Chapter 10: Implications (under construction)

Last updated Dec. 26 2015 by Francisco Valero-Cuevas

Abstract:


This book is deliberately a short introduction to the mathematical and anatomical foundations of neuromechanics. My hope is that you will take these concepts and challenge, modify, extend, and leverage them to advance the science of neuromuscular control and its related areas, such as robotics, musculoskeletal modeling, computational neuroscience, rehabilitation, and evolutionary biology. Having established a common language, conceptual framework, and computational repertoire, I discuss several implications of this neuromechanical perspective. My intent is that my presentation of several issues, research directions, tenets, and debates, however brief, will inspire and encourage you in your research.

Forum and commentary:


Coming soon!

Exercises:


Coming soon!

Additional references and suggested reading:


Coming soon!

References in book:


  1. N.A.Bernstein, The Co-ordination and Regulation of Movements (PergamonPress, NewYork, 1967)
  2. J.J. Kutch, F.J. Valero-Cuevas, Muscle redundancy does not imply robustness to muscle dys- function. J. Biomech. 44(7), 1264–1270 (2011)
  3. M.L. Latash, The bliss (not the problem) of motor abundance (not redundancy). Exp. Brain Res. 217(1), 1–5 (2012)
  4. G.E. Loeb, Overcomplete musculature or underspecified tasks? Mot. Control 4(1), 81–83 (2000)
  5. K.G. Keenan, V.J. Santos, M. Venkadesan, F.J. Valero-Cuevas, Maximal voluntary finger- tip force production is not limited by movement speed in combined motion and force tasks. J. Neurosci. 29, 8784–8789 (2009)
  6. F.J. Valero-Cuevas, F.E. Zajac, C.G. Burgar, Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J. Biomech. 31, 693–703 (1998)
  7. F.J. Valero-Cuevas, H. Hoffmann, M.U. Kurse, J.J. Kutch, E.A. Theodorou, Computational models for neuromuscular function. IEEE Rev. Biomed. Eng. 2, 110–135 (2009)
  8. R. Shadmehr, S. Mussa-Ivaldi, Biological Learning and Control: How the Brain Builds Rep- resentations, Predicts Events, and Makes Decisions (MIT Press, Cambridge, 2012)
  9. E. Todorov, M.I. Jordan, Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5(11), 1226–1235 (2002)
  10. E.Theodorou,E.Todorov,F.J.Valero-Cuevas,Neuromuscularstochasticoptimalcontrolofa tendon driven index finger model, in 2011 American Control Conference (ACC) (IEEE, 2011), pp. 348–355
  11. E.Theodorou,F.J.Valero-Cuevas,Optimalityinneuromuscularsystems,in2010IEEEAnnual International Conference of the Engineering in Medicine and Biology Society (EMBC) (IEEE, 2010), pp. 4510–4516
  12. V. Kumar, Y. Tassa, T. Erez, E. Todorov, Real-time behaviour synthesis fordynamic hand- manipulation, in 2014 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2014), pp. 6808–6815
  13. M.Kalakrishnan,J.Buchli,P.Pastor,M.Mistry,S.Schaal,Learning,planning,andcontrolfor quadruped locomotion over challenging terrain. Int. J. Robot. Res. 30(2), 236–258 (2011)
  14. E.Theodorou,J.Buchli,S.Schaal,Ageneralizedpathintegralcontrolapproachtoreinforce- ment learning. J. Mach. Learn. Res. 11, 3137–3181 (2010)
  15. Wikipedia contributors. Basis vectors. Wikipedia,The Free Encyclopedia. http://en.wikipedia.org/wiki/Curse_of_dimensionality. Accessed 7 June 2015
  16. A.D. Kuo, F.E. Zajac, Human standing posture: multi-joint movement strategies based on biomechanical constraints. Prog. Brain Res. 97, 349–358 (1993)
  17. F.J. Cole et al. A History of Comparative Anatomy from Aristotle to the Eighteenth Century (Macmillan Publisher, London, 1944)
  18. A.Vesalius, De Humani Corporis Fabrica Libri Septem(Ex officina I. Oporini, Basileae,1543)
  19. R. VanRijn, The Anatomy Lesson of Dr. Nicolaes Tulp(1632)
  20. F.J.Valero-Cuevas,C.F.Small, Load dependence in carpal kinematics during wrist flexion in vivo. Clin. Biomech. 12, 154–159 (1997) References 173
  21. H.vanDuinen,S.C.Gandevia,Constraintsforcontrolofthehumanhand.J.Physiol.589(23), 5583–5593 (2011)
  22. C.E. Wall, A model of temporomandibular joint function in anthropoid primates basedon condylar movements during mastication. Am. J. Phys. Anthropol. 109(1), 67–88 (1999)
  23. F.J. Valero-Cuevas, Predictive modulation of muscle coordination pattern magnitude scales fingertip force magnitude over the voluntary range. J. Neurophysiol. 83(3), 1469–1479 (2000)
  24. F.J.Valero-Cuevas,J.D.Towles,V.R.Hentz,Quantificationoffingertipforcereductioninthe forefinger following simulated paralysis of extensor and intrinsic muscles, J. Biomech. 33, 1601–1609 (2000)
  25. L. Gregoire, H.E. Veeger, P.A. Huijing, S.G.J. van Ingen, Role of mono- and bi-articular muscles in explosive movements. Int. J. Sport. Med. 5(6):301–305, (1984)
  26. J.M. Inouye, F.J. Valero-Cuevas, Anthropomorphic tendon-driven robotic hands can exceed human grasping capabilities following optimization. Int. J. Robot. Res. (2013)
  27. F.J.Valero-Cuevas,J.W.Yi,D.Brown,R.V.McNamara,C.Paul,H.Lipson,Thetendonnetwork of the fingers performs anatomical computation at a macroscopic scale. IEEE Trans. Biomed.Eng. 54, 1161–1166 (2007)
  28. V.S. Chib, M.A Krutky, K.M. Lynch, F.A. Mussa-Ivaldi, The separate neural control of hand movements and contact forces. J. Neurosci. 29(12), 3939–3947 (2009)
  29. R.M.Murray,Z.Li,S.S.Sastry,AMathematicalIntroductiontoRoboticManipulation(CRC Press, Florida, 1994)
  30. V.Squeri,L.Masia,M.Casadio,P.Morasso,E.Vergaro,Force-fieldcompensationinamanual tracking task. PLoS One 5(6), e11189 (2010)
  31. M. Venkadesan, F.J. Valero-Cuevas, Neural control of motion-to-force transitions with the fingertip. J. Neurosci. 28, 1366–1373 (2008)
  32. T.Yoshikawa,FoundationsofRobotics:AnalysisandControl(MITPress,Cambridge,1990)
  33. N. Hogan, Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Control 29(8), 681–690 (1984)
  34. E.R.Kearney,I.W.Hunter,Systemidentificationofhumanjointdynamics.Crit.Rev.Biomed. Eng. 18(1), 55–87 (1989)
  35. J.M.Lanman,Movementandthemechanicalpropertiesoftheintacthumanelbowjoint.Ph.D. thesis, Massachusetts Institute of Technology (1980)
  36. G.I.Zahalak,S.J.Heyman,Aquantitativeevaluationofthefrequency-responsecharacteristics of active human skeletal muscle in vivo. J. Biomech. Eng. 101(1), 28–37 (1979)
  37. E.Burdet,R.Osu,D.W.Franklin,T.E.Milner,M.Kawato,Thecentralnervoussystemstabilizes unstable dynamics by learning optimal impedance. Nature 414(6862), 446–449 (2001)
  38. E.Burdet,R.Osu,D.W.Franklin,T.Yoshioka,T.E.Milner,M.Kawato,Amethodformeasuring endpoint stiffness during multi-joint arm movements. J. Biomech. 33(12), 1705–1709 (2000)
  39. M. Darainy, N. Malfait, P.L. Gribble, F. Towhidkhah, D.J. Ostry, Learning to control arm stiffness under static conditions. J. Neurophysiol. 92(6), 3344 (2004)
  40. T.Flash,F.Mussa-Ivaldi,Humanarmstiffnesscharacteristicsduringthemaintenanceofpos- ture. Exp. Brain Res. 82(2), 315–326 (1990)
  41. D.W.Franklin,G.Liaw,T.E.Milner,R.Osu,E.Burdet,M.Kawato,Endpointstiffnessofthe arm is directionally tuned to instability in the environment. J. Neurosci. 27(29), 7705–7716 (2007)
  42. D.W. Franklin, U. So, M. Kawato, T.E. Milner, Impedance control balances stability with metabolically costly muscle activation. J. Neurophysiol. 92(5), 3097 (2004)
  43. H.Gomi,R.Osu,Task-dependentviscoelasticityofhumanmultijointarmanditsspatialchar- acteristics for interaction with environments. J. Neurosci. 18(21), 8965–8978 (1998)
  44. N.Hogan,Impedancecontrol:anapproachtomanipulation,inAmericanControlConference (IEEE, 1984), pp. 304–313
  45. N. Hogan, The mechanics of multi-joint posture and movement control. Biol. Cybern. 52(5), 315–331 (1985)46. X. Hu, W.M. Murray, E.J. Perreault, Muscle short-range stiffness can be used to estimate theendpoint stiffness of the human arm. J. Neurophysiol. 105(4), 1633–1641 (2011) 174 10 Implications
  46. H.U.Xiao,W.M.Murray,E.J.Perreault,Biomechanicalconstraintsonthefeedforwardregu- lation of endpoint stiffness. J. Neurophysiol. 108(8), 2083–2091 (2012)
  47. A.Kadiallah,G.Liaw,M.Kawato,D.W.Franklin,E.Burdet.Impedancecontrolisselectively tuned to multiple directions of movement. J. Neurophysiol
  48. J.McIntyre,F.A.Mussa-Ivaldi,E.Bizzi,Thecontrolofstableposturesinthemultijointarm. Exp. Brain Res. 110(2), 248–264 (1996)
  49. T.E.Milner, Contribution of geometry and joint stiffness to mechanical stability of the human arm. Exp. Brain Res. 143(4), 515–519 (2002)
  50. F.A.Mussa-Ivaldi,N.Hogan,E.Bizzi,Neural,mechanical,andgeometricfactorssubserving arm posture in humans. J. Neurosci. 5(10), 2732 (1985)
  51. R. Osu, H. Gomi, Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals. J. Neurophysiol. 81(4), 1458 (1999)
  52. E.J.Perreault,R.F.Kirsch,P.E.Crago,Effectsofvoluntaryforcegenerationontheelasticcom- ponents of endpoint stiffness. Exp. Brain Res. (Experimentelle Hirnforschung Experimentation cerebrale) 141(3), 312, (2001)
  53. E.J. Perreault, R.F. Kirsch, P.E. Crago, Voluntary control of static endpoint stiffness during force regulation tasks. J. Neurophysiol. 87(6), 2808 (2002)
  54. D. Shin, J. Kim, Y. Koike, A myokinetic arm model for estimating joint torque and stiffness from EMG signals during maintained posture. J. Neurophysiol. 101(1), 387–401 (2009)
  55. S. Stroeve, Impedance characteristics of a neuromusculoskeletal model of the human arm i. Posture control. Biol. Cybern. 81(5), 475–494 (1999)
  56. K.P. Tee, D.W. Franklin, M. Kawato, T.E. Milner, E. Burdet, Concurrent adaptation of force and impedance in the redundant muscle system. Biol. Cybern. 102(1), 31–44 (2010)
  57. J.M.Inouye,F.J.Valero-Cuevas,Anovelcomputationalapproachhelpsexplainandreconcile conflicting experimental findings on the neural control of arm endpoint stiffness, in 2012 22nd Annual Society for the Neural Control of Movement Conference (Venice, Italy, 2012)
  58. C.Tomberg,M.D.Caramia,Primemovermuscleinfingerliftorfingerflexionreactiontimes: identification with transcranial magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. 81(4), 319–322 (1991)
  59. T.E. Milner, Adaptation to destabilizing dynamics by means of muscle cocontraction. Exp. Brain Res. 143(4), 406–416 (2002)
  60. F.J. Valero-Cuevas, An integrative approach to the biomechanical function andn euromuscular control of the fingers. J. Biomech. 38, 673–684 (2005)
  61. R.Balasubramanian,Y.Matsuoka,Biologicalstiffnesscontrolstrategiesfortheanatomically correct testbed (act) hand, in 2008 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2008), pp. 737–742
  62. J.J. Kutch, F.J. Valero-Cuevas, Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 8(5), e1002434 (2012)
  63. M.K.Steele,M.C.Tresch,E.J.Perreault,Consequencesofbiomechanicallyconstrainedtasks in the design and interpretation of synergy analyses. J. Neurophysiol. 113(7), 2102–2113 (2015)

Code:


Coming soon!

© Francisco Valero-Cuevas 2015