

[107] Cole S Simpson, M Hongchul Sohn, Jessica L Allen, and Lena H Ting. Feasible muscle acti-
vation ranges based on inverse dynamics analyses of human walking. Journal of biomechanics,
48(12):2990–2997, 2015.

[108] Cole S. Simpson, M. Hongchul Sohn, Jessica L. Allen, and Lena H. Ting. Feasible muscle acti-
vation ranges based on inverse dynamics analyses of human walking. Journal of Biomechanics,
48(12):2990–2997, September 2015.

[109] Robert L Smith. Efficient monte carlo procedures for generating points uniformly distributed over
bounded regions. Operations Research, 32(6):1296–1308, 1984.

[110] M Hongchul Sohn, J Lucas McKay, and Lena H Ting. Defining feasible bounds on muscle acti-
vation in a redundant biomechanical task: practical implications of redundancy. Journal of biome-
chanics, 46(7):1363–1368, 2013.

[111] M. Hongchul Sohn, Daniel M. Smith, and Lena H. Ting. Effects of kinematic complexity and
number of muscles on musculoskeletal model robustness to muscle dysfunction. PLOS ONE,
14(7):e0219779, July 2019.

[112] M Hongchul Sohn and Lena Ting. The cost of being stable: Trade-offs between effort and stability
across a landscape of redundant motor solutions. bioRxiv, page 477083, 2018.

[113] M.Hongchul Sohn, J. Lucas McKay, and Lena H. Ting. Defining feasible bounds on muscle acti-
vation in a redundant biomechanical task: practical implications of redundancy. Journal of Biome-
chanics, 46(7):1363–1368, April 2013.

[114] H.H. Sohrab. Basic Real Analysis. Birkhäuser Boston, 2003.
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