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Abstract

An ongoing engineering challenge is achieving agility, information processing, and flexibility in

robotic systems. Building neuromorphic robots called NeuRoBots (i.e., robots that imitate the

mechanisms of neural sensorimotor processing in animals) is one approach to accomplishing this

goal. NeuRoBots offer several advantages over traditional robots and also serve as test beds for

understanding the sensorimotor dynamics of mammalian neuromuscular physiology. The notion

of how the anatomical brain builds a sense of self and how neuro-robotic agents can utilize body

schemas (or representations) to build a sense of self have not been particularly successful due to

varied and often contradictory accounts. In this dissertation I present a critical step in forming

self-identified body schemas, based on physiological simulation of proprioceptive afferent signals,

to determine the plausibility of whether biological signals can be used to inform the operation of a

state machine. First, I demonstrate that a given movement gives rise to a distinct sensory manifold

embedded in the 12-D space of muscle spindle information that is largely independent of the choice

of muscle coordination strategy. Given that muscle lengths and velocities are fully determined by

joint kinematics, such manifolds provide a rich set of information to use in its control. Secondly,

I show that high-dimensional multi-muscle proprioceptive ensembles can usefully discriminate

limb states and be utilized as a suitable classifier for inter-trajectory comparisons—but only

after minimal pre-processing. Lastly, I present the concept of Sensory-Motor Gestalt, which

provides a unifying framework for constructing body states into useful behaviors to understand

the foundations of sense of self in hybrid robots and synthetic biological agents.

ix



Chapter 1

Introduction

1.1 Motivation

Our motivation for this dissertation is to assist in the efforts towards building robotic systems

that can acquire unique movement capabilities online that lead to classifying possible actions amid

encounters of changing external circumstances. Such systems should have the capability to learn

how to perform movements given their unique set of anatomical and physiological constraints.

Achieving this goal requires us first to survey the main challenges within the field of computing

that our intermediate goals will address.

As conventional computing reaches practical limitations for performance [172], additional com-

puting methods are sought after for the next generation of autonomous devices and systems. A

longtime technological goal of artificial intelligence (AI) and robotics is to create computational

systems with functions similar to biological brains with the prospect of machines behaving and

thinking like humans or mammals. Neuromorphic computing is increasingly becoming one plau-

sible approach for accomplishing this goal as it introduces fundamental architectures that can
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potentially perform similarly to anatomical neurons. This essentially attempts to emulate in sili-

con what the biological cortex does in vivo. One application of neuromorphic computing is found

in biorobotics and bio-inspired machines for enhanced information processing and hosting software

models of neural processes that typically address problems of memory, perception, motor control,

and multisensory integration [11]. A significant problem for both traditional robots and biorobots

is the complexity of building general-purpose autonomy for executing various cross-domain tasks

while learning new skills without catastrophic forgetting [173]. These systems do not entirely exist

yet, as the field is still heavily challenged with single-task robotics. However, a closer examination

of how our brains and bodies are designed can provide the means to make incremental strides in

this direction.

The brain’s primary mode of operation is to assure its host’s survival, especially amid adverse and

unpredictable conditions. In many ways, so should our autonomous machines behave. Biorobotics

ought to be constructed with the basic physiological needs in mind, too. Llinás [111] and Carter

[24] suggest our brains must execute the several objectives to properly maintain a sufficient level

of autonomy:

1. Generate internal sensory signals that indicate our bodies’ primal needs (i.e., food, rest,

safety, and security).

2. Form a map of the world to direct us to locations to satisfy our needs.

3. Produce the appropriate actions and energy to move us there.

4. Alert us of opportunities and threats (both present and foreseeable).

5. Lastly, tailor our actions based on the requirements and constraints of our current state,

goals, and environment.

2



At the core of these faculties is the concept of the physical self, body representations, and bodily

awareness, which all together form the basis of this thesis. One can also extrapolate from this

list the basis for how an organism uses its body to generate actions (according to specifics of the

system’s needs, mechanical makeup, and physical constraints) and what underlying physiological

mechanisms are responsible for the selection of these actions. Without a functional body repre-

sentation, there will be disruptions in the sense of agency, therefore negatively affecting actions

towards goal-directed behaviors. Actions, choices, and decisions that an agent should be mostly

identity-congruent as it has been observed in humans [136].

For brain-based systems like NeuRoBots, we seek to determine the scope of parameters neces-

sary to comprise an artificial self? Consequently, we can answer address the implications for

future biorobotic systems? We are particularly interested in how a NeuRobot can improve its

”capabilities by being able to automatically synthesize, extend, or adapt to a model of its body”

[82] from action-oriented body representations. These are the primary factors motivating this

research. By examining sensory-motor contingencies, we can explore how bodies and their models

are cognitively encoded and decoded to produce meaningful behaviors that are tailored to the

system’s physical constraints. The development of new hardware materials and manufacturing

schemes gives way to an advanced generation of robots that seek to become increasingly power-

efficient, multifunctional, adaptable, and autonomous in ways similar to biological organisms.

The present work aims to provide a cognitive architecture to enable these robots to optimize their

actions for decision making, efficient locomotion, and planning through the use of self-modeling

techniques and body representations. Through computational methods of sensory acquisition in

simulated tendon-driven limbs, we are then motivated to build a system that determines unique

movement capabilities online, leading to classifying possible actions amid encounters of changing

circumstances. How neuromorphic systems and tendon-driven robotics are capable of performing

movements given its anatomical and physiological constraints will be further explored.

3



1.2 Problem Statement

Generally, in practice, robotic agents are pre-programmed to perform a pre-assigned set of specific

tasks in a controlled environment. When systems are programmed to learn in such a way, they

typically do so through imitation [42] [100], exhaustive iterations of execution, and simulation

of the motor-to-sensory maps. In contrast, vertebrate animals usually learn by limited trial-and-

error interactions with the physical world [5]. The biological approach supports learning new tasks

that overlay existing capabilities, essentially demonstrating that novel behaviors can evolve and

emerge through trials. To achieve this learning for our robotic agent (i.e., NeuRoBot), I propose

for the acquisition and redundant integration of sensory information to be used as the driver of

motor map development instead of the consequence of motor behavior; a methodological process

we will refer to as Motor Learning by Active Sensing.

The cortical-motor-physical-sensory feedback loop, which is made possible by the NeuRoBot,

should be capable of supporting independent exploration in the physical world. Including a

model of self that emerges from the formalized construction and classification of sensory afferents

can address several issues. One is ensuring biorobotics continue to closely align their mechanisms

with biological systems, namely mapping sensorimotor representations of the body for action.

Another is improving closed-loop control with sensory feedback that can be predicted in advance

before it is perceived — thus being useful for systems with feedback delays. Our implementation

should serve as a fundamental layer to self-modeling systems while helping launch robots capable

of continuous, autonomous, and cumulative learning. For NeuRoBots, this level of functionality

is ideal for deployment in environments that are not completely observable. Our assumptions are

based on the following Fundamental Premises:

4



� Fundamental Biological Premise: The nervous system constantly assesses and enforces

its current experienced-based estimate of body model against incoming sensory input and

feasible motor actions [166].

� Fundamental Robotic Premise #1: The brain’s body-model constantly assesses and

enforces its current “hypothesis of body representation” against incoming sensory input and

feasible motor actions.

� Fundamental Robotic Premise #2: A system’s physical actions and interactions with

the environment provide sufficient information to build a minimal representation of a robot’s

physical properties.

� Then, the minimal body representation (implicit) of a robot is defined as a repertoire

of physical actions, resulting movements and possible transitions between the actions.

� Here, a minimal body representation may alternatively be referred to as the minimal

sense of physical self.

1.3 Hypothesis

We hypothesize muscle spindle and Golgi tendon organs (GTO) signals that are available to

the mammalian nervous system are also useful enough for classifying different movements with

sufficient discriminability. Preliminary experimental observations have demonstrated how the

evolution of feasible sensory sets (FSS) can provide variables of interest to be extracted for col-

lection and statistical analysis. We then ultimately seek to show the validity in utilizing FSS for

goal-directed motor mapping of neural-driven limbs. Anatomical bodies, such as the proposed

neuromorphic and neuromechanical system [130, 85], can be modeled as a time-invariant control

system that channels sensory inputs into actionable states for task classification. The afferent

5



data collected from our analyses form topological manifolds. Therefore, by definition, we can

expect the entirety of the model’s state space to be maintained as a non-linear representation in

the form of topological manifold maps that satisfy countability and separability conditions such

that in N -dimensional, each point p ∈ X in the topological space M has a local neighborhood

that is homeomorphic to Euclidean space RN for some n ≥ 0 [76].

The combination of linear and non-linear manifold mapping methods can delineate the feasible

transitions between adjoining states. Aggregating the states into a unified whole will then form

the minimal computational frame a body representation (BR) that emerges as a byproduct of

experiences may be specified as a self or identity that is constructed from the agent’s subjective

experiences throughout the runtime. When mathematically expressed, the emergent BR entails

knowledge of how an agent can move within its anatomical constraints and how it will classify

the internal dependencies (e.g., muscle lengths, muscle velocity moment arms, etc.) controlling

each task action.

Consequently, this state classification method is a prerequisite for determining how individual

body representations (i.e., body schemas) for neuromuscular-driven robotic systems can be self-

generated from physiological sensory signals that result from a range of immature to skilled motor

actions, prompting learning of useful actions and feasible behaviors. The resulting model of the

neural-driven system will be produced by demonstrating that a system can learn a dynamic model

of its neuromuscular behavior, self, and identity from afferent constraints (proprioception and

somatosensory stimulation). Applying intrinsic motivation within the robotic agent’s exploration

of the state space may be accomplished with randomly selected movements coded in the form, or

neural firing rates could be implemented for undirected curiosity or exploration of the state space

[4].
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1.4 Research Approach

Our end-goal is to equip a neuro-robot (i.e., NeuRoBot, a robot with an artificial nervous system)

that forms a repertoire of physiologically-inspired sensory and motor couplings to explore and

exploit physical actions and transitions among them. This dissertation’s foundation is grounded

in the fundamental premise that the brain’s body-model continuously assesses and enforces its

current “hypothesis of a body representation” against incoming sensory input and feasible motor

actions. We further hypothesize that computationally modeling the biological central nervous

system’s bottom-up method for extracting sensory afferents to form unique motor maps can

build functional action-oriented body representations for our NeuRoBot system. Revealing this

coupling can show how sensory synergy is intertwined with motor combinations, thus enabling

improvements to the biorobots’ design and control.

To demonstrate this, I will use an alternative approach to self-modeling that incorporates su-

pervised and unsupervised learning approaches. We acknowledge that a machine learning (ML)

approach does not fully align with the brain’s methodical process of forming online body schemas.

Simultaneously, a manifold description more intuitively utilizes the biological data distribution in

a multidimensional space [180]. Although useful for many applications, ML techniques may be

prone to inaccuracies but can still be somewhat reliable when revealing the dimensional structure

of the raw data manifolds collected. Combining the mathematics of manifolds and Gestalt law

principles can provide a more intuitive expression of the intrinsic structure, shape, and space

complexity. The dissertation deliverable is a system that performs arbitrary, flexible tasks using

the topologically refined sensory-to-motor maps. Fig. 1.1 depicts the phases of this research

plan that will be implemented in order to achieve the desired goal. The phases incrementally

build on top of each other for the body representation of our NeuRoBot. Upon completion, we

will evaluate the implementation’s success against three main criteria that encompass the four

7



phases. The system’s final result should provide a computational foundation for constructing

body representations, with contributions from each of the following phases.

1. Self-recognition: Extending the Mirror Neuron System, II (MNS2) for Agency in Reaching

and Hand Grasping

2. Sense: Quantifying High Dimensional Feasible Sensory Sets

3. State: Organization of Sensory Afferents to Classification of Actionable States

4. Sensory-Motor Gestalt: Exploring a perceptual continuum for constructing an artificial self

via Gestalt Laws

Figure 1.1: Research phase plan for building unique body representations. The research begins
with a study on Self-recognition (Chapter 3) then on to Sense (Chapter 4), State (Chapter 5),
and lastly Sensory-Motor Gestalt (Chapter 6).

1.4.1 Self-recognition

The first phase of our research examines the Mirror Neuron System II (MNS2). We provide a

theoretical extension of the model that identifies principal neural correlates and Brain Operating

Principles (BOPs) that are useful for functions of agency in autonomous systems. We use several

8



BOPs in two tasks: 1) a simulation of self-recognition using and 2) a hand reaching and grasping

in an interactive user interface environment.

1.4.2 Sense

We transition from the identification of brain theory principles of agency in the Self-Recognition

phase to the Sense phase, where we analyze the usability of physiological proprioceptive signals

in the muscle spindle. The Sense phase of our research focuses on quantifying high-dimensional

Feasible Sensory Sets (FSSs), through geometric interpretation, that can detect and categorize

functional movements and tasks. It justifies the practicality of recording plausible movements for

the quadruped robotic platform through a single-limb inspection of a 6-muscle, 2-link experimental

human arm.

1.4.3 State

The second observable functionality of our system will be its ability to generate and identify feasi-

ble transitions among the functional movements detected in the Sense milestone. The State mile-

stone uses simulated physiological proprioceptive signals to organize sensory afferents and classify

them into actionable states. Here we determined that high-dimensional multi-muscle proprio-

ceptive ensembles can usefully discriminate limb states—but only after minimal pre-processing.

Importantly, this finding may explain the documented subcortical pre-processing of afferent sig-

nals, such as cutaneous signals processing by the cat’s cuneate nucleus.

1.4.4 Sensory-Motor Gestalt

The final metric of my dissertation’s success is the demonstration of sensory-to-motor-sensory

maps as useful body representations of actionable states. We propose the Sensory-Motor Gestalt

as a perceptual continuum for constructing self via Gestalt Laws. This phase is expected to assist
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in autonomously updating the sensory-to-motor maps of proprioceptive afferents and spindle

information by forming and constraining the topology and geometry of manifold shapes.

1.5 Dissertation Outline

The remaining content of this dissertation is summarized as follows. Chapter 2 presents the neces-

sary background information, current knowledge, and related literature for framing the right per-

spective of the research on constructing body representations (i.e., body schemas). This chapter

will additionally acknowledge the core contributions from specialists in the field of body schemas

while highlighting their competing views. Chapters 3-6 describe the experimental methodology

for the four phases of work (i.e., Self-recognition, Sense, State, and Sensory-Motor Gestalt, respec-

tively) and their relevant contributions to forming emergent body representations in neuro-robotic

systems. Lastly, in Chapter 7, we interpret our results, their significance and discuss the new in-

sights obtained.
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Chapter 2

Background and Related Work

This chapter introduces our fundamental understanding of the neuroscience, physiology, and bi-

ology involved in the behavioral and cognitive phenomenon of constructing body representations.

I begin with a primer on past and contemporary views on how the brain forms representations of

the body. Next, I will provide insight into how the shaping of a self (i.e., body schema) may form

from the mathematics of the neuromechanical perspective. Following is an understanding of how

the sensory and motor interactions in muscle redundancy (i.e., the fact that we have ‘too many’

muscles). Lastly, I will analyze comparable models and applications in the field of robotics and

cognition to present future improvements or trade-off for the use of our proposed model.

2.1 The Brain Represents the Body: Neuroanatomical and

Artificial Shaping of the Self

Body representations are valuable as functional utilities in both biological agents and hybrid

systems. The neuroanatomical basis of shaping body representations into an embodied self has

been observed through empirical research, therefore providing potential computational analogs

for shaping an artificial self in bio-inspired robots. Engineering flexible bio-inspired robots require
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an understanding of the neural interactions and computations between the brain and body. We

choose to investigate the brain-body connection through the perspective of neuromechanics for

vertebrates. Neuromechanics examines the nervous system’s functions from within the body’s

mechanical constraints and anatomical structure. Within the context of this research, neurome-

chanics addresses the neural computational complexities that occur when the brain controls body

movement. The implementation of neuromechanics presented here will cover the span of several

concepts that include neuroscience, computational geometry, muscle mechanics, and anatomy

[178]. Several neural computational problems arise within the brain’s circuitry while it controls

the body’s mechanical movement. One such problem is that of spatiotemporal representations in

the brain and its resulting control abilities. The brain is a self-organizing and self-repairing cir-

cuit. Its plasticity allows dynamic construction of the generated maps when external and internal

changes are experienced and observed.

We argue that the nature of modeling the individual self with all of its attributes is a necessary

precursor for biological agents to control their actions directly. However, some have interestingly

undervalued its role and made counter-claims against it being a requirement, namely in collective

systems [124]. Others have argued that a primal sense of self in animals and humans develops due

to internal prospective foraging in the environment, also known as exploration and exploitation,

which we will take advantage of in our implementation [81]. Next, let us consider what attempts

have been made to build a model of the self [105, 191, 79] and address the self’s representation

within biological neural correlates [95]. We argue that the self is a by-product of the formation of

sensory manifolds made available through perceptual learning. Unfortunately, the precise neural

correlates for forming the self and achieving self-awareness are mostly unidentified. Gallagher’s

[55] initial step to this approach is constructing a primitive version of the self that ignores irrelevant

features, called the “minimal” self. He assumes this model of self is most pertinent to robotic

models and is reinforced by neurocognitive disorders [46] such as schizophrenia that affects the
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prefrontal cortex, an area thought to be critical for the formation of self. Gallese [57] provided

insight on how the body in action is necessary for the building of self, which is a finding we agree

with and aligns with the Exploration and Exploitation concept. The neural mechanisms that

constitute the differentiation between self and other were determined by some to be the link for

self-actualization [143, 182, 184]. However, several other approaches have suggested for identifying

the brain regions involved: using imaging techniques (PET, MRI, and fMRI) to evaluate healthy

brains and making contrasts with studies of impaired brain patients [91].

The same pattern of a lack of consensus in defining self-awareness follows in the construction

of a neural basis of the self. Morin [126] challenges a common stance in neuroscience that self-

awareness is based in the right hemisphere, particularly in the anterior insular cortex, which has

been noted for its integration of interoceptive and exteroceptive signals in the body [34, 161, 35].

This region was observed to activate with the detection of mismatches and discrepancies between

predicted signals and interoceptive signals that were perceived [68]. Morin [126] also assessed

the hemispheric activity in the mirror self-recognition (MSR) and theory-of-mind (ToM) tests,

amongst other self-awareness evaluation tests (e.g., self-description, autobiography). One of the

conclusions drawn from this study was that both hemispheres were active during the tasks, which

insinuates a distributed network of connections in self-referential activities rather than in localized

brain regions; thus, debunking the right hemispheric claim. Another study involving a patient

with severe brain damage to three specific regions that were once considered imperative for self-

awareness development surprisingly exhibited no signs of mental degradation during self-awareness

tasks. Philippi et al. [138] agree with Morin [126] in stating that we cannot pinpoint self-awareness

processes to a single brain area or lobule, but instead rather distributed neural networks. Others

have theorized the brainstem, posteromedial cortices, thalamus, and spindle cells in the anterior

cingulate in the frontal lobe are responsible for self-awareness development [114].
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The sense of agency [25] (i.e., subjective ownership and control for one’s actions) is the next

trait realized after establishing a model of the implicit self [86]. How agency develops is also

a controversial matter. However, ownership and intent may be anatomically represented in the

brain and subsequently used for the dynamic model of self. During the cognitive assessment of

interoceptive signals resulting from efferent motor intentions, intentional action was observed to

cause amplified activity in the anterior insular region[19]. Although there are competing theories

and evidence on the matter, the prevailing theme is the distribution of neural activity across the

brain is more likely for self-shaping than localized activity.

We recommend having emergent self models of the neuromuscular systems and proposing a dy-

namic property that emphasizes plasticity according to experiences, which is an aspect our self-

model implementation will feature. Other researchers [104] have previously demonstrated robots

that can build and calibrate themselves according to their subjective properties. Bongard et al.’s

[15] model showed how the self could develop via movements made under the exploration of its

current locomotive capabilities. “Injuries” to the four-legged robot that render a particular limb

ineffective would prompt the robot to update the various models of its morphology. Consequently,

compensating behavior was observed via the system’s inference of its topology and parametric

changes. In contrast to this implementation, which uses an actuation-sensation method to reason

its own structure, we will obtain a holistic mathematical representation of the self as it evolves.

Instead of forming opposing robot internal models and “generating actions to maximize disagree-

ment between predictions of these models,” our approach will primarily look at all the physically

possible states of transition that occur within the manifold space.
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2.2 Tendon-Driven Neuromechanics: Sensorimotor

Control in Muscle Redundancy

Determining the role of sensory information in the body is an underappreciated area of study

within sensorimotor research. Sensorimotor control research, both past and ongoing, has made

efforts to predominately provide evidence for how the brain influences the body’s actions and

perceptive capabilities [72] [162]. However, the counter to these works (i.e., how the body’s

perception of sensory afferent shapes the brain [28] [5] [135]) is not as extensively considered until

recent years as shown in Fig. 6.1. Often not taken into account are sensory states and their

effects on building the brain’s body composite model necessary for involuntary and voluntary

behaviors. Such behaviors serve as a form of self-expression to evaluate the efficacy of one’s use of

functional behaviors and practical actions. Arguments have been made both for and against the

view of whether sensory information’s presence and quality is a necessary condition for implicit

self-awareness [98]. Does the existence of a self-modeled body schema or self-awareness hinge

upon the availability of sensory afferents? Most have answered this question in the affirmative

and provided empirical data to support their claim. The importance of established manifolds

is found in the coherence of sensory signals for kinetic energy optimization of arm movements

during object manipulation tasks [47]. Platek et al. [140] hypothesized self-related information

that emanates from the various sensory domains (e.g., visual, auditory, and olfactory) affects self-

face recognition in such a way that enhances the priming of a model of the self, and also models

of familiar faces and strangers. Incorporating different sensory domains leads to the discussion of

multisensory integration [169] and how such can be a sensory set representation of an action.
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2.3 Proprioception and Its Role in Bodily State Estimation

There is insufficient research on sensory paradigms in sensorimotor neuroscience compared to the

numerous works solely on motor activity. However, the two should not be separated so widely.

Motor planning is indeed happening in sensory space and should be taken into account. Motor

control is often viewed as a direct outcome of neural activity descending from the brain’s motor

areas: brain stem, basal ganglia, cerebellum, and the primary motor cortex (M1). Nevertheless,

we need to take it a step further. Much less attention is given to how an agent would react from an

inverse of this activity. In other words, how would motor control look instead as the consequence

of sensory input? We start by examining this issue by inspecting proprioception, a sense usually

associated with body awareness. Proprioception can affect our learning, focus(attention), and

behavior. Such a sensory system of receptors located in our muscles, ligaments, and joints is

designed to articulate where our body is in space without visual stimuli. It is evident in many

studies that the mind (brain) shapes the body. Conversely, how the body shapes the mind (and

in turn, affects our behavior) is a dynamic that is left without sufficient understanding. These

conceptual streams coincide with debates on the vitality of cohesive perception and action for

effective sensorimotor control (Iberall and Arbib 1990, Mechsner et al. 2001). In this thesis,

we seek to showcase how far precisely one can get with their motor control abilities by primarily

targeting the senses of vision, somatosensory signals, and proprioception, as they all have the most

significant bearing on output motor control. Additionally, our sensory states will initially span

proprioception of limb position, joint torques, spindle signals, skin sensation, Golgi tendon organs,

and kinematic frames of reference. If successful with these modalities, we can move onward to

examine other senses, such as tactile feedback and auditory signaling.
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2.4 Body Representations for Self-Awareness in Animals

and Machines

Before explaining what self-awareness means for machine intelligence, let us ascertain how it is

defined. The importance of a body representation and its features should not be overlooked when

designing the architecture for autonomous individual and collective systems. It is a critical feature

that will become progressively vital as technologies continue to advance in the coming years.

However, the questions “What is a body representation?” and “What do body representations

offer autonomous systems?” evokes answers that are neither well-defined nor understood, and are

often subjectively characterized by the disciplines that define them. The perspective we chose to

inspect body representations from is from the context of self-awareness. For example, Morin [125]

from the field of psychology, defines self-awareness “as the capacity to become the object of one’s

attention.” Nagel and Searle, philosophers of the mind, identified three features necessary for the

formation of self-awareness in an agent (or self): subjectivity, unity, and intentionality [127, 53].

Subjectivity denotes the awareness of the self as a private and distinct experience of sensations.

Unity in self-awareness conveys the unified singular experience that an individual or agent may

have instead of separate sensory modalities. Lastly, intentionality directs consecutive moments

that occur within our self-aware state to a designated goal. Damasio [37], Koch [96], and Crick [33]

also agree that these features must be attended to for full comprehension of self-awareness. Of the

three features, we have chosen to evaluate subjectivity, which relates to building an appropriate

introspective model of the self.

Within the scope of computer science, self-awareness is fundamentally viewed as a combination

of the ability to possess information about one’s internal state (private self-awareness), possess-

ing knowledge about one’s external environment for insight on how it is perceived by others

(public self-awareness), and maintaining information about future actions and decisions it could
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potentially make [110]. In biology, self-awareness is self-directed behavior guided by external en-

vironmental factors [10]. Some cognitive scientists portray self-awareness as the embodiment of

a sense of agency and a sense of ownership [55]. McGeer [118] claims that the target of atten-

tion within any experience is the true meaning of self-awareness, but also further classifies the

difference between an agent simply experiencing something and then actually having an alerted

meta-awareness of such experience.

Most approaches to achieving self-awareness should be an interdisciplinary effort due to its inher-

ently subjective nature and bias. A computational view and definition of self-awareness allow for

scalability [110] and highly complex integration of nodes in a network, with the choice of even

implementing self-awareness directly or as an emerging property [60]. Amongst the varied defini-

tions, there are also many categorical types of self-awareness. Moreover, those types are discrete

levels to gauge how much an agent is self-aware. Prominent researchers who have made level-type

distinctions include Rochat [151], Neisser [129], Piaget [139], and Lewis et al. (2015). Rochat

[151] was motivated to observe children’s behavior in what has been deemed the conventional

self-awareness test, the mirror self-recognition test. He questioned how the self develops over time

and at what stage of development does one view themselves as a separate entity in relation to

the world. He concluded that there was a range of five levels needed to describe the maturation

a child experiences to reach the self-aware state:

� Level 0 – Confusion

� Level 1 – Differentiation

� Level 2 – Situation

� Level 3 – Identification

� Level 4 – Permanence
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� Level 5 – Self-consciousness or “meta” self-awareness

Rochat’s approach reveals that we need to be cautious of having a dualistic view of an agent

either possessing self-awareness or not, with no intermediary stages.

Figure 2.1: Neisser’s [129] appraisal of the various levels of self-related knowledge one must attain
to reach self-awareness (left). Lewis [109] juxtaposes this with their own framework (right) of
a computational perspective beginning with stimuli awareness and concluding with meta-self-
awareness.

Neisser [129] proposed five different types of selves that we gradually become knowledgeable in

early development to get to the self-aware state. The selves span from the ecological self in

which the self is perceived with respect to the physical environment to the conceptual self, where

one forms a concept of self in a social-like structure. Lewis et al. [109] took on the challenge

to convert these levels, formerly based in psychology, into engineering for architecture design of

computational systems Fig. 2.1. Starting with stimulus awareness, the agent is capable of using

incoming stimuli to respond to events. Interaction awareness and Time awareness prompt the

agent to form interactions with other systems in the environment and procure knowledge related

to past and potential future events, respectively. Goal awareness preserves information about

objectives and system constraints. Lastly, a meta-self-aware system maintains knowledge about
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its awareness. My opinion on why this framework is insufficient is its inability to serve as a

physiologically realistic model according to the brain’s neural underpinnings. Additionally, there

should be a convergence towards a central idea and unified perspective on the manner, which

appears to be lacking. Consequently, this presents a dilemma that may prevent some aspects of

the field from advancing forward in the proper direction.

2.5 Implications of Physiological Subjective Experience to

the Emergence of Machine Subjective Experience

In Berry and Parker [7], we gave a succinct primer of consciousness and self-awareness(SA). We

issued a proposition as to how brain augmentation can influence the arrival of machine agency and

self-awareness. Overall, we stated our opinion for (i) why self-awareness must be systematically

examined in conjunction with brain augmentation approaches and (ii) how such a merger could

become a tool for investigating subjective experiences, namely consciousness. This section will

review related works that reinforce our proposal for physiological subjective experience to machine

subjective experience.

The successes of the artificial retina and cochlea have lent encouragement to researchers in the

general field of brain augmentation [61, 36]. However, in order for brain augmentation to progress

beyond conventional sensory substitution to comprehensive augmentation of the human brain,

we believe a better understanding of self-awareness and consciousness must be obtained, even

if the “hard” problem of consciousness [26] remains elusive. Here we propose that forthcoming

brain augmentation studies should insistently include investigations of its potential effects on self-

awareness and consciousness. As a first step, it is imperative for comprehensive augmentation to

include interfacing with the biological brain in a manner that either distinguishes self (biological

brain) from other (augmentation circuitry) or incorporates both biological and electronic aspects
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into an integrated understanding of the meaning of self. This distinction poses not only psycho-

logical and physiological issues regarding the discrepancy of self and other. However, it raises

ethical and philosophical issues when the brain augmentation is capable of introducing thoughts,

emotions, memories, and beliefs in such an integrated fashion that the wearer of such technology

cannot distinguish his biological thoughts from thoughts introduced by the brain augmentation.

A consideration of self begins with the conventional mirror self-recognition test (MSR) [60] that

has been successfully executed with Eurasian magpies [142], bottlenose dolphins [145], orca whales

[40], human infants typically between 18 and 24 months [2, 151], and notably the Asian elephant

(Plotnik et al., 2006). The only primate species reported to pass the Gallup Mirror Test, albeit

controversially, were orangutans and chimpanzees [168]. For years, MSR has been the designated

litmus test for determining whether a species possesses self-awareness (SA), ultimately raising the

question of whether the animal is then a conscious entity due to passing this test [39]. “Mirror

self-recognition is an indicator of self-awareness,” proclaims Gallup et al. [59]. If indeed so, then

the subsequent query to raise is whether self-awareness, the ability to differentiate oneself among

others, is a precursor to or derivative of consciousness and whether the mirror test is necessary

and sufficient [126].

In light of brain research like the Blue Brain Project[78], BRAIN Initiative [89], and the devel-

opment of neural prosthetics, the interest in consciousness is steadily growing. Here, we not only

encourage the study of and suggest methods for addressing science’s “elephant in the room,” which

asserts consciousness is neither physical nor functional, but also place the Elephas maximus in our

proverbial mirror to obtain a perspective toward forming a cohesive alliance between philosophical

studies of consciousness and neural engineering’s augmentative innovations. As MSR is purposed

to grant the animal subject personal physical inspection from an objective viewpoint, resulting

in self-cognizance, so shall we take the approach to examine our modern scientific methods in
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conceptual mirrors, to appraise our consciousness dilemma and propose an assertion for progres-

sion in augmentative technologies. Following here is a succinct primer of consciousness and SA.

We also issue a proposition as to how brain augmentation can influence the arrival of machine

consciousness. Overall, we state our opinion for (1) why SA must be systematically examined in

conjunction with brain augmentation approaches and (2) how such a merger could become a tool

for investigating consciousness.

2.5.1 Ineffable Consciousness

The first pitfall encountered with consciousness is the inability to derive a functional explanation

for what it means to experience. Chalmers [26] lists the “easy” problems of consciousness as “the

ability to discriminate, categorize, and react to environmental stimuli; the integration of informa-

tion by a cognitive system; the reportability of mental states; the ability of a system to access its

internal states; the focus of attention; the deliberate control of behavior; the difference between

wakefulness and sleep.” These phenomena are relatively feasible to exploit and can be described

in computational model terms and neural operation derivations. Chalmers then counteracts them

with the “hard” problem of lacking competency to explain why and how we have phenomenal

experiences when being entertained by a movie, exhibiting a sensation toward classical music,

or having feelings when watching a sunset. Explaining how the brain processes visual and audi-

tory signals is trivial compared to how those signals translate to qualia, subjective phenomenal

experiences.

2.5.2 Explanatory Gap Dilemma

The term explanatory gap, coined by philosopher Joseph Levine [107], notes our inability to

connect physiological functions with psychological experience, thus creating the gap. Although

Levine synonymizes consciousness with subjective feelings, the explanatory gap also alludes to

reasoning, desires, memory, perception, beliefs, emotions, intentions, and human behavior/action.
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Correlating physical brain substrates to thoughts and feelings is the base of a dispute between two

parties: materialist reductionists and non-reductionists [156]. Materialists’ prevailing view, repre-

sentative of most neuroengineers, on the matter involves the belief that “when the brain shuts off,

the mind shuts off,” and the brain is the sole causative driver for consciousness. However, non-

reductionists (typically philosophers) embrace a holism approach of mandating that the brain’s

cortical components are insufficient in capturing consciousness, undertaking the possibility of su-

pernatural properties. It is an inquiry of necessity and sufficiency. The brain may be necessary for

mental functions, but is it sufficient? Earlier analytical inspections on conscious experience have

implied that an exclusive reductive justification is not satisfactory in delineating its emergence

[29, 93, 30, 48]. A novel approach is needed to explain such experience. Our explanatory gap

needs an explanatory bridge.

2.5.3 Unraveling Self-Awareness Toward Augmentation

Although many facets of consciousness are difficult to investigate, the development of objective

tests for SA could be utilized for brain augmented technologies. With SA comes the sense of

agency. Agency imparts a sense of who is the owner of an action/trait, the self, and who represents

any entities excluding self, the other(s). Self-other dichotomy processing in the brain is essential

to consciousness due to the necessary implications the embodiment of “self” must have to form

body ownership. Once an agent gains the ability to discern when its own body is the source of

sensory perceptions, it will form body awareness that entails proprioceptive information. We can

look to working experiments that attempt to showcase how the brain augments the “self” when

necessary to complete a task (Fig. 2.2). Perceptual parametric information builds a premeditated

awareness of (1) body part locations and (2) the manipulation of those same parts in space. Body

awareness was demonstrated by a machine via Gold and Scassellati [64] who built a robot named
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Nico that successfully distinguished its own “self” from “other.” Nico observably achieved self-

recognition by completing mirror-aided tasks expending inverse kinematics. Nevertheless, it is

believed that Nico lacked consciousness.

Figure 2.2: Extension of self-representation. Here are two depictions of macaque monkeys
that exhibit a body using tools as an extension of the “self.” If given a task to retrieve an object
(yellow hexagonal shape) that is outside the peripersonal space and the immediate reach of an
extended limb (left macaque), the body relies on its physical limitations to define the “self” and its
aptitude for the success of the task. However, when an apparatus is introduced (right macaque)
that can help achieve the task’s goal, the brain’s neural correlates can augment themselves to
psychophysically merge tools that were formerly considered to be of “other” classification into the
“self” body schematic and permit optimal behavioral actions to take place [80, 22]. The paradigm
for “self” is malleable to accept the dynamic interplay necessary to achieve an aim for a biological
function that was once previously unattainable. As tool-use changes the brain’s representations
of the body and alters proprioception, we subsequently believe it parallels how enriched brain
augmentation can alter an individual’s self-awareness and consciousness.

Before the sense of agency becomes fully refined through experiences over time, there must be a

repertoire built for perceptions and actions. Whether action and perception are interdependent or

each fundamentally isolated has been the focus of another ongoing debate. It’s not yet concretely

understood how the representation of self forms during the initial stages of life. Either an agent

first uses perception to motivate their actions in the world or directs their actions to help drive

perception of the sensory world, or both occur simultaneously. In either method, bodily awareness
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is eventually acquired, which contributes to defining subjective cognitive attributes. Two oppos-

ing views attempt to solve this problem: the action-oriented theory of visual perception, which

suggests that perception results from sensorimotor dynamics in an acting observer [63, 131, 115],

and the dual-visual systems hypothesis, which advocates independent streams of perception and

action [158, 67, 84, 123]. Self-awareness uses the expectation of impending perceptions and ac-

tions to gauge the assimilation of inner experience and external reality. Building a self-aware

framework in augmentative technologies requires integrating an expectancy intuition, which can

critique based on differences between reality and internal experience. This is our tactic for creating

systems with faculties for using perception and action to make predictions of self-sensory states,

become self-adaptable to new environmental stimuli, and set objectives for self-improvement.

Crucial for understanding agency is determining how the embodied senses fuse to form self-

referential experience [50, 51]. It is our opinion that future advances of brain augmentation

hinge on the application of such knowledge. Once we bridge this gap of the unknown, we will

be challenged to use computational intelligence to create consciousness artificially and integrate

synthetic qualia with that produced in the brain. Presently, artificial devices can create various

aspects of consciousness. Artificial perception is made available via cochlear, retinal, and tactile

implants. However, they work alone as replacements for sensory organs with consciousness and

SA arriving later in the brain’s neural processing. Applications for augmenting consciousness

would contribute to studies relating to emotions, attention, supplementing memory capacity,

personality alteration, experience enrichment, sensory perception enhancement, and hypernormal

brain plasticity for self-repair.
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2.5.4 Proposed Transition to Machine Consciousness

The marvel of human intelligence is its ability to eclipse physical limitations and overcome our

biological constraints to form an ever-evolving existence [87]. One primary goal for reverse-

engineering the human brain is to recreate the same functional mechanisms that underlie human

consciousness in our software infrastructures, neurorobotic agents, and computational systems.

However, prosthetic memory, sensory implants, neurofeedback (EEG Biofeedback), and brain

computer interfaces (BCIs) are all working examples of fusing such “intelligent” systems with the

brain, leading to conceivable prospects for consciousness-altering devices. Although BCIs com-

monly target disability treatments and brain function recovery from a lesion, the amalgamation of

computational devices with the cortical brain itself [52] may even prompt increasing developments

of an operational “exobrain” [12] for the purposes of better understanding how our brain works.

For example, in a scenario where a split-brain condition is present within a subject, we now have

the option to look toward interfacing artificial exobrains with the cerebrum; such an interface can

either serve as a replacement for neurological issues or supplement features the brain does not

naturally comprise. If these exobrains have a modicum of manipulability, then we can explore the

plausibility of mind transfer from device to organ and vice versa; thus, providing speculation for a

conscious machine that can affect how we can perceive, act, express emotion, feel, and adapt. This

poses ethical concerns as it opens the door for alterations of an individual’s SA when augmen-

tation can modify reasoning skills and subjective judgment. Successful augmentation of the sort

might render the individual powerless in discriminating actual characteristics and thoughts from

those that are mock and introduced artificially outside the cortex. Combining the precision and

information processing speed of a computer with the intrinsic non-computational attributes of a

human may provoke discoveries of the mind (e.g., consciousness) that we as humans are currently

incapable of resolving. We suggest efforts made toward an augmentative interface between brain
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and machine that prompts the human mind to think beyond its unknown limits for constructing

our explanatory bridge.

2.5.5 Challenges Moving Forward

Many people view an in-depth exploration into consciousness and its emergence as a gamble,

considering decades already spent on the matter with a void of consensus [41, 88, 71, 164, 33, 174,

38, 160]. Before we attempt to create another hypothesis, our approach needs to change; it is our

suggestion to further refine the constructs and emergence of SA and to use brain augmentation as

an instrument for inspection. We need to define an objective test for determining whether an entity

is a sentient being. This test, in addition to advances in neural engineering, provides optimism

that disputes within the consciousness field can be resolved. Augmentation has a promising future

as an enhancement to our brains and will hopefully influence our centuries-old methods of thinking

about consciousness toward an answer for science’s greatest mystery.

2.6 Models and Applications of Body Representations in

Robotics: A Review

Now we will discuss previous attempts made to build body schemas and the applications they

were designed for. Beginning with Lewis et al.’s [109] Reference Architecture framework for

computing systems, we observed a common approach taken in the development of self-modeling

systems; that is, forming an engineered architecture directly from psychology. Without taking

into account the neuroscience, this may permit some dilemmas in accurately encompassing all of

the facets related to the formation of body schemas. Their attempt to create a model in such

a way was purposed to bring explicit structure to the design of self-aware systems in general,

paralleling Neisser’s [129] levels of self-appraisal. It categorizes various levels of self-awareness

capabilities as system benchmarks (e.g., stimulus awareness, time awareness, goal awareness).
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The agents’ and host systems’ tasks and goals determine the benchmark complexity chosen for

implementation. However, their template will prove inadequate in one fundamental area: self-

modeling to incorporate new features of the system. In support of the model, it does accentuate

self-awareness as an ongoing going process of online learning, which we agree with to some extent.

It will classify a version of this process as emergence. Lewis et al. [109] also implies that action

selection directly affects the agent’s ability to learn. We would like to further advance this notion

by suggesting that decision making, then subsequently action selection, affects the learning and

mapping of the manifold space within the self-model. The Reference Architecture additionally

assigns the same goals and methodology for public and private self-awareness. Although the two

domains are not mutually disjoint, both physiology and psychology sciences identified them as

having different trade-offs, especially considering adaptation. Although Lewis et al.’s [109] self-

aware framework proved to be effective in one case-study for a service-selection cloud computing

platform, it does not provide the means for the system to learn and adapt at runtime to changing

conditions. It was not explicitly stated that their implementation involved an emergent model of

the self.

Through mirror perspective-taking, a makeshift humanoid robot named Nico was assembled to

demonstrate self-awareness as an emergent property [75] through the goal of developing an ar-

chitecture that permitted the robot to pass the classical Mirror Test [60]. The architecture is

composed of six sub-models describing various levels of self-knowledge that could be obtained

from the robot to complete the task: end-effector model, perceptual model, perspective-taking

model, structural model, appearance model, and functional model. Many have supported this

body of work with affirmative claims that this exhibited the first “self-aware” robot to pass the

mirror test. However, opposing views countered those claims with the argument that the system

was lacking introspection. Instead of being self-aware, Nico was classified as the first machine

with the ability to reference the location of its body part in three-dimensional space by using a
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reflection. Our perception of this model aligns with the latter opposing claims that this model

mainly demonstrated visual recognition. The robot was instructed to maintain three designated

arm postures to achieve this recognition, each having 50 training sets and 100 sample tests of

different positions in space. The self-knowledge procured through the training sets is then used

to make predictions about the body’s whereabouts via calibrated kinematics and a stereo vision

system. Results indicated that the robot successfully developed a model of its arm based on its

visual point of view. Self-observation, rather than self-awareness, as we noted earlier, appears to

be the running theme here. It is evident Nico observed, but it did not obtain awareness of its

experiences.

Self-aware frameworks have also been implemented in collective host systems like autonomous

multi-camera networks to coordinate object tracking [147]. What interests us about this frame-

work is the attention given to topological learning for resource adaptation among the cameras,

which we feel is necessary and will incorporate in our implementation of the simulated neuromus-

cular system. Continuous topology monitoring will create an enduring self-model and not solely

create a temporary model representation from online learning. Bongard and Lipson [14] further

discuss the concepts of self-modeling in robots as self-reflection is stated as a vital aspect for

robustness when encountering unexpected changes in the body.
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Chapter 3

Self-Recognition: Extension of Mirror Neuron System II

for Agency

“. . . the human brain is peppered with mirror neurons and they activate in us exactly

what we see in the other person: Their emotions, their movements, and even their

intentions.” -Daniel Goleman

3.1 Introduction to Mirror Self-Recognition

We conducted a study to identify and simulate the brain’s minimal neural correlates for achiev-

ing proprieties of self-recognition and agency, a trait once deemed be a unique characteristic of

only humans but has been disproven [3, 81]. In modeling the classical Mirror Test performed on

Asian Elephants, we sought to provide a solution to an ongoing inquiry. In addition to the mir-

ror neuron system (known for responding to performed actions of the self and observed actions

of the other), which neural patterns are responsible for making an agent aware of its physical

characteristics and behaviors? We proposed a framework, based on article entries in the Brain

Operating Database System (formerly located at http://bodb.usc.edu), which linked systems neu-

roscience data to testable models and designs for the generalization of high-level concepts required
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for making a self-other distinction. The framework was applied in a simulation involving three-

dimensional shapes, representing figurative anatomical bodies. Each was categorized as either the

Agent or Adversary. Over a pre-defined set of runtime iterations of the simulation, the Agent

trains itself with an adaptive network to optimize its ability to differentiate between the physical

characteristics preserved by itself and those of others. This framework’s execution served as a

working example of identifying and executing the minimal components required for an agent to

sufficiently reach one of the early levels of self-recognition through social interactions. Our first

step towards the difficult goal of creating computational self-awareness by way of self-recognition

was a software simulation of self versus other based on the “gold standard” test for self-awareness

in animals and human infants, the Gallup Mirror Test [60]. We sought to successfully implement

a system that can pass the Mirror Test from a biological perspective (targeting and modeling

specific neurons in the brain). The mirror test assesses an animal’s ability to discern its social

and behavioral responses based on its reflection in a mirror. Only a select group of non-human

species were reported to pass the mirror test and achieve this particular level of self-awareness:

orangutans [168], gorillas, dolphins [145], elephants [141], orcas [40], macaques, Eurasian magpies

[142], and bonobos. Human infants are unable to pass the test until brain nerves, and supportive

tissues develop at an average age of 18 months [9, 2]. Examining this phenomenon in further detail

has assisted greatly in forming the basis for this research, which extends towards forming body

representations, self-modeling, and self-awareness. DARPA’s recommendation [1] for designers of

self-aware systems is to contemplate the architecture of a self-aware computer system from three

distinct perspectives: (1) an autonomous agent view, (2) an information processing view, and

(3) a biological view. A combination of all three perspectives likely serves as the most beneficial

instead of only looking into one perspective alone.

The framework was designed to be extensible according to each new brain component linked to

self-awareness. One of the initial questions proposed at the beginning of this research was whether
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the mirror neuron system alone was sufficient to solve self-recognition? Considering that the brain

is highly labyrinthine and dense with neural networks, the simple answer is no. If not, then we were

left to learn the additional elements that play a role in allowing the brain-mind-body complex

to achieve self-awareness. Approaches taken to discover the neural circuitry associated with

awareness/recognition connections are not scarce. One is the neural correlations of consciousness

(NCC), which are defined as the minimal neuronal mechanisms cooperatively adequate for any

specific conscious percept [33]. In this study, we reviewed recent works relating to NCC and

applied some of the computational mechanisms found to be aspects of affordance extractions for

the recognition of objects. Another supplementary method used is to examine disease conditions in

which self-recognition and self-awareness are degraded or perturbed. Autism [187], schizophrenia

[155], and psychopathy [150] can serve as for disease models in assisting with characterizing the

NCC paradigm. The mirror neuron system (MNS) [148] operates as the central groundwork for

our blueprint. Basic self-recognition tasks and mirror self-recognition are jointly the core of the

self-awareness complex. Our proposal that the MNS is central to our architecture is founded on

the notion that the MNS has been highly functional in self-other distinction recognition. The

MNS has been primarily observed in experimental studies involving macaque monkeys as subjects

performing various visuomotor tasks. Within the MNS are mirror neurons in the premotor area F5

that fire when a monkey performs a set of actions and observes another monkey performing that

same action, if not very similar [149, 58, 13]. To understand the workings of the MNS, we must

note the internal models that connect motor control to cognitive perception. Similar to feedback

loops and standard robotic motor control, the framework patterned two forms of internal models

that play a role in recognizing actions and adjusting the motor system accordingly: inverse and

forward [119]. Inverse models were responsible for activity during the observation of actions. A

mapping of the intended action and motor commands that encode an action is created, while

forward models are responsible for activity during the execution of imitated actions.
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A. B. 

Figure 3.1: (A) Inverse Model: Cortical activity routes during observation of actions. The circuit
linking STS, PF, and F5 (solid arrows) acts as an inverse model. The cerebellum has this function
(dashed arrows). (B) Forward Model: Cortical activity routes during the execution of imitated
actions. The circuit linking F5, PF, and STS (solid arrows) acts as a forward model to generate a
prediction of movement outcome. Alternate routing is made available with the cerebellum (dashed
arrows). Red Arrows: Prediction error coding through empirical Bayesian inference [92]. This
figure was adapted and enhanced from Miall’s concept for linking mirroring and modeling [119].

When a subject (e.g., monkey) performs an action such as throwing a baseball or views another

subject perform that same action, neural processes are reported to take place in the posterior

parietal cortex (PPC). Fig. 3.1 displays the inverse and forward models incorporating the F5

mirror neurons in their signaling pathways for information transfer. Mirror neurons in the PF

area are shown to code for somatosensory components of the observed action [23]. Mirror neurons

in the superior temporal sulcus (STS) are tasked with signaling for the visual response of biological

motion, body parts (e.g., appendages and faces), and for grasp movements [137]. STS is also noted

for perspective-taking. The primary motor cortex (MI) in Area IV serves as a control for voluntary

movements. In Fig. 3.1A, the pathway for firing is directed from the STS to PF, and then F5.

What was visually seen or conceived in the mind is recorded in the STS, then processed through

PF for matching against instantiated goals. A signal is subsequently directed to F5 to induce

firing if a match is made for the observed action or the subject performing the intended action.

Fig. 3.1 B of the forward model contains links that are in reverse of the inverse model. The motor

plan from F5 is converted back to STS, where a sensory action is demonstrated, likely visual.
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Prediction error coding is used to refine motor movement to become more accurate through time

and experience.

In both models, there are additional connections made to the cerebellum (CB). It was discovered

to be an alternate route in the models, yet it performs essentially the same processing functions

[120, 189], suggesting diffused connectivity among the cortical regions. For our simulation imple-

mentation of this particular brain mechanism, there will likely be a representation of the internal

models. Suppose either of the general inverse or forward pathways are obstructed by way of a

lesion, for example. In that case, the cerebellum should be able to take over and continue cus-

tomary overall processing. It has been proposed that self-awareness depends on specific brain

regions: the insular cortex, the anterior cingulate cortex (ACC), and the medial prefrontal cortex

(mPFC) [138]. The insula is presumed as the necessary substrate for nerve impulse awareness

[31, 32]. Emotional awareness, facial self-recognition, and the overall conscious experience have

been linked to the ACC [35, 94]. Self-referential, self-reflective thought processing, and the projec-

tion of future self is associated with the mPFC [132, 167, 157]. On the contrary, many neurologists

believe self-awareness is a product of a disseminated assortment of networks in the brain. In a

study conducted on a human patient that suffered from herpes simplex encephalitis [138], it was

revealed that the insular cortex, ACC, and mPFC are not a requirement for most properties of

self-awareness. The patient, given the name R, had brain damage extending the basal forebrain,

anterior inferior parietal lobe, medial temporal lobe, amygdala, and hippocampus. Brain damage

was not found in the hypothalamus, thalamus, basal ganglia, and occipital and parietal lobes.

After being probed with extensive tests, results concluded that Patient R maintained a sense of

self-agency, self-recognition, and judgment. Experimentally justified, self-awareness is likely to

transpire from the brain’s distributed networks, including the thalamus, cerebellum, and brain

stem. This justification will make a neural inspired self-aware framework rather difficult. Addi-

tionally, there are other components to consider in our initial framework. BA5 cells of the PPC
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should be implemented for the purpose of coding for non-dynamic kinematics. Also to be included

is the anterior cingulate, referred to as sensory pain neurons, because it signals when a subject

receives a touch stimulus such as being poked with a needle.

After identifying some of the key cortical regions, we looked towards encoding first-person per-

spective and third-person perspective in the brain. One aspect of self-awareness is the Theory of

Mind (TOM), a principle used to recognize, predict, and justify the actions of both the self and

other subjects. When considering the self, a first-person perspective is used and a third-person

perspective is used for the other. An external study involving subjects under PET investigations

revealed the brain regions activated when a subject imagines a frame of mind from either per-

spective [153]. The right inferior parietal, precuneus, and somatosensory cortex are involved in

distinguishing perspectives. More specifically, a first-person perspective will show a strong left-

hemispheric regional cerebral blood flow(rCBF) increases in the inferior, precentral gyrus, superior

frontal gyrus (SMA proper), the occipitotemporal junction (MT/V5), and anterior insula. The

cerebellum and precuneus were activated in the right hemisphere. The third-person perspective

shows bilateral rCBF increases in the precuneus. On the left side, activation was detected in the

precentral gyrus, superior frontal gyrus (pre-SMA), and occipitotemporal junction (MT/V5). On

the right side, the inferior parietal lobule and frontomarginal gyrus were both activated [153].

The diffusion of areas listed here is yet another testament to the disparity of the brain activity to

region ratio.

Now that we have established a few (relative to the scope of the brain as a whole) physiological

components that have been found to lead to self-recognition possibly, their functions and connec-

tions should be placed in a black-box model detailing how and where neural communication links

are made. Our framework from the conceptual high-level will ensure that the general concepts for

attaining self-recognition are met. Fig. 3.2 shows the dated platform for what was required for

self-recognition. Its objectives are to 1) recognize and generate the desired action from training,
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Figure 3.2: Bidirectional circuit map for coordinating visual body image and motor body im-
age. Three phases were implemented: Learning, Observation, and Autonomous Action/Behavior
Generation.

and 2) successfully coordinate the visual body image and motor body image. The themes to

keep in mind when constructing this platform are cognition - the way the body is conceptual-

ized, visual - the way bodies are sensed and perceived, and motor - the actual control and active

sensing of bodily movement. The model consists of three coalescing phases of the main process

occurring when a subject’s brain attempts to match what is perceived through sensory inputs

against internal representations. Black arrows indicate the information flow transfer through

this bidirectional circuit map. Our map begins at the Learning-Phase (L-P) at the cerebellum.

The cerebellum receives information about the positions in the space of the joints and the body

from proprioceptors. Proprioceptive cues are sensory elements indicating factors about the body.

Such cues for a robotic agent would include acceleration sensors, temperature sensing, gyroscope,

touch sensor, etc. In this phase, the Agent can relate between the visual-body-image that it wants

to see achieved and the motor-body-image, as previously demonstrated by Steels and Spranger
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[165]. Following is the Observation-Phase (O-P), where the self-other distinction is made, mainly

in the right inferior parietal lobe, precuneus, and somatosensory areas. The concluding stage is

Autonomous Action/Behavior Generation-Phase (AABG-P). This phase is not finite as the map

shows a feedback route for adaption by updating the system with more precise information in

reverse. AABG-P provides feedback information to previous phases on whether the success of the

action occurred or not. If goals involving motor plans can be accurately attained in the case of the

mirror test at AABG-P, then the Agent can distinguish itself in a reflection. An additional list of

information collected to assist with our task is presented in Table 3.1. Brain Operating Principles

(BOPs), Summaries of Empirical Data (SEDs), and Summaries of Simulation Results (SSRs) are

metrics for ensuring that our architecture is complete in including the brain’s conceptual activities

at the neuron level.

3.1.1 Agent Self-Recognition Test

Many tests can be used to gauge self-awareness. Two of those tests include tests of self-recognition

and self-agency. Self-recognition tests seek to gauge whether the Agent can interact with its

intermediate environment based on the visual scene of the mirror. An agent should have the ability

to use mirrors for spatial reasoning [75]. Our simulated Agent should also readily recognize itself

as a separate entity passing the classical Mirror Test. In self-agency, agents must differentiate

between themselves and others that it resembles to reach the target goal location or successfully

single itself out among like members. Agency also needs to entail body ownership. There must be a

successful match between self, intended action, and perceived action. Here, the brain theoretically

creates a representation of itself while incorporating a conscious awareness of intentionality. How

the subject attributes an agent to himself or another agent will determine the level of self-agency

engaged. For the software implementation, we have used a fundamental version of the self-

recognition test.
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Table 3.1: Brain Operating Principles

3.1.2 Experimental Design

A testing environment was created to showcase the effectiveness of our proposed framework in

replicating the mirror test. An Agent vs. Adversary approach was taken. The hypothetical sub-

jects created were five three-dimensional shapes: square/cube, rectangle, sphere/circle, triangle,

and cylinder. The color of the Agent was always yellow, for simulation consistency and control.

The Agent’s shape is selected by the user at initial runtime, leaving the total number of possible

Agents to be n=5, each having their characteristics and affordances. On the other hand, the
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Figure 3.3: Agent versus Adversary. Top row: Five 3-D shapes were used as either the
Agent or Adversary, with the color of the Adversary bring randomly chosen among the 12 HSV
color hues. The Agent’s color is always yellow. Shapes included were square, rectangle, sphere,
triangle, and cylinder. Bottom row: Activity Field. Square Agent – Purple Triangle Adversary
b) Square Agent – Blue Triangle Adversary c) X-axis view d) Y-axis view e) Z-axis view

Adversary’s shape is randomly selected along with a random selection of 12 color hues. Fig. 3.3

gives a depiction of how the shapes are resembled in simulation and the colors chosen from the

360-degree HSV (hue, saturation, value) color wheel. The number of possibilities for the Adver-

sary subject is 60 (12x5). When selecting the Adversary for the Agent to match against, the

code is given a 30% chance to auto-generate a subject that resembles an exact representation of

the Agent in both aesthetics and movement. The remaining 70% chance is the likelihood of the

Adversary being one of the 60 possibilities. As shown in Figs. 3.3A-E, the environment for our

subjects is referred to as the Activity Field, featured with a three-dimensional axis space with
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standard units on the x-y-z plane and a gray-colored margin that represents either a Mirror or a

Window depending on how an Agent perceived its Adversary. The Window will signify that the

Adversary’s features and movement do not match from the Agent’s perspective. Mirror signifies

that the Agent visualizes an equivalence of its features and movements. The Agent is inevitably

tasked with discriminating the perception field as Mirror or Window. Since the Agent’s shapes

are code-generated and do not have an actual visual perception as a human would have eyes,

each Adversary shape’s body parameters were created and passed to the Agent’s domain as it

would perceive it through a similar method to that of the Pinhole Camera Model. Several kinds

of information are processed as an image for the Agent: 1) Geometric for axis positions, points,

lines, and curves, 2) Photometric for color intensity, and 3) Movement direction and speed.

3.1.3 Results

Self-awareness can make a computational system more robust and self-repairing over an extended

time period. This is, in retrospect, the expected hypothesis for our Agent behavior when prompted

to test for self-recognition. Just as an infant’s and toddler’s brain continuously evolves by going

through a process of pruning synapses for optimization, so should our system. As a result,

the simulation required a sort of adaptive network for learning. Hebbian learning and Perceptron

learning are common schemes for strengthening and weakening synapses for accurate neural firing.

Better suited methods are the incorporation of Simulated Annealing and Hill Climbing techniques.

These techniques facilitate our system to progressively meet their objectives in uncertain and

dynamic environments. To determine which algorithm to use for our self-recognition test, the

pros and cons were first assessed. Hill-climbing search only looks one step ahead at a time to

decide if any successor is better than the current state the Agent is in. The disadvantage of

hill-climbing is its inability to allow backtracking since it does not have the capacity to recall the

previous state it has been in, due to its single state memory. Therefore, there was an issue with the

state getting stuck in local minima, and the system not fully optimizing. Simulated annealing had
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slightly more momentum as it can escape the local minima. If the system was provided enough

runtime, then a complete and fully optimal solution can be given. With simulated annealing, the

system gradually degrades its repertoire of “bad” actions through a random search that accepts

adaptions to increase objective realization. Thus, making it the preferred algorithm. Three

main scripts were programmed to emulate our framework: Learning, Observation, and Action.

At the start of simulation runtime, the program is given a specific number of iterations as the

maximum opportunities for the Agent to correctly identify whether what it is currently viewing

is a representation of itself or the Adversary. With each iteration, a new Adversary is randomly

chosen for the Agent to examine. And also, with each iteration, the Agent is technically more

“aware” of its self-properties than before. Using the mechanisms mentioned throughout this

report, we should expect a familiar learning trend to an aging human infant when interacting

with a mirror. In the beginning, the Agent virtually knows nothing about itself and is not certain

of what traits and properties make up its being as an entity. With each passing iteration, the

Agent becomes increasingly reinforced of what is the self and can expeditiously recognize it.

The range for self-awareness to be achieved in a child is 15-24 months. Scaling this range down

to our IDE simulation time in seconds shows mimicry of brain development. The average life

span of a human is approximately 82.5 years, which is 990 months. Taking the quotient of the

months of initial awareness and the lifespan gives us a lower and upper bound value range for

our system to approximate at what moment in time we should expect it to become fully aware.

The lower bound is 1.5% and the upper bound is 2.4% of the system time span. For example, if

our system runs for 100 seconds, we should predict that self-recognition is wholly demonstrated

within 1.5 and 2.4 seconds from program start time, depending on the simulation processing rate.

Several executions of the simulation were conducted to observe the effect of trial runs on the

length of time full self-recognition occurs. As the Agent learns, observes, and acts in response

to the Adversary, the accuracy of the Agent’s sense of self improves over time. Prediction with
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regards to movement, first-person perspective, third-person perspective, color, and proprioceptive

cues are the main aspects the Agent must closely identify to differentiate the self from other. As

mentioned earlier, the method of approach uses simulated annealing. The next iteration of this

simulation test will use more conventional synaptic plasticity. With each trial run iteration, the

accuracy of the Agent’s perception of self is fed to the annealing script, which starts with an

initial ‘temperature’ of 100 and maximization factor –x2. Assuming that our Agent begins the

simulation without any correct information about itself, our first iteration value would be -10000

(y-axis), as shown in Fig. 3.4. The stopping condition is at the threshold value level of 0, which

the system attempts to achieve. Here we examine cases where there are 100, 200, 400, and 800

training sets. In Fig. 3.4, the following learning curve plot symbols and their representations are

used:

� blue dot: value is accepted because the new solution is better than the current solution

� green circle: the new solution is not only better than the current solution, but also better

than the best overall curve solution

� cyan dot: the new solution is somewhat worse than the current solution, but is accepted to

keep in temporary memory for checking later

� red cross: the new solution is rejected because it is much worse than the current solution.

The trends we observed within our plots are 1) the closer a 1:1 ratio of green circles to blue dots

as seen over successive trials indicate earlier stages of self-recognition and 2) as the iterations

continue, the fewer green plots appearing on the curve show the system getting closer towards the

threshold value with less chance of finding another overall best solution. Noticeably, what is seen

in the latter parts of the plots, where an elongated plateau is observed, are more concentrations

of all other symbols besides the green marker. In Fig. 3.4a, the 100 training sets give us a best
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Figure 3.4: Sampled training set results for trial iterations. Results simply indicated longer trial
durations produced a greater quantity of successful recognition solutions.

value of -3026.45, far from value 0. Fig. 3.4b’s training set of 200 has the value -481.69. Fig.

3.4c with 400 training sets has a best value of -0.000018. And Fig. 3.4d, shows 800 training

sets has a best value of -0.000002. As expected, we concluded that the longer the system can

perform with trial runs to improve the accuracy of the Agent’s self-other distinction, the more

likely it will approximately reach the threshold level, signaling self-recognition. In the future, we

seek to update this model with features that address the limitations (i.e., number of trials does

not describe the effects of first exposure to a mirror) of the latest version. We are interested in

viewing the system’s performance if it contained prior experience with theoretical conspecifics.

If possible, we would like to compile available data sets on imitation by elephants and compare

them to the results of the updated version of this system that uses more neural computing over

machine learning principles.
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3.2 Extension of Mirror Neuron System, 2 (MNS2) for

Agency

Building on the FARS (Fagg–Arbib–Rizzolatti–Sakata) (Fagg and Arbib 1998) and MNS2 [13]

models, we sought to incorporate additional neurophysiological and anatomical data that high-

lights a compilation of vital anatomical regions that are necessary to the mirror neuron circuit’s

ability to predict and interpret actions that are both performed (Action) and withheld (Inaction).

The goal was to construct a neurobiological simulation of the operant conditioning method to train

our computational system for the Inaction and Action task in Bonini et al. [16, 17]. We address

the integration of reinforcement learning and temporal difference learning in achieving results

showing the anticipation of an agent’s action based on a sensory cue from both the environment

and intrinsic expectations. Interactions between the primate’s (found in Macaca nemestrina and

Macaca mulatta) cortical and subcortical regions have been identified and simulated to achieve

the desired visuomotor sequences. Part I of this study particularly focused on how the system

learns to perform the task. This phase develops the desired synaptic weights and encoding for

each neural population identified in the Bonini experiments. Several examinations were conducted

on macaque mirror and motor neurons, while the primate was instructed to perform visuomotor

tasks of grasping an assortment of objects according to some external incentives. Bonini et al.

[16, 17] presented scenarios that have allowed us to take an introspective look into multiple cog-

nitive themes relating to action recognition, motor mapping for grasping, and prediction. Bonini

et al. [17] show explicitly that while the majority of macaque ventral premotor neurons are silent

(no discharge) when the monkey refrains from grasping an object, there are also other neurons

that fire both when the monkey performs action and inaction tasks with an object. A movement

is classified as an action when any muscle reflexes have followed the cue stimulus to form the grasp

and an inaction when no observable movement in the monkey’s hand or arm. The experiment

paradigm in Bonini et al. [17] can be explicitly depicted in Fig. 3.5 (Left). Depending on the
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experiment’s initial setup and the fixation point’s placement, the monkey can infer whether the

task context is an Execution or Observation. An action or inaction condition is randomly chosen,

which is signaled by the audio tone’s frequency. High and low-frequency tones of 1200 MHz and

300 MHz, respectively, were the only audio options used in the experiment. Most of the trials

were completed with some form of light. The purpose of the Dark condition in the experiment

was to ensure that all the recorded motor responses were present in the dark as well, concluding

that they cannot be simply caused by the monkey’s hand visual feedback.

Figure 3.5: Left: Action-Inaction Paradigm. Experimental structure of the Action-Inaction task.
Two task contexts were selectively chosen at the beginning of each trial. Within each context, a
random selection of the action and inaction condition is made. An execution task context. Right:
Epochs of interest. (*) indicates when the monkey becomes aware of 1) whether it will be acting
or not and 2) whether to voluntary grasp/not grasp.

The experiment presented several epochs of interest that assisted our efforts in formulating a

sound model: baseline, object presentation, pre-go/no-go cue signal, and lastly, post-go/no-go

cue signal. Fig. 3.5 (right) outlines the sequential steps that occur throughout a trial. After

the cue sounds, the third sequence branches off into two streams of either Action or Inaction.

Although 663 area F5 grasping neurons were recorded, there were advantages in showcasing

neurons individually. Only two types were selected, with a third in the supplementary paper.

Table 3.2 logs these two neurons and in what conditions they were reported to fire. Neuron 1

and Neuron 2 were respectively showcased in the paper as a motor neuron, which fired when
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the monkey both grasped and refrained from grasping an object, and a mirror neuron that fires

during grasping of execution and observation tasks and when there is refraining from grasping

during observation. In other words, out of the four total conditions that the neurons can operate

in, mirror neurons will not discharge when the Agent itself is performing the inaction. This is

the case where I vouched more individual neuron tests should have been done because it may

be challenging to claim that all mirror neurons do not fire in Execution-Inaction based on the

performance of only one neuron. On the other hand, this behavior was seen at the population level

as well. This observation does not appear overwhelmingly convincing that every mirror neuron

here fires the exact same way.

All of the total neurons observed by Bonini [17, 16] can be divvied into distinct categories:

� All (n=663) neurons discharged during action execution

� 188 – 28.35% also fired during action observation: Mirror Neurons

� 105 – 15.8% also became active during the inaction condition relative to both baseline and

the object presentation epoch

� 26 out of 105 were motor (purely) neurons and discharged exclusively during the inac-

tion condition of the execution task

� 79 out of 105 were mirror neurons. Most (42 out of 79) discharged exclusively during

the observation-inaction task.

Table 3.2: Neurons 1 and 2 fired in only certain conditions out of the four designed in the
experiment.
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3.2.1 Learning with Operant Conditioning

Examining why and how to bring about certain behaviors within the brain must involve using

the experimental psychology approach. To understand the full scope of why we have chosen to

use specific algorithms for this particular model, it would be best first to explore the paradigm of

operant conditioning and its intended purposes. By now, we should already be familiar with the

action/inaction tasks that the monkey was trained to do. But how exactly it was trained appeared

to be a negated detail in the official publications of the study conducted by the University of

Parma’s Brain Center for Social and Motor Cognition. This is a mark in our work where we

believe some novelty may result. Usually, in a visuomotor task, electrophysiology data are not

collected (or rather reported) before or while the primate is being trained. This brings up the

question as to how do mirror neurons (MNs) develop over time to code for changes an Agent

needs to make? Do MNs initially have the ability to encode specific action repertoires, or do

they eventually gain this trait over time? This is just one question of many we hope that future

electrophysiology tests will provide answers to. In the meantime, we have attempted to train

our computational system with neural subpopulations using the same method that the actual

primates in the experiment were trained on: operant conditioning (OC).

OC, somewhat different from the more widely-known classical conditioning method, resolves to

goal-oriented behavior. In OC, the Agent under observation learns to behave in a way as to obtain

rewards and avoid punishments. It fits the mold for learning by trial and error. OC is also viewed

as a more aggressive method. In contrast, classical conditioning is associated with passiveness

because it generates a behavior within the Agent that naturally emerges due to an unforeseeable

connection between a stimulus and reinforcement. But it can also be argued that some classical

conditioning traits are incorporated in the present experiment because the system is also learning

to predict important events and not just learning the outcome of behaviors. Prediction will be

a key theme throughout this study and the thesis topic. Delving more into the OC method
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of Applied Behavior Analysis, we have determined that the Inaction/Action task uses positive

reinforcement (presenting a motivating stimulus, e.g., juice reward is given for touch start) and

negative punishment (removal of desired stimulus or something “good,” e.g., juice). Since the

terms reinforcement and punishment will be used repeatedly, to distinguish them feasibly, it is

best to remember that reinforcement is a process used to help increase the probability of behavior

and punishment is the process of allowing a consequence to occur after a behavior to decrease the

frequency of that behavior in future trials. We have just established the type of training method

used in the Part I-Learning stage and its associated responses (i.e., operants) instrumental in the

action/inaction task. But there was another element to our training procedure that we considered

and implemented into the model: timing. The timing of reward and punishment also affects

learning in ways that can significantly alter the Agent’s ability to make definitive associations and

the rate of learning some arbitrary task. Our model incorporates a varying sequence schedule to

strengthen neural synaptic weights for associative learning. Schedules of reinforcement have been

shown to have different effects on an Agent’s behavior. Two primary schedule types were examined

as potential time template structures to utilize. We have evaluated both continuous scheduling

and intermittent scheduling. The first being continuous schedules, which reinforce every instance

of the desired behavior with a reward. Modeling a human’s reaction with continuous scheduling

provides two main benefits: 1) emphatic associations will be made between the Agent’s desired

behavior and the reinforcements received, and 2) there will be a rapid increase in desired behaviors.

Once a behavior occurs to the desired frequency, then intermittent scheduling can be introduced.

Intermittent schedules, also referred to as partial reinforcement scheduling, further encompass four

other scheduling variations for behavior maintenance based on ratios: the number of responses,

intervals, and time. Fixed ratio (FR) schedules are touted as the most effective mechanism for

teaching new behaviors. It promotes a heightened behavior rate immediately before the expected

reinforcement is received. After receiving the reward, behavior pauses momentarily and will
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eventually steadily increase as the time nears closer to receiving the reward again. Fixed interval

(FI) schedules consist of high and low rates of behaviors and a brief pause after reinforcements.

Still, it differs from fixed ratio schedules in that the rate of behaviors is generally lower because

reinforcement is only given after some delayed quantum of time after the behavior occurs. One

detrimental consequence of fixed intervals is that behaviors can eventually cease to exist if there

is a case when reinforcement is no longer present. Variable ratios (VR) is another intermittent

scheduler that is best suited for maintaining newly acquired behaviors. Here, the Agent is not

knowledgeable of the amount of responses that are required to receive reinforcement. As a result,

the Agent will repetitively engage in the behavior until the reward is given. One advantage of

doing such will make the behavior more resistant to obsolescence. And lastly, there are variable-

interval schedules. Similar to variable ratios, variable intervals (VI) also generate steady behavior

rates because the Agent is unaware how much time needs to pass for reinforcement. However,

the difference is that behavior rates are low due to the structure being based on the amount of

time within the quantum instead of the number of reward responses. Simply put, VI behavior is

reinforced after an average amount of time passes. For example, a VI-15 seconds schedule will

reinforce the first instance a response is given at the average length of 15 seconds.

We have concluded that out of all the schedule of reinforcements mentioned, one supersedes the

rest as it provides the most accurate template structure for our learning model. Fixed interval

scheduling gives us the capability to set up the reinforcement in a manner that replicates the timing

of reward/punishment delivery. Within FI, responses are reinforced after a fixed amount of time.

The characteristic that sets FI apart from the rest is that it refrains the reinforcement from being

automatically obtained after the established quantum. FI only makes the reinforcement available

while the Agent is still required to respond appropriately to receive the reinforcement.

In addition to a temporal structure, we were also set up the experiment to recreate how associations

are built. OC is primarily based on three events occurring within a trial. The events include
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the stimulus (S), response (R), and outcome (O). There are multiple ways in which they can

be arranged to suit the task constraints. OC produces a faster learning rate if the interval

space is relatively short in the beginning. But as the experiment progresses, the interval length

may increase if there is prior evidence of an association that is successfully learned. According

to the OC steps taken, as made explicit by Luca Bonini via external conversations, we have

compartmentalized the overall OC training into five tiers to recognize and implement the phases

necessary for training.

Within each tier, the primate is trained to perform certain sub-sequences of the overall task. They

are the following:

� Tier 1: Start Position.

– Monkey randomly touches start position. Reward is given, quickly.

– Allow monkey to increase holding time before delivering reward. Reward is delayed

� Tier 2: Motor Part & Go-Tone

– Monkey is trained to reach or grasp a target as soon as brief HIGH tone is played.

– Reward is delayed until monkey grasps/holds object for desired time (.8s).

– Other objects are introduced. Shaping procedure takes place for monkey to grasp

objects in appropriate way.

� Tier 3: Sound Duration (a criterion of duration 0.8-1.2s is achieved)

– Sound duration is progressively increased, making false start errors. Monkey does not

get rewarded. Monkey learns to stay while sound is played, go when it stops.
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� Tier 4: No-Go Tone

– LOW tone introduced, Reward delivered as soon as sound stops. Monkey immediately

associates new sound with “reward for not acting”

– Delay between the end of sound and reward delivery is slowly increased, up to 1.2s

(max time)

– Alternate with Go-trials with final parameter, to reinforce previous steps of training.

� Tier 5: Sound Duration (optional)

– Similar to Tier 3, trains system for sound duration of the LOW tone.

The tiers work together serially. Once the system has adequately learned tier 1, activity proceeds

to Tier 2, Tier 3, etc. The metric for determining whether a tier has been sufficiently learned

is dependent on the success rate. The learning process usually involves a type of examination

afterward to gauge how well the Agent learned it. This will be the Part II-Performance stage.

Instead of partitioning the experiment by the tiers mentioned above, Part II will alter the measure

of success by the formal experimental steps in which the neural firing patterns and data were col-

lected. The brevity of these experimental steps is expressed as follows: 1. Monkey subject, sitting

in a chair, focuses attention on an LED. 2. A ready signal (turning on the LED) indicates the

start of the trial. Monkey subject responds by placing its hand on a touchpad and fixating on the

LED, indicating movement may begin. The LED is positioned such that it appears superimposed

on top of the object to be grasped. The object is lighted in such a way that it is also visible.

3. LED changes color (GO signal). Monkey subject responds by removing his hand from the

touchpad and reaching towards the object. Reaching phase: monkey subject preshapes his hand

in anticipation of making contact with the object. 4. Contact with the object is made, and the

51



monkey subject secures a grasp. Manipulatory movement is made (pulling or pushing the object

in some direction). The resulting position is held for a random delay period.

Figure 3.6: Augmented MNS2 model for Action and Inaction Task. Updates included 1) Emphasis
on Basal Ganglia for learning, 2) Action and Inaction Encoding, 3) Space-Dependent Representa-
tion, and neural pathways for 4) Self versus Other pathways. Red arrows denote new connections
from previous models. A new sensory modality for auditory input was added. And a Basal
Ganglia unit, including the dorsal and ventral striatum, was another feature added to enhance
decision making.

3.2.2 Experimental Implementation

The updated version of an MNS implementation, shown in Fig. 3.6, may be labeled “How the

brain generates predictive motor representations of action based on ‘decision’ for Self inaction and

visual responses to Others’ inaction.” A possible theme for this study is in questioning whether

this problem is a matter of focus of attention: an IS vs. IF. “IS” places the Agent’s attention in

the present moment of what is actually taking place currently. “IF” places the Agent’s attention

on what possible actions can take place in the potential proximate future. In Bonini et al. [17],
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experimental data showed that when the macaque viewed an inaction event by the human, the

same neural patterns fired here as there is firing when the monkey views the grasp in motion.

In this upcoming version of MNS, using data from Bonini’s study, we want to show that motor

representation can be predictively encoded when an agent executes or observes the negation of an

action. Rightly so, it is necessary to provide a thorough analysis of the neural processing taking

place in iterative steps of F5 neurons and other neurons that contribute. Other neurons than

the F5 neurons shall either be hypothesized or conclusive to be a part of this process analysis

presented in this report. In light of this, let’s discuss what has to be tentatively added in F5 and

elsewhere to extend the F5 mirror and non-mirror (motor) F5 neurons mentioned in the study.

The objectives for the new additions are listed below. Two approaches for making model changes

are to 1) reveal new brain regions that play a role in the process, and 2) discover how the already

model-implemented brain regions might work differently considering the context. With that said,

some proposed high-level model changes from both Bonini papers [16, 17] include:

� Adding a Prediction class: Classify MNs as either Action or Inaction MNs. They are not

entirely distinct, but they do encode differently through a reactive and predictive context.

� Space-representation class: Implement region that is responsible for discriminating action

in peri-personal and extra-personal space.

Neural patterns are different for action and inaction conditions in the varied spaces [21]. The

objectives we felt needed to be implemented are based on the FARS and DAJ (‘95) models. We

sought value in incorporating areas such as the caudate, striatum, SNr, and thalamus. Several

updated model proposals to consider should include the following:

1. Classify (mirror neurons) MNs as either Action or Inaction MNs—relay when they do and

don’t fire.
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2. Model Inaction MNs (potential) inhibitory function.

3. Showcase Four Discharge Patterns among the F5 mirror neuron Predictive and Reactive for

both Action and Inaction conditions.

4. Implement Canonical-Mirror Neuron region, in addition to the separable Canonical and

Mirror Neuron [16]

5. Incorporating the IT cortex back in the model.

6. Incorporating the basal ganglia to deal with the motivation of motor control and learning.

BG works with the thalamus and cerebral cortex to help make decisions and shift between

activities. This will more than likely assist in our efforts in distinguishing pathways for

Action and Inaction.

7. Incorporate the Inferior Colliculus cortex as it is used in MNS for receiving and training for

auditory cues.

8. Incorporate the striatum (caudate nucleus, putamen), which receives inputs from all cortical

areas and, throughout the thalamus, project to frontal lobe areas (prefrontal, premotor, and

supplementary motor areas) which are purposed with motor planning. The neural circuits

involving these regions (i) provides information for both automatic and voluntary motor

responses (ii) assist in predicting future events, reinforcing wanted behavior and suppressing

unwanted behavior, and (iii) are involved in shifting attentional sets, movement initiation,

and spatial working memory.

9. Showcase the firing pattern for extra-personal and peripersonal space [16]
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• Here, we can somehow show that predictive discharge occurs earlier and more frequently

when neurons are tested during observation of actions performed in the monkeys’ ex-

trapersonal rather than peripersonal space.

Figure 3.7: Left: Graphical user interface for the simulation settings. Users have the option to
select the training weight files using Hebbian and backpropagation, backpropagation through time
(BPTT), and BPTT with Hebbian networks. Variation of type of arm movement can be made
for a Reach or Eat trajectory, with grasping actions ranging from Natural, Side, Power, Precision,
and Slap. Objects used for the target and obstacle span several basic shapes like a coin, box, and
rectangular sheet, to name a few. Right: Here are two frames of the field of view of the simulation
in action. The top frame depicts the trained in-motion arm performing a precision grasp of the
box with the index and thumb fingers. The bottom frame shows an attempt for Power grasping
the Pent shaped object, following the blue-line trajectory.

In terms of the outlook of both simulation and visualization, a setup of trials shall consist of

an observation of what it is like for MNs to acquire the ability to distinguish self and other’s

action/inaction, therefore needing to incorporate a learning mechanism. Several initiating stimuli

have been considered suitable in bringing about an agent’s inaction (e.g., Not grasping a coffee

cup). As you are in the process of reaching, you may be inhibited to grasp by:

1. Thought- You quickly recall the cup is empty of contents, therefore you cease your action

to get a drink.
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2. Vision- You see that the cup is empty, therefore there is no need to pick up the mug to

drink. Grasp ceases.

3. Sensory- You feel that the cup is absurdly hot before touching. Grasp ceases to avoid burn.

4. Auditory- You hear someone yell “Stop” or “Don’t” in reference to not touch the cup. Grasp

ceases.

Granted, Thought and Somatosensory may involve more in-depth simulation efforts, but it would

be worthwhile to mention what factors encompass the entire phenomenon of inaction. A potential

simulation and visualization of such stimuli would be to use Auditory and Vision in a “grasping”

scenario of some sort. The simulated monkey will have to learn to associate cue sounds with

inaction/action events with a high success rate, as mentioned in the experimental paper. Using

the model to show correct grasps can be learned to be predicted by an observer in the absence

of physical motion if enough appropriate stimuli are available to hint at the Agent’s goal intent.

The accuracy of this prediction will gauge whether our model is sound or not. Fig. 3.6 shows

the initial implementation of the software based on MNS2 that taught the simulated arm how

to properly grasp various objects according to the size, shape, and affordances. The goal of this

portion of the model, as shown previously by Bonaiuto [13] was to demonstrate through different

training weight files how an object’s physical characteristics can alter action types for reaching

grasping tasks.

3.3 Discussion

We are particularly interested in how our potential findings might be practical to the routines

and architecture design used by autonomous systems to gather information (via senses) about

their environment and form perceptions that prompt ideal behaviors for a given task. If our

hypothesis shows the evidence that we foresee, there is an opportunity for an implementable
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Figure 3.8: Obstacles for Interactions.

framework to be created for a diverse set of technologies to use that exploit the usage and benefits

of sensory afferents. Machine learning and computational models will be used, as they are often

the fundamental bases for introducing vital and fundamental breakthroughs in neuroscience on

many topics. Interfacing the developed self-aware software framework with the lab’s hardware

robotic limbs will be one of the final results of demonstrating the working solutions. Lastly, this

thesis intends to show how afferent information traverses through the nervous system, is perceived

by the body, and integrates to create behavior. The experimental outcome will display how the

role of sensory afferents is indeed necessary toward the development of a ‘self’ model that has the

capacity to construct predictive motor control capabilities for the contrast inner experience and

external reality.

It is not enough to solely implement self-awareness into a system. Another goal includes the

pairing of self-awareness to enable more effective behaviors and resulting actions via a process

called self-expression. To truly be autonomic, a computing system needs to know itself, its

limits, its constraints, its capabilities, and its constrictions. In bio-inspired applications, such

knowledge can be obtained and maintained through continuous high-dimensional sensory inputs
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like proprioception, vision, auditory signals, and tactile senses. Then a model of the self can be

built using those same afferent values. What self-awareness means for machine and computational

means is not well-defined and remains to be an open field with competing and contrasting theories.

As self-awareness is a concept and term that is inherently subjective in nature, it is understood

why there is such dissonance in the field among experts. Many facets of the field remain to be

ambiguous due to a lack of agreement on how to define self-awareness and in which manner is

it appropriate to duplicate it. Furthermore, we’ll contribute insights from the MNS to develop a

unified methodology and framework for creating the underlying principles for an emerging self-

aware system with more concentration on exploiting perceptions and influx of sensory information.

Following, we will address the (i) importance of sensory information in building the brain and the

representation of self as an object, (ii) why sensory information is coincidentally an unexplored

field in both self-aware systems and sensorimotor research, and (iii) why self-awareness must be

holistically examined.
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Chapter 4

Sense: Quantifying High Dimensional Feasible Sensory Sets

“The senses are gateways to the intelligence. There is nothing in the intelligence which

did not first pass through the senses.” -Aristotle

4.1 Abstract

We introduce the concept of trajectory-specific sensory manifolds. They are the unique multi-

dimensional and time-varying combinations of afferent signals that obligatorily emerge during a

limb movement. We use the example of muscle spindles (i.e., the muscle’s proprioceptors for

length and velocity) that arise during movements of an arm (a planar 2-DOF 6- muscle model)

during the production of straight, curved and oscillatory hand movements. Through the use of

parallel coordinates, we visualize the high-dimensional evolution of the afferent signaling across

muscles and tasks. We demonstrate that a given movement gives rise to a distinct sensory mani-

fold embedded in the 12-D space of spindle information that is largely independent of the choice

of muscle coordination strategy. Given that muscle lengths and velocities are fully determined by

joint kinematics, such manifolds provide a rich set of information to use in its control.

59



4.2 Introduction: How the Body Builds the Brain

Sensorimotor control research, both past and ongoing, has made efforts to predominately provide

evidence for how the brain shapes the body [72, 162]. However, the counterpart to these works,

how the body shapes the brain [28, 5, 135] is not as extensively considered. Often not taken

into account are sensory states and their effects on building the brain’s body awareness which

is necessary for involuntary and voluntary behavior. Here we investigate the flow of information

underlying limb movements, and explore its significance to perceptual learning. We begin our

work in this area by defining the concept of a feasible sensory set for a given movement. Our

study follows the work of [101, 176, 177] that developed a theoretical framework for all possible

body accelerations, activations and torques for a given tasks (e.g., feasible acceleration, activation,

torque or force sets). By extension, we can also speak of a feasible sensory set (FSS). In the case

of muscle spindle afferents—which sense muscle lengths and velocities—the FSS defines the set of

sensory signals that can emerge for a given limb posture or movement. In particular, given that

muscle lengths and velocities are geometrically defined by joint angles and angular velocities [179]

then a given posture or limb movement will also prescribe the spindle afferent signals. Given a

motor task, and a definition of available sensory information, we sought to define the associated

manifold of spindle afferent signals that define its FSS.

4.3 Experimental Methodology

We used a simplified tendon-driven arm model where simulated muscles pull on tendons that cross,

and therefore actuate, kinematic Degrees of Freedom (DOFs). The planar model had six mus-

cles, two links (upper arm and forearm) and two DOFs (Shoulder Flexion/Extension (SFE) and

elbow flexion/extension (EFE). A combination of paired antagonistic muscles formed the tendon

routing of a right arm appendage: deltoid anterior (monoarticular shoulder flexor), deltoidmpos-

terior (monoarticular shoulder extensor), biceps brachii (biarticular elbow flexor), triceps brachii
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q1

q2

endpoint

Figure 4.1: For the Static Case, all possible x-y coordinates for q1 and q2 degree ranges. Parame-
ters q1 and q2 were constrained within ranges of motion 0-130° and 0-150°, respectively. Location
of the SFE joint remains fixed at the origin (0, 0)

(biarticular elbow extensor), brachialis (monoarticular elbow flexor), and anconeus (monoarticular

elbow extensor). The study was partitioned in two parts beginning with kinematic calculations of

an arm during a task to derive limb joint angles and endpoint locations, and then applying those

metrics to the spindle model for observation of afferent signaling. Incorporating modeled muscle

parameters of optimal fiber lengths Lo, change in angle δq, and constant moment arm values r

from upper extremity analyses [83] allowed the initial computation of tendon excursion (change

in length of musculotendon) values, as shown in Eq. 4.1.

δs = rδq (4.1)

61



Table 4.1: Simulated limb and musculotendon parameters.

Receptor Type Axon Fiber Fiber Name Transducer Modality

Muscle Spindle Primarya Aα Ia Muscle length and speed
Muscle Spindle secondaryb Aβ II Muscle strength

a. Classification of afferents and their respective function for detecting deformation of muscle
tissue and transducing those signals into electrical responses. Fastest conduction speed and fiber
diameter, Aα (72-120 m/s) has the thickest myelination.
b. Aβ (36-72 m/s) possess thinner myelinated axons. [90]

We investigated how limb movements affect two chief elements of muscle afferentation for muscle

length/contractile velocity. Using inverse kinematics [159], a Static Case was used to find all

possible discrete positions our modeled arm can achieve. Variations in proprioceptive signaling

are shown to be dependent on task constraints as studies have revealed active movements tending

to report more accurate proprioceptive approximations [54, 193], which led us to incorporate a

case with continuous arm movement in dynamic settings. The Dynamic Case consists of specific

trajectories the arm follows over a set time frame that can be modified via the Speed Factor

parameter. As the Speed Factor increases so does the velocity of the movement under observation.

Within the Dynamic Case, we evaluated our arm limb moving in several tasks starting with the

Circle trajectory (in counterclockwise direction) as illustrated in Fig. 4.2A. The Straight Linear

trajectory task consisted of five distinct pathways on a plane for the arm to follow, each perturbed

at the slope by a 0.1 decrement (Fig. 4.2B). The Oscillatory trajectory represented sinusoidal

movement with an angular frequency of 6π, amplitude of .05m, and .35m vertical shift (Fig. 4.2C).

And lastly, we defined the symmetrical lobe Lemniscate (i.e., “figure of eight”) trajectory [146]

(Fig. 4.2D) using the mathematical expressions shown in Eq. 4.2 and Eq. 4.3. It must be noted

that the derived configuration spaces only disclose exclusive θ values for q1 and q2 despite the

possibility of a multiplicity of joint angles producing the same end-effector position.

x =
αcos(t)

(1 + sin2(t))
(4.2)
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Figure 4.2: Cartesian space and Configuration space of arm movement in directions indicated by
the red cursors for (A) the arm limb in action during the Circle Trajectory task in the coun-
terclockwise direction. Configuration space illustrates the joint angles for 360 distinct postures.
(B) Arm limb in action during the Straight Linear Trajectory task in a left to right direction.
Line 1 trajectory, in blue, sustains a slope of .5. Line 2 trajectory, in green, sustains a slope of
.4. Lines 3-5 follow according with a negative .1 gradient. Configuration Space illustrates the
joint angles for 1,000 distinct postures. (C) Arm limb in action during the Oscillatory Trajectory
task in a left to right direction. Configuration Space illustrates the joint angles for 1,000 distinct
postures from the leftmost to rightmost point along the trajectory. (D) Arm limb in action for
Lemniscate Trajectory task with symmetrical lobes. The depicted path is partitioned according
to color scheme for mapping the end-effector location in Cartesian coordinates to the joint angles
illustrated in the Configuration Space, which illustrates for 1,000 distinct postures.

y =
αsin(t)cos(t)

(1 + sin2(t))
(4.3)

After solving for the joint and limb kinematics, we utilized a computational sub-model to simulate

the biological spindle as observed in mammalian muscles, namely that of the cat [121, 122], which

has also been used in human simulations [163, 103]. Action potentials in pulses per second (pps)

were generated for primary (Ia) and secondary (II) afferents based on the interactions of the
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intrafusal fibers (chain, bag1, bag2). The first analysis that we performed examined whether

afferent signals are dependent on muscle velocity throughout a task. We varied the Speed Factor

in the system by a combination of values ranging in ascending speed: 0.0005, 0.005, 0.05, 0.5,

and 1. One-way analysis of variance (ANOVA) of the measured spindle signals under these

varying velocities tested whether there was a significant difference between the group output

values. Velocities were categorical and set as the independent variable while the spindle firings

served as the continuous dependent variable. Our second analysis developed the high-dimensional

sensory space for Ia and II afferent signaling to extract the sensory afferent sets for the Dynamic

tasks.
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Figure 4.3: Six-dimensional representation of change in muscle length along four trajectories of
the Dynamic Case. Color gradient depicts initial postures(yellow), intermediate postures (green),
and concluding postures (blue). (A) Muscle length values (meters) during Circle Trajectory task.
360 postures were examined ranging from Posture 1 at 0 radians to Posture 360 at 2π radians.
Direction of movement along the trajectory is counter- clockwise. (B) Muscle length values during
Line 1 Trajectory task. 50 postures were examined ranging from Posture 1 at the leftmost point
on the line to Posture 50 at the rightmost point. Lines 2-5 follow the same paradigm of movement
sequences just with an altered slope. (C) Muscle length values during Oscillatory Trajectory task.
1,000 postures were examined ranging from Posture 1 at the leftmost point on the sinusoidal wave
to Posture 1,000 at the rightmost point. (D) Muscle length values during Lemniscate Trajectory
task for 1000 postures.
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4.4 Results

4.4.1 Kinematics Assessment

Parallel coordinates were used to clearly illustrate the multi-dimensional change in muscle lengths

for each posture during the tasks of the Dynamic Case. Such assessment was conducted to verify

the efficacy of our model to ensure isometric, concentric and eccentric contractions according to

physiological expectations [106, 183]. As shown in 4.3 we sampled n postures along each trajec-

tory (i.e., task) and integrated δs from the initial posture. The three pairs of antagonistic muscles

showed the expected concentric and eccentric contractions along their respective continuous tra-

jectories. The muscle lengths were differentiated to derive the obtain their respective velocities

and accelerations, which served as direct input parameters to each spindle model.

Figure 4.4: Velocity speeds versus afferent signals in Group Ia (left) and II (right). Five values
were used for the Speed Factor, with value 1 signaling the fastest speed across the task. Top
row: Afferent firing in the biceps muscle for the Oscillatory task shows slight oscillations with
increasing speed. Bottom row: Afferent Firing for the triceps muscle shows a uniform and
smooth signal throughout the span of Speed Factors. After
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4.4.2 Afferent Signaling Dependent on Muscle Velocity

We expected that increased muscle velocities would affect spindles, and therefore, “body sense” in

a heavily nonlinear way. Fig. 4.4 provides a sample of our observations. We detected the presence

of perturbations in the Circle, Oscillatory, and Lemniscate; prospectively owing to the curvature

of the trajectories which can induce abrupt changes in velocities. These finding corroborate

observations from [121]. ANOVA tests revealed p-values for each muscle’s Ia and II afferent

signals in each task of the Dynamic Case (Table 4.2). For those cases where p ≤ 0.05, we rejected

the null hypothesis that there was no difference between the defined sets of velocities and the

resulting afferentation in each task. We detected significance in only particular groups of muscles

in the Circle and Oscillatory trajectory tasks. The Straight Linear trajectory demonstrated no

significant difference across all six muscles for each Speed Factor value (Fig. 4.4), while the

Lemniscate trajectory showed evidence for all muscles having affected afferentation.

4.4.3 Sensory Bounds According to Task Constraints

We also used parallel coordinates to describe Group Ia and II signals in the Dynamic Case with

a reasonable duration of 5 seconds. Our sampling frequency (fs) was set at 10 kHz (10,000 sam-

ples/second), resulting in 50,000 time samples throughout each trajectory. Fig.4.5 presents the

high-dimensional correlated relationships among afferent signals. To read these parallel coordi-

nates, please note: 1) each axis is likely to have a different scale depending on the range of values

reported for that muscle, 2) adjacent dimensions are more easily interpretable than non-adjacent

dimensions, and 3) a web-based view provides the ability to interactively analyze subsets of ac-

tivities of single muscles (as shown in Fig. 4.5 for the Line 1 & 5 trajectories). Therefore, we

can explore the multivariate comparisons, patterns, and sequences that are unique to each muscle

and trajectory. For example, for the Group II afferents of the Line 5 trajectory, we isolated the

signals on the triceps muscle between 50-150pps. This revealed the associated firing rates for
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Table 4.2: Velocity Significance in Afferents (ANOVA P-values)

 
 Fiber 

Type Circle Line 1-5 
() Oscillatory Lemniscate 

Deltoid A. 
Ia 0.049 0.249 <0.001 <0.001 

II 0.830 0.861 <0.001 <0.001 

Deltoid P. 
Ia 0.538 0.999 <0.001 <0.001 

II 0.999 0.999 0.087 <0.001 

Biceps 
Ia <0.001 0.981 <0.001 <0.001 

II 0.213 0.999 <0.05 <0.001 

Triceps 
Ia <0.001 0.753 <0.001 <0.001 

II <0.01 0.950 <0.001 <0.001 

Brachialis 
Ia 0.362 0.999 <0.001 <0.001 

II 0.850 0.999 0.072 <0.001 

Anconeus 
Ia <0.001 0.474 <0.001 <0.001 

II <0.001 0.967 <0.001 <0.001 

other muscles as related to the triceps: deltoid anterior 0-5 pps, deltoid posterior 80-130 pps,

biceps 35-60+ pps, brachialis 0 pps, and anconeus 185-250+ pps. Similar introspections of signal

bandwidth can be made for all other muscles. We also have the ability to trace and correlate any

subset of physiological with kinematic variables such as velocities, accelerations, muscle lengths

and stretch, and limb position in space.

To gain insight into the robustness of spindle afferents, we performed Monte Carlo simulation

[144] for each of the six muscles with variation of the gamma static and dynamic fusimotor drive

values. Within 100 trial iterations, boundary limits on both γdynamic and γstatic were set to

inclusively span 70 and 150 pps. Maximum standard deviation between any given set of the

observed points approximated to 20pps, consequently resolving to a 10% deviation estimate of

the signal as γdynamic and γstatic were constrained at a constant rate of 100pps.

68



69



Figure 4.5: Primary and secondary afferent space for the Circle, Line 1, Line 5, Oscillatory, and
Lemniscate trajectory tasks marked by 50,000 samples in a time interval of 5 seconds from starting
position to ending position along the prescribed trajectory. Left side: Parallel coordinates
showing the activation of each group of muscle during a sampling range along the trajectory.
Right side: Spindle afferentation of each muscle according to the range 0.75-1.3 of the optimal
lengths. The parallel coordinate afferents for the Lemniscate trajectory is mapped with the color
segments used in Fig. 2D. It can now be observed which location along the Lemniscate trajectory
produces a certain afferentation value.

This allows us to quantify how fusimotor activation, naturally, affects both motor capabilities

and body sense. Furthermore, we present the importance of how each movement leads to a very

specific set of sensory information. We can then propose the concept of feasible sensory manifolds,

FSS, associated with each movement task.

4.5 Discussion

How do our sensory signals shape the motor choices we make in daily life? In this paper, we

addressed the body sense that arises from muscle spindle afferents, to enable future studies in-

vestigating how those same sensory signals affect the representation of our physical self and the

actions we make. As per equation 4.1, we know that muscle excursions and velocities are com-

pletely determined by the time history of joint angles (so long as muscle tone prevents any muscle

from being slack in any posture). Thus, every limb movement is associated with a unique set

of specific sensory states, the FSS. As such we must consider how the nervous system obtains

and processes sensory data to create a body sense that interacts with explicit or implicit internal

models of the body, and external influences on the body. There are several perspectives on how

sensory data (mostly visual) leads to perceptual states: the action-oriented theory of percep-

tion, which suggests that perception is the result of sensorimotor dynamics in an acting observer

[63, 115, 131] and the dual-visual systems hypothesis, which advocates for independent streams

of perception and action [67, 66, 84, 123, 158, 175]. Recognized predominantly as the Perception-

Action Cycle [128], various methods developed from this framework may be utilized to replicate
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the decision making that occurs during the process of acquiring sensory modalities regarding the

external world [113]. In the context of neuromechanics, we posit that sensory data obtained in

any moment is dependent on the kinematic posture, position, and action task of the respective

limb producing the sensory stimuli. Our present study delved into the consequences to sensory

systems towards representation of high-dimensional observability to complement the controlla-

bility of muscle- driven limbs; specifically, within the mammalian muscle spindle. Our methods

for obtaining these results can be employed towards systems such as robotics and brain-machine

interfaces (BMIs) that are optimized on the limits of simulated neural drive obtained from sensory

inputs. This concludes the first phase towards focusing on the categorization of sensory states.

Results for this phase are primarily based on the results documented by Berry et al. 2017 [8].

71



Chapter 5

State: Sensory Afferent Organization to Classification of

Actionable States

“Thoughts make the plan. Actions make the man.” -Unknown

5.1 Abstract

High-dimensional proprioceptive signals like those from muscle spindles are thought to enable

robust estimates of bodily states. Yet, it remains unknown whether spindle signals suffice to

discriminate limb movements. Here, we used a 4-musculotendon, 2-joint limb model to simulate

muscle spindle II and Ia signals (length and velocity, respectively) during repeated cycles of five

end-point trajectories in forward and reverse directions. We find that cross-correlation of the 8D

time series of raw firing rates (four Ia signals, four II signals) cannot discriminate among most

movement pairs (only 29% by one measure). However, projecting these signals onto their 1st

and 2nd principal components greatly improves discriminability of movement pairs (82% by that

same measure). We conclude that high-dimensional multi-muscle proprioceptive ensembles can

usefully discriminate limb states—but only after minimal pre-processing. Importantly, this may
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explain the documented subcortical pre-processing of afferent signals, such as cutaneous signals

processing by the cat’s cuneate nucleus.

5.2 Introduction

Physical behavior in vertebrates is made possible by hierarchical neuronal systems that send

motor commands from the central nervous system to muscles on the basis of sensory information

coming from the peripheral nervous system. Motor function has received much attention given

the relative ease with which the activity of α−motoneurons and muscle can be measured and

associated with physical behavior. In contrast, the emergence of somatosensory ‘percepts’ (i.e.,

the transformation from spike trains from an ensemble of mechanoreceptors to a neural impression

useful to the control of movement) has proven much more challenging to understand. This is

because the action potentials from mechanoreceptors on the skin, muscles and joints are not

easily isolated or recorded [170], and the somatosensory percepts they elicit in the central nervous

system cannot be readily inferred.

The lack of understanding of the physiological bases of somatosensory percepts is particularly

problematic to the study and theories of sensorimotor control [112]. In particular, the somatosen-

sory percept of proprioception, also called kinaesthesia, provides the sense of self-movement and

body configuration/position [49]. Rigorous neurophysiological work on mechanoreceptors has led

to the fundamental tenet of sensorimotor control that muscle spindles (whose II and Ia afferent

fibers encode the length and velocity of each muscle) provide necessary, if not sufficient, limb

configuration information for adaptable, accurate, and robust control of limb movement. This is

supported by the geometrically obligatory relationship between joint angles and muscle lengths,

but also challenged by the facts that muscles often span multiple joints and that spindle signals

can be modulated independently of joint angles by γ−motoneuron drive to their intrafusal fibers.

We are not aware of conclusive evidence of this tenet, which is adopted to the point that other
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mechanoreceptors also affected by joint angles (i.e., synovial capsule, ligaments and skin) and

Golgi tendon organs are considered secondary for reasons detailed in the Discussion. However,

this has not been demonstrated experimentally because spindle afferent recordings from numer-

ous limb muscles in peripheral nerves or dorsal root ganglia cannot be obtained during large limb

movements.

Therefore, we performed a computational experiment to assess the utility of muscle spindle af-

ferents to provide usable limb configuration information. A minimal requirement for utility is

the statistical notion of discriminability. Discrimination test are employed in sensory evaluations

and analyses. Discriminability has been used to test how raw and processed signals from skin

mechanoreceptors on the fingertips can be used to distinguish among different edges and textures

to inform manipulation [133, 154]. In our case, we performed pair comparison tests to evaluate

the extent to which raw and processed ensembles of Ia and II spindle afferents signals, during

five distinct limb movements (Fig. 5.1), could discriminate among the five limb movements that

produced them.

5.3 Experimental Methodology

The computational design of the simulated tendon-driven system, the trajectories selected for

inspection, and the modified spindle afferent model will be described. Then we’ll detail the

methods of pre-processing and filtering used to reduce the dimensions of afferent signals. Our

pre-planned trajectories produced afferent signals that were compared in inter-class contexts in

then processed in data series estimation, pattern identification, and unsupervised machine learning

algorithms on the resulting afferents to reveal their spatial and temporal dynamics. Lastly, we’ll

conclude with a review of how the feature selection and extraction techniques were implemented

to determine which relevant spindle model features maintained substantial effects in classifying

one trajectory from another within sensory space.
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Circle Line Oscillatory Lemniscate Square
A EDCB

Knee 
Flexion

Knee 
Extension

Hip
Flexion

Hip
Extension

Anterior Biceps

Iliopsoas

Vastus Lateralis

Semitendinosus

Dorsal

Ventral

Posterior Anterior

Figure 5.1: - Limb kinematics were derived from distinctive trajectory types. The
2-joint kinematic model, which was fitted with four muscles found in the cat musculoskeletal
hindlimb structure encompassed a muscle group that included anterior biceps, iliopsoas, vastus
lateralis, and semitendinsosus. The following five planned trajectories, with the red arrow in-
dicating its direction of motion, were selected for comparative analysis. (A) Circle trajectory
maintained motion progression in clockwise direction. (B) Line trajectory completed a full cycle
by . (C) Oscillatory trajectory replicates the sine wave curve oscillations. (D) Lemniscate trajec-
tory is a polar curve that is usually referred to by the name ”figure-eight”. (E) Square trajectory
maintained motion progression in counterclockwise direction.

5.3.1 Kinematic Model Structure and Parameters

We constructed a simplified tendon-driven leg model, represented as the feline hindlimb, with a

pivot at the hip joint. In tendon-driven anatomies, tendons are responsible for permitting muscles

to act on vertebrate limbs and actuating the kinematic Degrees of Freedom (DOF) [181]. The

planar model consisted of four muscles, two links, and two DOFs (Hip Flexion/Extension and

Knee Flexion/Extension) connecting the thigh and shank, as shown in Fig. 5.1. For simplicity we

excluded actuation of the foot (i.e., paw), which is normally included in a feline hindlimb model

and would be more representative of the actual feline. Lengths of the thigh and shank segments

were set to 90 mm and 100 mm, respectively, with musculature comparable to the muscle-joint

interactions and parameter data resulting from system identification analyses [74] that were based

on mathematical properties of skeletal muscle formulated by Zajac [192].

To imitate the useful dynamics of the cat’s hindlimb mobility, we captured the movements of
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the leg as generated by 4 muscles: Anterior Biceps (AB), Iliopsoas (IL), Vastus Lateralis (VL),

and the Semitendinosus (SM). Table 5.1 summarizes the parameters we used in the musculo-

tendon structure which contained parameters of maximal length as Lmax, constant moment arm

values as r, and optimal length values (LO) per muscle at the reference angle. Fig. 5.1 depicts

the tendon routing of AB, IL, and VL as unifunctional joint muscles. AB and IL are acting in

paired antagonistic form on the hip. VL activates knee extension movements, while SM serves

as a bifunctional joint muscle acting on both the hip and knee. According to Harischandra and

Ekeberg [74], the resting (neutral) posture of the hip at 65° and the knee at 100° maintained

mono-articulated muscles at a length of 85% of Lmax and 75% for bi-articulated muscles.

Table 5.1: Simulated limb and musculotendon parameters.

Muscle Name Lmax (mm) Angle Movement Moment Arm (mm) Reference Angle LO

Anterior Biceps 70 Hip Extension 30 85%
Iliopsoas 70 Hip Flexion -44 85%

Vastus Lateralis 50 Knee Extension 9 85%

Semitendinosus 70
Hip Extension
Knee Flexion

30
-38

75%

Optimal lengths (LO) of each muscle at the reference angle were set to 85% and 75% of Lmax for

unifunctional and bifunctional muscles, respectively.

5.3.2 Trajectory Planning

Arbitrary shapes were selected as pre-planned trajectories in two-dimensional planar space for the

end-effector limb positions. All trajectories were performed in closed loops and mathematically

expressed as parametric functions of time, t, to obtain the x and y coordinate locations. The cat

limb executed five point-to-point movements that will be further referred to as task representations.

Each task representation contained a total of 200 equidistant points per cycle on the trajectory.

One full cycle lasted for a time frame of one cycle/second.
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The first task representation is the Circle trajectory (Fig. 5.1A) which prompted the limb to

perform uniform circular motion within a 5 mm diameter in the clockwise direction. The end-

effector’s total distance traveled approximates to 15.71 mm. Next, the Line trajectory (Fig.

5.1B) positioned the end-effector on the path of a straight line to simulate smooth, uninterrupted

movement along a ramp. Relative to the horizontal plane, the line segment retained a 50% incline

at 26.57°steepness. Its midpoint position was at the 100 mm y-intercept on the Cartesian plane.

The total distance travelled for one cycle of the Line trajectory was 12 mm.

The Oscillatory trajectory (Fig. 5.1C) is a sinusoidal wave forming a path of a smooth periodic

oscillation. Using Eq. 5.1 as a function of time, the amplitude A was set to 20 mm with a

frequency, f , of 10Hz. The angular frequency, w, expressed in radians at run-time Eq. 5.2 along

with zero phase shift, ϕ.

ω = 2πf (5.1)

yn(t) = A sin(ωt+ ϕ) (5.2)

The Lemniscate trajectory (Fig. 5.1D) created two symmetrical and uniform-sized lobes to form a

shape resembling the “figure-of-eight” curve [146]. The curve was formed using parametric curves

from Eq. 5.3 and Eq. 5.4.

xn = 4× 10−2 sin(5× 10−1t) (5.3)

yn = 2× 10−1 sin(t) + 11× 10−2 (5.4)

Lastly, we prescribed the Square trajectory (Fig. 5.1E) as a proximity comparison to the Circle

trajectory movement. Considering squares and circles are topologically equivalent shapes, we

expected to view closer spatiotemporal similarities in the sensory space between these two shapes

over others. However, squares differ in their non-continuity and finite lines of reflectional symmetry
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which also might reflect symmetry within the afferent manifolds. To what extent will the afferent

signals reflect these features in the observed kinematics and make them muscle activities and joint

motions distinguishable is one facet of the experimental outcomes we sought to observe.

The limb joints on the planar limb actuate as revolute joints with links capable of rotating around

it. The 2 links comprise of an end effector which maintains the foot position at the end of the

shank link and also the end of the articulated body. While the hip position remained affixed as the

root joint, we calculated the tracing of the end effector position across each of the five trajectories

using inverse kinematics. For each trajectory, the 200 target positions in the Cartesian space were

selected as inputs for the inverse kinematics algorithm and the limb pose (i.e., state) required

for the target position were derived to determine the joint angles at the hip and knee, q1 and q2

respectively.

Inverse kinematic solutions are generally not unique, and are sometimes dependent on the initial

joint coordinated q0, which typically defaults to value 0. However, the θ values for q1 and q2 of the

limb were successfully obtained despite the possibility of a multiplicity of joint angles producing

the same end-effector position. Given the desired limb’s end-effector positions, for each time step

across the trajectory at instance i, the segment link lengths, l1 and l2, and the coordinate positions,

x1 and x2, were recorded to calculate variables c and s in Eq. 5.5 and Eq. 5.6, respectively. Joint

angles q1 and q2 for each segment were then iteratively derived using equations Eq.5.7 and Eq.5.8.

c =
(x2i + y2i − l21 − l22)

(2l1l2)
(5.5)

s =
√

1− c2 (5.6)

q1 = sin−1
yi(l1 + l2c)− xil2s

x2i + y2i
(5.7)
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q2 = cos−1
x2i + y2i − l21 − l22

(2l1l2)
(5.8)

Once the limb’s joint angles are calculated, a Jacobian matrix can be generated to determine

the relationship between simulated limb’s joint parameters and the end-effector velocities. The

change in joint angles are then used as inputs for the muscle spindle model to obtain raw sensory

afferents for each trajectory.

5.3.3 Muscle Spindle Afferent Data Collection

In a similar method that was used in Chapter 4, the joint and limb kinematics were solved using

a computational sub-model to simulate the biological spindle as observed in mammalian muscles,

namely that of the cat [121, 122], which has also been used in human simulations [163, 103]. Action

potentials in pulses per second (pps) were generated for primary (Ia) and secondary (II) afferents

based on the interactions of the intrafusal fibers (chain, bag1, bag2). Fusimotor activation and

the property changes in induces within the spindle model is represented by contractile elements

(CE). The spindle model operates from a set of parameterized inputs that included that included

Lo as optimal muscle lengths, Lce as muscle length normalized to Lo, Vce as the rate of change

in muscle length (i.e., velocities), Ace as muscle length acceleration, Fs as sampling frequency,

γdynamic as dynamic gamma drive, and γstatic as static gamma drive.

The model produced only two outputs, which were non-linear firings of the primary afferent

potential and secondary afferent potential modalities in the spindle, Ia and II respectively. As

stated in [121], the generation of afferent potential reflects the stretch of the intrafusal fiber

model’s sensory zone. Afferent potential primary derived based on Eq. 5.9 where T/KSR is the

calculated stretch in the sensory region of each intrafusal fiber, LSRN is the sensory region threshold

length, LSR0 is the sensory region rest length, and G is a constant that indicates the numerical

relationship between intrafusal fiber’s sensory region to primary afferent firing. Afferent potential

79



secondary derived based on Eq. 5.10 where X is the percentage of the secondary afferent located

on the sensory region and Lsecondary is the secondary rest length.

AfferentPotentialIa = G×
[

T

KSR
− (LSRN − LSR0 )

]
(5.9)

AfferentPotentialII = G×

{
X × Lsecondary

LSR0
×
[

T

KSR
− (LSRN − L0

N )

]

+(1−X)× Lsecondary
LPR0

×
(
L− T

KSR
− LSR0 − LPRN

)} (5.10)

Both of the afferent firing model’s output firings were collected as raw data to be to be statistically

analyzed for useful features that would indicated the current state of the limb.

5.3.4 Comparison of Inter-class Trajectory Context

In order to evaluate the discriminability of afferent signals against task-actions, the trajectory

types must be compared extensively. The five trajectories selected for inspection are cycles of

shapes and curvatures that aren’t typically associated with the natural gait of a feline hind limb:

Circle, Line, Oscillatory, Lemniscate, and Square. For this reason, there is an increased likelihood

for indisputably discern variations despite noise that may be present with a data set’s dimen-

sionality, resolution, and sparsity. In our initial simulation executions, we observed that sensory

afferent outputs of the muscles varied significantly depending on the initial conditions and the

direction the limb moves in to complete the cycle. Therefore, we ensured that the simulated limb

traversed each of the trajectories in two opposite directions: Reverse (REV) and Forward (FWD).

For example the Circle-FWD, which indicates the limb traversed the Circle trajectory moving in

the Forward direction, was compared in series to Circle-REV, Line-FWD, Line-REV, Oscillatory-

FWD, Oscillatory-REV, Lemniscate-FWD, Lemniscate-REV, Square-FWD, and Square-REV. All

possible combinations of trajectory comparisons totaled to 45 correlation pairs in both the raw
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data set and pre-processed (i.e., PCA) data set. The combination set did not include pairs that

evaluated a trajectory-direction against each other.

5.3.5 Spatial, Spatio-Temporal, Pre-processing of Muscle Spindle

Afferent Data

To test the presence of discriminability across tasks, the afferent data sets were evaluated within

3 pattern constraints: spatial, spatio-temporal, and pre-processing from dimensional reduction.

Spatial Analysis

We first evaluated the spatial patterns using the K-means++ algorithm. Since the standard K-

means algorithm does not guarantee to find the optimum, an alternative, K-means++ chooses

initial centers on a justifiable upper bound within cluster sum of squares objective. The approach

is initiated by separating the k initial cluster centers, spatially.

Overall the formal objective is to determine:

arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖2 = arg min
S

k∑
i=1

|Si|VarSi (5.11)

where µi is the mean of points in Si. This may also be shown to be equivalent to minimization

of the squared deviations of points, as shown by:

arg min
S

k∑
i=1

1

2|Si|
∑

x,y∈Si

‖x− y‖2 (5.12)

For an initial set of k means m
(1)
1 , ...,m

(1)
k , the algorithm proceeds by alternating between the

assignment step and an update step, until convergence.
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Spatio-Temporal Analysis

A useful statistical measure to use that identifies significant correlations among multiple trajec-

tories with spatial and temporal components is cross correlation. It compares the time-series of

afferent data across tasks, and is represented as the ratio in Eq. (5.13), where n is the total number

of data point indices recorded per task cycle. This is suitable for measuring well two variables

move in relation to each other. Both xi and yi are the individual spindle afferent sets, Ia and II,

respectively. A temporal shift delay, phase lag τ , of the output cross correlation, Rxy, measure is

applied to determine where the correlation of the data is maximized, as shown in Eq. (5.14).

Rxy(τ) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n
i=1(yi − y)2

(5.13)

τestimated = arg max
τ∈R

(Rxy(τ)) (5.14)

To retrieve the correlation coefficients, local sums can be calculated in an alternative way to

normalize the cross-correlation. Using normalized cross correlation follows a general procedure

by [108, 73] in Eq. (5.15).

γ(u, v) =

∑
x,y(f(x, y)− fu,v)(t(x− u, y − v)− t)√∑

x,y[f(x, y)− fu,v]2
∑
x,y[t(x− u, y − v)− t]2

(5.15)

We can treat the combined group of muscle modalities within the afferent data as a template

and image and calculating the cross-correlation in the spatial or the frequency domain. The

implementation closely follows the formula from [108], where f is the image, t is the mean of the

template, and fu,v is the mean of f(x, y) in the region under the template.
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Data Pre-processing Analysis

Principal component analysis (PCA) is often used for dimensional reduction on multi-dimensional

data, which assists with visual interpretation. PCA can identify the principal components that

are able to distinguish the Ia and II modalities and which represent the most variations between

groups. However, PCA is not particularly useful in accurately defining clear boundaries between

different clusters in the data. The combined use of PCA with clustering methods helps us under-

stand the cluster size and distribution of the spike trains associated with each task.

5.4 Results

5.4.1 Raw Multi-Dimensional Afferents Are Value Bound, But State-

Indiscriminable

We first evaluated the task-dependency of the raw spindle afferent distribution. By plotting the

averaged 200-point afferent distribution of all muscles during each of the five trajectory cycles, we

can observe the spatial relationship among the Ia and II modalities. Fig. 5.2A displays the full

comprehensive view of the five 8-dimensional sets of the spindle afferents for the average of the

trajectories in the Forward and Reverse directions. For example, the mean of the resulting afferents

were calculated between the time series of the Circle trajectory in the Forward and Reverse

direction to obtain a single representation for that specific task. For both the Forward and Reverse

plots, there were no spatially discernible clusters that could indicate a state association. However,

there was a recognizable afferent separation of the Iliopsoas group muscle from the remaining

group. This gave an indication that the sensory sets were likely to have a value boundedness

characteristic, or having finite limits based on the musculotendon stretch that occurs throughout

the designated type cycle in the performance of a task. K-means++ clustering analysis was

predictably unable to adequately differentiate one trajectory from another. Although the data
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Figure 5.2: Spindle afferent population data for five distinct trajectories. (A) Full
comprehensive view of all sensory signals. The projections for principal components 1 and 2 for
each muscle are guided by the gray arrows. Overall patterns of dynamic stretch response for the
Ia modality, are shown the left side, with (B) and (D). Overall patterns of the static stretch
response for the II modality.

contained equal-volume clusters without outliers to represent each task, the spherical attribute

and overlapping cluster radii of the data were further evidence that K-means was undesirable for
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spatial classification. Assuming the number of clusters K is initially unknown, the estimated value

for the number of clusters is K = 3 was a grossly underestimate of the true number of clusters

K = 10 (i.e., 5 trajectories in 2 directions). Since K-means clusters data points purely based on

their geometric closeness of Euclidean distance to the assigned cluster centroid, this analysis fails

at determining state discriminability among the raw afferent set. However, we observed the data

structure had unique boundaries of target values that were respective of the muscle group.

Across all trajectories the spatial distribution in the dynamic stretch response (Ia) for the Forward

and Reverse trajectories is shown in Figures 5.2B-E. Across both modalities, the Vastus Lateralis

spanned the minimal range of afferent spikes in contrast to the other 3 muscles, lending to the

expectation that the Vastus Lateralis may produce less accuracy overall for task classification in

the raw data set. The maximum, median, and minimum values for each trajectory were averaged

together in their respective muscle group to get a sense of the variations of finite space associated

with that particular muscle. Bounded ranges for the dynamic stretch response (Ia), Fig. 5.2B

and Fig. 5.2D, are explicitly listed in Table 5.2.

Table 5.2: Bounded ranges of Ia afferent activity, measured in pulses per second (pps), for muscle
groups averaged across Forward and Reverse directions.

Muscle Name Maximum (p) > Median > Minimum (q)

Anterior Biceps 249.07 > 199.4 > 142.22
Iliopsoas 199.33 > 125.22 > 64.15

Vastus Lateralis 191.18 > 165.5 > 145.77
Semitendinosus 257.17 > 200.55 > 150.50

Following is the static stretch responses (II), where the spatial distribution is shown in Fig. 5.2C

and Fig. 5.2E, are listed in Table 5.3.
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Table 5.3: Bounded ranges of II afferent activity, measured in pulses per second (pps), for muscle
groups averaged across Forward and Reverse directions.

Muscle Name Maximum (p) > Median > Minimum (q)

Anterior Biceps 185.66 > 130.99 > 62.55
Iliopsoas 130.16 > 45.38 > .28

Vastus Lateralis 119.855 > 92.01 > 67.73
Semitendinosus 194.83 > 132.08 > 72.53

5.4.2 Pre-processing Suggests Observable Correlations in Sensory and

Motor Maps

In order to improve our analysis beyond the limitations of K-means, we invoked techniques for

dimensional reduction on the 8-D high dimensional space to a low-dimensional representation,

which we assumed would retain some meaningful properties of the original raw afferent data.

Interestingly, not only did we find strong groupings in the pre-processed data sets but there were

observable correlations that exist within the spatiotemporal dynamics of sensorimotor space. In

Fig. 5.3A, the top 3 principal components are plotted the five trajectories. The projections overlap

each other significantly and are tightly clustered along the same plane. Most of the explained

variance is captured in the first 2 principal components. PC1 captures the most variation at

70.22%, PC2 follows with 28.81%, and PC3 captures 0.58%. Fig. 5.3B shows the breakdown for

each component with their individual and then the overall cumulative values. When the principal

components for each individual trajectory were plotted separate from one another, we were able

to perceive discernible shapes that weren’t visible, but possibly obscured, in the raw data set. In

Figs. 5.3C-G, PC1 and PC2 revealed projections that closely resembled the prescribed trajectories

and task in the joint kinematic space. Fig. 5.3C, associated with the Line trajectory, reveals a

non-straight line with slight curvature. Fig. 5.3E captures the full revolution of the Oscillatory

task. One half of the task’s revolution does not completely trace over the other half, unlike

the Line, but overall afferent response still reveals the sinusoidal shape. The Square trajectory

roughly resembles the the planned trajectory, except the sides aren’t quite equilateral and roughly
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resembles a parallelogram. Some distortion is acceptable here and not indicative of any errors in

the reduction of data. In fact, the results of near-identifiable shapes emerging from the principal

components were surprising and not expected, considering the raw data presented clusters oval-like

shapes.
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Figure 5.3: PCA Dimensions of Afferents Reveal Distinct Shapes. Principal component
plots of pre-processed data revealed shapes that are quantitatively correlated to the planned
trajectory cycles in kinematic space. (A) A three-dimensional PCA plot shows the cluster of
samples based on their similarity, revealing distinctive shapes in space. (B) PCA scree plot of
the variance explained by each of the 8 individual principal components are shown here in blue,
with cumulative percentages show in red. The first 3 PCs explain 99.61% of the variance. The
two-dimensional plots of the (C) Circle, (D) Line, (E) Oscillatory, (F) Lemniscate, and (G)
Square shapes show more distinction in visual appearance of the trajectory when the PC1 and
PC2 variables were plotted together.

Since the pre-processed data was able to be visualized with 2-3 principal components there was no

need to consider other dimension reduction techniques such as T-distributed Stochastic Neighbor

Embedding (t-SNE) and multidimensional scaling (MDS). Two or three principal components

are usually sufficient for our plotting purposes whereas for classification or modeling purposes,

the number of significant components was can be properly determined using metrics such the

explained variance. Here, we were able to conclude that there is a presence of near-approximate
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quantitative correlations of joint kinematic and sensory space of the muscle spindle. The next

experimental findings further use these top three components to determine their usability for state

classification.

5.4.3 Correlation Index Reveals Markers of Action Discriminability,

Classification

Before pre-processing the afferent manifolds to detect useful features, cross correlation was per-

formed on the raw data set to retrieve the correlation coefficient or index value that measures

similarity in movements of two time-series sets of data relative to each other. To our dissatisfaction,

cross-correlation analysis, as computed from Eq. (5.13), did not provide sufficient discriminability

among the five states when comparing the raw spindle manifolds. A positive 50%, the measure of

chance, was set as the threshold for verifying discriminability among the span of possible cross cor-

relation values where the value -1 indicates a perfect negative correlation, +1 indicates the perfect

positive correlation, and 0 is no correlation between the paired tasks. Essentially, Rxy(τ) ≥ 0.5

indicates less discriminability among the tasks and Rxy(τ) < 0.5 indicates more discriminability.

Assessments for cross correlation were divided into 5 sensory afferent groups: combined muscles

set (all four muscles combined), Anterior Biceps, Iliopsoas, Vastus Lateralis, and Semitendinosus.

For each of the n = 45 possible trajectory combinations and pairwise comparisons we plotted

their correlation coefficients, Rxy(τ), spatial scatter visualization for both the raw afferents and

pre-processed afferents as shown in in Fig. 5.4. All raw data correlations for the combined muscle

were set at the 8-D (i.e., 4 muscles x 2 afferents) high dimensional space while the individual

muscles were compared in 2-D space. All pre-processed data correlations for the combined muscle

were set at the 3-D space while the individual muscles were compared in 2-D space.
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Figure 5.4: Spread of Discriminability Within Cross Correlation Scatter. Cross Correla-
tions of all possible trajectory combinations (n = 45) for the raw information and pre-processed
afferent signal information, which are plotted on the left and right, respectively. Each trajectory
pairing has an assigned direction. An R label is for Reverse Direction and an F label is for Forward
Direction. For example, the Circle-Line pairing with label FF indicates Circle going Forward and
Line going Forward. The Line-Square pairing of RF indicates Line going in Reverse and Square
going Forward. Cross-correlations were plotted for (A) the combined set of the 4 muscles in the
cat limb, (B) Anterior Biceps, (C) Iliopsoas, (D) Vastus Lateralis, and (E) Semitendinosus.
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Let α be the span or bandwidth of the detected correlations in the cluster and β be the total

space of possible correlation values, where α/β is the percentage covered by the correlations

values. Raw data correlations in the combined muscle set (Fig. 5.4A) show a tight cluster within

a 32.1% (i.e., where α is .646 and β is 2) of the full correlation range. However, that range

expands to 98% (1.958/2) in the pre-processed set as more pairings move away from being less

discriminable to more discriminable. This form of expansion was not only evident in the combined

muscle grouping but also in the individual muscle groups (Figs. 5.4B-E). Out of the four muscles,

the Vastus Lateralis (Fig. 5.4D) contained the most compact clustering in the raw set with the

maximal expansion, spanning a minimal 23% (.459/2) and expanding to 98% (1.96/2) in the

pre-processed set. We highlight the compact-to-expansion dynamic that occurs from raw to pre-

processed afferents to show the usefulness of pre-processing in giving each task more distinction

and separability to enhance classification. Furthermore, the usefulness of cross-correlation is

additionally investigated in this study in the context of a state classifier. We find the display of

confusion matrices as heat maps particularly useful here because of the ability to describe the

performance of our classification model. You can observe any patterns in value for one or both

variables by observing change in color gradients of cell colors change across each axis in Fig. 5.5.

The differences in discriminability vary significantly by each matrix. Our combined muscle set

reports 29% discriminability among the 10 possible trajectories in the raw 8-D set and drastically

increases to 82% in reduced 3-D pre-proccessed set, as shown in Fig. 5.5A. For the Anterior

Biceps muscle (Fig. 5.5B), cross correlation reports 60% discriminability in the raw 2-D set and

increases to 73% in 2-D pre-proccessed set. The Iliopsoas muscle (Fig. 5.5C) reports 66% and

73% discriminabilities, Vastus Lateralis (Fig. 5.5D) reports 0% and 78% discriminabilities, and

Semitendinosus (Fig. 5.5E) reports 49% and 89% discriminabilities, for the raw and pre-proccessed

set, respectively. The difference in correlation between the two groups (i.e., Raw and PCA) was

determined to statistically significant (p = 0.001), according to the Wilcoxon signed-rank test, for

the combined muscle group and individual muscle sets.
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Figure 5.5: Confusion matrices of raw and pre-processed spindle afferent data. For (A)
the combined set of muscles and spindle modalities (four tendons as shown in Fig. 5.1), cross
correlation analysis was performed on the raw afferents across all five trajectories; CI: circle, LI:
line, OS: oscillatory, LE: lemniscate, SQ: square. The direction of each task is label either fwd for
forward and rev for reverse. The lower half of matrix entries correspond to the raw collection of
pps signals. Upper half entries represent the resulting principle components from PCA, labeled
as pca. Three principal components were selected here. While in individual muscle analysis such
as (B) Anterior Biceps, two principal components were selected. The same cross correlation was
performed for the remaining muscles which include (C) Iliopsoas, (D) Vastus Lateralis, and (E)
Semitendinosus.

5.5 Discussion

In this chapter, we focused on using high-dimensional proprioceptive signals from muscle spindles

to enable robust estimates of trajectories as pre-defined tasks and bodily states. Before our trials

and analysis, it remained unknown whether spindle signals suffice to discriminate limb movements.

We obtained three main findings that we discovered in the post analyses. The first is identifying

that raw multi-dimensional sensory sets of the muscle spindle are value bound, but are still able to

maintain state-indiscriminability. Secondly, pre-processed data shows high correlation of spatio-

temporal maps between sensory and motor space. Thirdly, the correlation index revealed markers

of sufficient discriminability and classification among spindle afferents. Our findings closely match

with similar results from Rongala et al. [152], where biological data on cuneate nucleus neuron

recordings in adult cats were obtained and modeled to study generalizable tactile representations.

Their work highlights that the cuneate nucleus forms the first interface for the sense of touch

in the brain. We conjecture this would be similar for proprioceptive sensory afferent pathways.

Triangle matrices of correlations, similar to our analysis, demonstrated how weighted learning

in the cuneate nucleus resulted in decorrelated responses between neurons of the same stimu-

lus. Essentially this means the data were less ”confused” with another and more discriminable.

Altogether, our findings indicate that sensory afferents from the muscle spindle can adequately

supply the nervous system with features of discrimination to distinguish one task from another,

only if there is suitable forms of pre-processing or filtering to reduce the overwhelming amount
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of sensory manifolds flooding the nervous at a given time during the performance of an action or

task. This is a desirable and necessary result for our dynamic model of body representations or

body schemas in neuro-robotics systems.
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Chapter 6

Sensory-Motor Gestalt: Sensation and Action as the

Foundations of Identity, Agency, and Self

“To understand is to perceive patterns.” -Isaiah Berlin

6.1 Abstract

Body movement and proprioception are inextricably linked. Movement produces continuous high-

dimensional ensembles of afferent information that provide an internal proprioceptive body rep-

resentation and its relationship to the environment. Motor function is amenable to recording

and interpretation and has been relatively well studied. However, we do not yet understand how

physiological proprioceptive afferents contribute to internal body representations, neuromuscular

control, and even a sense of agency and self. Proprioceptive and motor signals have often been

seen as separate, and to be combined mainly to close feedback loops for neuromuscular control.

In contrast, ‘active sensing,’ is an emergent concept for dynamically blending sensory and motor

signals. We extend and formalize active sensing into an integrative approach—–born out of a

neuromechanical perspective—that sees proprioceptive and motor signals as integral parts of the

same functional and perceptual continuum we call the Sensory-Motor Gestalt. The Sensory-Motor
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Gestalt combines formalisms of physics, state estimation, biomechanics, differential geometry, and

physiology to understand the emergence of the self in the context of proprioception and motor

actions in the physical world. Proprioception, by defining body state, defines feasible (continuous

or discrete) motor actions compatible with that state and the environment. Conversely, motor

actions produce subsequent, often predictable, body states. This syntactical relationship leads to

an epistemological continuum that spans body state, feasible behavior, agency, identity, and sense

of self in organisms and robots.

6.2 Introduction of Sensory-Motor Gestalt: Origin and

Definition

Our computational model of the self begins with Gestalt Theory. Gestalt (pronounced g@-'shtält),

a concept originating in Austria and Germany, roughly translates to shape, form, configuration,

and unified whole. XX-century German psychologist Max Wertheimer utilized this definition to

originally present the Gestalt laws (or principles) of grouping for pictorially detailing how the

human eye perceives visual elements [186]. These laws are fundamental rules illustrating how

humans recognize elements and objects in their visual scene as organized patterns with meaning.

The Gestalt theory of the mind and brain intends to form an understanding of how humans and

animals 1) comprehend what they are perceiving and 2) obtain meaning from the world with

disordered visual stimuli.

In its original formulation, Gestalt laws aim to reduce complex visual scenes into simpler, less

complex shapes to can convey an image’s meaning in a single formation instead of disparate

smaller elements. Hence by being a critical aspect of the perception of patterns into a coherent

whole for context and meaning, Gestalt plays an important role in combining epistemology (i.e.,

study of knowledge and how does one come to “know”) and ontology (i.e., study of what is the
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nature of the self) [70]. This paper proposes underlying mechanisms for brain-body dynamics to

merge proprioceptive and motor elements into an epistemological continuum from sensory and

proprioceptive input, to state of the body, to feasible motor action, to useful behavior, to the

sensory consequences of action— and then on to more abstract notions of agency, identity and

sense of self in organisms and robots.

In this study, we focus on proprioception as spike trains from muscle spindles (II and Ia) and

Golgi tendon organs (GTOs). They primarily encode muscle fiber length and velocity, and ten-

don tension, respectively. These proprioceptive signals are known to inform various perceptual

modalities of body state (e.g., postures, movements, forces, limb stiffness, alertness). Recent

exponential growth in literature relating proprioception to subjective experiences (Figure 6.1)

may suggest that the debate about the emergence of the self is advancing. We hypothesize that

Gestalt laws can be applied to organizing these physiologically-tenable proprioceptive signals to

construct a totality of what is perceived as the active body. We seek to do the same for motor

actions by developing a mathematical description of the set of plausible motor actions conditional

on proprioceptive signals.

Our prior simulation work characterized the high-dimensional, non-linear, time-varying manifolds

of muscle spindle afferents (Ia and II encoding, roughly, muscle fiber contraction velocities and

lengths, respectively) that emerge during movement of a planar multi-muscle limb [8]. We provided

initial evidence that high-dimensional muscle spindle proprioception defines limb states that reflect

the consequences of motor actions. We now extend that work by emphasizing that each limb state,

by its physical nature, only has a well-defined set of feasible motor actions. This results in a formal

sensory-to-motor-to-sensory map that defines both the current proprioceptive states and feasible

motor commands (i.e., plausible motor actions) that will lead to new (but expected) proprioceptive

signals. The Sensory-Motor Gestalt applies to both biological and engineered agents where the
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Figure 6.1: Published article count per year that indicate association between subjective experi-
ences and sensory modalities. This chart similarly models a previous search conducted by [45], in
which the number of articles published mentioned the words “awareness” or “consciousness” in
conjunction with words denoting each sensory modality: “Visual” or “vision” (magenta), “propri-
oception” or “movement” (yellow), “auditory” or “audition” (red), “touch” or “tactile” (cyan),
“olfaction” or “olfactory” (green), and “multisensory” (black). Our PubMed search extended the
year range from 1950-2019 and added proprioception. Along with vision, proprioception showed
a significant increase in documented work.

concepts of state, observability, and controllability are intimately related; therefore, providing a

basis for constructing an artificial core of state, agency, identity and ultimately self.

To our knowledge, this is a first attempt to formally apply the laws of Gestalt to the encoding

of the sense of agency, identity and self via proprioception. This article first builds the concept

of Sensory-Motor Gestalt from the generic Gestalt theory. We then interpret the Sensory-Motor

Gestalt in the form of mathematical encoding for each of the core laws, which may be integrated

to form the sensorimotor self. How the self is directly related to sensorimotor experiences of

neuromuscular systems is then explored while providing sample platform applications to support

Sensory-Motor Gestalt, both biological and in bioinspired robots.
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Figure 6.2: Gestalt laws of perceptual organization for topological manifold data can be applied
using these core laws: (a) Law of Proximity aims to group elements together based on spatial
closeness. Black dots, red dots, and green dots are perceived as separate groups due to the nearness
of columns. (b) Law of Similarity groups the elements of black dots and red squares as separate
sets, although spatial distance between each element is consistent. Shape, orientation, and color
are the distinguishing factors. (c) Law of Closure prompts pattern perception of a green square
and black oval despite the non-continuous outline and presence of gaps. (d) Law of Continuity
perceives the figure as a green dotted line and a separate black dotted line due to the observed
fluid connection of continuity and direction. (e) Law of Prägnanz (i.e., pithiness, conciseness,
or Good Form) takes the abstract shape, as depicted on the left, and perceptually reorganizes
them into a simple, more recognizable forms as is depicted on the right with the colored circle,
triangle and square.

6.3 Sensory-Motor Gestalt: Applying Gestalt Laws to

Sensorimotor Function

“The whole is greater than the sum of its parts” is the popular adage Gestalt psychology is best

known for. It emphasizes the fact that although a sensory experience can be disassembled into

individual components (i.e., stimuli), the way in which those components coalesce together gen-

erates properties and qualities of the whole that only exist independently of their components.

Stimuli patterns presented as a whole often prompts a more meaningful perceptual response. As

alluded to earlier, Gestalt theory is typically associated with the visual sense and visual percep-

tion (e.g., object and shape recognition, coloring, arrangement of parts) that is used to process
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graphic designs and images (Figure 6.2). Rarely has Gestalt theory been applied to other sensory

modalities such as haptic [27], auditory, and olfactory senses which can all be topographically rep-

resented on a multi-dimensional space in the depiction of manifolds (i.e., coherent and continuous

lower-dimensional subspaces embedded in a higher-dimensional space). Interestingly, the func-

tional mechanisms of Gestalt laws are active in other cortical areas of the brain and not solely in

the visual processing centers. As the brain’s neural processing is responsible for stitching together

the visual scene of the external world in the primary sensory cortices and also seamlessly binding

raw multisensory information to project a single unified experience, we theorize there are benefits

in extrapolating ideas of Gestalt laws of perceptual grouping from vision to other modalities of

the body such as the somatosensory system. Gestalt theory typically consists of five core laws

that govern the fundamental organization of perception: Laws of Proximity, Similarity, Closure,

Continuity, and Prägnanz.

6.3.1 Law of Proximity

Within visual perception, objects in space or points on a plane that are near or proximate to each

other have a tendency to be grouped together in a single unified set. Conversely, points that are

further apart have a lesser likelihood to be viewed as conjoined (see Figure 6.2a). This law is

useful for organizing information with increased speed and efficiency. There are several ways in

which proprioceptive information can also be processed to yield proximity metrics. One of the

earlier attempts to address the Law of Proximity is the Pure Distance model [99], which attempts

to quantify visual proximity grouping in dot lattices with an attraction function that measures

the probability distribution of grouping.

Several algorithms can process proprioceptive stimuli in this manner. Consider our prior work

[8] on the simple case of spindle model output of a single muscle fiber, which is 2-D Ia and II

afferent spike trains over time. Figure 6.3 shows a higher-dimensional case of a simulated human

99



arm. When examining proprioceptive signals that are encoded as spike trains in units of pulses

per second (pps), we are presented with unlabeled sample points (x1,x2, . . . ,xn), where n is the

set of observations, that can be further mathematically expressed to form representations. Since

the notion of proximity is to associate observed points by measurement of Euclidean distance,

then a standard unsupervised algorithm such as the K-Means clustering (i.e., a simplified version

of vector quantization) proves to be sufficient for revealing underlying data structure.

Figure 6.3: Spike trains from spindle afferents produce an evolutionary high-dimensional time-
varying manifold of raw afferent information that is distinct for different arm movements. Using
parallel coordinates, we show the Ia Group Afferent in 50,000 time samples for the case for a 6-
muscle, 2-joint simulated planar arm performing the Lemniscate (figure-of-eight) trajectory with
the end point [8]. The coordinates are colored according to the segmented locations within the
duration of the Lemniscate trajectory. The shadow boxes to the left and right of the manifolds
are scaled-down sample snapshots of the data for the Deltoid Anterior and Anconeus muscles,
respectively; ultimately revealing their specific cluster ranges.

6.3.2 Law of Similarity

Elements (e.g., points) that are similar in visual appearance in at least one degree with alike

components are more likely to be grouped and organized together perceptually. The Law of

Similarity generally spans the attributes of orientation, texture, color, and shape (see Figure 6.2b).

There are ways to apply this law to the manifolds produced by proprioceptive signals. Considering

the contours and curves that emerge from the collection of proprioceptive manifolds (e.g., Figure

6.3), shape is the most applicable attribute when measuring for similarity. Shape dimensions, such

as curvature and elongation, can be perceived as integral dimensions and also used for comparison

for similarity. In a similar fashion that [18] quantifies geometric similarity of anatomical surfaces

100



and morphological identification, we can apply statistical analysis when viewing the Ia and II

stimuli as a collection of discrete or continuous points on an anatomical surface. Measures of

similarity of each afferent signal across various tasks can be applied across the collected time-

series data using signal processing. Comparable to the Law of Proximity, K-means clustering may

also be used here if measuring ’similarity’ of clusters by its relation to Euclidean distance of data

points.

cos θ =
−→x · −→y
‖−→x ‖ ‖−→y ‖

=

∑n
1 xiyi√∑n

1 x
2
i

√∑n
1 y

2
i

(6.1)

In our example, let x and y be two vectors of afferent spike trains, Ia and/or II. The cosine

similarity function is a measure of similarity that can be used to compare afferent signals in

the inner product space. Using the cosine measure, we have Eq. (6.1) where −→x · −→y =
∑n

1 xiyi =

x1y1+x2y2+· · ·+xnyn is the dot product of the two vectors. A cosine similarity, cos θ, value closer

to 1 indicates a higher propensity for perceptual clustering along the manifold. The convolution

function would be another choice that quantifies similarity over time for all possible lags between

signals.

Another option is cross correlation. It compares the time-series of afferent data across tasks, and

is represented as the ratio in Eq. (6.2), where n is the total number of data point indices recorded

per task cycle. Both xi and yi are the individual spindle afferent sets, Ia and II, respectively.

A temporal shift delay, phase lag τ , of the output cross correlation, Rxy, measure is applied to

determine where the correlation of the data is maximized, as shown in Eq. (6.3).

Rxy(τ) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n
i=1(yi − y)2

(6.2)
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τestimated = arg max
τ∈R

(Rxy(τ)) (6.3)

Magnitude-squared coherence is similar to correlation except that signals are compared in fre-

quency ω, instead of time space, as shown in Eq. (6.4), which values satisfy 0 ≤ Cxy(ω) ≤ 1.

Sxy(ω) represents the cross-sprectral density between x and y, while Sx(ω) and Sy(ω) are the

autospectral densities for their respective signals.

Cxy(ω) ,
‖Sxy(ω)‖2

Sx(ω)Sy(ω)
(6.4)

Sxy(ω) =

∫ ∞
∞

Rxy(t)e−jωtdt

=

∫ ∞
∞

[∫ ∞
∞

x(τ) · y(τ + t)dτ

] (6.5)

Lastly, Kullback–Leibler (K-L) divergence is a means to quantify the likelihood that the statistics

of a given process are similar to that of another, Eq. (6.6). Probability distributions P and Q

are measured in comparison to reveal the relative entropy. This is particularly useful because it

measures how much information is lost when we approximate distributions.

D(P ‖ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(6.6)

6.3.3 Law of Closure

The Law of Closure is the tendency to complete unfinished or partially obscured objects. Here,

incomplete figures are seen as complete or whole as depicted in Figure 6.2c. Warshall’s Algorithm

[185] may address this through its approach in computing the transitive of a node relation in

a graph. We can envision, that as clusters are being formed via other laws, state nodes will
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eventually emerge from the aggregate data. To establish state transitions from one afferent cluster

to another, the Warshall algorithm can determine whether a vertex j is ’reachable’ from another

vertex i for all vertex pairs within the graph. This measure of reachability will serve as the

transitive closure, indicating directions and where paths exist for point-to-point movement across

the manifolds.

This law states that, given available information, there is the expectation (based on prior personal

experience) of closure when a fragmented version is presented. Bayes’ Rule is a formal way to

represent such expectation in the case of visual information, visuomotor perception [97], and now

proprioception. Bayes’ rule states that we can obtain the posterior distribution (the probability

of a given body state given current proprioceptive input p(xtrue|xsensed) by taking into account

the likelihood distributions of the prior (i.e., the cumulative information from prior experience)

and the evidence (i.e., the current proprioceptive input xsensed):

p(xtrue|xsensed) = p(xsensed|xtrue) ∗
p(xtrue)

p(xsensed)
(6.7)

where p(xsensed|xtrue) is the likelihood of a particular proprioceptive input xsensed when the

perceived body state really is true. This then allows the inference of the current body state given

past experience and incomplete or polluted proprioceptive inputs.

6.3.4 Law of Continuity

Objects and points that are co-linear and follow the same direction will be grouped together as

a whole (see Figure 6.2d). We can construct proficient continuations between neighboring local

environments. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) identifies

outliers as noises. The Mean-shift algorithm, Eq. (6.8), actually includes them in the cluster

despite differences of the data point. DBSCAN also does not require a pre-set number of clusters,
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and discovers arbitrarily shaped clusters. These are key facets for analysing proprioceptive data.

Given the manifolds of afferent information for natural movements are usually continuous, then

the Law of Continuity would naturally apply as the manifold during a movement continues along

a particular path, even if temporarily disrupted or occluded by a perturbation. In practice, Bayes’

Rule is a way in which such expectation of continuity can be quantified.

6.3.5 Law of Prägnanz (Good Form, Clarity)

The Law of Prägnanz focuses on simplicity and will prompt visualizations according to the simplest

way of grouping items. We perceptually organize shapes to simple forms, as in pithiness. The Law

of Prägnanz is the tendency to interpret ambiguous images as simple and complete vs. complex

and incomplete. An example is how shapes overlapping each other can cause ambiguity, as shown

in Figure 6.2e. A potential resolution is an iterative method such as Mean-shift Clustering,

Eq. (6.8), where N(x) is the neighborhood of the set of points, x. Depending on the Gaussian

kernel bandwidth, Eq. (6.9), the Mean-shift algorithm iteratively shifts points until there is a

convergence of partitioning the clusters into semantically meaningfully groups. This is probable

to work well with proprioceptive afferents as it may account for the noise in signals which is

expected, and necessary for physiological function.

m(x) =

∑
xi∈N(x)K(xi − x)xi∑
xi∈N(x)K(xi − x)

(6.8)

K(xi − x) = e−c‖xi−x‖2 (6.9)

Dimensionality reduction is probably the most commonly applied (and potentially misinterpreted)

analysis of high-dimensional motor signals [102]. It is simply a way to quantify whether a high-

dimensional ensemble of signals evolves (i.e., has variance) along all dimensions equally, or inhabits

a lower-dimensional subspace. Conceptually, it is just the singular value decomposition of a
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covariance matrix, where the number of ‘large’ singular values (principal components) quantifies

the rank of the covariance (the effective ‘dimensionality’ of the data), and the left singular vectors

(principal vectors) form a basis for those dominant variances (the basis for the effective subspace

the data inhabit). Independent Component Analysis and Nonnegative Matrix Factorization is a

variations on this idea that do not require orthogonality of the basis vectors, and the latter also

imposes a non-negative constraint on the elements of the basis (as neural signals are conceptualized

as intensities or spiking frequencies that are > 0). It is good to see that some work is beginning

to be done on dimensionality reduction in tactile afferents, which are famously difficult to record

from even in animal preparations [152]. Our current work is beginning to apply dimensionality

reduction to higher-dimensional simulated proprioceptive signals [6].

6.3.6 Supplementary Laws

Other Gestalt grouping laws that can be applied to sensory stimuli integration include the Laws

of Focal Point, Symmetry, Common Fate, Common Region, Synchrony, Convexity, Isomorphism,

Parallelism, Unity, Element Connectedness, and Figure vs. Ground.

6.4 Functional Utility of the Sensory-Motor Gestalt

Figure 6.4 describes our working hypothesis of the Sensory-Motor Gestalt in operation. At any

time point, proprioceptive (and other sensory) information define a state of the body that lies

within a particular manifold of like inputs (Laws of Proximity and Similarity) and feasible next

states (Laws of Continuity and Closure). Such body state allows feasible transitions to ‘next’

proprioceptive states via feasible motor actions that will lead to a, usually predicted, new body

state (Laws of Continuity and Closure).
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Figure 6.4: We envision the representation of minimal self as a collection of categorized states in
RN space formed from sensory and motor maps, and made useful by the agency they provide.
Our data-driven projection method categorizes the set of feasible inputs from muscle spindles
for each specific task performed (i.e., arm reach, sit, squat, standing) as a manifold. Transitions
from one state to another occur through point-to-point transitions along the manifold. The high-
dimensional space of afferent modalities has an underlying structure given by the anatomy of the
body and the physical transitions it can undergo such as changing postures via self movement.

6.5 Abstracting Self from Sensorimotor Experiences for

Neuromuscular Systems

Now let’s examine how the foundations of neuromuscular systems can provide context to con-

structing the minimal operative self via proprioceptive signals. In Nature, proprioception pro-

vides animals with awareness of the state of their body and of their relation to the environment.
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Figure 6.5: The neuromechanical perspective of how sensory inputs are transformed to motor
outputs (adapted from [178]). A Feasible Sensory Set (FSS) defines the afferent stimuli that
are plausibly detectable for a given state of the body (i.e., joint posture, force production, and
kinematic task). By incorporating the influence of proprioceptive space via neural spike firings,
an under-constrained mapping of transformations can be reinforced from neural motor commands
in the Feasible Activation Sets (FAS) to mechanical outputs (limb movements).

Proprioceptive signals arise from mechanoreceptors that reflect the state of tissues, which are

driven by muscle forces, joint and body postures, and skin deformations. When integrated with

other sensory modalities, this reflection of body state at any given moment in time and space

provides the nervous system with an overall representation of bodily position, actions, and task

experiences. Neuroscientists have long been intrigued with how the brain represents the body and

forms models of bodily states through proprioception [69]. However, there is still no consensus

regarding how these representations, facilitated by multi-muscle control, compartmentalize and

process high-dimensional afferent information as continuous feedback for ongoing tasks.

The fundamental formulation of a control law for a linear system (without loss of generality) is

ẋ = Ax+Bu (6.10)

where the outputs y (and therefore sensory and proprioceptive signals) are a function of the state

x and the control signals u

y = Cx+Du (6.11)

By definition, the equations of motion (i.e., ẋ = Ax) are an important determinant of the feasible

transitions away from any given state. Moreover, changes in sensory and proprioceptive signals
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Figure 6.6: Test-bed applications for Sensory-Motor Gestalt implementation in tendon-driven
systems. The Gestalt can provide state cases and their feasible transitions along the manifold
for agents. (a) Proposed neuromorphic cat-like robot and limb in hardware. Image adapted
from [116]. (b) Various hand and finger states depicted using the American Sign Language. The
nervous system registers the proprioceptive feedback generated with each hand shape is unique
to each letter signed with gestures.

are driven by changes in state (i.e., y = Cx). This is a formal way to conceptually anchor some

aspects of the Sensory-Motor Gestalt. Please note we do not claim or endorse that the engineering

concept of ‘state’ applies to biology. But the Sensory-Motor Gestalt is a formal way to describe

how the stream of sensory and proprioceptive signals is useful to biological behavior in a way that

is agnostic to how those signals are processed.

We can conjecture how the nervous system processes incoming afferents (e.g., proprioceptive sig-

nals) by observing how neural activation commands mathematically map to mechanical outputs,

as shown in Figure 6.5. Neural commands simply refer to the nervous system’s distribution of

excitatory impulse signals to activate muscle tissue. For tendon-driven limbs, [178] emphasizes

that the nervous system’s primary function is to use (i.e., learn, explore, and exploit) the set

of feasible neural commands from the optimized activation space with dimensionality of vector
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a ∈ RN , where N is the number of independently controlled muscles. From activation space,

vector spaces are successively mapped to muscle force space, to joint torque space, then lastly to

output wrench space to produce a set of feasible mechanical outputs (forces and movements).

In prior work [8], we have extrapolated this perspective of muscle redundancy to feasible sets of

proprioceptive signals, called Feasible Sensory Sets (FSS). These are defined by a body’s anatom-

ical structure and the mechanical tasks being performed. Here, we first introduced the concept

of trajectory-specific proprioceptive manifolds, which are the unique multidimensional and time-

varying combinations of afferent signals that obligatorily emerge during a limb movement. We

demonstrated that a given movement gives rise to a distinct sensory manifold embedded in the

12-D space of spindle information that is largely independent of the choice of muscle coordination

strategy. These are referred to as manifolds because they are a systematic collection of points

(i.e., spindle neural spikes) that provide information for its control.

Following this work it remained unknown whether spindle signals suffice to discriminate limb

movements. We used a 4-musculotendon, 2-joint cat hindlimb model to simulate muscle spindle

length and velocity signals (II and Ia, respectively) during repeated cycles of five distinct end-point

movements, similar to the manifolds in Figure 6.3. In [6], we concluded that proprioceptive infor-

mation can usefully discriminate limb states—but only after conducting minimal pre-processing of

high-dimensional multi-muscle ensembles to low-dimensional subspace components. This finding

may this explain the documented subcortical pre-processing of afferent signals of various mam-

mals [152]. It is this resulting set of constrained sensory signals that we believe could suffice as

a minimal representation of the artificial self and should be incorporated into the Sensory-Motor

Gestalt paradigm. We project the usefulness of Sensory-Motor Gestalt to be a suitable core to

execute on different applications that utilize neuromuscular dynamics, incorporate neuromorphic

and bio-inspired architectures, and classification of human bodily states (Figure 6.6).
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6.6 Role of Self and Identity in Autonomous Robotics and

Synthetic Biological Agents

A semblance of selfhood, identity, and agency should be expected outcomes for constructing a

dynamic sensorimotor representation [171]. For robots, concepts of identity are typically viewed

as a necessity for interactions in social environments [43]. For humans, the self and identity

combination are purposed for storing the traits, stereotypes, characteristics, and roles they play

in social settings. What features constitute a person’s self? How do disparate sensory perceptions

cohesively fuse together to form a singular experience of self? Although these questions are

typically addressed within the human scope, we can also apply these inquires to autonomous

robots that are bioinspired and create their own experiences with action.

It is our opinion that sensorimotor contingencies (discussed in Related Work) do not achieve their

full potential if solely used to estimate error signals in closed-loop controllers. We believe one can

ask the extent to which these contingencies facilitate and embody a self, reflect an identity, and

activate agency needs to be thoroughly explored. Self and identity are often used interchangeably

to encapsulate the entirety of individual’s behavior, character, and the restricted contextual con-

straints in which they operate within. However, it is important to clearly know the distinctions

of these terms if we’re determined to adequately construct models that emulate their functions.

Agency is known as the control of intentional actions and volition; leading to the ability to

plan and action ownership. For the purpose of our study we distinguish the self and identity

according to Oyserman’s [136] conceptualization. It is thought best to consider self, self-concept,

and identity as nested elements: self is the top-tier construct, self-concepts reside within the self,

and identities reside within self-concepts. Oyserman defines self as the ability to consider oneself

as an object. The self maintains reflexive capacity that is able to direct an agent to what is “me”;

it is the focal point of personal account and a reference for anchoring temporal sequences of events
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(e.g., memory recall). Identities are “content and readiness to act and employ mindsets to make

meaning.” Personal identities are the traits, characteristics, values and goals belonging to the

agent. Altogether self and identity are mental concepts, social products, and forces of action. As

Oyserman states, what makes this nested unit interesting is that they appear to predict behavior

over time. What is not fully understood by many in literature is how this happens.

6.7 Related Work

Further research into the topic of dynamic sensorimotor representations led us to original work on

the sensorimotor contingency theory [134], which has motivated an assortment of studies in the

area of human perception as it relates to understanding the nature of actions and their sensory

effects. Sensorimotor contingencies derived from the notion that vision should be treated as an

environmental exploratory activity. According to [77], sensorimotor contingencies spawned multi-

disciplinary projects that investigated how to model the action-sensory relationship of robotic

systems, which spanned the manipulation, classification, and categorization of external objects.

The researchers view the goal for most of these studies as autonomous robots learning skilled

behaviors via learning the structure of complex sensorimotor spaces and how actions affect the

environment. Despite these contributions, [20] believed there have been few attempts to formally

define sensorimotor contingencies, which they view as a prerequisite for testing this approach via

models and empirical study. The sensorimotor contingencies view on perceptual awareness have

also been criticized for lacking a suitable foundation in the biology of autonomous agency. Prior

work on building computational approaches of body representations, self, identity and Gestalt

have been attempted with a grounding in minimal embodied, psychological and cognitive aspects

[56]. One drawback of past implementations is that they’re unencumbered with understanding the

manifold of feasible transitions, which therefore leads to the incorrect perspective that any action

is permissible. Our approach addresses how the sensorimotor self should constrain one’s agency
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and perceptual space to feasible tasks. Attempts to create sensory-to-motor maps as a body

representation (i.e., body schema) have been accomplished by achieving robotic self-recognition

using a dynamic Bayesian network [65], online learning of arm reaching motor maps for humanoid

robots using open and closed loop control [62], body representations as cross-modal map learning

of invariance in multi modal sensory data [190], and estimation of a kinematic model for serial

robots [117]. To our knowledge, our approach is the first that considers the inherent link among

the feasible capabilities of the body, the feasible sensory information that will emerge, and the

physics of the world as the manifold defining agency, and therefore delineating the concept of self.

6.8 Conclusion

The emergence of self and its role in biological and artificial agents continues to be a subject

of debate across many disciplines; leading to the perception that there is a lack of congruence

among perspectives. The absence of a unified concept of self presented us with an opportunity

to propose a sensorimotor mechanism by which the self can emerge, via the Gestalt laws of

perceptual organization, in the context of artificial systems operating in the physical world (i.e.,

robots). This enables us to investigate the foundation of self, identity, learning, and agency as the

multifaceted interplay of proprioception and action while exploring their implications to autonomy.

The emergence of self through sensorimotor interactions has applications ranging from a self-other

distinction to ‘social’ systems for robot-human and robot-robot interactions. Traditionally, self

and identity are considered to be theoretical concepts, social constructs, and therefore enablers

of agency. We visit these concepts in reverse order to propose that it is sensorimotor agency that

can enable the emergence of self and identity—which is an evolutionarily plausible order of events

[188]. The Sensory-Motor Gestalt provides a solid foundation to enable such cross-fertilization

to move towards the creation of truly autonomous and versatile robots, and promote advances in

artificial intelligence.
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Chapter 7

Conclusion

This work’s long-term goal is to equip a robot with an emulated nervous system (i.e., a Neu-

RoBot) that forms a repertoire of physiologically-inspired sensory and motor couplings to explore

and exploit physical actions and transitions among them. For this thesis, we have focused on

building the software framework of the sensorimotor couplings, which can then be merged with

the hardware plant of the model. From our initial hypothesis, we anticipated that the physiolog-

ical sensory signals that result directly from a range of immature to skilled motor actions would

suffice to create a self-generated body representation that prompts learning of useful, functional

actions and potentially evolving behaviors. We believe the work successfully met the criteria for

forming useful body representations for tendon-driven systems such as the NeuRobot.

Using various computational methods, we demonstrated the plausibility that an individual body

representation of the self (i.e., body schema) for neuromuscular-driven robotic systems can be

self-generated from:

� Defining feasible behaviors and muscle activation patterns that produce task-oriented limb

mechanics.
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� Using computational integration of multimodal, spatiotemporal sensorimotor contingencies

of physiological realistic (artificial) proprioceptive afferents.

� Quantifying somatosensory modalities: Muscle spindle for posture, GTO for muscle force.

� Encoding multisensory mathematical formalisms for system-specific state space and actions.

In this thesis, we addressed the body senses that arise (e.g., muscle spindle afferents and visual

cues) to enable future studies investigating how those same sensory signals affect the representa-

tion of our physical self and the actions we make. First, I demonstrated that a given movement

gives rise to a distinct sensory manifold embedded in the 12-D space of muscle spindle information

that is largely independent of the choice of muscle coordination strategy. Given that musculoten-

don lengths and velocities are fully determined by joint kinematics, such manifolds provide a rich

set of information to use in its control. Secondly, I show that high-dimensional multi-muscle pro-

prioceptive ensembles can usefully discriminate limb states and be utilized as a suitable classifier

for inter-trajectory comparisons—but only after minimal pre-processing. Lastly, we present the

Sensory-Motor Gestalt, which through computational approaches, demonstrates how the syntac-

tical relationship between motor actions and bodily sensory states can lead to an epistemological

continuum that streamlines the body state into useful behavior for constructing the foundations

of agency, identity, and sense of self in hybrid robots and synthetic biological agents.

To conclude, let’s discuss some of the challenges that were undertaken and how we intend to map

out contingency plans for future research directions. We sought to address an underlying question:

how sensory signals shape the motor choices we make throughout daily life activities or in simple

task actions? From our past research experiments, we have learned that every limb movement

is associated with a unique set of specific sensory states, which we call the Feasible Sensory Set

(FSS). We must consider how the nervous system obtains and processes sensory data to create

a body sense that interacts with explicit or implicit internal models of the body and external
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influences on the body. Distinguishing oneself from the environment and having an introspective

representation of self is a fundamental, biological challenge that the CNS of animals and humans

must encounter and solve daily. Within that self-representation is a sense of ownership, that

our actions, behaviors, and bodies belong to a certain individual, which is key for survival and

performance. Although there were once only relatively few studies on the awareness of one’s body

[44], increasing volumes of research over the years has allowed us to make a commitment to this

thesis and fathom the realistic plausibility of creating self-aware devices.

The novelty in our work focused on addressing the remaining important challenges and limitations

in self-modeling based on the spatial constraints of states, the context of multisensory integration,

and control for exploration. Also, the distinction in our work is that we are explicitly analyzing

the unavoidable, physiologically basic, high-dimensional FSSs that accompany each movement.

This can be made possible by the use of interactive parallel coordinates and graphical animation

tools. Another key feature is the methodical design for autonomic self-knowledge that will equip

the system with the ability to express the causative relationships between sensory inputs and the

efferent motor events that are activated. Prediction of expected afferentation outcomes will be a

consequence of this relationship. From the perspective of neuromuscular systems, the mathemat-

ical and geometric perspective we applied served to ground the arguments of muscle abundance

and the feasibility of task constraints. Our methods for obtaining these results can be employed

towards robotics, and brain-machine interfaces (BMIs) optimized on the limits of simulated neu-

ral drive obtained from sensory inputs. Machines that possess self-aware computing will relieve

engineers, such as ourselves, of the need to assess system constraints and resource availability at

design-time. This need has the potential to be either be significantly reduced or eliminated. The

goal with our proposed framework was to not directly install a full-body representation or model

into a suitable hardware host but to instead provide it with the rules, principles, and fortitude
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to form a personal schema on its own merit...from the basis of proprioceptive signals. We be-

lieve our software implementation will provide valuable insight for engaging a new generation of

systems featured with computational self-modeling that will showcase a level of robustness and

flexibility that tendon-driven systems in the robotics field. At this time, the framework design is

tentative and open for modification as the project develops in the future. Our past research in

the 1) Mirror Neuron System for reaching arm tasks, 2) Agency according to self-other dichotomy

processing, 3) translating psychological self-awareness to machine subjective experience by way of

neuro-physiology, and 4) the forming of feasible sensory sets has primed us for making progress

in the phase of implementing the actualization of self-aware computing.

This thesis helped us make to make an effective contribution to the field of self-model computing

and assist in providing firm answers to the following inquiries:

� How do we understand and interact with the world around us (solely via afferentation)?

� How do we display that sensory understanding with motor control?

� What processes occur to allow us to make sense of the world via our senses?

� What are the sensorimotor dynamics that lead to artificial self-modeling and self-awareness?

A self-aware system, which we discussed in the Background section, should be able to comprehend

and facilitate the overheads and tradeoffs associated with the act of learning information about

itself. Subsequently, we can make fundamental progress in interpolating sensorimotor schemas of

self-impressions and experiences and their effects on the acquisition of knowledge. If developed

correctly, the system’s ability to self-generate its states can contribute to the goal of transforming

autonomous systems into devices that have the means to form self-knowledge of experiences (dis-

cover conditions and patterns that occur during operation). Through useful body representations,
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systems can obtain the ability to evaluate their effectiveness while improving their action plan-

ning and decision-making capabilities. Overall, we hope to have contributed to the aim of robot

capabilities to be more easily extended and adapted to novel situations and lifelong learning.
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[79] Louis M Herman. Body and self in dolphins. Consciousness and cognition, 21(1):526–545,
2012.

[80] Sayaka Hihara, Tomonori Notoya, Michio Tanaka, Shizuko Ichinose, Hisayuki Ojima,
Shigeru Obayashi, Naotaka Fujii, and Atsushi Iriki. Extension of corticocortical afferents
into the anterior bank of the intraparietal sulcus by tool-use training in adult monkeys.
Neuropsychologia, 44(13):2636–2646, 2006.

[81] Thomas T Hills and Stephen Butterfill. From foraging to autonoetic consciousness: The
primal self as a consequence of embodied prospective foraging. Current Zoology, 61(2):368–
381, 2015.

[82] Matej Hoffmann, Hugo Marques, Alejandro Arieta, Hidenobu Sumioka, Max Lungarella,
and Rolf Pfeifer. Body schema in robotics: a review. IEEE Transactions on Autonomous
Mental Development, 2(4):304–324, 2010.

[83] Katherine RS Holzbaur, Wendy M Murray, and Scott L Delp. A model of the upper extrem-
ity for simulating musculoskeletal surgery and analyzing neuromuscular control. Annals of
biomedical engineering, 33(6):829–840, 2005.

[84] Pierre Jacob and Marc Jeannerod. Ways of seeing: The scope and limits of visual cognition.
2003.

[85] Kian Jalaleddini, Chuanxin Minos Niu, Suraj Chakravarthi Raja, Won Joon Sohn, Gerald E
Loeb, Terence D Sanger, and Francisco J Valero-Cuevas. Neuromorphic meets neuromechan-
ics, part ii: the role of fusimotor drive. Journal of neural engineering, 14(2):025002, 2017.

[86] W James. The principles of psychology, vol. 2. henry holt and company, 1890.

[87] Harry J Jerison. Evolution of the brain and intelligence. Current Anthropology, 16(3):403–
426, 1975.

[88] Mari Jibu, Kunio Yasue, and K Yasue. Quantum brain dynamics and consciousness. John
Benjamins C., 1995.

123



[89] Eric R Kandel, Henry Markram, Paul M Matthews, Rafael Yuste, and Christof Koch.
Neuroscience thinks big (and collaboratively). Nature Reviews Neuroscience, 14(9):659–
664, 2013.

[90] Eric R Kandel, James H Schwartz, Thomas M Jessell, Department of Biochemistry, Molec-
ular Biophysics Thomas Jessell, Steven Siegelbaum, and AJ Hudspeth. Principles of neural
science, volume 4. McGraw-hill New York, 2000.

[91] Julian Paul Keenan, Hanna Oh, and Franco Amati. An overview of self-awareness. The
Oxford Handbook of Social Neuroscience, page 314, 2011.

[92] James M Kilner, Karl J Friston, and Chris D Frith. Predictive coding: an account of the
mirror neuron system. Cognitive processing, 8(3):159–166, 2007.

[93] Jaegwon Kim. Physicalism, or something near enough, volume 19. Princeton University
Press, 2007.

[94] Tilo TJ Kircher, Carl Senior, Mary L Phillips, Sophia Rabe-Hesketh, Philip J Benson,
Edward T Bullmore, Mick Brammer, Andrew Simmons, Mathias Bartels, and Anthony S
David. Recognizing one’s own face. Cognition, 78(1):B1–B15, 2001.

[95] Stanley B Klein. The cognitive neuroscience of knowing one’s self. 2004.

[96] Christof Koch. The quest for consciousness a neurobiological approach. 2004.

[97] Konrad P Körding and Daniel M Wolpert. Bayesian integration in sensorimotor learning.
Nature, 427(6971):244–247, 2004.

[98] Uriah Kriegel. Consciousness as sensory quality and as implicit self-awareness. Phenomenol-
ogy and the Cognitive Sciences, 2(1):1–26, 2003.

[99] Michael Kubovy, Alex O Holcombe, and Johan Wagemans. On the lawfulness of grouping
by proximity. Cognitive psychology, 35(1):71–98, 1998.

[100] Yasuo Kuniyoshi. Learning from examples: Imitation learning and emerging cognition. Hu-
manoid Robotics and Neuroscience: Science, Engineering and Society, G. Cheng, Ed.(CRC
Press, Boca Raton, FL, 2015), pages 223–250, 2015.

[101] AD Kuo and Zajac FE. Human standing posture: multi-joint movement strategies based
on biomechanical constraints. Progress in brain research, 97:349–358, 1993.

[102] Jason J Kutch and Francisco J Valero-Cuevas. Challenges and new approaches to proving
the existence of muscle synergies of neural origin. PLoS computational biology, 8(5), 2012.

[103] Christopher M Laine, Akira Nagamori, and Francisco J Valero-Cuevas. The dynamics of
voluntary force production in afferented muscle influence involuntary tremor. Frontiers in
computational neuroscience, 10:86, 2016.

[104] Christopher Landauer and Kirstie L Bellman. Self-modeling systems. In International
Workshop on Self-Adaptive Software, pages 238–256. Springer, 2001.

124



[105] Mark R Leary and Nicole R Buttermore. The evolution of the human self: Tracing the
natural history of self-awareness. Journal for the Theory of Social Behaviour, 33(4):365–
404, 2003.

[106] Michel A Lemay and Patrick E Crago. A dynamic model for simulating movements of the
elbow, forearm, and wrist. Journal of biomechanics, 29(10):1319–1330, 1996.

[107] Joseph Levine. Materialism and qualia: The explanatory gap. Pacific philosophical quar-
terly, 64(4):354–361, 1983.

[108] JP Lewis. Fast normalized cross-correlation, industrial light and magic. unpublished, 2005.

[109] Peter R Lewis, Arjun Chandra, Funmilade Faniyi, Kyrre Glette, Tao Chen, Rami Bahsoon,
Jim Torresen, and Xin Yao. Architectural aspects of self-aware and self-expressive computing
systems: From psychology to engineering. Computer, 48(8):62–70, 2015.

[110] Peter R Lewis, Arjun Chandra, Shaun Parsons, Edward Robinson, Kyrre Glette, Rami
Bahsoon, Jim Torresen, and Xin Yao. A survey of self-awareness and its application in
computing systems. In 2011 Fifth IEEE Conference on Self-Adaptive and Self-Organizing
Systems Workshops, pages 102–107. IEEE, 2011.

[111] Rodolfo Riascos Llinás. I of the vortex: From neurons to self, volume 50. MIT press
Cambridge, MA, 2001.

[112] GE Loeb, WS Levine, and Jiping He. Understanding sensorimotor feedback through optimal
control. In Cold Spring Harbor symposia on quantitative biology, volume 55, pages 791–803.
Cold Spring Harbor Laboratory Press, 1990.

[113] Gerald E Loeb and Jeremy A Fishel. Bayesian action&perception: Representing the world
in the brain. Frontiers in neuroscience, 8:341, 2014.

[114] HC Lou, JP Changeux, and A Rosenstand. Towards a cognitive neuroscience of self-
awareness. Neuroscience & Biobehavioral Reviews, 83:765–773, 2017.

[115] Pete Mandik. Action-oriented representation. Cognition and the brain: The philosophy and
neuroscience movement, pages 284–305, 2005.
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[134] J Kevin O’Regan and Alva Noë. A sensorimotor account of vision and visual consciousness.
Behavioral and brain sciences, 24(5):939–973, 2001.

[135] David J Ostry and Paul L Gribble. Sensory plasticity in human motor learning. Trends in
neurosciences, 39(2):114–123, 2016.

[136] D Oyserman, K Elmore, and GS Smith. Self, self-concept, and identity-handbook of self
and identity, 2012.

126



[137] David I Perrett, Mark H Harries, Ruth Bevan, S Thomas, PJ Benson, Amanda J Mistlin,
Andrew J Chitty, Jari K Hietanen, and JE Ortega. Frameworks of analysis for the neural
representation of animate objects and actions. Journal of experimental Biology, 146(1):87–
113, 1989.

[138] Carissa L Philippi, Justin S Feinstein, Sahib S Khalsa, Antonio Damasio, Daniel Tranel,
Gregory Landini, Kenneth Williford, and David Rudrauf. Preserved self-awareness following
extensive bilateral brain damage to the insula, anterior cingulate, and medial prefrontal
cortices. PloS one, 7(8):e38413, 2012.

[139] Jean Piaget. Piaget’s theory of cognitive development. Childhood cognitive development:
The essential readings, 2:33–47, 2000.

[140] Steven M Platek, Jaime W Thomson, and Gordon G Gallup Jr. Cross-modal self-recognition:
The role of visual, auditory, and olfactory primes. Consciousness and cognition, 13(1):197–
210, 2004.

[141] Joshua M Plotnik, Frans BM De Waal, and Diana Reiss. Self-recognition in an asian
elephant. Proceedings of the National Academy of Sciences, 103(45):17053–17057, 2006.
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